Sample records for jay keasling biofuels

  1. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keasling, Jay

    2008-08-30

    Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  2. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling

    ScienceCinema

    Keasling, Jay

    2018-02-14

    Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  3. Biotechnology at the Cutting Edge - Keasling

    ScienceCinema

    Keasling, Jay

    2018-05-11

    Jay Keasling, Berkeley Lab ALD for Biosciences and CEO of the Joint BioEnergy Institute, appears in a video on biotechnology at the Smithsonian's National Museum of American History. The video is part of en exhibit titled "Science in American Life," which examines the relationship between science, technology, progress and culture through artifacts, historical photographs and multimedia technology.

  4. Breakthrough: Using Microbes to Make Advanced Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keasling, Jay

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  5. Breakthrough: Using Microbes to Make Advanced Biofuels

    ScienceCinema

    Keasling, Jay

    2018-02-14

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  6. Carbon Cycle 2.0: Jay Keasling: Biofuels

    ScienceCinema

    Jay Keasling

    2017-12-09

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  7. Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)

    ScienceCinema

    Keasling, Jay; Bristow, Jim; Tringe, Susannah Green

    2017-12-09

    Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.

  8. Biofuels Science and Facilities (Carbon Cycle 2.0)

    ScienceCinema

    Keasling, Jay D.

    2018-04-27

    Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  9. Renewable Energy from Synthetic Biology (LBNL Science at the Theater)

    ScienceCinema

    Keasling, Jay [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-25

    Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in work funded by the Bill & Melinda Gates Foundation.

  10. Renewable Energy from Synthetic Biology (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keasling, Jay

    2007-06-04

    Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in workmore » funded by the Bill & Melinda Gates Foundation.« less

  11. 50 CFR 21.46 - Depredation order for depredating scrub jays and Steller's jays in Washington and Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BIRD PERMITS Control of Depredating and Otherwise Injurious Birds § 21.46 Depredation order for... to bury or otherwise destroy the carcasses of such birds is permitted: Provided, That the Director of... jays and Steller's jays killed as may be needed for scientific investigations. (c) That such birds may...

  12. Jay B. Nash.

    ERIC Educational Resources Information Center

    Jable, J. Thomas

    1985-01-01

    Jay B. Nash's accomplishments and professional service have long been recognized by physical educators. This article examines the major forces and events that made him one of the most important leaders in American physical education. (MT)

  13. Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius).

    PubMed

    Zucca, Paolo; Milos, Nadia; Vallortigara, Giorgio

    2007-04-01

    Object permanence in Eurasian jays (Garrulus glandarius) was investigated using a complete version of the Uzgiris and Hunt scale 1. Nine hand-raised jays were studied, divided into two groups according to their different developmental stages (experiment 1, older jays: 2-3 months old, n = 4; experiment 2, younger jays: 15 days old, n = 5). In the first experiment, we investigated whether older jays could achieve piagetian stage 6 of object permanence. Tasks were administered in a fixed sequence (1-15) according to the protocols used in other avian species. The aim of the second experiment was to check whether testing very young jays before their development of "neophobia" could influence the achievement times of piagetian stages. Furthermore, in this experiment tasks were administered randomly to investigate whether the jays' achievement of stage 6 follows a fixed sequence related to the development of specific cognitive abilities. All jays tested in experiments 1 and 2 fully achieved piagetian stage 6 and no "A not B" errors were observed. Performance on visible displacement tasks was better than performance on invisible ones. The results of experiment 2 show that "neophobia" affected the response of jays in terms of achievement times; the older jays in experiment 1 took longer to pass all the tasks when compared with the younger, less neophobic, jays in experiment 2. With regard to the achieving order, jays followed a fixed sequence of acquisition in experiment 2, even if tasks were administered randomly, with the exception of one subject. The results of these experiments support the idea that piagetian stages of cognitive development exist in avian species and that they progress through relatively fixed sequences.

  14. Blue jay attacks and consumes cedar waxwing

    Treesearch

    Daniel Saenz; Joshua B. Pierce

    2009-01-01

    Blue Jays (Cyanocitta cristata) are known to be common predators on bird nests (Wilcove 1985, Picman and Schriml 1994). In addition to predation on eggs and nestlings, Blue Jays occasionally prey on fledgling and adult birds (Johnson and Johnson 1976, Dubowy 1985). A majority of reports involve predation on House Sparrows (Passer domesticus) and other small birds (...

  15. Pilfering Eurasian jays use visual and acoustic information to locate caches.

    PubMed

    Shaw, Rachael C; Clayton, Nicola S

    2014-11-01

    Pilfering corvids use observational spatial memory to accurately locate caches that they have seen another individual make. Accordingly, many corvid cache-protection strategies limit the transfer of visual information to potential thieves. Eurasian jays (Garrulus glandarius) employ strategies that reduce the amount of visual and auditory information that is available to competitors. Here, we test whether or not the jays recall and use both visual and auditory information when pilfering other birds' caches. When jays had no visual or acoustic information about cache locations, the proportion of available caches that they found did not differ from the proportion expected if jays were searching at random. By contrast, after observing and listening to a conspecific caching in gravel or sand, jays located a greater proportion of caches, searched more frequently in the correct substrate type and searched in fewer empty locations to find the first cache than expected. After only listening to caching in gravel and sand, jays also found a larger proportion of caches and searched in the substrate type where they had heard caching take place more frequently than expected. These experiments demonstrate that Eurasian jays possess observational spatial memory and indicate that pilfering jays may gain information about cache location merely by listening to caching. This is the first evidence that a corvid may use recalled acoustic information to locate and pilfer caches.

  16. Losing Jay: A Meditation on Teaching while Grieving

    ERIC Educational Resources Information Center

    Parker, Blaise Astra

    2009-01-01

    The author's partner Jay died on May 23, 2006. It was sudden and unexpected--he was 31, the author was 30. Her grief was prolonged and agonizing, and she has since learned that doctors refer to her condition as "complicated grief." Truly, she is not sure how she survived the first year after Jay's death. She certainly was not convinced she wanted…

  17. DSP Synthesis Algorithm for Generating Florida Scrub Jay Calls

    NASA Technical Reports Server (NTRS)

    Lane, John; Pittman, Tyler

    2017-01-01

    A prototype digital signal processing (DSP) algorithm has been developed to approximate Florida scrub jay calls. The Florida scrub jay (Aphelocoma coerulescens), believed to have been in existence for 2 million years, living only in Florida, has a complicated social system that is evident by examining the spectrograms of its calls. Audio data was acquired at the Helen and Allan Cruickshank Sanctuary, Rockledge, Florida during the 2016 mating season using three digital recorders sampling at 44.1 kHz. The synthesis algorithm is a first step at developing a robust identification and call analysis algorithm. Since the Florida scrub jay is severely threatened by loss of habitat, it is important to develop effective methods to monitor their threatened population using autonomous means.

  18. Lee Jay Fingersh | NREL

    Science.gov Websites

    Lee.Fingersh@nrel.gov | 303-384-6929 Lee Jay joined NREL in 1993. For seven years, he was the test engineer on the Unsteady Aerodynamics Experiment turbine, which culminated in the NASA Ames wind tunnel test. Lee has worked on the design and controls for the variable-speed test bed and administered many

  19. Meet EPA Scientist Jay Garland

    EPA Pesticide Factsheets

    Scientist Jay Garland Ph.D. spent twenty years at NASA trying to figure out how astronauts could stay in outer space for a long time without needing more supplies. Now he is bringing the same concepts of reusing and recovering resources to his research

  20. Effects of experience and social context on prospective caching strategies by scrub jays.

    PubMed

    Emery, N J; Clayton, N S

    2001-11-22

    Social life has costs associated with competition for resources such as food. Food storing may reduce this competition as the food can be collected quickly and hidden elsewhere; however, it is a risky strategy because caches can be pilfered by others. Scrub jays (Aphelocoma coerulescens) remember 'what', 'where' and 'when' they cached. Like other corvids, they remember where conspecifics have cached, pilfering them when given the opportunity, but may also adjust their own caching strategies to minimize potential pilfering. To test this, jays were allowed to cache either in private (when the other bird's view was obscured) or while a conspecific was watching, and then recover their caches in private. Here we show that jays with prior experience of pilfering another bird's caches subsequently re-cached food in new cache sites during recovery trials, but only when they had been observed caching. Jays without pilfering experience did not, even though they had observed other jays caching. Our results suggest that jays relate information about their previous experience as a pilferer to the possibility of future stealing by another bird, and modify their caching strategy accordingly.

  1. Habitat model for the Florida Scrub Jay on John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1992-01-01

    The Florida Scrub Jay is endemic to Florida. The John F. Kennedy Space Center (KSC) provides habitat for one of the three largest populations of the Florida Scrub Jay. This threatened bird occupies scrub, slash pine flatwoods, disturbed scrub, and coastal strand on KSC. Densities of Florida Scrub Jays were shown to vary with habitat characteristics but not necessarily with vegetation type. Relationships between Florida Scrub Jay densities and habitat characteristics were used to develop a habitat model to provide a tool to compare alternative sites for new facilities and to quantify environmental impacts. This model is being tested using long term demographic studies of colorbanded Florida Scrub Jays. Optimal habitat predicted by the model has greater than or equal to 50 percent of the shrub canopy comprised of scrub oaks, 20-50 percent open space or scrub oak vegetation within 100 m of a ruderal edge, less than or equal to 15 percent pine canopy cover, a shrub height of 120-170 cm, and is greater than or equal to 100 m from a forest. This document reviews life history, social behavior, food, foraging habitat, cover requirements, characteristics of habitat on KSC, and habitat preferences of the Florida Scrub Jay. Construction of the model and its limitations are discussed.

  2. Episodic-like memory during cache recovery by scrub jays.

    PubMed

    Clayton, N S; Dickinson, A

    1998-09-17

    The recollection of past experiences allows us to recall what a particular event was, and where and when it occurred, a form of memory that is thought to be unique to humans. It is known, however, that food-storing birds remember the spatial location and contents of their caches. Furthermore, food-storing animals adapt their caching and recovery strategies to the perishability of food stores, which suggests that they are sensitive to temporal factors. Here we show that scrub jays (Aphelocoma coerulescens) remember 'when' food items are stored by allowing them to recover perishable 'wax worms' (wax-moth larvae) and non-perishable peanuts which they had previously cached in visuospatially distinct sites. Jays searched preferentially for fresh wax worms, their favoured food, when allowed to recover them shortly after caching. However, they rapidly learned to avoid searching for worms after a longer interval during which the worms had decayed. The recovery preference of jays demonstrates memory of where and when particular food items were cached, thereby fulfilling the behavioural criteria for episodic-like memory in non-human animals.

  3. Factors Affecting Florida Scrub-Jay Nest Survival on Ocala National Forest, Florida

    Treesearch

    Kathleen Franzreb; Stan Zarnoch

    2011-01-01

    One of the main populations of the Florida scrub-jay (Aphelocoma coerulescens), a federally threatened species, occurs on Ocala National Forest, Florida. We determined the nest survival rate (DSR) of 474 nests of Florida scrub-jays in stands subject to sand pine reforestation management after timber harvesting or wildfire on Ocala National Forest. We used the...

  4. Re-caching by Western scrub-jays (Aphelocoma californica) cannot be attributed to stress.

    PubMed

    Thom, James M; Clayton, Nicola S

    2013-01-01

    Western scrub-jays (Aphelocoma californica) live double lives, storing food for the future while raiding the stores of other birds. One tactic scrub-jays employ to protect stores is "re-caching"-relocating caches out of sight of would-be thieves. Recent computational modelling work suggests that re-caching might be mediated not by complex cognition, but by a combination of memory failure and stress. The "Stress Model" asserts that re-caching is a manifestation of a general drive to cache, rather than a desire to protect existing stores. Here, we present evidence strongly contradicting the central assumption of these models: that stress drives caching, irrespective of social context. In Experiment (i), we replicate the finding that scrub-jays preferentially relocate food they were watched hiding. In Experiment (ii) we find no evidence that stress increases caching. In light of our results, we argue that the Stress Model cannot account for scrub-jay re-caching.

  5. Efficacy of Three Vaccines in Protecting Western Scrub-Jays (Aphelocoma californica) from Experimental Infection with West Nile Virus: Implications for Vaccination of Island Scrub-Jays (Aphelocoma insularis)

    PubMed Central

    Wheeler, Sarah S.; Langevin, Stanley; Woods, Leslie; Carroll, Brian D.; Vickers, Winston; Morrison, Scott A.; Chang, Gwong-Jen J.; Reisen, William K.

    2011-01-01

    Abstract The devastating effect of West Nile virus (WNV) on the avifauna of North America has led zoo managers and conservationists to attempt to protect vulnerable species through vaccination. The Island Scrub-Jay (Aphelocoma insularis) is one such species, being a corvid with a highly restricted insular range. Herein, we used congeneric Western Scrub-Jays (Aphelocoma californica) to test the efficacy of three WNV vaccines in protecting jays from an experimental challenge with WNV: (1) the Fort Dodge West Nile-Innovator® DNA equine vaccine, (2) an experimental DNA plasmid vaccine, pCBWN, and (3) the Merial Recombitek® equine vaccine. Vaccine efficacy after challenge was compared with naïve and nonvaccinated positive controls and a group of naturally immune jays. Overall, vaccination lowered peak viremia compared with nonvaccinated positive controls, but some WNV-related pathology persisted and the viremia was sufficient to possibly infect susceptible vector mosquitoes. The Fort Dodge West Nile-Innovator DNA equine vaccine and the pCBWN vaccine provided humoral immune priming and limited side effects. Five of the six birds vaccinated with the Merial Recombitek vaccine, including a vaccinated, non-WNV challenged control, developed extensive necrotic lesions in the pectoral muscle at the vaccine inoculation sites, which were attributed to the Merial vaccine. In light of the well-documented devastating effects of high morbidity and mortality associated with WNV infection in corvids, vaccination of Island Scrub-Jays with either the Fort Dodge West Nile-Innovator DNA vaccine or the pCBWN vaccine may increase the numbers of birds that would survive an epizootic should WNV become established on Santa Cruz Island. PMID:21438693

  6. The Hopeful Traveler Jay Bryan Nash.

    ERIC Educational Resources Information Center

    Jessup, Harvey M., Comp.

    This book is one of a series of publications preserving the best writing and speeches of outstanding leaders of the American Alliance for Health, Physical Education, Recreation and Dance. Jay Bryan Nash was one of the founders of the Alliance. The speeches and essays by Nash in this collection are, for the most part, appearing in published form…

  7. Kennedy Space Center Florida Scrub-Jay Compensation Plan

    NASA Technical Reports Server (NTRS)

    Pitcock, Taylor Morgan (Compiler)

    2014-01-01

    Many organizations have interest in using NASA property on KSC. The purpose of this document is to consolidate the goals of ecosystem management associated with Florida Scrub-Jays and compliance with the Endangered Species Act (ESA) in order to streamline and reduce the costs of facility planning, impact assessment, and impact minimization. This will simplify the process and reduce regulatory uncertainty.However, the resulting process must be consistent with the Merritt Island National Wildlife Refuge (MINWR) Comprehensive Conservation Plan (CCP). In addition, this document considers anticipated construction impacts on KSC during the next 10 years and summarizes priorities in a spatially explicit manner. The document describes anticipated compensation requirements to facilitate restoration of degraded habitat in areas most important to the KSC Scrub-Jay population through resources provided to MINWR. The plan assumes that all construction on KSC is compensated on KSC.

  8. Using adjunct forest inventory methodology to quantify pinyon jay habitat in the great basin

    Treesearch

    Christopher Witt

    2015-01-01

    Pinyon jays (Gymnorhinus cyanocephalus) are the principal dispersal agent for pinyon pine seeds in the Great Basin region of the Intermountain West. However, Pinyon jays have exhibited significant population declines over much their range in recent decades, even as pinyon-juniper woodlands appear to have been expanding over the past 150 years. In...

  9. Interacting Cache memories: evidence for flexible memory use by Western Scrub-Jays (Aphelocoma californica).

    PubMed

    Clayton, Nicola S; Yu, Kara Shirley; Dickinson, Anthony

    2003-01-01

    When Western Scrub-Jays (Aphelocoma californica) cached and recovered perishable crickets, N. S. Clayton, K. S. Yu, and A. Dickinson (2001) reported that the jays rapidly learned to search for fresh crickets after a 1-day retention interval (RI) between caching and recovery but to avoid searching for perished crickets after a 4-day RI. In the present experiments, the jays generalized their search preference for crickets to intermediate RIs and used novel information about the rate of decay of crickets presented during the RI to reverse these search preferences at recovery. The authors interpret this reversal as evidence that the birds can integrate information about the caching episode with new information presented during the RI.

  10. Clinical evaluation of the Jay Sensitivity Sensor Probe: a new microprocessor-controlled instrument to evaluate dentin hypersensitivity.

    PubMed

    Sowinski, Joseph A; Kakar, Ashish; Kakar, Kanupriya

    2013-05-01

    To compare the Jay Sensitivity Sensor Probe (Jay Probe), a new microprocessor-based, pre-calibrated instrument, with well accepted methods used to evaluate sensitivity, i.e. tactile response to the Yeaple Probe, air blast (Schiff scale), and patient responses by Visual Analog Score (VAS). Jay Probe assessments were accomplished using several approaches. With a cohort of 12 subjects, two clinical examiners compared the repeatability of the Jay and Yeaple Probes. A second evaluation of both probes was conducted during two independent parallel design clinical studies each enrolling 100 adults with dentin hypersensitivity (DH). In each study, subjects were evaluated for DH responses after twice daily oral hygiene with a negative control fluoride dentifrice or a positive control dentifrice formulated with ingredients proven to reduce sensitivity, i.e. potassium nitrate or 8.0% arginine with calcium carbonate. Tactile evaluations by the Jay and Yeaple Probes were conducted at baseline and recall visits over the 8-week duration of each study. Also evaluated at each visit were responses to air blast and to patient reported DH assessment by VAS. Low inter-examiner variability with no significant differences between replicate measurements (P > 0.05) was observed with the Jay Probe. Consistent with results from previous studies, subjects assigned dentifrices formulated with potassium nitrate or 8% arginine/calcium carbonate demonstrated improvements in Yeaple, air blast and VAS responses in comparison to those assigned the fluoride dentifrice (P < 0.05). Jay Probe responses correlated significantly with all other sensitivity measures (P < 0.05). Differences between these treatments were observed at all post-treatment evaluations using these methods.

  11. Serosurvey for West Nile virus antibodies in Steller's Jays (Cyanocitta stelleri) captured in coastal California

    USGS Publications Warehouse

    West, Elena; Hofmeister, Erik K.; Peery, M. Zach

    2017-01-01

    West Nile virus (WNV) was first detected in New York in 1999 and, during its expansion across the continental US, southern Canada, and Mexico, members of the Corvidae (ravens, crows, magpies, and jays) were frequently infected and highly susceptible to the virus. As part of a behavioral study of Steller's Jays (Cyanocitta stelleri) conducted from 2011–2014 in the coastal California counties of San Mateo and Santa Cruz, 380 Steller's Jays were captured and tested for antibodies to WNV. Using the wild bird IgG enzyme linked immunoassay, we failed to detect antibodies to WNV, indicating either that there was no previous exposure to the virus or that exposed birds had died.

  12. Retrospective Cognition by Food-Caching Western Scrub-Jays

    ERIC Educational Resources Information Center

    de Kort, S.R.; Dickinson, A.; Clayton, N.S.

    2005-01-01

    Episodic-like memory, the retrospective component of cognitive time travel in animals, needs to fulfil three criteria to meet the behavioral properties of episodic memory as defined for humans. Here, we review results obtained with the cache-recovery paradigm with western scrub-jays and conclude that they fulfil these three criteria. The jays…

  13. Apparent predation by Gray Jays, Perisoreus canadensis, on Long-toed Salamanders, Ambystoma macrodactylum, in the Oregon Cascade Range

    USGS Publications Warehouse

    Murray, M.P.; Pearl, C.A.; Bury, R.B.

    2005-01-01

    We report observations of Gray Jays (Perisoreus canadensis) appearing to consume larval Long-toed Salamanders (Ambystoma macrodactylum) in a drying subalpine pond in Oregon, USA. Corvids are known to prey upon a variety of anuran amphibians, but to our knowledge, this is the first report of predation by any corvid on aquatic salamanders. Long-toed Salamanders appear palatable to Gray Jays, and may provide a food resource to Gray Jays when salamander larvae are concentrated in drying temporary ponds.

  14. High Fidelity – No Evidence for Extra-Pair Paternity in Siberian Jays (Perisoreus infaustus)

    PubMed Central

    Gienapp, Phillip; Merilä, Juha

    2010-01-01

    Extra-pair paternity (EPP) in birds is related to a number of ecological and social factors. For example, it has been found to be positively related with breeding density, negatively with the amount of paternal care and especially high rates have been observed in group-living species. Siberian jays (Perisoreous infaustus) breed at low densities and have extended parental care, which leads to the expectation of low rates of EPP. On the other hand, Siberian jays live in groups which can include also unrelated individuals, and provide opportunities for extra-pair matings. To assess the potential occurrence of EPP in Siberian jays, we analysed a large data pool (n = 1029 offspring) covering ca. 30 years of samples from a Finnish Siberian jay population. Paternities were assigned based on up to 21 polymorphic microsatellite markers with the additional information from field observations. We were unable to find any evidence for occurrence of EPP in this species. Our findings are in line with earlier studies and confirm the generally low rates of EPP in related Corvid species. These results suggest that ecological factors may be more important than social factors (group living) in determining costs and benefits of extra-pair paternity. PMID:20711255

  15. Western scrub-jays allocate longer observation time to more valuable information.

    PubMed

    Watanabe, Arii; Grodzinski, Uri; Clayton, Nicola S

    2014-07-01

    When humans mentally reconstruct past events and imagine future scenarios, their subjective experience of mentally time travelling is accompanied by the awareness of doing so. Despite recent popularity of studying episodic memory in animals, such phenomenological consciousness has been extremely difficult to demonstrate without agreed behavioural markers of consciousness in non-linguistic subjects. We presented western scrub-jays (Aphelocoma californica) with a task requiring them to allocate observing time between two peepholes to see food being hidden in either of two compartments, one where observing the hiding location was necessary to later relocate the food, and another where food could easily be found without watching. Jays first separately experienced these consequences of possessing information in each compartment and subsequently, once given a choice, made more looks and spent more time looking into the compartment where information was necessary than into the compartment where it was unnecessary. Thus, the jays can collect information to solve a future problem. Moreover, they can differentiate sources of information according to their potential value and modify behaviour to efficiently collect important, usable information. This is the first evidence of metacognition in a species that passes the behavioural criteria for both retrospective and prospective mental time travel.

  16. Food, audience and sex effects on pinyon jay (Gymnorhinus cyanocephalus) communication.

    PubMed

    Dahlin, C R; Balda, R P; Slobodchikoff, C

    2005-01-31

    Pinyon jays (Gymnorhinus cyanocephalus) have a complex social system that may require a complex communication system. They need to interact with multiple flock members, and they form life-long pair-bonds. We researched whether pinyon jays would selectively vocalize depending on the presence or absence of food and certain flock members. We recorded the vocalizations of nine pinyon jays (four pair-bonds and one single male) in response to different audience types. The calls of the test bird were recorded after it was given either an empty food cup or one containing 50 pinyon pine (Pinus edulis) seeds, and the bird was in the presence of one of the following audience types: (1) two males and two females including subject's mate; (2) two males and two females excluding subject's mate; (3) four males excluding mate; (4) three females excluding mate; and (5) no audience. Birds gave fewer calls when there was food. When alone, birds called in a manner that may maximize long-distance transmission. Trends indicate that birds call differently to their mate. A sex effect was also found in that males and females called in a distinct manner, possibly reflecting differences in dominance status. Overall, birds responded to the presence or absence of an audience.

  17. A Markov decision process for managing habitat for Florida scrub-jays

    USGS Publications Warehouse

    Johnson, Fred A.; Breininger, David R.; Duncan, Brean W.; Nichols, James D.; Runge, Michael C.; Williams, B. Ken

    2011-01-01

    Florida scrub-jays Aphelocoma coerulescens are listed as threatened under the Endangered Species Act due to loss and degradation of scrub habitat. This study concerned the development of an optimal strategy for the restoration and management of scrub habitat at Merritt Island National Wildlife Refuge, which contains one of the few remaining large populations of scrub-jays in Florida. There are documented differences in the reproductive and survival rates of scrubjays among discrete classes of scrub height (<120 cm or "short"; 120-170 cm or "optimal"; .170 cm or "tall"; and a combination of tall and optimal or "mixed"), and our objective was to calculate a state-dependent management strategy that would maximize the long-term growth rate of the resident scrub-jay population. We used aerial imagery with multistate Markov models to estimate annual transition probabilities among the four scrub-height classes under three possible management actions: scrub restoration (mechanical cutting followed by burning), a prescribed burn, or no intervention. A strategy prescribing the optimal management action for management units exhibiting different proportions of scrub-height classes was derived using dynamic programming. Scrub restoration was the optimal management action only in units dominated by mixed and tall scrub, and burning tended to be the optimal action for intermediate levels of short scrub. The optimal action was to do nothing when the amount of short scrub was greater than 30%, because short scrub mostly transitions to optimal height scrub (i.e., that state with the highest demographic success of scrub-jays) in the absence of intervention. Monte Carlo simulation of the optimal policy suggested that some form of management would be required every year. We note, however, that estimates of scrub-height transition probabilities were subject to several sources of uncertainty, and so we explored the management implications of alternative sets of transition probabilities

  18. Serosurvey for West Nile Virus Antibodies in Steller's Jays ( Cyanocitta stelleri ) Captured in Coastal California, USA.

    PubMed

    West, Elena; Hofmeister, Erik; Peery, M Zach

    2017-07-01

    West Nile virus (WNV) was first detected in New York in 1999 and, during its expansion across the continental US, southern Canada, and Mexico, members of the Corvidae (ravens, crows, magpies, and jays) were frequently infected and highly susceptible to the virus. As part of a behavioral study of Steller's Jays ( Cyanocitta stelleri ) conducted from 2011-14 in the coastal California counties of San Mateo and Santa Cruz, 380 Steller's Jays were captured and tested for antibodies to WNV. Using the wild bird immunoglobulin G enzyme linked immunoassay, we failed to detect antibodies to WNV, indicating either that there was no previous exposure to the virus or that exposed birds had died.

  19. Eurasian jays do not copy the choices of conspecifics, but they do show evidence of stimulus enhancement

    PubMed Central

    Miller, Rachael; Lister, Katherine; Clayton, Nicola S.

    2016-01-01

    Corvids (birds in the crow family) are hypothesised to have a general cognitive tool-kit because they show a wide range of transferrable skills across social, physical and temporal tasks, despite differences in socioecology. However, it is unknown whether relatively asocial corvids differ from social corvids in their use of social information in the context of copying the choices of others, because only one such test has been conducted in a relatively asocial corvid. We investigated whether relatively asocial Eurasian jays (Garrulus glandarius) use social information (i.e., information made available by others). Previous studies have indicated that jays attend to social context in their caching and mate provisioning behaviour; however, it is unknown whether jays copy the choices of others. We tested the jays in two different tasks varying in difficulty, where social corvid species have demonstrated social information use in both tasks. Firstly, an object-dropping task was conducted requiring objects to be dropped down a tube to release a food reward from a collapsible platform, which corvids can learn through explicit training. Only one rook and one New Caledonian crow have learned the task using social information from a demonstrator. Secondly, we tested the birds on a simple colour discrimination task, which should be easy to solve, because it has been shown that corvids can make colour discriminations. Using the same colour discrimination task in a previous study, all common ravens and carrion crows copied the demonstrator. After observing a conspecific demonstrator, none of the jays solved the object-dropping task, though all jays were subsequently able to learn to solve the task in a non-social situation through explicit training, and jays chose the demonstrated colour at chance levels. Our results suggest that social and relatively asocial corvids differ in social information use, indicating that relatively asocial species may have secondarily lost this

  20. Reproductive success and nest depredation of the Florida scrub-jay

    Treesearch

    Kathleen E. Franzreb

    2007-01-01

    The Florida Scrub-jay (Aphelocoma coerulescens) is listed as a threatened species primarily because of habitat loss throughout much of its range. The Ocala National Forest in Florida contains one of three main subpopulations that must be stable or increasing before the species can be considered for removal from federal listing. However, little...

  1. A New Population Estimate for the Florida Scrub Jay on Merritt Island National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1989-01-01

    The variable circular plot method was used to sample avifauna within different vegetation types determined from aerial imagery. The Florida Scrub Jay (Aphelocoma coerulescens coerulescens) population was estimated to range between 1,415 and 3,603 birds. Approximately half of the scrub and slash pine habitat appeared to be unused by Florida Scrub Jay, probably because the slash pine cover was too dense or the oak cover was too sparse. Results from the study suggest that the entire state population may be much lower than believed because the size of two of the three largest populations may have been overestimated.

  2. The Development of a Psychological Aesthetic: Jay Hambidge & Charles Henry.

    ERIC Educational Resources Information Center

    McWhinnie, Harold J.

    This article reviews several movements in late 19th and early 20th century art and psychological research that are related to the early Greek method of proportional analysis generally known as the Golden Section. The document discusses the work of the artist Jay Hambidge on the nature of Greek art and design and his theory of dynamic symmetry.…

  3. An example of phenotypic adherence to the island rule? – Anticosti gray jays are heavier but not structurally larger than mainland conspecifics

    PubMed Central

    Strickland, Dan; Norris, D Ryan

    2015-01-01

    The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body-mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays (Perisoreus canadensis) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland-sized body frames. As such, they may be the first-known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high-density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators. PMID:26380697

  4. Astronaut Jay Apt uses Hasselblad camera to record earth observations

    NASA Image and Video Library

    1994-04-20

    STS059-46-025 (9-20 April 1994) --- On the Space Shuttle Endeavour's aft flight deck astronaut Jerome (Jay) Apt, mission specialist, uses a handheld 70mm Hasselblad camera to record still scenes of Earth. Apt, the commander of Endeavour's Blue Shift, joined five other NASA astronauts for a week and a half in space in support of the Space Radar Laboratory/STS-59 mission.

  5. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  6. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  7. The Contradictions of Contemporary Culture: A Tribute to Norman Jay Levitt (1943-2009)

    ERIC Educational Resources Information Center

    Gross, Paul R.

    2012-01-01

    Norman Jay Levitt was the author's good friend, collaborator, and co-author. He was--above, before, and after politics--an honest inquirer. His socio-cultural views evolved continuously. Levitt, truth-seeker and liberal, was impatient with, and a devastating critic of, the political correctness and--even worse--the philosophic triviality that…

  8. John Jay High School. Project RESCATE. O.E.E. Evaluation Report, 1981-1982.

    ERIC Educational Resources Information Center

    Shore, Rima; And Others

    This is a second-year evaluation report for Project RESCATE, a bilingual education program for 285 Spanish and Haitian Creole speaking students at John Jay High School, Brooklyn, New York. The program provided bilingual instructional services in language and content area courses to Spanish dominant students, ESL and native language instruction to…

  9. Limits to biofuels

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  10. Science and the Humanities: Stephen Jay Gould's Quest to Join the High Table

    ERIC Educational Resources Information Center

    Ruse, Michael

    2013-01-01

    Stephen Jay Gould was a scientist, a paleobiologist, who was also a professional-level historian of science. This essay explores Gould's work, showing how he used the history of science to further his agenda as a working scientist.

  11. Seedling Establishment of Coast Live Oak in Relation to Seed Caching by Jays

    Treesearch

    Joe R. McBride; Ed Norberg; Sheauchi Cheng; Ahmad Mossadegh

    1991-01-01

    The purpose of this study was to simulate the caching of acorns by jays and rodents to see if less costly procedures could be developed for the establishment of coast live oak (Quercus agrifolia). Four treatments [(1) random - single acorn cache, (2) regular - single acorn cache, (3) regular - 5 acorn cache, (4) regular - 10 acorn cache] were planted...

  12. A comparison of dentifrices for clinical relief from dentin hypersensitivity using the Jay Sensitivity Sensor Probe.

    PubMed

    Hegde, Shashikanth; Rao, B H Sripathi; Kakar, Ravish Chander; Kakar, Ashish

    2013-05-01

    To evaluate the clinical relief from dentin hypersensitivity among subjects provided with a dentifrice formulated with 8% arginine, calcium carbonate and 1,000 ppm fluoride [sodium monofluorophosphate (MFP)] in comparison to those issued a commercially available dentifrice containing 1,000 ppm fluoride [as sodium monofluorophosphate (MFP)]. Clinical evaluations for hypersensitivity were performed with a novel tactile hypersensitivity measuring instrument--the Jay Sensitivity Sensor (Jay) Probe--in conjunction with evaporative triggers by air blast (Schiff scale) and Visual Analog Scores (VAS). Qualified adults from the Mangalore, India area who presented two teeth with dentin hypersensitivity were enrolled for this double-blind, randomized, parallel, controlled clinical trial conducted in an outpatient clinical setting. At baseline, dentin hypersensitivity was evaluated by the Jay Probe (tactile), air blast and VAS methods. Subjects were randomly issued a study dentifrice and instructed to brush their teeth for 1 minute twice daily with the provided dentifrice. Clinical evaluations for hypersensitivity were repeated after 2, 4 and 8 weeks of product use. 86 subjects (35 males and 51 females) complied with the study protocol and completed the entire study. At each recall visit, both treatment groups demonstrated significant reductions in dentin hypersensitivity from their corresponding baselines (P < 0.05). Subjects assigned the 8% arginine, calcium carbonate and 1,000 ppm fluoride dentifrice demonstrated statistically significant reductions in responses to tactile stimuli, air blast, and VAS responses in comparison to those using the dentifrice containing 1,000 ppm fluoride after 2, 4, and 8 weeks, respectively.

  13. Integrating Science & Management: Florida Scrub-Jay Conservation along the Central Florida's Atlantic Coast

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    2018-01-01

    Florida scrub-jays are a species listed under the Endangered Species Act. The NASA Ecology program has been a partner for conservation, recovery, and translocation across the species range. The objectives of this talk are to update members of the Archie Carr Working Group recovery, conservation, and translocation activities and describe how the Archie Carr National Wildlife Refuge and nearby conservation lands relate to species recovery actions.

  14. Mesotocin influences pinyon jay prosociality.

    PubMed

    Duque, J F; Leichner, W; Ahmann, H; Stevens, J R

    2018-04-01

    Many species exhibit prosocial behaviour, in which one individual's actions benefit another individual, often without an immediate benefit to itself. The neuropeptide oxytocin is an important hormonal mechanism influencing prosociality in mammals, but it is unclear whether the avian homologue mesotocin plays a similar functional role in birds. Here, we experimentally tested prosociality in pinyon jays ( Gymnorhinus cyanocephalus ), a highly social corvid species that spontaneously shares food with others. First, we measured prosocial preferences in a prosocial choice task with two different pay-off distributions: Prosocial trials delivered food to both the subject and either an empty cage or a partner bird, whereas Altruism trials delivered food only to an empty cage or a partner bird (none to subject). In a second experiment, we examined whether administering mesotocin influenced prosocial preferences. Compared to choices in a control condition, we show that subjects voluntarily delivered food rewards to partners, but only when also receiving food for themselves (Prosocial trials), and administration of high levels of mesotocin increased these behaviours. Thus, in birds, mesotocin seems to play a similar functional role in facilitating prosocial behaviours as oxytocin does in mammals, suggesting an evolutionarily conserved hormonal mechanism for prosociality. © 2018 The Author(s).

  15. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  16. Life Cycle Assessment for Biofuels

    EPA Science Inventory

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  17. Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez.

    PubMed

    Fox, Jay W; Gutiérrez, José María

    2017-01-16

    Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic "Snake Venom Metalloproteinases" in Toxins . The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the mechanisms involved in the generation of diversity of SVMPs, the mechanism of action of SVMPs, and their role in the pathophysiology of envenomings, with implications for improving the therapy of envenomings. In this interview, we discussed with Jay W. Fox and José María Gutiérrez their research on the SVMPs and their perspectives on the future trends and challenges for studying snake venoms.

  18. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  19. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  20. Transporter-mediated biofuel secretion

    PubMed Central

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-01-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as “plug-and-play” biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  1. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrelmore » of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).« less

  2. John Jay High School Project "RESCATE." O.E.E. Evaluation Report, 1982-1983. [Final Report.

    ERIC Educational Resources Information Center

    Friedman, Grace Ibanez; Schulman, Robert

    Project RESCATE, in its third and final year of funding, provided instruction in English as a Second Language (ESL) and native language skills, as well as bilingual instruction in science, mathematics, and social studies, to 185 Spanish-speaking students of limited English proficiency (LEP) at John Jay High School in Brooklyn, New York. In…

  3. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  4. Biofuels in China.

    PubMed

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  5. Level II scour analysis for Bridge 22 (JAY-TH00400022) on Town Highway 40, crossing Jay Branch, Jay, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1997-01-01

    8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northern Vermont. The 2.15-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is primarily pasture on the upstream and downstream left overbank while the immediate banks have dense woody vegetation. The downstream right overbank of the bridge is forested. In the study area, Jay Branch Tributary has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 26 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 40.5 mm (0.133 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable. The Town Highway 40 crossing of Jay Branch Tributary is a 27-ft-long, two-lane bridge consisting of one 25-foot steel-beam span (Vermont Agency of Transportation, written communication, March 6, 1995). The opening length of the structure parallel to the bridge face is 23.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel skew and the opening-skew-to-roadway are zero degrees. The scour counter-measures at the site included type-2 stone fill (less than 36 inches diameter) at the upstream end of the left and right abutments, at the upstream right wingwall, and at the downstream left

  6. Is nest predation by Steller's jays (Cyanocitta stelleri) incidental or the resrult of a specialized search strategy?

    Treesearch

    Stacey M. Vigallon; John M. Marzluff

    2005-01-01

    Decreased nest success and elevated levels of nest predation have been linked to changes in landscape configuration and increased edge. Using radiotelemetry and artifical nests, we studied the ranging and nest-predation behavior of the Steller's jay (Cyanocitta stelleri) in the managed forests of western...

  7. Biofuels from microalgae.

    PubMed

    Li, Yanqun; Horsman, Mark; Wu, Nan; Lan, Christopher Q; Dubois-Calero, Nathalie

    2008-01-01

    Microalgae are a diverse group of prokaryotic and eukaryotic photosynthetic microorganisms that grow rapidly due to their simple structure. They can potentially be employed for the production of biofuels in an economically effective and environmentally sustainable manner. Microalgae have been investigated for the production of a number of different biofuels including biodiesel, bio-oil, bio-syngas, and bio-hydrogen. The production of these biofuels can be coupled with flue gas CO2 mitigation, wastewater treatment, and the production of high-value chemicals. Microalgal farming can also be carried out with seawater using marine microalgal species as the producers. Developments in microalgal cultivation and downstream processing (e.g., harvesting, drying, and thermochemical processing) are expected to further enhance the cost-effectiveness of the biofuel from microalgae strategy.

  8. Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Decker, Stephen R.

    2013-02-19

    Rising energy prices and depleting reserves of fossil fuels continue to renew interest in the conversion of biomass to biofuels production. Biofuels derived from renewable feedstocks are environmentally friendly fuels and have the potential to meet more than a quarter of world demand for transportation fuels by 2050. Moreover, biofuels are expected to reduce reliance on imported petroleum, reduce greenhouse gas emissions, and stimulate regional economies by creating jobs and increasing demand and prices for bioproducts.

  9. A Conservation Strategy for the Florida Scrub-Jay on John F. Kennedy Space Center/Merritt Island National Wildlife Refuge: An Initial Scientific Basis for Recovery

    NASA Technical Reports Server (NTRS)

    Breininger, D. R.; Larson, V. L.; Schaub, R.; Duncan, B. W.; Schmalzer, P. A.; Oddy, D. M.; Smith, R. B.; Adrian, F.; Hill, H., Jr.

    1996-01-01

    The Florida Scrub-Jay (Aphelocoma coerulescens) is an indicator of ecosystem integrity of Florida scrub, an endangered ecosystem that requires frequent fire. One of the largest populations of this federally threatened species occurs on John F. Kennedy Space Center/Merritt Island National Wildlife Refuge. Population trends were predicted using population modeling and field data on reproduction and survival of Florida Scrub-Jays collected from 1988 - 1995. Analyses of historical photography indicated that habitat suitability has been declining for 30 years. Field data and computer simulations suggested that the population declined by at least 40% and will decline by another 40% in 1 0 years, if habitat management is not greatly intensified. Data and computer simulations suggest that habitat suitability cannot deviate greatly from optimal for the jay population to persist. Landscape trajectories of vegetation structure, responsible for declining habitat suitability, are associated with the disruption of natural fire regimes. Prescribed fire alone can not reverse the trajectories. A recovery strategy was developed, based on studies of Florida Scrub-Jays and scrub vegetation. A reserve design was formulated based on conservation science principles for scrub ecosystems. The strategy emphasizes frequent fire to restore habitat, but includes mechanical tree cutting for severely degraded areas. Pine thinning across large areas can produce rapid increases in habitat quality. Site-specific strategies will need to be developed, monitored, and modified to achieve conditions suitable for population persistence.

  10. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gbadebo Oladosu; Keith Kline; Paul Leiby

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels aremore » higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.« less

  11. Desire-state attribution: Benefits of a novel paradigm using the food-sharing behavior of Eurasian jays (Garrulus glandarius).

    PubMed

    Ostojić, Ljerka; Cheke, Lucy G; Shaw, Rachael C; Legg, Edward W; Clayton, Nicola S

    2016-01-01

    In recent years, we have investigated the possibility that Eurasian jay food sharing might rely on desire-state attribution. The female's desire for a particular type of food can be decreased by sating her on it (specific satiety) and the food sharing paradigm can be used to test whether the male's sharing pattern reflects the female's current desire. Our previous findings show that the male shares the food that the female currently wants. Here, we consider 3 simpler mechanisms that might explain the male's behavior: behavior reading, lack of self-other differentiation and behavioral rules. We illustrate how we have already addressed these issues and how our food sharing paradigm can be further adapted to answer outstanding questions. The flexibility with which the food sharing paradigm can be applied to rule out alternative mechanisms makes it a useful tool to study desire-state attribution in jays and other species that share food.

  12. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must meet...

  13. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must meet...

  14. System for determining biofuel concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Shean P.; Janke, Christopher James; Kass, Michael D.

    2016-09-13

    A measurement device or system configured to measure the content of biofuels within a fuel blend. By measuring a state of a responsive material within a fuel blend, a biofuel content of the fuel blend may be measured. For example, the solubility of a responsive material to biofuel content within a fuel blend, may affect a property of the responsive material, such as shape, dimensional size, or electrical impedance, which may be measured and used as a basis for determining biofuel content.

  15. Lignin Bioproducts to Enable Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyman, Charles E.; Ragauskas, Arthur J

    2015-09-15

    Here we report that today's and tomorrow's biofuels production facilities could benefit tremendously from increasing the value from the large amount of lignin that results from biofuels operations. Certainly, the scientific community, and biofuels industry has begun to recognize the challenges and opportunities associated with lignin.

  16. From first generation biofuels to advanced solar biofuels.

    PubMed

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  17. Printed biofuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao

    2016-11-22

    Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy asmore » electrical energy.« less

  18. Biofuels Issues and Trends

    EIA Publications

    2012-01-01

    This report presents data on biofuels consumption, production, imports and exports, including data collected by others than the U.S. Energy Information Administration. It also discusses important developments in biofuels markets.

  19. STS-79 Commander Readdy, Pilot Wilcutt and MS Jay Apt at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy (left), Pilot Terrence W. Wilcutt and Mission Specialist Jay Apt chat after the six-member flight crew arrived at KSC's Shuttle Landing Facility. The astronauts' return to KSC coincides with the beginning of a three-day launch countdown that will culminate in the Sept. 16 liftoff of the Space Shuttle Atlantis on Mission STS-79. The 79th Shuttle flight will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir and the first U.S. crew exchange on the station. Launch from Pad 39A is set for about 4:54 a.m. EDT.

  20. Science, Intelligence, and Educational Policy: The Mismeasure of Frankenstein (with Apologies to Mary Shelley and Stephen Jay Gould).

    ERIC Educational Resources Information Center

    Zappardino, Pamela

    Stephen Jay Gould points out in "The Mismeasure of Man" (1981), "Science, since people must do it, is a socially embedded activity. It progresses by hunch, vision, and intuition." The legacy of the traditional construct of intelligence and its measurement through intelligence quotient (IQ) tests has not been educational improvement. Its legacy in…

  1. Effective Integration of Technology and Instruction. Q&A with Michael Jay. REL Mid-Atlantic Educator Effectiveness Webinar Series

    ERIC Educational Resources Information Center

    Regional Educational Laboratory Mid-Atlantic, 2015

    2015-01-01

    In this webinar, long-time educator and developer of education technology Michael Jay discussed the importance of using technology to support learning and gave examples of how teachers can integrate technology into their instruction based on the Common Core State Standards and the Next Generation Science Standards. The PowerPoint presentation and…

  2. Biofuel supply chain, market, and policy analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  3. 76 FR 7935 - Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...The Rural Business-Cooperative Service (Agency) is establishing the Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. Under this Program, the Agency will enter into contracts with advanced biofuel producers to pay such producers for the production of eligible advanced biofuels. To be eligible for payments, advanced biofuels must be produced from renewable biomass, excluding corn kernel starch, in a biofuel facility located in a State. In addition, this interim rule establishes new program requirements for applicants to submit applications for Fiscal Year 2010 payments for the Advanced Biofuel Payment Program. These new program requirements supersede the Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers in its entirety.

  4. National Algal Biofuels Technology Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, John; Sarisky-Reed, Valerie

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less

  5. Washington State Biofuels Industry Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  6. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  7. Biofuels Research at EPA

    EPA Science Inventory

    The development of sustainable and clean biofuels is a national priority. To do so requires a life-cycle approach that includes consideration of feedstock production and logistics, and biofuel production, distribution, and end use. The US Environmental Protection Agency is suppor...

  8. [Model-based biofuels system analysis: a review].

    PubMed

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  9. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Eligibility Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program...

  10. Biofuel: A Comparative Case Study

    DTIC Science & Technology

    2013-06-01

    operated on a 50/50 biofuel mix for the first time. b. The Great Green Fleet Meeting the SECNAV’s requirement to demonstrate the viability of ...is interested in the commercial viability of biofuels. 16 THIS PAGE INTENTIONALLY LEFT BLANK 17 III. LITERATURE REVIEW A . BIOFUELS...1970s served as the catalyst for the first serious investigation into the viability of algae as a source of energy (Department of Energy [DoE], 2010

  11. Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens)

    USGS Publications Warehouse

    Coulon, A.; Fitzpatrick, J.W.; Bowman, R.; Stith, B.M.; Makarewich, C.A.; Stenzler, L.M.; Lovette, I.J.

    2008-01-01

    The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.

  12. Biofuel on contaminated land

    NASA Astrophysics Data System (ADS)

    Suer, Pascal; Andersson-Sköld, Yvonne; Blom, Sonja; Bardos, Paul; Polland, Marcel; Track, Thomas

    2010-05-01

    Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation / removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and medium contaminated soil may remove some pressure from agricultural soils. For larger sites, biofuel cultivation may be economically viable without a remediation bonus. Suitable sites have topographic conditions that allow agricultural machinery, are not in urgent need of remediation, and contamination levels are not plant toxic. Life cycle assessment (LCA) was done for two cases. The (desk top) case studies were - Case K, a 5000 m2 site where salix (willow) was cultivated with hand-held machinery and the biofuel harvest was left on site, and - Case F, a 12 ha site were on site ensuring was being considered, and were salix might have rented an economic profit if the remediation had not been urgent due to exploitation pressure. Some selected results for biofuel K; biofuel F; excavation K; and on site ensuring F respectively: Energy: 0,05; 1,4; 3,5; 19 TJ Waste: 1; 9; 1200; 340 ton Land use off-site: 190; 3 500; 200 000; 1 400 000 m² a Global warming: 3; 86; 230; 1 200 ton CO2 eq Acidification: 25; 1 000; 2 600; 14 000 kg SO2 eq Photochemical smog: 10; 180; 410; 2 300 kg ethene eq Human health: 2; 51; 150; 620 index The environmental impact of the traditional remediation methods of excavation and on-site ensuring was mainly due to the transport of contaminated soil and replacement soil, and landfilling of the contaminated soil. Biofuel cultivation avoids these impacts, while fertiliser production and agricultural machinery would have a lower environmental impact than moving large volumes of soil around. Journeys of a controller to check on the groundwater quality also

  13. Engineering biofuel tolerance in non-native producing microorganisms.

    PubMed

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    ERIC Educational Resources Information Center

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  15. Land clearing and the biofuel carbon debt.

    PubMed

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-29

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  16. Sustainability aspects of biofuel production

    NASA Astrophysics Data System (ADS)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  17. Land Clearing and the Biofuel Carbon Debt

    NASA Astrophysics Data System (ADS)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  18. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essentialmore » to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).« less

  19. A New Biofuels Technology Blooms in Iowa

    ScienceCinema

    Mathisen, Todd; Bruch, Don; Broin, Jeff

    2018-02-13

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  20. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... (NOCP); additional payment for advanced biofuel produced from October 1, 2008 through September 30, 2009. SUMMARY: RBS is announcing additional payments to advanced biofuel producers determined eligible in Fiscal... biofuel produced in FY 2009, the request must include: Form RD 9005-3, ``Advanced Biofuel Program Payment...

  1. Assessing the environmental sustainability of biofuels.

    PubMed

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Telling It Like It Is--And Like It Is Not: Fiction in the Service of Science in Jay Hosler's "The Sandwalk Adventures"

    ERIC Educational Resources Information Center

    Porat, Michal

    2015-01-01

    Biologist and graphic novelist Jay Hosler has long been introducing young readers to biological subjects through entertaining narratives combining strongly fictional elements with nonfictional ones. Extensive application of fiction to nonfictional subject matter is uncommon, even in graphic novels, but Hosler's "The Sandwalk Adventures"…

  3. International Trade of Biofuels (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  4. Modifying plants for biofuel and biomaterial production.

    PubMed

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Recent Inventions and Trends in Algal Biofuels Research.

    PubMed

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  6. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  7. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  8. Biofuel cell based on direct bioelectrocatalysis.

    PubMed

    Ramanavicius, Arunas; Kausaite, Asta; Ramanaviciene, Almira

    2005-04-15

    A biofuel cell, consisting of two 3mm diameter carbon rod electrodes and operating at ambient temperature in aqueous solution, pH 6, is described. Biofuel cell based on enzymes able to exchange directly electrons with carbon electrodes was constructed and characterized. Anode of the biofuel cell was based on immobilized Quino-hemoprotein alcohol dehydrogenase from Gluconobacter sp. 33 (QH-ADH), cathode on co-immobilized glucose oxidase from Aspergilus niger (GO(x)) and microperoxidase 8 from the horse heart (MP-8) acting in the consecutive mode. Two enzymes GO(x) and MP-8 applied in the design of biofuel cell cathode were acting in consecutive mode and by hydrogen peroxide oxidized MP-8 was directly accepting electrons from carbon rod electrode. If ethanol was applied as an energy source the maximal open circuit potential of the biofuel cell was -125 mV. If glucose was applied as energy source the open circuit potential of the cell was +145 mV. The maximal open circuit potential (270 mV) was achieved in the presence of extent concentration (over 2 mM) of both substrates (ethanol and glucose). Operational half-life period (tau(1/2)) of the biofuel cell was found to be 2.5 days.

  9. Cyanobacteria and microalgae: a positive prospect for biofuels.

    PubMed

    Parmar, Asha; Singh, Niraj Kumar; Pandey, Ashok; Gnansounou, Edgard; Madamwar, Datta

    2011-11-01

    Biofuel-bioenergy production has generated intensive interest due to increased concern regarding limited petroleum-based fuel supplies and their contribution to atmospheric CO2 levels. Biofuel research is not just a matter of finding the right type of biomass and converting it to fuel, but it must also be economically sustainable on large-scale. Several aspects of cyanobacteria and microalgae such as oxygenic photosynthesis, high per-acre productivity, non-food based feedstock, growth on non-productive and non-arable land, utilization of wide variety of water sources (fresh, brackish, seawater and wastewater) and production of valuable co-products along with biofuels have combined to capture the interest of researchers and entrepreneurs. Currently, worldwide biofuels mainly in focus include biohydrogen, bioethanol, biodiesel and biogas. This review focuses on cultivation and harvesting of cyanobacteria and microalgae, possible biofuels and co-products, challenges for cyanobacterial and microalgal biofuels and the approaches of genetic engineering and modifications to increase biofuel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  11. Measurement of dentin hypersensitivity with the Jay Sensitivity Sensor Probe and the Yeaple probe to compare relief from dentin hypersensitivity by dentifrices.

    PubMed

    Kakar, Ashish; Kakar, Kanupriya

    2013-05-01

    To compare relief from dentin hypersensitivity (DH) after use of dentifrices formulated with potassium nitrate or fluoride. For the study, DH evaluations were conducted with the Jay Sensitivity Sensor Probe (Jay Probe), a novel tactile hypersensitivity instrument, in conjunction with three other DH methods, i.e. Yeaple probe (tactile), air blast, and the Visual Analog Scale (VAS). Adults (n = 100) who presented two teeth with DH and met study criteria were enrolled for this double-blind, randomized, parallel, controlled clinical trial conducted in an outpatient setting. DH evaluations at baseline were conducted by the tactile, air blast, and VAS methods. Subjects were randomly assigned a dentifrice formulated with 5% potassium nitrate and 1,000 ppm fluoride (as sodium monofluorophosphate) (Colgate Sensitive toothpaste; Test) or a commercially available fluoride dentifrice with 1,000 ppm fluoride as sodium monofluorophosphate (Colgate Cibaca toothpaste; Negative control). Subjects were recalled for DH evaluations after 4 and 8 weeks of product use. 85 subjects completed the entire study with evaluable results. Both treatments resulted in significant reductions in DH from baseline to all recall visits. In comparison to the Negative control, subjects in the Test group demonstrated significantly greater reductions for all DH evaluations at both 4 and 8 weeks (P < 0.05). Average tactile DH scores at week 8 for the Test and Negative control groups were 36.25 and 15.24 with the Yeaple probe and 35 and 12.43 with the Jay probe. Correspondingly, subjects in the Test group demonstrated significantly greater reductions in air blast and VAS responses for DH than those in the Negative control group (P < 0.05).

  12. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  13. Contrasts and synergies in different biofuel reports.

    PubMed

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  14. Overview on Biofuels from a European Perspective

    ERIC Educational Resources Information Center

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  15. Biofuels development and the policy regime.

    PubMed

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Arid Lands Biofuel

    NASA Astrophysics Data System (ADS)

    Neupane, B. P.

    2013-05-01

    Dependence on imported petroleum, as well as consequences from burning fossil fuels, has increased the demand for biofuel sources in the United States. Competition between food crops and biofuel crops has been an increasing concern, however, since it has the potential to raise prices for US beef and grain products due to land and resource competition. Biofuel crops that can be grown on land not suitable for food crops are thus attractive, but also need to produce biofuels in a financially sustainable manner. In the intermountain west of Nevada, biofuel crops need to survive on low-organic soils with limited precipitation when grown in areas that are not competing with food and feed. The plants must also yield an oil content sufficiently high to allow economically viable fuel production, including growing and harvesting the crop as well as converting the hydrocarbons into a liquid fuel. Gumweed (Grindelia squarrosa) currently appears to satisfy all of these requirements and is commonly observed throughout the west. The plant favors dry, sandy soils and is most commonly found on roadsides and other freshly disturbed land. A warm season biennial, the gumweed plant is part of the sunflower family and normally grows 2-4 feet high with numerous yellow flowers and curly leaves. The gumweed plant contains a large store of diterpene resins—most abundantly grindelic acid— similar to the saps found on pine trees that are used to make inks and adhesives. The dry weight harvest on the experimental field is 5130 lbs/acre. Whole plant biomass yields between 11-15% (average 13%) biocrude when subjected to acetone extraction whereas the buds alone contains up to a maximum of 35% biocrude when harvested in 'white milky' stage. The extract is then converted to basic form (sodium grindelate) followed by extraction of nonpolar constituents (mostly terpenes) with hexane and extracted back to ethyl acetate in acidified condition. Ethyl acetate is removed under vacuum to leave a dark

  17. Optimization of Biofuel Production From Transgenic Microalgae

    DTIC Science & Technology

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  18. Biofuels for transport :policies and possibilities

    DOT National Transportation Integrated Search

    2007-11-01

    This Policy Brief, jointly produced by the OECD and the IEA, looks at the current situation with biofuels in road transport, and how governments can balance all these elements when crafting policies for energy and biofuels.

  19. JEDI Biofuels Models | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Biofuels Models JEDI Biofuels Models The Jobs and Economic Development Impacts (JEDI) biofuel models allow users to estimate economic development impacts from biofuel projects and include default

  20. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...-AA75 Advanced Biofuel Payment Program; Correction AGENCY: Rural Business-Cooperative Service; Rural... Federal Register of February 11, 2011, establishing the Advanced Biofuel Payment Program authorized under... this Program, the Agency will enter into contracts with advanced biofuel producers to pay such...

  1. Assessment of Peruvian biofuel resources and alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regionalmore » production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less

  2. Engineering microbes for tolerance to next-generation biofuels

    PubMed Central

    2011-01-01

    A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production. PMID:21936941

  3. Biofuels and Fisheries: Risks and Opportunities .

    EPA Science Inventory

    A rapidly developing biofuels industry in the U.S. and around the globe poses novel environmental challenges and opportunities, with implications for teh health and sustainability of fisheries. Changes in land uses and agricultural practices for production of biofuel feedstocks ...

  4. Montana Advanced Biofuels Great Falls Approval

    EPA Pesticide Factsheets

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  5. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  6. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  7. NREL Algal Biofuels Projects and Partnerships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  8. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  9. Biofuel consumption, biodiversity, and the environmental Kuznets curve: trivariate analysis in a panel of biofuel consuming countries.

    PubMed

    Zaman, Khalid

    2017-11-01

    This study examined the relationship between biofuel consumption, forest biodiversity, and a set of national scale indicators of per capita income, foreign direct investment (FDI) inflows, trade openness, and population density with a panel data of 12 biofuels consuming countries for a period of 2000 to 2013. The study used Global Environmental Facility (GEF) biodiversity benefits index and forest biodiversity index in an environmental Kuznets curve (EKC) framework. The results confirmed an inverted U-shaped relationship between GEF biodiversity index and per capita income, while there is flat/no relationship between carbon emissions and economic growth, and between forest biodiversity and economic growth models. FDI inflows and trade openness both reduce carbon emissions while population density and biofuel consumption increase carbon emissions and decrease GEF biodiversity index. Trade openness supports to increases GEF biodiversity index while it decreases forest biodiversity index and biofuel consumption in a region.

  10. The Brazilian biofuels industry

    PubMed Central

    Goldemberg, José

    2008-01-01

    Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion. PMID:18471272

  11. Center for Advanced Biofuel Systems (CABS) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and willmore » have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for

  12. Characterization of Microalgal Lipids for Optimization of Biofuels

    DTIC Science & Technology

    2014-05-09

    SUBJECT TERMS algae, biofuel, biodiesel , fatty acid methyl ester, extremophile, Galdieria 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...percentages in algal culture. KEYWORDS algae, biofuel, biodiesel , fatty acid methyl ester, extremophile, Galdieria 2...Most biofuels can be categorized as biodiesel products (to include biodistillates) or bioethanol. Corn and sugar cane undergo fermentation in order

  13. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    PubMed

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  14. Novel biofuel formulations for enhanced vehicle performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbonmore » sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal

  15. Engineering microbial biofuel tolerance and export using efflux pumps

    PubMed Central

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-01-01

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065

  16. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE PAGES

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; ...

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John

  17. Liquid biofuels - can they meet our expectations?

    NASA Astrophysics Data System (ADS)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  18. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    PubMed

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  19. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  20. Limitation of Biofuel Production in Europe from the Forest Market

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  1. Reassessing Escherichia coli as a cell factory for biofuel production.

    PubMed

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-06-01

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 2013 Cellulosic Biofuel Standard: Direct Final Rule

    EPA Pesticide Factsheets

    The direct final action is to revise the 2013 cellulosic biofuel standard. This action follows from EPA having granted API's and AFPM's petitions for reconsideration of the 2013 cellulosic biofuel standard published on August 15, 2013.

  3. Library Research in Criminal Justice. An Introduction for Students at John Jay College of Criminal Justice, City University of New York. Second Edition.

    ERIC Educational Resources Information Center

    Lutzker, Marilyn

    This introductory guide to basic library research tools in the field of criminal justice was compiled for use by students at the John Jay College of Criminal Justice as part of the Library Instruction Program. Included are chapters on devising a search strategy; the use of the card catalog; encyclopedia and dictionaries; indexes and abstracts;…

  4. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Khanna, Madhu; Yeh, Sonia

    2012-12-01

    This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5-10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels.

  5. The water-land-food nexus of first-generation biofuels

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  6. The water-land-food nexus of first-generation biofuels

    PubMed Central

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; De Carolis, Giulia; D’Odorico, Paolo

    2016-01-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed. PMID:26936679

  7. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  8. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels.

    PubMed

    Mohr, Alison; Raman, Sujatha

    2013-12-01

    The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic).

  9. Synthetic biology and the technicity of biofuels.

    PubMed

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. 75 FR 21191 - Subpart B-Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Service 7 CFR Part 4288 RIN 0570-AA75 Subpart B--Advanced Biofuel Payment Program; Correction AGENCY... for producers of advanced biofuels to supporting existing advanced biofuel production and to encourage...

  11. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  12. Streamflow Impacts of Biofuel Policy-Driven Landscape Change

    PubMed Central

    Khanal, Sami; Anex, Robert P.; Anderson, Christopher J.; Herzmann, Daryl E.

    2014-01-01

    Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity. PMID:25289698

  13. Algae biofuels: versatility for the future of bioenergy.

    PubMed

    Jones, Carla S; Mayfield, Stephen P

    2012-06-01

    The world continues to increase its energy use, brought about by an expanding population and a desire for a greater standard of living. This energy use coupled with the realization of the impact of carbon dioxide on the climate, has led us to reanalyze the potential of plant-based biofuels. Of the potential sources of biofuels the most efficient producers of biomass are the photosynthetic microalgae and cyanobacteria. These versatile organisms can be used for the production of bioethanol, biodiesel, biohydrogen, and biogas. In fact, one of the most economic methods for algal biofuels production may be the combined biorefinery approach where multiple biofuels are produced from one biomass source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

    PubMed

    Childs, Kevin L; Konganti, Kranti; Buell, C Robin

    2012-01-01

    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.

  15. Green chemistry, biofuels, and biorefinery.

    PubMed

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.

  16. [Progress in synthesis technologies and application of aviation biofuels].

    PubMed

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.

  17. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    PubMed Central

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  18. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE PAGES

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  19. Environmental effect of constructed wetland as biofuel production system

    NASA Astrophysics Data System (ADS)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  20. Heterologous Synthesis and Recovery of Advanced Biofuels from Bacterial Cell Factories.

    PubMed

    Malik, Sana; Afzal, Ifrah; Mehmood, Muhammad Aamer; Al Doghaither, Huda; Rahimuddin, Sawsan Abdulaziz; Gull, Munazza; Nahid, Nazia

    2018-01-01

    Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Energy Insecurity: The False Promise of Liquid Biofuels

    DTIC Science & Technology

    2013-01-01

    526 certifications issued to date for biofuels and blends . Any that do not consider the full biofuel lifecycle comprising land- use change for fuel...in physics from the US Naval Academy and a master’s in strategy from the US Army Command and General Staff College. He currently teaches strategy...biofuel yields are far too small, diffuse, and infrequent to displace any meaningful fraction of US primary energy needs, and boosting yields

  2. Biofuel-Food Market Interactions:A Review of Modeling Approaches and Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oladosu, Gbadebo A; Msangi, Siwa

    The interaction between biofuels and food markets remains a policy issue for a number of reasons. There is a continuing need to understand the role of biofuels in the recent spikes in global food prices. Also, there is an ongoing discussion of changes to biofuel policy as a means to cope with severe weather-induced crop losses. Lastly, there are potential interactions between food markets and advanced biofuels, although most of the latter are expected to be produced from non-food feedstocks. This study reviews the existing literature on the food market impacts of biofuels. Findings suggest that initial conclusions attributing mostmore » of the spike in global food prices between 2005 and 2008 to biofuels have been revised. Instead, a multitude of factors, in addition to biofuels, converged during the period. Quantitative estimates of the impacts of biofuels on food markets vary significantly due to differences in modeling approaches, geographical scope, and assumptions about a number of crucial factors. In addition, many studies do not adequately account for the effects of macroeconomic changes, adverse weather conditions and direct market interventions during the recent food price spikes when evaluating the role of biofuels.« less

  3. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves.

    PubMed

    Tian, Ying-Ze; Chen, Jia-Bao; Zhang, Lin-Lin; Du, Xin; Wei, Jin-Jin; Fan, Hui; Xu, Jiao; Wang, Hai-Ting; Guan, Liao; Shi, Guo-Liang; Feng, Yin-Chang

    2017-12-01

    Source and ambient samples were collected in a city in China that uses considerable biofuel, to assess influence of biofuel combustion and other sources on particulate matter (PM). Profiles and size distribution of biofuel combustion were investigated. Higher levels in source profiles, a significant increase in heavy-biomass ambient and stronger correlations of K + , Cl - , OC and EC suggest that they can be tracers of biofuel combustion. And char-EC/soot-EC (8.5 for PM 2.5 and 15.8 for PM 10 of source samples) can also be used to distinguish it. In source samples, water-soluble organic carbon (WSOC) were approximately 28.0%-68.8% (PM 2.5 ) and 27.2%-43.8% (PM 10 ) of OC. For size distribution, biofuel combustion mainly produces smaller particles. OC1, OC2, EC1 and EC2 abundances showed two peaks with one below 1 μm and one above 2 μm. An advanced three-way factory analysis model was applied to quantify source contributions to ambient PM 2.5 and PM 10 . Higher contributions of coal combustion, vehicular emission, nitrate and biofuel combustion occurred during the heavy-biomass period, and higher contributions of sulfate and crustal dust were observed during the light-biomass period. Mass and percentage contributions of biofuel combustion were significantly higher in heavy-biomass period. The biofuel combustion attributed above 45% of K + and Cl - , above 30% of EC and about 20% of OC. In addition, through analysis of source profiles and contributions, they were consistently evident that biofuel combustion and crustal dust contributed more to cation than to anion, while sulfate & SOC and nitrate showed stronger influence on anion than on cation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 2016 National Algal Biofuels Technology Review Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  5. Biofuels from Microalgae and Seaweeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John

    2010-03-01

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehanmore » et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...« less

  6. Sandia's Biofuels Program

    ScienceCinema

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2018-01-16

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  7. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. Copyright © 2015 John Wiley & Sons, Ltd.

  8. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments andmore » policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.« less

  9. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  10. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  11. Assessing soil and groundwater contamination from biofuel spills.

    PubMed

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  12. Biofuel Feedstock Assessment For Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  13. Biofuel Feedstock Assessment for Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  14. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; ...

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  15. 3 CFR - Biofuels and Rural Economic Development

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Biofuels and Rural Economic Development Presidential Documents Other Presidential Documents Memorandum of May 5, 2009 Biofuels and Rural Economic Development... powerful engine of economic growth, they must be developed and used in a way that limits environmental...

  16. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels

  17. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Biofuels Techno-Economic Analysis Algal Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into

  18. Synthetic biology for microbial production of lipid-based biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d’Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel

    The risks of maintaining current CO 2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO 2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential ofmore » synthetic biology for sustainable manufacturing.« less

  19. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  20. Energy properties of solid fossil fuels and solid biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk; Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison withmore » solid fossil fuels.« less

  1. Recent developments and key barriers to advanced biofuels: A short review.

    PubMed

    Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk

    2018-06-01

    Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Improving Sugarcane for Biofuel: Engineering for an even better feedstock

    USDA-ARS?s Scientific Manuscript database

    Sugarcane is a proven biofuel feedstock and accounts for about half the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wea...

  3. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sustainable biofuel contributions to carbon mitigation and energy independence

    DOE PAGES

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; ...

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle datamore » for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.« less

  5. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  6. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  7. Microbial engineering for the production of advanced biofuels.

    PubMed

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  8. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  9. Biofuels: balancing risks and rewards.

    PubMed

    Thornley, Patricia; Gilbert, Paul

    2013-02-06

    This paper describes a framework that can be used to evaluate the environmental risks and benefits associated with biofuel production. It uses the example of biodiesel produced from Argentinean soy to show how such a framework can be used to conceptualize trade-offs between different environmental, social and economic impacts of biofuel production. Results showing the greenhouse-gas savings and overall life-cycle impact of different 'soy-biodiesel' production methods are presented. These impacts and the significance of uncertainty in overall assessments of key parameters, such as greenhouse-gas savings, are discussed. It is shown that, even where sufficient knowledge exists to be able to quantify these impacts, the sustainability of supply of a particular biofuel is inextricably linked to values and ethical judgements. However, tailoring certification efforts to the issues that are most likely to make a significant difference to the overall sustainability could improve the effectiveness of certification efforts. The potential for a framework to guide and focus certification efforts is discussed and future research and policy priorities suggested.

  10. Biofuels and the role of space in sustainable innovation journeys☆

    PubMed Central

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  11. Biofuels and the role of space in sustainable innovation journeys.

    PubMed

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  12. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    EPA Science Inventory

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  13. Systems-Level Synthetic Biology for Advanced Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less

  14. Pathways to Carbon-Negative Liquid Biofuels

    NASA Astrophysics Data System (ADS)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they

  15. Effects of fouling on the Japanese scallop Mizuhopecten yessoensis (Jay) in Peter the Great Bay (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Gabaev, D. D.

    2013-03-01

    A valuable mariculture object, the Japanese scallop Mizuhopecten (= Patinopevten) yessoensis (Jay), after six hours long transportation by air and sowing on the bottom is fouled greater by epi- and endolythical organisms than the members of the native population. It is likely that the fouling negatively affects the specimens, those that were the largest before the sowing at the bottom were not found among those that reached puberty. The results of the effects of the endolythic polychaete Polydora brevipalpa and the barnacle Hesperibalanus hesperius on the growth rate of the Japanese scallop cultivated on the bottom of Peter the Great Bay (Sea of Japan) are provided in this paper.

  16. Sustainable Biofuels Redux

    USDA-ARS?s Scientific Manuscript database

    Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown, and thus need to be explicitly considered using a framework that allows the outcomes of alternative systems to be consistently eva...

  17. Claiming Darwin: Stephen Jay Gould in contests over evolutionary orthodoxy and public perception, 1977-2002.

    PubMed

    Sheldon, Myrna Perez

    2014-03-01

    This article analyzes the impact of the resurgence of American creationism in the early 1980s on debates within post-synthesis evolutionary biology. During this period, many evolutionists criticized Harvard biologist Stephen Jay Gould for publicizing his revisions to traditional Darwinian theory and opening evolution to criticism by creationists. Gould's theory of punctuated equilibrium was a significant source of contention in these disputes. Both he and his critics, including Richard Dawkins, claimed to be carrying the mantle of Darwinian evolution. By the end of the 1990s, the debate over which evolutionary thinkers were the rightful heirs to Darwin's evolutionary theory was also a conversation over whether Darwinism could be defended against creationists in the broader cultural context. Gould and others' claims to Darwin shaped the contours of a political, religious and scientific controversy. Copyright © 2014. Published by Elsevier Ltd.

  18. The current potential of algae biofuels in the United Arab Emirates

    USDA-ARS?s Scientific Manuscript database

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  19. Exergy-based efficiency and renewability assessment of biofuel production.

    PubMed

    Dewulf, J; Van Langenhove, H; Van De Velde, B

    2005-05-15

    This study presents an efficiency and renewability analysis of the production of three biofuels: rapeseed methyl ester (RME), soybean methyl ester (SME) and corn-based ethanol (EtOH). The overall production chains have been taken into account: not only the agricultural crop production and the industrial conversion into biofuel, but also production of the supply of agricultural resources (pesticides, fertilizers, fuel, seeding material) and industrial resources (energy and chemicals) to transform the crops into biofuel. Simultaneously, byproducts of the agricultural and industrial processes have been taken into account when resources have to be allocated to the biofuels. The technical analysis via the second law of thermodynamics revealed that corn-based EtOH results in the highest production rate with an exergetic fuel content of 68.8 GJ ha(-1) yr(-1), whereas the RME and SME results were limited to 47.5 and 16.4 GJ ha(-1) yr(-1). The allocated nonrenewable resource input to deliver these biofuels is significant: 16.5, 15.4, and 5.6 MJ ha(-1) yr(-1). This means that these biofuels, generally considered as renewable resources, embed a nonrenewable fraction of one-quarter for EtOH and even one-third for RME and SME. This type of analysis provides scientifically sound quantitative information that is necessarywith respect to the sustainability analysis of so-called renewable energy.

  20. Health impact assessment of liquid biofuel production.

    PubMed

    Fink, Rok; Medved, Sašo

    2013-01-01

    Bioethanol and biodiesel as potential substitutes for fossil fuels in the transportation sector have been analyzed for environmental suitability. However, there could be impacts on human health during the production, therefore adverse health effects have to be analyzed. The aim of this study is to analyze to what health risk factors humans are exposed to in the production of biofuels and what the size of the health effects is. A health impact assessment expressed as disability adjusted life years (DALYs) was conducted in SimaPro 7.1 software. The results show a statistically significant lower carcinogenic impact of biofuels (p < 0.05) than fossil fuels. Meanwhile, the impact of organic respirable compounds is smaller for fossil fuels (p < 0.05) than for biofuels. Analysis of inorganic compounds like PM₁₀,₂.₅, SO₂ or NO(x) shows some advantages of sugar beet bioethanol and soybean biodiesel production (p < 0.05), although production of sugarcane bioethanol shows larger impacts of respirable inorganic compounds than for fossil fuels (p < 0.001). Although liquid biofuels are made of renewable energy sources, this does not necessary mean that they do not represent any health hazards.

  1. The role of biochemical engineering in the production of biofuels from microalgae.

    PubMed

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Argonne model analyzes water footprint of biofuels | Argonne National

    Science.gov Websites

    more information, please visit science.energy.gov. Different types of biofuels have different researchers analyze those differences. Different types of biofuels have different environmental and water

  3. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production

    PubMed Central

    Argueso, Juan Lucas; Carazzolle, Marcelo F.; Mieczkowski, Piotr A.; Duarte, Fabiana M.; Netto, Osmar V.C.; Missawa, Silvia K.; Galzerani, Felipe; Costa, Gustavo G.L.; Vidal, Ramon O.; Noronha, Melline F.; Dominska, Margaret; Andrietta, Maria G.S.; Andrietta, Sílvio R.; Cunha, Anderson F.; Gomes, Luiz H.; Tavares, Flavio C.A.; Alcarde, André R.; Dietrich, Fred S.; McCusker, John H.; Petes, Thomas D.; Pereira, Gonçalo A.G.

    2009-01-01

    Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (∼2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies. PMID:19812109

  4. Cascade upgrading of γ-valerolactone to biofuels.

    PubMed

    Yan, Kai; Lafleur, Todd; Wu, Xu; Chai, Jiajue; Wu, Guosheng; Xie, Xianmei

    2015-04-25

    Cascade upgrading of γ-valerolactone (GVL), produced from renewable cellulosic biomass, with selective conversion to biofuels pentyl valerate (PV) and pentane in one pot using a bifunctional Pd/HY catalyst is described. Excellent catalytic performance (over 99% conversion of GVL, 60.6% yield of PV and 22.9% yield of pentane) was achieved in one step. These biofuels can be targeted for gasoline and jet fuel applications.

  5. Tools and methodologies to support more sustainable biofuel feedstock production.

    PubMed

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  6. Potential emissions reduction in road transport sector using biofuel in developing countries

    NASA Astrophysics Data System (ADS)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  7. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    PubMed Central

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  8. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review.

    PubMed

    Wang, Shizeng; Sun, Xinxiao; Yuan, Qipeng

    2018-06-01

    Using lignocellulosic biomass for the production of renewable biofuel provides a sustainable and promising solution to the crisis of energy and environment. However, the processes of biomass pretreatment and biofuel fermentation bring a variety of inhibitors to microbial strains. These inhibitors repress microbial growth, decrease biofuel yields and increase fermentation costs. The production of biofuels from renewable lignocellulosic biomass relies on the development of tolerant and robust microbial strains. In recent years, the advancement of tolerance engineering and evolutionary engineering provides powerful platform for obtaining host strains with desired tolerance for further metabolic engineering of biofuel pathways. In this review, we summarized the inhibitors derived from biomass pretreatment and biofuel fermentation, the mechanisms of inhibitor toxicity, and the strategies for enhancing microbial tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Before hierarchy: the rise and fall of Stephen Jay Gould's first macroevolutionary synthesis.

    PubMed

    Dresow, Max W

    2017-06-01

    Few of Stephen Jay Gould's accomplishments in evolutionary biology have received more attention than his hierarchical theory of evolution, which postulates a causal discontinuity between micro- and macroevolutionary events. But Gould's hierarchical theory was his second attempt to supply a theoretical framework for macroevolutionary studies-and one he did not inaugurate until the mid-1970s. In this paper, I examine Gould's first attempt: a proposed fusion of theoretical morphology, multivariate biometry and the experimental study of adaptation in fossils. This early "macroevolutionary synthesis" was predicated on the notion that parallelism and convergence dominate the history of higher taxa, and moreover, that they can be explained in terms of adaptation leading to mechanical improvement. In this paper, I explore the origins and contents of Gould's first macroevolutionary synthesis, as well as the reasons for its downfall. In addition, I consider how various developments during the mid-1970s led Gould to identify hierarchy and constraint as the leading themes of macroevolutionary studies-and adaptation as a macroevolutionary red herring.

  10. The politics of biofuels, land and agrarian change: editors' introduction.

    PubMed

    Borras, Saturnino M

    2010-01-01

    This introduction frames key questions on biofuels, land and agrarian change within agrarian political economy, political sociology and political ecology. It identifies and explains big questions that provide the starting point for the contributions to this collection. We lay out some of the emerging themes which define the politics of biofuels, land and agrarian change revolving around global (re)configurations; agro-ecological visions; conflicts, resistances and diverse outcomes; state, capital and society relations; mobilising opposition, creating alternatives; and change and continuity. An engaged agrarian political economy combined with global political economy, international relations and social movement theory provides an important framework for analysis and critique of the conditions, dynamics, contradictions, impacts and possibilities of the emerging global biofuels complex. Our hope is that this collection demonstrates the significance of a political economy of biofuels in capturing the complexity of the "biofuels revolution" and at the same time opening up questions about its sustainability in social and environmental terms that provide pathways towards alternatives.

  11. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    EIA Publications

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  12. Impact of biofuels on contrail warming

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ -75%), reducing both contrail optical depth (~ -29%) and albedo (~ -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  13. The impact of first-generation biofuels on the depletion of the global phosphorus reserve.

    PubMed

    Hein, Lars; Leemans, Rik

    2012-06-01

    The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.

  14. Biofuels and the Environment: the First Triennial Report to ...

    EPA Pesticide Factsheets

    EPA announced the release of the final report,Biofuels and the Environment: The First Triennial Report to Congress (EPA/600/R-10/183F), prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, as the first EPA report published on this issue. The 2007 Energy Independence and Security Act (EISA) mandates increased production of biofuels (fuels derived from organic materials) from 9 billion gallons per year in 2008 to 36 billion gallons per year by 2022. Additionally, EISA (Section 204) also requires that the U.S. Environmental Protection Agency (EPA) assess and report to Congress every three years on the current and potential future environmental and resource conservation impacts associated with increased biofuel production and use. Produce report to Congress that addresses the environmental impact associated with current and future biofuel production and use.

  15. Biofuels and the Environment: The First Triennial Report to ...

    EPA Pesticide Factsheets

    The Biofuels and the Environment: The First Triennial Report to Congress (External Review Draft) (EPA/600/R-10/183A) report, prepared by the National Center for Environmental Assessment (NCEA) within EPA’s Office of Research and Development, is the first report published on this issue. The 2007 Energy Independence and Security Act (EISA) mandates increased production of biofuels (fuels derived from organic materials) from 9 billion gallons per year in 2008 to 36 billion gallons per year by 2022. Additionally, EISA (Section 204) also requires that the U.S. Environmental Protection Agency (EPA) assess and report to Congress every three years on the current and potential future environmental and resource conservation impacts associated with increased biofuel production and use. Produce report to Congress that addresses the environmental impact associated with current and future biofuel production and use.

  16. Water quality under increased biofuel production and future climate change and uncertainty

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  17. Bioproducts and environmental quality: Biofuels, greenhouse gases, and water quality

    NASA Astrophysics Data System (ADS)

    Ren, Xiaolin

    Promoting bio-based products is one oft-proposed solution to reduce GHG emissions because the feedstocks capture carbon, offsetting at least partially the carbon discharges resulting from use of the products. However, several life cycle analyses point out that while biofuels may emit less life cycle net carbon emissions than fossil fuels, they may exacerbate other parts of biogeochemical cycles, notably nutrient loads in the aquatic environment. In three essays, this dissertation explores the tradeoff between GHG emissions and nitrogen leaching associated with biofuel production using general equilibrium models. The first essay develops a theoretical general equilibrium model to calculate the second-best GHG tax with the existence of a nitrogen leaching distortion. The results indicate that the second-best GHG tax could be higher or lower than the first-best tax rates depending largely on the elasticity of substitution between fossil fuel and biofuel. The second and third essays employ computable general equilibrium models to further explore the tradeoff between GHG emissions and nitrogen leaching. The computable general equilibrium models also incorporate multiple biofuel pathways, i.e., biofuels made from different feedstocks using different processes, to identify the cost-effective combinations of biofuel pathways under different policies, and the corresponding economic and environmental impacts.

  18. Carbon exchange by establishing biofuel crops in Central Illinois

    USDA-ARS?s Scientific Manuscript database

    Perennial grass biofuels may contribute to long-term carbon sequestration in soils, thereby providing a broad range of environmental benefits at multiple scales. To quantify those benefits, the carbon balance was investigated over three perennial grass biofuel crops miscanthus (Miscanthus giganteus)...

  19. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin

    2014-11-03

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap inmore » the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.« less

  20. Beetles, Biofuel, and Coffee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  1. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  2. Beetles, Biofuel, and Coffee

    ScienceCinema

    Ceja-Navarro, Javier

    2018-01-16

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  3. Carbon-negative biofuels from low-input high-diversity grassland biomass.

    PubMed

    Tilman, David; Hill, Jason; Lehman, Clarence

    2006-12-08

    Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram hectare(-1) year(-1) of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during biofuel production (0.32 megagram hectare(-1) year(-1)). Moreover, LIHD biofuels can be produced on agriculturally degraded lands and thus need to neither displace food production nor cause loss of biodiversity via habitat destruction.

  4. Biofuels as an Alternative Energy Source for Aviation-A Survey

    NASA Technical Reports Server (NTRS)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  5. Biofuel cells for biomedical applications: colonizing the animal kingdom.

    PubMed

    Falk, Magnus; Narváez Villarrubia, Claudia W; Babanova, Sofia; Atanassov, Plamen; Shleev, Sergey

    2013-07-22

    Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  7. PNNL Aviation Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  8. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  9. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  10. Challenge of biofuel: filling the tank without emptying the stomach?

    NASA Astrophysics Data System (ADS)

    Rajagopal, D.; Sexton, S. E.; Roland-Holst, D.; Zilberman, D.

    2007-10-01

    Biofuels have become a leading alternative to fossil fuel because they can be produced domestically by many countries, require only minimal changes to retail distribution and end-use technologies, are a partial response to global climate change, and because they have the potential to spur rural development. Production of biofuel has increased most rapidly for corn ethanol, in part because of government subsidies; yet, corn ethanol offers at most a modest contribution to society's climate change goals and only a marginally positive net energy balance. Current biofuels pose long-run consequences for the provision of food and environmental amenities. In the short run, however, when gasoline supply and demand are inelastic, they serve as a buffer supply of energy, helping to reduce prices. Employing a conceptual model and with back-of-the-envelope estimates of wealth transfers resulting from biofuel production, we find that ethanol subsidies pay for themselves. Adoption of second-generation technologies may make biofuels more beneficial to society. The large-scale production of new types of crops dedicated to energy is likely to induce structural change in agriculture and change the sources, levels, and variability of farm incomes. The socio-economic impact of biofuel production will largely depend on how well the process of technology adoption by farmers and processors is understood and managed. The confluence of agricultural policy with environmental and energy policies is expected.

  11. Engineered photosynthetic bacteria, method of manufacture of biofuels

    DOEpatents

    Laible, Philip D.; Snyder, Seth W.

    2016-09-13

    The invention provides for a novel type of biofuel; a method for cleaving anchors from photosynthetic organisms; and a method for producing biofuels using photosynthetic organisms, the method comprising identifying photosynthesis co-factors and their anchors in the organisms; modifying the organisms to increase production of the anchors; accumulating biomass of the organisms in growth media; and harvesting the anchors.

  12. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  13. Smart choices for biofuels

    DOT National Transportation Integrated Search

    2009-01-01

    Much of the strong support for biofuels in the United States is premised on the national security advantages of reducing dependence on imported oil. In late 2007, these expected payoffs played a major role in driving an extension and expansion of the...

  14. Biofuel alternatives to ethanol: pumping the microbial well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we reviewmore » advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.« less

  15. Biofuel alternatives to ethanol: pumping the microbial well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila

    2009-08-19

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we reviewmore » advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.« less

  16. Chemistry and combustion of fit-for-purpose biofuels.

    PubMed

    Rothamer, David A; Donohue, Timothy J

    2013-06-01

    From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Life cycle assessment of cellulosic and advanced biofuel crops

    USDA-ARS?s Scientific Manuscript database

    Estimating the carbon intensity of biofuel production is important in order to meet greenhouse gas (GHG) targets set by government policy. Nitrous oxide emissions are the largest source and soil carbon the largest sink of GHGs for determining the carbon intensity of biofuels during their production ...

  18. 75 FR 20085 - Subpart B-Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... biofuels industry is very capital intensive, the Agency is proposing multi-year contracts to enable advanced biofuels producers the assurance of a multi-year revenue stream. This approach is consistent with the goal of creating a stable industry. Finally, the Agency is proposing a two- tiered payment...

  19. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    PubMed

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  20. Fields of dreams: Agriculture, economy and nature in Midwest United States biofuel production

    NASA Astrophysics Data System (ADS)

    Gillon, Sean Thomas

    This work explores the social and ecological dimensions of recent biofuel production increases in the United States (US), focusing on the case of Iowa. Biofuels are proposed to mitigate the greenhouse gas emissions that cause climate change, improve US energy security, and support rural economies. Little research has examined how increased US Midwestern biofuels production will change social and ecological outcomes at farm and regional levels or interact with broader governance processes at the nexus of agriculture, energy and environment. These broad questions guide my research: (1) How does biofuel production reconfigure agricultural practice and landscapes in Iowa? (2) What are the costs, benefits and risks of increased biofuels production as seen by farmers and rural residents, and how do these factors influence farmer decisions about agriculture and conservation practice? (3) How and with what effects are biofuels initiatives constituted as a form of environmental governance through scientific knowledge and practice and political economic dynamics? To address these questions, this research integrates both qualitative and quantitative methods, drawing on a political ecological approach complemented by agroecological analysis and theoretical insights from geographical analyses of nature-society relations. Quantitative analysis focuses on changing land use patterns in agriculture and conservation practice in Iowa. Qualitative methods include extensive interviews, participant observation, and policy and document analyses. Fieldwork focused on Northeastern Iowa to understand regional changes in agricultural and conservation practice, the renegotiated position of farmers in agriculture and biofuel production, and biofuel industry development. I find that biofuel production presents significant social and ecological challenges for rural places of production. Longstanding, unequal political economic relations in industrialized agriculture limit rural economic benefits

  1. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  2. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  3. Potential application of Candida melibiosica in biofuel cells.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2010-04-01

    Various prokaryote species have been widely studied for microbial fuel cell (MFC) application. However, the information about yeast utilization into biofuel cells is still scanty. The aim of this investigation is to verify if Candida melibiosica 2491, a yeast strain, possessing high phytase activity, could be applied as a biocatalyst in a yeast biofuel cell. The microbiological requirements were coupled with the electrochemical ones tracing main biochemical pathway metabolites such as different carbohydrate and inorganic phosphates and their assimilation with time. The obtained results show that from the three carbohydrates investigated - glucose, fructose and sucrose, fructose is the most suitable for the yeast cultivation. The presence of yeast extract and peptone improves the performance into the biofuel cell. The relationship between the yeast cell amount and the biofuel cell characteristics was determined. Analyses showed that electricity was generated by the yeast culture even in the absence of an artificial mediator. The addition of methylene blue at concentrations higher than 0.1 mM improves the current and power density output. The obtained experimental results proved that C. melibiosica 2491 belongs to the electrogenic strains. 2009 Elsevier B.V. All rights reserved.

  4. Producing biofuel crops: environmental and economic implications and strategies

    USDA-ARS?s Scientific Manuscript database

    The growing need for sustainable fuel sources must become compatible with the continued need for food by an ever increasing world population and the effects of climate change on ability to produce food and biofuel. Growing more hectares of biofuel crops such as corn increases sediment and nutrient l...

  5. Biofuel production from palm oil with supercritical alcohols: effects of the alcohol to oil molar ratios on the biofuel chemical composition and properties.

    PubMed

    Sawangkeaw, Ruengwit; Teeravitud, Sunsanee; Bunyakiat, Kunchana; Ngamprasertsith, Somkiat

    2011-11-01

    Biofuel production from palm oil with supercritical methanol (SCM) and supercritical ethanol (SCE) at 400 °C and 15 MPa were evaluated. At the optimal alcohol to oil molar ratios of 12:1 and 18:1 for the SCM and SCE processes, respectively, the biofuel samples were synthesized in a 1.2-L reactor and the resulting biofuel was analyzed for the key properties including those for the diesel and biodiesel standard specifications. Biofuel samples derived from both the SCM and SCE processes could be used as an alternative fuel after slight improvement in their acid value and free glycerol content. The remarkable advantages of this novel process were: the additional fuel yield of approximately of 5% and 10% for SCM and SCE, respectively; the lower energy consumption for alcohol preheating, pumping and recovering than the biodiesel production with supercritical alcohols that use a high alcohol to oil molar ratio of 42:1. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Biofuel co-product uses for pavement geo-materials stabilization : final report, April 2010.

    DOT National Transportation Integrated Search

    2010-04-01

    The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant : biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin deriv...

  7. Evaluation of chosen fruit seeds oils as potential biofuel

    NASA Astrophysics Data System (ADS)

    Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.

    2012-04-01

    Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.

  8. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  9. A laboratory investigation of mixing dynamics between biofuels and surface waters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Cotel, Aline

    2017-11-01

    Recently, production and usage of ethanol-blend fuels or biofuels have increased dramatically along with increasing risk of spilling into surface waters. Lack of understanding of the environmental impacts and absence of standard clean-up procedures make it crucial to study the mixing behavior between biofuels and water. Biofuels are represented by a solution of ethanol and glycol. A Plexiglas tank in conjunction with a wave generator is used to simulate the mixing of surface waters and biofuels under different natural conditions. In our previous experiments, two distinct mixing regimes were observed. One regime was driven by turbulence and the other by interfacial instabilities. However, under more realistic situations, without wind driven waves, only the first mixing regime was found. After one minute of rapid turbulent mixing, biofuels and water were fully mixed and no interface was formed. During the mixing process, chemical reactions happened simultaneously and influenced mixing dynamics. Current experiments are investigating the effect of waves on the mixing dynamics. Support from NSF CBET 1335878.

  10. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-02-29

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  11. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels

    PubMed Central

    Hoang, Nam V.; Furtado, Agnelo; Botha, Frederik C.; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  12. "Drop-In" Biofuels Solve Integration Issues? - Continuum Magazine | NREL

    Science.gov Websites

    NREL's ReFUEL Lab. Photo by Dennis Schroeder, NREL "Drop-In" Biofuels Solve Integration Issues by Dennis Schroeder, NREL The National Advanced Biofuels Consortium (NABC), which NREL and Pacific . Photo by Dennis Schroeder, NREL The second process the NABC is investigating is the catalytic conversion

  13. BioFuelDB: a database and prediction server of enzymes involved in biofuels production.

    PubMed

    Chaudhary, Nikhil; Gupta, Ankit; Gupta, Sudheer; Sharma, Vineet K

    2017-01-01

    In light of the rapid decrease in fossils fuel reserves and an increasing demand for energy, novel methods are required to explore alternative biofuel production processes to alleviate these pressures. A wide variety of molecules which can either be used as biofuels or as biofuel precursors are produced using microbial enzymes. However, the common challenges in the industrial implementation of enzyme catalysis for biofuel production are the unavailability of a comprehensive biofuel enzyme resource, low efficiency of known enzymes, and limited availability of enzymes which can function under extreme conditions in the industrial processes. We have developed a comprehensive database of known enzymes with proven or potential applications in biofuel production through text mining of PubMed abstracts and other publicly available information. A total of 131 enzymes with a role in biofuel production were identified and classified into six enzyme classes and four broad application categories namely 'Alcohol production', 'Biodiesel production', 'Fuel Cell' and 'Alternate biofuels'. A prediction tool 'Benz' was developed to identify and classify novel homologues of the known biofuel enzyme sequences from sequenced genomes and metagenomes. 'Benz' employs a hybrid approach incorporating HMMER 3.0 and RAPSearch2 programs to provide high accuracy and high speed for prediction. Using the Benz tool, 153,754 novel homologues of biofuel enzymes were identified from 23 diverse metagenomic sources. The comprehensive data of curated biofuel enzymes, their novel homologs identified from diverse metagenomes, and the hybrid prediction tool Benz are presented as a web server which can be used for the prediction of biofuel enzymes from genomic and metagenomic datasets. The database and the Benz tool is publicly available at http://metabiosys.iiserb.ac.in/biofueldb& http://metagenomics.iiserb.ac.in/biofueldb.

  14. Impacts of Climate Change on Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and considerationmore » of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.« less

  15. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    PubMed

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metal organic frameworks for enzyme immobilization in biofuel cells

    NASA Astrophysics Data System (ADS)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  17. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  18. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  19. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan

    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel sellingmore » price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.« less

  20. PNNL Aviation Biofuels

    ScienceCinema

    Plaza, John; Holladay, John; Hallen, Rich

    2018-06-06

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  1. Biofuels: Report to Congress

    EPA Science Inventory

    Section 204 of the Energy Independence and Security Act of 2007 (EISA 2007) requires EPA to assess and report to Congress on the impacts to date and likely future impacts of the increased use of biofuels as required by the Clean Air Act, section 211(0). Environmental issues (...

  2. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunting, Bruce G; Bunce, Michael; Barone, Teresa L

    2011-04-01

    The purpose of the study described in this report is to summarize the various barriers to more widespread distribution of bio-fuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals. Addressing these barriers is necessary to allow the more widespread utilization and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed; including compatibility evaluation, changes to bio-fuels, regulatory changes, and changesmore » in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate. This project addresses recognized barriers to the wider use of bio-fuels in the areas of development of codes and standards, industrial and consumer awareness, and materials compatibility issues.« less

  3. A Modular Approach to Integrating Biofuels Education into ChE Curriculum Part I--Learning Materials

    ERIC Educational Resources Information Center

    He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali

    2016-01-01

    In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…

  4. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    PubMed

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Extracellular electron transfer in yeast-based biofuel cells: A review.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    This paper reviews the state-of-the art of the yeast-based biofuel cell research and development. The established extracellular electron transfer (EET) mechanisms in the presence and absence of exogenous mediators are summarized and discussed. The approaches applied for improvement of mediator-less yeast-based biofuel cells performance are also presented. The overview of the literature shows that biofuel cells utilizing yeasts as biocatalysts generate power density in the range of 20 to 2440 mW/m(2), which values are comparable with the power achieved when bacteria are used instead. The electrons' origin and the contribution of the glycolysis, fermentation, aerobic respiration, and phosphorylation to the EET are commented. The reported enhanced current generation in aerobic conditions presumes reconsideration of some basic MFC principles. The challenges towards the practical application of the yeast-based biofuel cells are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.

  7. Agave: a biofuel feedstock for arid and semi-arid environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Stephen; Martin, Jeffrey; Simpson, June

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part throughmore » a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.« less

  8. Sustainable Biofuels A Transitions Approach to Understanding the Global Expansion of Ethanol and Biodiesel

    NASA Astrophysics Data System (ADS)

    Cottes, Jeffrey Jacob

    Between 1998 and 2008, the promise of biofuels to increase rural development, enhance energy security, and reduce greenhouse gas emissions stimulated their diffusion across international markets. This rapid expansion of ethanol and biodiesel encouraged many jurisdictions to implement biofuels expansion policies and programs. Global biofuels, characterised by mass production and international trade of ethanol and biodiesel, occurred despite their long history as marginal technologies on the fringe of the petroleum-based transportation energy regime. The first purpose of this dissertation is to examine the global expansion of ethanol and biodiesel to understand how these recurrent socio-technological failures co-evolved with petroleum transportation fuels. Drawing from the field of socio-technical transitions, this dissertation also assesses the global expansion of ethanol and biodiesel to determine whether or not these first generation biofuels are sustainable. Numerous studies have assessed the technical effects of ethanol and biodiesel, but effects-based technical assessments of transport biofuels are unable to explain the interaction of wider system elements. The configuration of multi-level factors (i.e., niche development, the technological regime, and the socio-technical landscape) informs the present and emerging social functions of biofuels, which become relevant when determining how biofuels might become a sustainable energy option. The biofuels regimes that evolved in Brazil, the United States, and the European Union provide case studies show how ethanol and biodiesel expanded from fringe fuels to global commodities. The production infrastructures within these dominant biofuels regimes contribute to a persistence of unsustainable first generation biofuels that can inhibit the technical development and sustainability of biofuels. However, new and emerging ethanol and biodiesel markets are relatively small in comparison to the dominant regimes, and can

  9. Indirect land-use changes can overcome carbon savings from biofuels in Brazil.

    PubMed

    Lapola, David M; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A

    2010-02-23

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 10(9) liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km(2) by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil's biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil.

  10. Indirect land-use changes can overcome carbon savings from biofuels in Brazil

    PubMed Central

    Lapola, David M.; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A.

    2010-01-01

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 109 liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km2 by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil’s biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil. PMID:20142492

  11. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    PubMed

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Take a Closer Look:Biofuels Can Support Environmental, Economic and Social Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Bruce E.; Anderson, James; Brown, Dr. Robert C.

    The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels. However, numerous studies indicate that biofuels, if managed sustainably, can help solve pressing environmental, social and economic problems (Figure 1). The scientific and policy communities should take a closer look by reviewing themore » key assumptions underlying opposition to biofuels and carefully consider the probable alternatives. Liquid fuels based on fossil raw materials are likely to come at increasing environmental cost. Sustainable futures require energy conservation, increased efficiency, and alternatives to fossil fuels, including biofuels.« less

  13. Trade-offs between agricultural production and biodiversity for biofuel production

    USDA-ARS?s Scientific Manuscript database

    Growing energy demands and concerns for climate change have pushed forward the time line for biofuel production. However, the effect of large-scale biofuel production in the U.S. on the agricultural industry, primarily responsible for food production and livestock feed, and biodiversity levels of ma...

  14. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Treesearch

    Dana J. Wolbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf A. Salamov; Kurt M. LaButti; Hui Sun; Alicia Clum; Jasmyn L. Pangilinan; Erika A. Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie W. Barry; Igor V. Grigoriev; Audrey P. Gasch

    2011-01-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative...

  15. Biofuel metabolic engineering with biosensors.

    PubMed

    Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F

    2016-12-01

    Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Role of Biofuels Coproducts in Feeding the World Sustainably.

    PubMed

    Shurson, Gerald C

    2017-02-08

    One of the grand challenges facing our society today is finding solutions for feeding the world sustainably. The food-versus-fuel debate is a controversy embedded in this challenge, involving the trade-offs of using grains and oilseeds for biofuels production versus animal feed and human food. However, only 6% of total global grain produced is used to produce ethanol. Furthermore, biofuels coproducts contribute to sustainability of food production because only 1% to 2.5% of the overall energy efficiency is lost from converting crops into biofuels and animal feed, and approximately one-third of the corn used to produce ethanol is recovered as feed coproducts. Extensive research has been conducted over the past 15 years on biofuels coproducts to (a) optimize their use for improving caloric and nutritional efficiency in animal feeds, (b) identify benefits and limitations of use in various animal diets, (c) characterize their unique nutraceutical properties, and (d) evaluate their environmental impacts.

  17. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels.

    PubMed

    Cheon, Seungwoo; Kim, Hye Mi; Gustavsson, Martin; Lee, Sang Yup

    2016-12-01

    As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  19. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  20. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  1. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  2. 40 CFR 80.1456 - What are the provisions for cellulosic biofuel waiver credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... biofuel waiver credits? 80.1456 Section 80.1456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... What are the provisions for cellulosic biofuel waiver credits? (a) If EPA reduces the applicable volume of cellulosic biofuel pursuant to section 211(o)(7)(D)(i) of the Clean Air Act (42 U.S.C. 7545(o)(7...

  3. Microalgae as a raw material for biofuels production.

    PubMed

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  4. Prospects for Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    EPA Science Inventory

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  5. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  6. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE PAGES

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.; ...

    2017-01-21

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  7. Advancing Biofuels: Balancing for Sustainability

    USDA-ARS?s Scientific Manuscript database

    As with most technologies, use of biofuels has both benefits and risks, which vary by feedstock. Expected benefits include increased energy independence, reduced consumption of fossil fuels, reduced emission of greenhouse gases and invigorated rural economies. Anticipated risks include potential com...

  8. Biofuel production by recombinant microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  9. Yeast synthetic biology toolbox and applications for biofuel production.

    PubMed

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  10. Greenhouse gas emission curves for advanced biofuel supply chains

    NASA Astrophysics Data System (ADS)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  11. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. TERRA: Building New Communities for Advanced Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch

    ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.

  13. Biobatteries and biofuel cells with biphenylated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Krzysztof; Kizling, Michał; Majdecka, Dominika; Żelechowska, Kamila; Biernat, Jan F.; Rogalski, Jerzy; Bilewicz, Renata

    2014-03-01

    Single-walled carbon nanotubes (SWCNTs) covalently biphenylated are used for the construction of cathodes in a flow biobattery and in flow biofuel cell. Zinc covered with a hopeite layer is the anode in the biobattery and glassy carbon electrode covered with bioconjugates of single-walled carbon nanotubes with glucose oxidase and catalase is the anode of the biofuel cell. The potentials of the electrodes are measured vs. the Ag/AgCl reference electrode under changing loads of the fuel cell/biobattery. The power density of the biobattery with biphenylated nanotubes at the cathode is ca. 0.6 mW cm-2 and the open circuit potential is ca. 1.6 V. In order to obtain larger power densities and voltages three biobatteries are connected in a series which leads to the open circuit potential of ca. 4.8 V and power density 2.1 mW cm-2 at 3.9 V under 100 kΩ load. The biofuel cell shows power densities of ca. 60 μW cm-2 at 20 kΩ external resistance but the open circuit potential for such biofuel cell is only 0.5 V. The biobattery showing significantly larger power densities and open circuit voltages are especially useful for testing novel cathodes and applications such as powering units for clocks and sensing devices.

  14. Effects of Deployment Investment on the Growth of the Biofuels Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J.; Bush, Brian W.

    2013-12-01

    In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less

  15. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.

    PubMed

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  16. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    PubMed Central

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-01-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. PMID:16837571

  17. A strategic assessment of biofuels development in the Western States

    Treesearch

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  18. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Genetically engineered crops for biofuel production: regulatory perspectives.

    PubMed

    Lee, David; Chen, Alice; Nair, Ramesh

    2008-01-01

    There are numerous challenges in realizing the potential of biofuels that many policy makers have envisioned. The technical challenges in making the production of biofuels economical and on a scale to replace a significant fraction of transportation fuel have been well described, along with the potential environmental concerns. The use of biotechnology can potentially address many of these technical challenges and environmental concerns, but brings significant regulatory hurdles that have not been discussed extensively in the scientific community. This review will give an overview of the approaches being developed to produce transgenic biofuel feedstocks, particularly cellulosic ethanol, and the regulatory process in the United States that oversees the development and commercialization of new transgenic plants. We hope to illustrate that the level of regulation for transgenic organisms is not proportional to their potential risk to human health or the environment, and that revisions to the regulatory system in the U.S. currently under consideration are necessary to streamline the process.

  20. "Replaying Life's Tape": Simulations, metaphors, and historicity in Stephen Jay Gould's view of life.

    PubMed

    Sepkoski, David

    2016-08-01

    In a famous thought experiment, Stephen Jay Gould asked whether, if one could somehow rewind the history of life back to its initial starting point, the same results would obtain when the "tape" was run forward again. This hypothetical experiment is generally understood as a metaphor supporting Gould's philosophy of evolutionary contingency, which he developed and promoted from the late 1980s until his death in 2002. However, there was a very literal, non-metaphorical inspiration for Gould's thought experiment: since the early 1970s, Gould, along with a group of other paleontologists, was actively engaged in attempts to model and reconstruct the history of life using computer simulations and database analysis. These simulation projects not only demonstrate the impact that computers had on data analysis in paleontology, but also shed light on the close relationship between models and empirical data in data-oriented science. In a sense, I will argue, the models developed by paleontologists through simulation and quantitative analysis of the empirical fossil record in the 1970s and beyond were literal attempts to "replay life's tape" by reconstructing the history of life as data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    NASA Astrophysics Data System (ADS)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub

  2. The potential of C4 grasses for cellulosic biofuel production

    PubMed Central

    van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628

  3. A membraneless biofuel cell powered by ethanol and alcoholic beverage.

    PubMed

    Deng, Liu; Shang, Li; Wen, Dan; Zhai, Junfeng; Dong, Shaojun

    2010-09-15

    In this study, we reported on the construction of a stable single-chamber ethanol/O(2) biofuel cell harvesting energy from the ethanol and alcoholic beverage. We prepared a composite film which consisted of partially sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) and chitosan (CHI). The combination of ion-exchange capacity sol-gel and biopolymer chitosan not only provided the attached sites for mediator MDB and AuNPs to facilitate the electron transfer along the substrate reaction, but also gave the suitable microenvironment to retain the enzyme activity in long term. The ethanol bioanode was constructed with the film coimmobilized dehydrogenase (ADH), Meldola's blue (MDB) and gold nanoparticles (AuNPs). The MDB/AuNPs/PSSG-CHI-ADH composite modified electrode showed prominent electrocatalytic activity towards the oxidation of ethanol. The oxygen biocathode consisted of laccase and AuNPs immobilized on the PSSG-CHI composite membrane. The AuNPs/PSSG-CHI-laccase modified electrode catalyzed four-electron reduction of O(2) to water, without any mediator. The assembled single-chamber biofuel cell exhibited good stability and power output towards ethanol. The open-circuit voltage of this biofuel cell was 860 mV. The maximum power density of the biofuel cell was 1.56 mWcm(-2) at 550 mV. Most interestingly, this biofuel cell showed the similar performance when the alcoholic beverage acted as the fuel. When this biofuel cell ran with wine as the fuel, the maximum power output density was 3.21 mAcm(-2) and the maximum power density was 1.78 mWcm(-2) at 680 mV of the cell voltage. Our system exhibited stable and high power output in the multi-component substrate condition. This cell has great potential for the development and practical application of bioethanol fuel cell. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Biofuel Production: Considerations for USACE Civil Works Business Lines

    DTIC Science & Technology

    2014-12-01

    observers to see the big picture by looking at a smaller part of it. Indicators are often quantitative measures such as physical or economic data...however, the end use of collected biomass as feedstock for biofuels is seldom considered. The USACE Aquatic Plant Control Research Program has a ...collection equipment, and proximity to transportation and biofuels processing plants , use of aquatic plant biomass as a feedstock may be warranted

  5. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production.

  6. Potential Avenues for Significant Biofuels Penetration in the U.S. Aviation Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newes, Emily; Han, Jeongwoo; Peterson, Steve

    Industry associations have set goals to reduce greenhouse gas (GHG) emissions and increase fuel efficiency. One focal area for reducing GHG emissions is in the use of aviation biofuel. This study examines assumptions under which the United States could see large production in aviation biofuel. Our results suggest that a high penetration (6 billion gallons) of aviation biofuels by 2030 could be possible, but factors around policy design (in the absence of high oil prices) contribute to the timing and magnitude of aviation biofuels production: 1) Incentives targeted towards jet fuel production such as financial incentives (e.g., producer tax credit,more » carbon tax) can be sufficient; 2) Investment in pre-commercial cellulosic technologies is needed to reduce the cost of production through learning-by-doing; 3) Reduction of investment risk through loan guarantees may allow production to ramp up more quickly through accelerating industry learning. In cases with high levels of incentives and investment in aviation biofuels, there could be a 25 percent reduction in overall GHG emissions from the aviation sector.« less

  7. Public attitudes toward biofuels. Effects of knowledge, political partisanship, and media use.

    PubMed

    Cacciatore, Michael A; Binder, Andrew R; Scheufele, Dietram A; Shaw, Bret R

    2012-01-01

    Despite large-scale investments and government mandates to expand biofuels development and infrastructure in the United States, little is known about how the public conceives of this alternative fuel technology. This study examines public opinion of biofuels by focusing on citizen knowledge and the motivated processing of media information. Specifically, we explore the direct effects of biofuels knowledge and the moderating effect of partisanship on the relationship between media use and benefit vs. risk perceptions in the following four domains: environmental impacts, economic consequences, ethical/social implications, and political ramifications. Our results suggest that more knowledgeable respondents see fewer benefits of biofuels relative to risks, and that Democrats and Republicans are affected differently by media use when forming opinions about biofuels. Among Democrats, greater attention to political media content leads to a more favorable outlook toward the technology across several domains of interest, while among Republicans, an increase in attention to political content has the opposite effect. Possible reasons for these results, as well as implications of the findings at the intersection of politics and the life sciences, are discussed.

  8. Genomic Consequences of Population Decline in the Endangered Florida Scrub-Jay.

    PubMed

    Chen, Nancy; Cosgrove, Elissa J; Bowman, Reed; Fitzpatrick, John W; Clark, Andrew G

    2016-11-07

    Understanding the population genetic consequences of declining population size is important for conserving the many species worldwide facing severe decline [1]. Thorough empirical studies on the impacts of population reduction at a genome-wide scale in the wild are scarce because they demand huge field and laboratory investments [1, 2]. Previous studies have demonstrated the importance of gene flow in introducing genetic variation to small populations [3], but few have documented both genetic and fitness consequences of decreased immigration through time in a natural population [4-6]. Here we assess temporal variation in gene flow, inbreeding, and fitness using longitudinal genomic, demographic, and phenotypic data from a long-studied population of federally Threatened Florida scrub-jays (Aphelocoma coerulescens). We exhaustively sampled and genotyped the study population over two decades, providing one of the most detailed longitudinal investigations of genetics in a wild animal population to date. Immigrants were less heterozygous than residents but still introduced genetic variation into our study population. Owing to regional population declines, immigration into the study population declined from 1995-2013, resulting in increased levels of inbreeding and reduced fitness via inbreeding depression, even as the population remained demographically stable. Our results show that, contrary to conventional wisdom, small peripheral populations that already have undergone a genetic bottleneck may play a vital role in preserving genetic diversity of larger and seemingly stable populations. These findings underscore the importance of investing in the persistence of small populations and maintaining population connectivity in conservation of fragmented species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The South's outlook for sustainable forest bioenergy and biofuels production

    Treesearch

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  10. Three generation production biotechnology of biomass into bio-fuel

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  11. Physiology limits commercially viable photoautotrophic production of microalgal biofuels.

    PubMed

    Kenny, Philip; Flynn, Kevin J

    2017-01-01

    Algal biofuels have been offered as an alternative to fossil fuels, based on claims that microalgae can provide a highly productive source of compounds as feedstocks for sustainable transport fuels. Life cycle analyses identify algal productivity as a critical factor affecting commercial and environmental viability. Here, we use mechanistic modelling of the biological processes driving microalgal growth to explore optimal production scenarios in an industrial setting, enabling us to quantify limits to algal biofuels potential. We demonstrate how physiological and operational trade-offs combine to restrict the potential for solar-powered algal-biodiesel production in open ponds to a ceiling of ca. 8000 L ha -1 year -1 . For industrial-scale operations, practical considerations limit production to ca. 6000 L ha -1 year -1 . According to published economic models and life cycle analyses, such production rates cannot support long-term viable commercialisation of solar-powered cultivation of natural microalgae strains exclusively as feedstock for biofuels. The commercial viability of microalgal biofuels depends critically upon limitations in microalgal physiology (primarily in rates of C-fixation); we discuss the scope for addressing this bottleneck concluding that even deployment of genetically modified microalgae with radically enhanced characteristics would leave a very significant logistical if not financial burden.

  12. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    USDA-ARS?s Scientific Manuscript database

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  13. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    NASA Astrophysics Data System (ADS)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  14. WATER IMPLICATIONS OF BIOFUELS PRODUCTION

    EPA Science Inventory

    Presentation requested by the National Academy of Science (NAS) for a Colloquium on Water Quality Implications of Biofuels Production, to be held at the NAS in Washington, D.C. on July 12, 2007. This presentation will address the influence of ethanol on hydrocarbon plumes and th...

  15. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Assessing extension and outreach education levels for biofuel feedstock production in the Western United States

    USDA-ARS?s Scientific Manuscript database

    A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...

  17. The water-energy-food nexus of biofuels in a globalized world

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Rulli, M. C.

    2016-12-01

    New renewable energy policies, investment opportunities, and energy security needs, have recently led to an escalation in the reliance on first generation biofuels. This phenomenon is contributing to changes in land use, market dynamics, property rights, and systems of agricultural production, with important impacts on rural livelihoods. Despite these effects of biofuels on food security, their nexus with land and water use remains poorly understood. We investigate recent production trends of bioenergy crops, their patterns of trade, and evaluate the associated displacement of water and land use. We find that bioethanol is produced with domestic crops while biodiesel production relies also on international trade and large scale land acquisitions in the developing world, particularly in Southeast Asia. Altogether, biofuels account for about 2-3% of the global water and land use in agriculture, and 30% of the food required to eradicate malnourishment worldwide. We evaluate the food-energy tradeoffs of biofuels and their impact of the number of people the plant can feed.

  18. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    PubMed

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.

  19. An economic evaluation of alternative biofuel deployment scenarios in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oladosu, Gbadebo

    Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less

  20. An economic evaluation of alternative biofuel deployment scenarios in the USA

    DOE PAGES

    Oladosu, Gbadebo

    2017-05-03

    Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less

  1. Using "EC-Assess" to Assess a Small Biofuels Project in Honduras

    ERIC Educational Resources Information Center

    Ngassa, Franklin Chamda

    2010-01-01

    Biofuels may contribute to both rural economic development and climate change mitigation and adaptation. The Gota Verde Project in Yoro, Honduras, attempts to demonstrate the technical and economic feasibility of small-scale biofuel production for local use by implementing a distinctive approach to feedstock production that encourages small farm…

  2. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    PubMed

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.

  4. Environmental indicators for sustainable production of algal biofuels

    DOE PAGES

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as themore » growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.« less

  5. Biofuel supply chain considering depreciation cost of installed plants

    NASA Astrophysics Data System (ADS)

    Rabbani, Masoud; Ramezankhani, Farshad; Giahi, Ramin; Farshbaf-Geranmayeh, Amir

    2016-06-01

    Due to the depletion of the fossil fuels and major concerns about the security of energy in the future to produce fuels, the importance of utilizing the renewable energies is distinguished. Nowadays there has been a growing interest for biofuels. Thus, this paper reveals a general optimization model which enables the selection of preprocessing centers for the biomass, biofuel plants, and warehouses to store the biofuels. The objective of this model is to maximize the total benefits. Costs of the model consist of setup cost of preprocessing centers, plants and warehouses, transportation costs, production costs, emission cost and the depreciation cost. At first, the deprecation cost of the centers is calculated by means of three methods. The model chooses the best depreciation method in each period by switching between them. A numerical example is presented and solved by CPLEX solver in GAMS software and finally, sensitivity analyses are accomplished.

  6. Sustainability of biofuels and renewable chemicals production from biomass.

    PubMed

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell.

    PubMed

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-10-01

    We report for the first time that Candida melibiosica expresses enhanced phytase activity when grown under biofuel cell polarization in a nutrient-poor medium, containing only fructose as a carbohydrate source. Phytase activity during the cultivation under polarization reached up to 25 U per g dry biomass, exceeding with 20 ± 3 % those of the control. A participation of the enzyme in the adaptation processes to the stress conditions is proposed. In addition, steady-state electrical outputs were achieved during biofuel cell operation at continuous polarization under constant load. The obtained results show that C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation.

  8. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  9. Laccase applications in biofuels production: current status and future prospects.

    PubMed

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  10. Aviation Management Perception of Biofuel as an Alternative Fuel Source

    NASA Astrophysics Data System (ADS)

    Marticek, Michael

    The purpose of this phenomenological study was to explore lived experiences and perceptions from a population of 75 aviation managers in various locations in Pennsylvania about the use of aviation biofuel and how it will impact the aviation industry. The primary research question for this study focused on the impact of biofuel on the airline industry and how management believes biofuel can contribute to the reduction of fossil fuel. Grounded in the conceptual framework of sustainability, interview data collected from 27 airline and fueling leaders were analyzed for like terms, coded, and reduced to 3 themes. Data were organized and prioritized based on frequency of mention. The findings represented themes of (a) flight planning tools, (b) production, and (c) costs that are associated with aviation fuel. The results confirmed findings addressed in the literature review, specifically that aviation biofuel will transform the airline industry through lower cost and production. These findings have broad applicability for all management personnel in the aviation industry. Implications for social change and improved business environments could be realized with a cleaner environment, reduced fuel emissions, and improved air quality.

  11. TERRA: Building New Communities for Advanced Biofuels

    ScienceCinema

    Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch

    2018-01-16

    ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.

  12. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who...

  13. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Thornhill, Kenneth L.; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J.; Barrick, John; Bulzan, Dan; Corr, Chelsea A.; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D.; Brown, Anthony; Schlager, Hans; Anderson, Bruce E.

    2017-03-01

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  14. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

    PubMed

    Moore, Richard H; Thornhill, Kenneth L; Weinzierl, Bernadett; Sauer, Daniel; D'Ascoli, Eugenio; Kim, Jin; Lichtenstern, Michael; Scheibe, Monika; Beaton, Brian; Beyersdorf, Andreas J; Barrick, John; Bulzan, Dan; Corr, Chelsea A; Crosbie, Ewan; Jurkat, Tina; Martin, Robert; Riddick, Dean; Shook, Michael; Slover, Gregory; Voigt, Christiane; White, Robert; Winstead, Edward; Yasky, Richard; Ziemba, Luke D; Brown, Anthony; Schlager, Hans; Anderson, Bruce E

    2017-03-15

    Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

  15. Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina

    2018-01-01

    Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.

  16. Estimating Nitrogen Load Resulting from Biofuel Mandates

    PubMed Central

    Alshawaf, Mohammad; Douglas, Ellen; Ricciardi, Karen

    2016-01-01

    The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia. PMID:27171101

  17. Estimating Nitrogen Load Resulting from Biofuel Mandates.

    PubMed

    Alshawaf, Mohammad; Douglas, Ellen; Ricciardi, Karen

    2016-05-09

    The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia.

  18. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    USDA-ARS?s Scientific Manuscript database

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  19. Solar energy conversion in a photoelectrochemical biofuel cell.

    PubMed

    Hambourger, Michael; Kodis, Gerdenis; Vaughn, Michael D; Moore, Gary F; Gust, Devens; Moore, Ana L; Moore, Thomas A

    2009-12-07

    A photoelectrochemical biofuel cell has been developed which incorporates aspects of both an enzymatic biofuel cell and a dye-sensitized solar cell. Photon absorption at a porphyrin-sensitized n-type semiconductor electrode gives rise to a charge-separated state. Electrons and holes are shuttled to appropriate cathodic and anodic catalysts, respectively, allowing the production of electricity, or a reduced fuel, via the photochemical oxidation of a biomass-derived substrate. The operation of this device is reviewed. The use of alternate anodic redox mediators provides insight regarding loss mechanisms in the device. Design strategies for enhanced performance are discussed.

  20. Utilization of Variable Consumption Biofuel in Diesel Engine

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. The advantages of vegetables origin fuels using as engine fuels are shown. Diesel engine operation on mixtures of petroleum diesel and rapeseed oil is researched. A fuel delivery system of mixture biofuel with a control system of the fuel compound is considered. The results of the system experimental researches of fuel delivery of mixture biofuel are led.

  1. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...

  2. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...

  3. Quantifying the economic competitiveness of cellulosic biofuel pathways under uncertainty and regional sensitivity

    NASA Astrophysics Data System (ADS)

    Brown, Tristan R.

    The revised Renewable Fuel Standard requires the annual blending of 16 billion gallons of cellulosic biofuel by 2022 from zero gallons in 2009. The necessary capacity investments have been underwhelming to date, however, and little is known about the likely composition of the future cellulosic biofuel industry as a result. This dissertation develops a framework for identifying and analyzing the industry's likely future composition while also providing a possible explanation for why investment in cellulosic biofuels capacity has been low to date. The results of this dissertation indicate that few cellulosic biofuel pathways will be economically competitive with petroleum on an unsubsidized basis. Of five cellulosic biofuel pathways considered under 20-year price forecasts with volatility, only two achieve positive mean 20-year net present value (NPV) probabilities. Furthermore, recent exploitation of U.S. shale gas reserves and the subsequent fall in U.S. natural gas prices have negatively impacted the economic competitiveness of all but two of the cellulosic biofuel pathways considered; only two of the five pathways achieve substantially higher 20-year NPVs under a post-shale gas economic scenario relative to a pre-shale gas scenario. The economic competitiveness of cellulosic biofuel pathways with petroleum is reduced further when considered under price uncertainty in combination with realistic financial assumptions. This dissertation calculates pathway-specific costs of capital for five cellulosic biofuel pathway scenarios. The analysis finds that the large majority of the scenarios incur costs of capital that are substantially higher than those commonly assumed in the literature. Employment of these costs of capital in a comparative TEA greatly reduces the mean 20-year NPVs for each pathway while increasing their 10-year probabilities of default to above 80% for all five scenarios. Finally, this dissertation quantifies the economic competitiveness of six

  4. Biofuels for transportation : a climate perspective

    DOT National Transportation Integrated Search

    2008-06-01

    As the United States seeks to reduce greenhouse gas (GHG) emissions from motor vehicles and to lessen its dependence on imported oil, biofuels are gaining increasing attention as one possible solution. This paper offers an introduction to the current...

  5. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    NASA Astrophysics Data System (ADS)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  6. National Biofuels Action Plan

    DTIC Science & Technology

    2008-10-01

    edge biofuel production processes . In early 2007 President Bush announced the “Twenty-in-Ten” initiative, a plan to reduce gasoline consumption by 20...Feedstock Logistics consists of harvesting or collecting feedstock from the area of production , processing it for use in biorefi neries, storing it... production targets are too costly to compete effectively in the marketplace. Because the pace of technological breakthroughs required to lower costs is

  7. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    PubMed

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  8. Stephen Jay Gould and the Value of Neutrality of Science During the Cold War.

    PubMed

    Sheldon, Myrna

    2016-12-01

    Stephen Jay Gould was a paleontologist and scientific celebrity at the close of the twentieth century, most famous for his popular writings on evolution and his role in the American creationist controversies of that era. In the early 1980s, Gould was drawn into the "nuclear winter" episode through his friendship with Carl Sagan, an astronomer and popular science celebrity. Sagan helped develop the theory of nuclear winter and subsequently used the theory as evidence to petition the United States government to scale back its nuclear armament. The theory of nuclear winter claimed that even a small nuclear exchange could result in a atmospheric blackening akin to the extinction event of the late Cretaceous. Gould was not a climate scientist but he testified before the U.S. House of Representatives as an expert on historical extinction events. Gould's insistence on the value-neutrality of nuclear winter reveals much about the moral politics of science in late Cold War America. Coming at the heels of leftist scientific activism of the 1980s, the nuclear winter episode demonstrates how value-neutrality emerged the salient feature of scientific involvement in American politics in this period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-12-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm2) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm2) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm2, was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature.

  10. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization

    DOE PAGES

    Meadows, Corey W.; Kang, Aram; Lee, Taek S.

    2017-07-21

    Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, we discuss recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms. In addition,more » we discuss successful commercialization ventures for each class of biofuel targets.« less

  11. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, Corey W.; Kang, Aram; Lee, Taek S.

    Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, we discuss recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms. In addition,more » we discuss successful commercialization ventures for each class of biofuel targets.« less

  12. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  13. Biofuels Potential for Transportation Fuels in Vietnam: A Status Quo and SWOT Analysis

    NASA Astrophysics Data System (ADS)

    Trinh, Tu Anh; Phuong Linh Le, Thi

    2018-04-01

    Petroleum consumption for road transportation is well-known as the largest source of CO2 emissions. Worldwide, biofuel is becoming more attractive as substitute for crude oil owing to the increasing demand for environmentally friendly energy and its contribution towards petro dependency reduction and climate change mitigation. This paper reviews the facts and prospects of biofuel production in Vietnam. A SWOT model is adopted to study the strengths, weaknesses, opportunities and threats of biofuels production. The conclusion is drawn that with advantages of weather conditions, soil conditions, the availability of biomass and commitment from government, the country has potential to develop biobuels for domestic consumption. However, threats to production are posed by social acceptance, land use, and technology. Thus, biofuels production still need more supports from government through robust policies, regulations, and institutional framework.

  14. Haplosporidium nelsoni (MSX) in Japanese scallops Patinopecten yessoensis (Jay, 1857) from Dalian along the northern coast of the Yellow Sea, China.

    PubMed

    Wang, Zhongwei; Lu, Xin; Liang, Yubo

    2012-04-01

    The protozoan parasite Haplosporidium nelsoni (MSX) was identified in Japanese scallops Patinopecten yessoensis (Jay, 1857) from Dalian along the northern coast of the Yellow Sea, China by histopathologic examination, polymerase chain reaction (PCR) amplification, and in situ hybridization (ISH) assay. H. nelsoni plasmodia-like structures were identified in the digestive glands of scallops by histologic examination, but no parasite spores were observed. PCR using the Hap-F2, R2 primer pair produced a sequence with 100% homology with the corresponding small subunit rDNA region of H. nelsoni. An ISH assay using the oligonucleotide probe MSX1347 produced a positive reaction with the Japanese scallop parasite. This is the first report of H. nelsoni in P. yessoensis in China.

  15. Designing Sustainable Supply Chains for Biofuels

    EPA Science Inventory

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  16. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    PubMed

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  17. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  18. Quality of Rapeseed Bio-Fuel Waste: Optical Properties

    NASA Astrophysics Data System (ADS)

    Sujak, Agnieszka; Muszyñski, Siemowit; Kachel-Jakubowska, Magdalena

    2014-04-01

    The objective of the presented work was to examine the optical properties of selected bio-fuel waste. Three independent optical methods: UV-Vis spectroscopy, infrared spectroscopy and chromametric measurements were applied to establish the possible quality control test for the obtained substances. The following by-products were tested: distilled glycerine, technical glycerine and matter organic non glycerine fraction from rapeseed oil bio-fuel production. The results show that analysis of UV-Vis spectra can give rapid information about the purity of distilled glycerine, while no direct information can be obtained concerning the concentration and kind of impurities. Transmission mode is more useful as compared to absorption, concerning the detection abilities of average UV-Vis spectrometers. Infrared spectroscopy can be used as a complementary method for determining impurities/admixtures in samples. Measurements of chroma give the quickest data to compare the colour of biofuel by-products obtained by different producers. The condition is, however, that the products are received through the same or similar chemical processes. The other important factor is application of well defined measuring background. All the discussed analyses are quick, cheap and non-destructive, and can help to compare the quality of products.

  19. Visible light mediated upgrading of biomass to biofuel

    EPA Pesticide Factsheets

    AgPd@g-C3N4, comprising heterogenized Ag and Pdnanoparticles on graphitic carbon nitride, g-C3N4, has beensynthesized and used for the upgrading of biofuel as exemplifiedby the hydrodeoxygenation of lignin-derived vanillin underphotochemical conditions using formic acid. The bimetallicframework is found to be highly active due to the synergisticeffects of Ag and Pd with the graphitic carbon nitride support andtheir mutual interaction.This dataset is associated with the following publication:Varma , R., M. Nadagouda , S. Verma, and R.B. Nasir Baig. Visible light mediated upgrading of biomass to biofuel. Energy & Environmental Science. RSC Publishing, Cambridge, UK, 18(5): 1327-1333, (2016).

  20. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review.

    PubMed

    Chia, Shir Reen; Chew, Kit Wayne; Show, Pau Loke; Yap, Yee Jiun; Ong, Hwai Chyuan; Ling, Tau Chuan; Chang, Jo-Shu

    2018-06-01

    Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO 2 , NO x , SO x , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assumptions in the European Union biofuels policy: frictions with experiences in Germany, Brazil and Mozambique.

    PubMed

    Franco, Jennifer; Levidow, Les; Fig, David; Goldfarb, Lucia; Hönicke, Mireille; Mendonça, Maria Luisa

    2010-01-01

    The biofuel project is an agro-industrial development and politically contested policy process where governments increasingly become global actors. European Union (EU) biofuels policy rests upon arguments about societal benefits of three main kinds - namely, environmental protection (especially greenhouse gas savings), energy security and rural development, especially in the global South. Each argument involves optimistic assumptions about what the putative benefits mean and how they can be fulfilled. After examining those assumptions, we compare them with experiences in three countries - Germany, Brazil and Mozambique - which have various links to each other and to the EU through biofuels. In those case studies, there are fundamental contradictions between EU policy assumptions and practices in the real world, involving frictional encounters among biofuel promoters as well as with people adversely affected. Such contradictions may intensify with the future rise of biofuels and so warrant systematic attention.

  2. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    PubMed

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.

    PubMed

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe

    2015-06-01

    The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry.

    PubMed

    Yazdani, Syed Shams; Gonzalez, Ramon

    2007-06-01

    Although biofuels such as biodiesel and bioethanol represent a secure, renewable and environmentally safe alternative to fossil fuels, their economic viability is a major concern. The implementation of biorefineries that co-produce higher value products along with biofuels has been proposed as a solution to this problem. The biorefinery model would be especially advantageous if the conversion of byproducts or waste streams generated during biofuel production were considered. Glycerol-rich streams generated in large amounts by the biofuels industry, especially during the production of biodiesel, present an excellent opportunity to establish biorefineries. Once considered a valuable 'co-product', crude glycerol is rapidly becoming a 'waste product' with a disposal cost attributed to it. Given the highly reduced nature of carbon in glycerol and the cost advantage of anaerobic processes, fermentative metabolism of glycerol is of special interest. This review covers the anaerobic fermentation of glycerol in microbes and the harnessing of this metabolic process to convert abundant and low-priced glycerol streams into higher value products, thus creating a path to viability for the biofuels industry. Special attention is given to products whose synthesis from glycerol would be advantageous when compared with their production from common sugars.

  5. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  6. Climate regulation enhances the value of second generation biofuel technology

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  7. Energy Policy and Environmental Possibilities: Biofuels and Key Protagonists of Ecological Change

    ERIC Educational Resources Information Center

    Holleman, Hannah

    2012-01-01

    While a growing body of research indicates the severe ecological and social costs of biofuel production worldwide, the U.S. government continues to promote the expansion of this fuel sector. Recent congressional testimony regarding the promotion of biofuels via the renewable fuel standard (RFS) offers a strategic research site for sociological…

  8. The Fall of Oil Prices and the Effects on Biofuels.

    PubMed

    Reboredo, Fernando H; Lidon, Fernando; Pessoa, Fernanda; Ramalho, José C

    2016-01-01

    This analysis is focused on the effect of the abrupt decline of oil prices on biofuels, particularly second-generation ethanol. The efforts to decrease the production costs of biofuels, especially cellulosic ethanol (CE), will be greatly threatened if current oil prices remain low, especially since production is not slowing. Only huge state subsidies could alleviate this threat, but the challenge is to persuade citizens that this sacrifice is worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    PubMed

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  10. [Localization of 17 beta-hydroxysteroid dehydrogenase in the gonads of bivalve mollusks--the sea pecten (Patinopecten yessoensis Jay) and Gray's mussel (Crenomytilus grayanus Dunker)].

    PubMed

    Varaksina, G S; Varaksin, A A

    1988-11-01

    Presence of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) in testes and ovaries of the common mussels--Patinopecten yessoensis (Jay) and Crenomytilus grayanus (Dunker) has been demonstrated histochemically. The enzyme is revealed in some granular amebocytes and germ cells. In growing oocytes its activity is higher that in oocytes completed their growth. 17 beta-HSD is revealed electron microscopically near agranular endoplasmic reticulum, or on the external surface of its membranes and in globules, possessing, evidently, lipid nature. The data obtained demonstrate that synthesis and metabolism of steroid hormones are possible both in additional gonadal elements and in germ cells of the animals investigated.

  11. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.

    PubMed

    MacVittie, Kevin; Conlon, Tyler; Katz, Evgeny

    2015-12-01

    A biofuel cell composed of catalytic electrodes made of "buckypaper" modified with PQQ-dependent glucose dehydrogenase and FAD-dependent fructose dehydrogenase on the anode and with laccase on the cathode was used to activate a wireless information transmission system. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as ca. 0.6 V, ca. 0.33 mA·cm(-2) and 670 μW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for the activation of electronic devices. The study emphasizes the biosensor and environmental monitoring applications of implantable biofuel cells harvesting power from natural sources, rather than their biomedical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Energy Security Role of Biofuels in Evolving Liquid Fuel Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Maxwell; Uria-Martinez, Rocio; Leiby, Paul N.

    We explore the role of biofuels in mitigating the negative impacts of oil supply shocks on fuel markets under a range of oil price trajectories and biofuel blending mandate levels. Using a partial equilibrium model of US biofuels production and petroleum fuels trade, we discuss the adjustments in light-duty vehicle fuel mix, fuel prices, and renewable identification number (RIN) prices following each shock as well as the distribution of shock costs across market participants. Ethanol is used as both a complement (blend component in E10) and a substitute (in E15 and E85 blends) to gasoline. Results show that, during oilmore » supply shocks, the role of ethanol as a substitute dominates and allows some mitigation of the shock. As US petroleum imports decrease with growing US oil production, the net economic welfare effect of sudden oil price changes and the energy security role of biofuels becomes less clear than it has been in the past. Although fuel consumers lose when oil price increases due to an external shock, domestic fuel producers gain. In some cases, depending on import share and supply and demand elasticities, we show that the gain to producers could more than offset consumer losses. However, in most cases evaluated here, sudden oil-price increases remain costly.« less

  13. Henry Knowles Beecher, Jay Katz, and the Transformation of Research with Human Beings.

    PubMed

    Capron, Alexander Morgan

    2016-01-01

    The modern history of experimentation with human beings is notable for its ethical lacunae, when even the clearest directives fail to prevent violations of subjects' rights and welfare. One such lacuna occurred during the 25 years between 1947, when the Nuremberg Code was articulated in the judgment passed on the men who had performed medical experiments in the Nazi concentration camps, and 1972, when the revelation of the 40-year-long Tuskegee Syphilis Study shocked the public and pushed Congress to adopt legislation that eventually transformed the governance of human subjects research. The work that Henry Beecher and Jay Katz did on the ethics of human experimentation beginning in 1964-which was mutually supportive but also divergent in its premises and prescriptions-played a prominent role in the policy-making processes. Beecher, whose detailed disclosure of the ethical lapses of leading researchers in his renowned 1966 New England Journal of Medicine article initiated the policy reform process, proved less influential in shaping those reforms than Katz. Ultimately, Beecher was one of the last and best exemplars of "medical ethics," while Katz-in his service on the Tuskegee Syphilis Study Ad Hoc Advisory Panel and in his testimony before, and work with, the Senate Health subcommittee-was an early practitioner of bioethics, a field in which the rules are not all written and applied by the medical profession but arise through a messier process involving outsiders and formal regulatory decisions.

  14. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  15. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of cropmore » production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.« less

  16. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases

    NASA Astrophysics Data System (ADS)

    Nazaruk, Ewa; Smoliński, Sławomir; Swatko-Ossor, Marta; Ginalska, Grażyna; Fiedurek, Jan; Rogalski, Jerzy; Bilewicz, Renata

    Two glassy carbon electrodes modified with enzymes embedded in lyotropic liquid-crystalline cubic phase were used for the biofuel cell construction. The monoolein liquid-crystalline film allowed to avoid separators in the biofuel cell. Glucose and oxygen as fuels, and glucose oxidase and laccase as anode and cathode biocatalysts, respectively were used. The biofuel cell parameters were examined in McIlvaine buffer, pH 7 solution containing 15 mM of glucose and saturated with dioxygen. A series of mediators were tested taking into account their formal potentials, stability in the cubic phase and efficiency of mediation. Most stable was the biofuel cell based on tetrathiafulvalene (TTF) and 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as anode and cathode mediators, respectively. The open-circuit voltage was equal to 450 ± 40 mV. The power densities and current densities were measured for all the systems studied.

  17. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    PubMed

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Algal biodiesel economy and competition among bio-fuels.

    PubMed

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    PubMed

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism.

  20. Biofuels incentives : a summary of federal programs

    DOT National Transportation Integrated Search

    2007-01-03

    With recent high energy prices and the passage of major energy legislation in : 2005 (P.L. 109-58), there is ongoing congressional interest in promoting alternatives : to petroleum fuels. Biofuels transportation fuels produced from plants and oth...

  1. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process controlmore » Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.« less

  2. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    PubMed

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  3. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  4. 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, Amy; Warner, Ethan; Lewis, John

    In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) conducted its first annual survey update of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey, describes the survey methodology, and documents important changes since the 2013 survey.

  5. Future of Liquid Biofuels for APEC Economies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  6. The Development of Caching and Object Permanence in Western Scrub-Jays (Aphelocoma californica): Which Emerges First?

    PubMed Central

    Salwiczek, Lucie H.; Schlinger, Barney; Emery, Nathan J.; Clayton, Nicola S.

    2010-01-01

    Recent studies on the food-caching behavior of corvids have revealed complex physical and social skills, yet little is known about the ontogeny of food caching in relation to the development of cognitive capacities. Piagetian object permanence is the understanding that objects continue to exist even when they are no longer visible. Here, the authors focus on Piagetian Stages 3 and 4, because they are hallmarks in the cognitive development of both young children and animals. Our aim is to determine in a food-caching corvid, the Western scrub-jay, whether (1) Piagetian Stage 4 competence and tentative caching (i.e., hiding an item invisibly and retrieving it without delay), emerge concomitantly or consecutively; (2) whether experiencing the reappearance of hidden objects enhances the timing of the appearance of object permanence; and (3) discuss how the development of object permanence is related to behavioral development and sensorimotor intelligence. Our findings suggest that object permanence Stage 4 emerges before tentative caching, and independent of environmental influences, but that once the birds have developed simple object-permanence, then social learning might advance the interval after which tentative caching commences. PMID:19685971

  7. The development of caching and object permanence in Western scrub-jays (Aphelocoma californica): which emerges first?

    PubMed

    Salwiczek, Lucie H; Emery, Nathan J; Schlinger, Barney; Clayton, Nicola S

    2009-08-01

    Recent studies on the food-caching behavior of corvids have revealed complex physical and social skills, yet little is known about the ontogeny of food caching in relation to the development of cognitive capacities. Piagetian object permanence is the understanding that objects continue to exist even when they are no longer visible. Here, the authors focus on Piagetian Stages 3 and 4, because they are hallmarks in the cognitive development of both young children and animals. Our aim is to determine in a food-caching corvid, the Western scrub-jay, whether (1) Piagetian Stage 4 competence and tentative caching (i.e., hiding an item invisibly and retrieving it without delay), emerge concomitantly or consecutively; (2) whether experiencing the reappearance of hidden objects enhances the timing of the appearance of object permanence; and (3) discuss how the development of object permanence is related to behavioral development and sensorimotor intelligence. Our findings suggest that object permanence Stage 4 emerges before tentative caching, and independent of environmental influences, but that once the birds have developed simple object-permanence, then social learning might advance the interval after which tentative caching commences. Copyright 2009 APA, all rights reserved.

  8. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives.

    PubMed

    Sarsekeyeva, Fariza; Zayadan, Bolatkhan K; Usserbaeva, Aizhan; Bedbenov, Vladimir S; Sinetova, Maria A; Los, Dmitry A

    2015-08-01

    Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.

  9. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    PubMed

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 77 FR 76160 - New Generation Biofuels Holdings, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] New Generation Biofuels Holdings, Inc.; Order of Suspension of Trading December 21, 2012. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information concerning the securities of New Generation Biofuels...

  11. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    PubMed

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels

    PubMed Central

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-01-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group. PMID:26664147

  13. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  15. Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Julie G.; Manke, Kristin L.

    When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities,more » particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.« less

  16. Energy Security Requires Diversity: An Argument for The Defense Production Act Title III Biofuel Initiative

    DTIC Science & Technology

    2013-06-19

    restriction. At that time, Congress also amended the “Declaration of Policy” to include renewable energy sources “ biomass ” and “more efficient energy...minimum mandates for advanced biofuels are one billion gallons for biomass -based diesel, 16 billion gallons for cellulosic fuels, and four billion...biofuels-and- the-u-s-military-has-it-wrong/ 162 BARTIS, supra note 159. 163 United to Purchase Biofuels from AltAir Fuels, BIOMASS MAGAZINE (July 1

  17. From the Cover: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    NASA Astrophysics Data System (ADS)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel

  18. Selection and Characterization of Biofuel-Producing Environmental Bacteria Isolated from Vegetable Oil-Rich Wastes

    PubMed Central

    Escobar-Niño, Almudena; Luna, Carlos; Luna, Diego; Marcos, Ana T.; Cánovas, David; Mellado, Encarnación

    2014-01-01

    Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale. PMID:25099150

  19. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivares, Jose A.; Baxter, Ivan; Brown, Judith

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  20. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways

    DOE PAGES

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; ...

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the constructionmore » of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. In conclusion, our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture

  1. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the constructionmore » of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. In conclusion, our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  3. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    PubMed

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  5. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2016-11-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  6. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  7. Biofuel from biomass via photo-electrochemical reactions: An overview

    NASA Astrophysics Data System (ADS)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  8. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  9. Biofuel cell anode: NAD +/glucose dehydrogenase-coimmobilized ketjenblack electrode

    NASA Astrophysics Data System (ADS)

    Miyake, T.; Oike, M.; Yoshino, S.; Yatagawa, Y.; Haneda, K.; Kaji, H.; Nishizawa, M.

    2009-09-01

    We have studied the coimmobilization of glucose dehydrogenase (GDH) and its cofactor, oxidized nicotinamide adenine dinucleotide (NAD +), on a ketjenblack (KB) electrode as a step toward a biofuel cell anode that works without mediators. A KB electrode was first treated with a sulfuric acid/nitric acid/water mixture to lower the overvoltage for NADH oxidation, and was next chemically modified with NAD + and GDH. The improved GDH/NAD +/KB electrode is found to oxidize glucose around 0 V vs. Ag/AgCl. A biofuel cell constructed with a bilirubin oxidase-immobilized KB cathode showed a maximum power density of 52 μW/cm 2 at 0.3 V.

  10. Environmental impacts of biofuel production and use

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...

  11. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  12. Biofuels and Food Security. A report by the High Level Panel of Experts on Food Security and Nutrition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In October 2011, the UN Committee on World Food Security (CFS) recommended a ''review of biofuels policies -- where applicable and if necessary -- according to balanced science-based assessments of the opportunities and challenges that they may represent for food security so that biofuels can be produced where it is socially, economically and environmentally feasible to do so''. In line with this, the CFS requested the HLPE (High Level Panel of Experts) to ''conduct a science-based comparative literature analysis taking into consideration the work produced by the FAO and Global Bioenergy Partnership (GBEP) of the positive and negative effects ofmore » biofuels on food security''. Recommendations from the report include the following. Food security policies and biofuel policies cannot be separated because they mutually interact. Food security and the right to food should be priority concerns in the design of any biofuel policy. Governments should adopt the principle: biofuels shall not compromise food security and therefore should be managed so that food access or the resources necessary for the production of food, principally land, biodiversity, water and labour are not put at risk. The CFS should undertake action to ensure that this principle is operable in the very varied contexts in which all countries find themselves. Given the trend to the emergence of a global biofuels market, and a context moving from policy-driven to market-driven biofuels, there is an urgent need for close and pro-active coordination of food security, biofuel/bioenergy policies and energy policies, at national and international levels, as well as rapid response mechanisms in case of crisis. There is also an urgent need to create an enabling, responsible climate for food and non-food investments compatible with food security. The HLPE recommends that governments adopt a coordinated food security and energy security strategy, which would require articulation around the following five axes

  13. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    PubMed Central

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  14. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    NASA Astrophysics Data System (ADS)

    Habib, Gazala; Venkataraman, Chandra; Shrivastava, Manish; Banerjee, Rangan; Stehr, J. W.; Dickerson, Russell R.

    2004-09-01

    The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy surveys, prompted the current work, which develops a new methodology for estimating biofuel consumption for cooking. This is based on food consumption statistics, and the specific energy for food cooking. Estimated biofuel consumption in India was 379 (247-584) Tg yr-1. New information on the user population of different biofuels was compiled at a state level, to derive the biofuel mix, which varied regionally and was 74:16:10%, respectively, of fuelwood, dung cake and crop waste, at a national level. Importantly, the uncertainty in biofuel use from quantitative error assessment using the new methodology is around 50%, giving a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65-760) Gg yr-1. The largest BC emissions were from fuelwood (75%), with lower contributions from dung cake (16%) and crop waste (9%). The uncertainty of 245% in the BC emissions estimate is now governed by the large spread in BC emission factors from biofuel combustion (122%), implying the need for reducing this uncertainty through measurements. Emission factors of SO2 from combustion of biofuels widely used in India were measured, and ranged 0.03-0.08 g kg-1 from combustion of two wood species, 0.05-0.20 g kg-1 from 10 crop waste types, and 0.88 g kg-1 from dung cake, significantly lower than currently used emission factors for wood and crop waste. Estimated SO2 emissions from biofuels of 75 (36-160) Gg yr-1 were about a factor of 3 lower than that in recent studies, with a large contribution from dung cake (73%), followed by fuelwood (21%) and crop waste (6%).

  15. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy

    PubMed Central

    Khanna, Madhu; Crago, Christine L.; Black, Mairi

    2011-01-01

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC. PMID:22482030

  16. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy.

    PubMed

    Khanna, Madhu; Crago, Christine L; Black, Mairi

    2011-04-06

    Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a 'carbon debt' with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC.

  17. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Curtis D.; Zhang, Xuesong; Reddy, Ashwan D.

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expectedmore » from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential

  18. 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Ethan; Schwab, Amy; Bacovsky, Dina

    In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) updated its annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey update, describes the survey methodology, and documents important changes since the 2015 survey published at the end of 2015 (Schwab et al. 2015).

  19. Water resources under future scenarios of climate change and biofuel development: A case study for Yakima River basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.

    2013-12-01

    In recent years, biofuel has become an important renewable energy source with a potential to help mitigate climate change. However, agriculture productivity and its potential use for sustainable production of biofuel are strongly dependent on climate and water conditions that may change in response to future changes in climate and/or socio-economic conditions. For instant in 2012, the US has experienced the most severe drought that results in a 12% decrease in corn production - the main feedstock used for biofuel in US - indicating the vulnerability of biofuel development and policies to change in climate and associated extreme weather conditions. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have applied a SWAT watershed model which integrates future scenarios of climate change and biofuel development and simulates the associated impacts on watershed hydrology, water quality, soil erosion, and agriculture productivity. The study is applied to the Yakima River basin (YRB), which has higher biomass resources in Washington State and represents a region where forestry and agriculture intersect with considerable water shortage as well as spatial variations in annual precipitation. Unlike earlier studies, which commonly define biofuel and climate change scenarios independently, in this study the decision on alternative biofuel feedstock mixes and associated change in land use and management take into account the anticipated climate change. The resulted spatial and temporal distributions of water budget, nutrient loads, and sediment erosion is analyzed to evaluate the effectiveness of biofuel policies under constraints of climate change and water resources in the region.

  20. Biofuels: What Are They and How Can They Improve Practical Work and Discussions?

    ERIC Educational Resources Information Center

    MacLean, Tristan

    2014-01-01

    This article looks at the potential of bioenergy as a replacement for fossil fuels, the cutting-edge research being undertaken by scientists, and classroom resources available for teaching this topic. There is currently a large programme of scientific research aiming to develop advanced biofuels (replenishable liquid biofuels from non-food plants,…

  1. Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell

    NASA Astrophysics Data System (ADS)

    Chung, Minsoo; Nguyen, Tuan Loi; Tran, Thao Quynh Ngan; Yoon, Hyon Hee; Kim, Il Tae; Kim, Moon Il

    2018-01-01

    We have developed a mediatorless glucose biofuel cell based on hybrid nanoflowers incorporating enzymes including glucose oxidase (GOx), laccase, or catalase with copper phosphate, which were further mixed and compressed with conductive multi-walled carbon nanotube (CNT). The nanoflowers were simply synthesized within 5 min at room temperature using sonication method but yielded greatly improved stability as well as highly retained activity by the proper incorporation of enzyme molecules inside the flower-like structure. With glucose as biofuel, GOx and laccase nanoflowers were applied to form enzyme anode and cathode, respectively, and catalase nanoflowers were additionally employed to catalyze the decomposition of hydrogen peroxide, which may be deleterious for GOx, into oxygen and water. Using the enzyme nanoflowers-based biofuel cell system without any involved mediator, a high power density up to 200 μW cm-2 were obtained, which was approximately 80% to that from the biofuel cell system prepared with the corresponding free enzymes. Importantly, the enzyme nanoflowers-based biofuel cell maintained their initial power density over 90% during storage for two months at 4 °C, while most of the glucose biofuel cells in the literature present meaningful stability only in the range of one or two weeks. Based on this result, we expect that this simple but efficient strategy to prepare highly stable glucose biofuel cell using the rapidly-synthesized enzyme-inorganic hybrid nanoflowers can be readily extended to diverse applications in medical and environmental chemistry.

  2. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.

    PubMed

    Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D

    2017-06-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative cardiopulmonary toxicity of soy biofuel and diesel exhaust in healthy and hypertensive rats

    EPA Science Inventory

    Increased use of renewable energy sources raise concerns about health effects of emissions from such sources. We conducted a comprehensive analysis of relative cardiopulmonary health effects of exhausts from 1) 100% soy biofuel (B100), 2) 20% soy biofuel + 80% low sulfur petroleu...

  4. RADIOCARBON SOURCE APPORTIONMENT IN A BIOFUELS ERA

    EPA Science Inventory

    Biofuels (gasohol and biodiesel) introduce radiocarbon into the U.S. mobile source fuel supply where it was previously absent. Initial measurements of radiocarbon in the PM2.5 combustion emissions from engines using gasohol indicate that this may have less effect on r...

  5. Biofuels-Strengthening links between agriculture and military

    USDA-ARS?s Scientific Manuscript database

    U.S. agricultural producers and military planners share a strong commitment to the commercial-scale development of ready-to-use biofuels that can be sustainably produced using plant-based materials harvested from farms, forests, and other rural lands. Researchers in private business, government, and...

  6. Sustainability Research: Biofuels, Processes and Supply Chains

    EPA Science Inventory

    Presentation will talk about sustainability at the EPA, summarily covering high level efforts and focusing in more detail on research in metrics for liquid biofuels and tools to evaluate sustainable processes. The presentation will also briefly touch on a new area of research, t...

  7. Characterizing Emissions from the Combustion of Biofuels

    EPA Science Inventory

    Emissions from two biofuels, a soy-based biodiesel and an animal-based biodiesel, were measured and compared to emissions from a distillate petroleum fuel oil. The three fuels were burned in a small fire tube boiler designed for use in institutional, commercial, and light industr...

  8. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Chlamydomonas as a model for biofuels and bio-products production

    PubMed Central

    Scranton, Melissa A.; Ostrand, Joseph T.; Fields, Francis J.; Mayfield, Stephen P.

    2017-01-01

    SUMMARY Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii’s long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. PMID:25641390

  10. Effects of Deployment Investment on the Growth of the Biofuels Industry. 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, Laura J.; Warner, Ethan S.; Stright, Dana

    This report updates the 2013 report of the same title. Some text originally published in that report is retained and indicated in gray. In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstrationmore » and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model--a system dynamics model of the biomass to biofuels system--that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. Results from the 2013 report are compared to new results. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations

  11. Polypyrrole RVC biofuel cells for powering medical implants.

    PubMed

    Roxby, Daniel N; Ting, S R Simon; Nguyen, Hung T

    2017-07-01

    Batteries for implanted medical devices such as pacemakers typically require surgical replacement every 5 to 10 years causing stress to the patient and their families. A Biofuel cell uses two electrodes with enzymes embedded to convert sugar into electricity. To evaluate the power producing capabilities of biofuel cells to replace battery technology, polypyrrole electrodes were fabricated by compression with Glucose oxidase and Laccase. Vitreous carbon was added to increase the conductivity, whilst glutaraldehyde acted as a crosslinking molecule. A maximum open circuit potential of 558.7 mV, short circuit current of 1.09 mA and maximum power of 0.127 mW was obtained from the fuel cells. This was able to turn on a medical thermometer through a TI BQ25504 energy harvesting circuit, hence showing the powering potential for biomedical devices.

  12. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.

    PubMed

    Mewalal, Ritesh; Rai, Durgesh K; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F; Tuskan, Gerald A

    2017-03-01

    Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Locomotive biofuel study : preliminary study on the use and the effects of biodiesel in locomotives.

    DOT National Transportation Integrated Search

    2014-05-01

    Section 404 of the Passenger Rail Investment and Improvement Act (PRIIA), 2008, mandated that the Federal Railroad : Administration (FRA) undertake a Locomotive Biofuel Study to investigate the feasibility of using biofuel blends as locomotive : engi...

  14. Evaluating Oilseed Biofuel Production Feasibility in California’s San Joaquin Valley Using Geophysical and Remote Sensing Techniques

    PubMed Central

    Corwin, Dennis L.; Yemoto, Kevin; Clary, Wes; Banuelos, Gary; Skaggs, Todd H.; Lesch, Scott M.

    2017-01-01

    Though more costly than petroleum-based fuels and a minor component of overall military fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost occurs when grown on marginally productive saline-sodic soils plentiful in California’s San Joaquin Valley (SJV). The objective is to evaluate the feasibility of oilseed production on marginal soils in the SJV to support a 115 ML yr−1 biofuel conversion facility. The feasibility evaluation involves: (1) development of an Ida Gold mustard oilseed yield model for marginal soils; (2) identification of marginally productive soils; (3) development of a spatial database of edaphic factors influencing oilseed yield and (4) performance of Monte Carlo simulations showing potential biofuel production on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity, leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285), where Q is biofuel production in ML yr−1. The shifted gamma cumulative density function indicates a 0.15–0.17 probability of meeting the target biofuel-production level of 115 ML yr−1, making adequate biofuel production unlikely. PMID:29036925

  15. The market and environmental effects of alternative biofuel policies

    NASA Astrophysics Data System (ADS)

    Drabik, Dusan

    This dissertation analyzes market and environmental effects of alternative U.S. and Brazilian biofuel policies. Although we focus on corn- and sugarcane-ethanol, the advanced analytical framework can easily be extended to other biofuels and biofuel feedstocks, such as biodiesel and soybean. The dissertation consists of three chapters. The first chapter develops an analytical framework to assess the market effects of a set of biofuel policies (including subsidies to feedstocks). U.S. corn-ethanol policies are used as an example to study the effects of biofuel policies on corn prices. We determine the 'no policy' ethanol price, analyze the implications for the 'no policy' corn price and resulting 'water' in the ethanol price premium due to the policy, and generalize the surprising interaction effects between mandates and tax credits to include ethanol and corn production subsidies. The effect of an ethanol price premium depends on the value of the ethanol co-product, the value of production subsidies, and how the world ethanol price is determined. U.S. corn-ethanol policies are shown to be a major reason for recent rises in corn prices. The ethanol policy-induced increase in corn prices is estimated to be 33 -- 46.5 percent in the period 2008 -- 2011. The second chapter seeks to answer the question of what caused the significant increase in ethanol, sugar, and sugarcane prices in Brazil in the period 2010/11 to 2011/12. We develop a general economic model of the Brazilian fuel-ethanol-sugar complex. Unlike biofuel mandates and tax exemptions elsewhere, Brazil's fuel-ethanol-sugar markets and fuel policies are unique in that each policy, in this setting, theoretically has an ambiguous impact on the market price of ethanol and hence on sugarcane and sugar prices. Our empirical analysis shows that there are two policies that seemingly help the ethanol industry but do otherwise in reality: a low gasoline tax and a high anhydrous tax exemption result in lower ethanol

  16. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    PubMed

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exploring new strategies for cellulosic biofuels production

    Treesearch

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  18. Soybean-derived biofuels and home heating fuels.

    PubMed

    Mushrush, George W; Wynne, James H; Willauer, Heather D; Lloyd, Christopher L

    2006-01-01

    It is environmentally enticing to consider replacing or blending petroleum derived heating fuels with biofuels for many reasons. Major considerations include the soaring worldwide price of petroleum products, especially home heating oil, the toxicity of the petroleum-derived fuels and the environmental damage that leaking petroleum tanks afford. For these reasons, it has been suggested that domestic renewable energy sources be considered as replacements, or at the least, as blending stocks for home heating fuels. If recycled soy restaurant cooking oils could be employed for this purpose, this would represent an environmental advantage. Renewable plant sources of energy tend to be less toxic than their petroleum counterparts. This is an important consideration when tank leakage occurs. Home fuel oil storage tanks practically always contain some bottom water. This water environment has a pH value that factors into heating fuel stability. Therefore, the question is: would the biofuel help or exacerbate fuel stability and furnace maintenance issues?

  19. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treese II, J. Van; Hanlon, Edward A.; Amponsah, Nana

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic)more » and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability« less

  20. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010more » for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.« less

  1. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost

  2. Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications.

    PubMed

    Kim, Hyeongseok; Lee, Inseon; Kwon, Yongchai; Kim, Byoung Chan; Ha, Su; Lee, Jung-heon; Kim, Jungbae

    2011-05-15

    Glucose oxidase (GOx) was immobilized into the porous matrix of polyaniline nanofibers in a three-step process, consisting of enzyme adsorption, precipitation, and crosslinking (EAPC). EAPC was highly active and stable when compared to the control samples of enzyme adsorption (EA) and enzyme adsorption and crosslinking (EAC) with no step of enzyme precipitation. The GOx activity of EAPC was 9.6 and 4.2 times higher than those of EA and EAC, respectively. Under rigorous shaking at room temperature for 56 days, the relative activities of EA, EAC and EAPC, defined as the percentage of residual activity to the initial activity, were 22%, 19% and 91%, respectively. When incubated at 50°C under shaking for 4h, EAPC showed a negligible decrease of GOx activity while the relative activities of EA and EAC were 45% and 48%, respectively. To demonstrate the feasible application of EAPC in biofuel cells, the enzyme anodes were prepared and used for home-built air-breathing biofuel cells. The maximum power densities of biofuel cells with EA and EAPC anodes were 57 and 292 μW/cm(2), respectively. After thermal treatment at 60°C for 4h, the maximum power density of EA and EAPC anodes were 32 and 315 μW/cm(2), representing 56% and 108% of initially obtained maximum power densities, respectively. Because the lower power densities and short lifetime of biofuel cells are serious problems against their practical applications, the present results with EAPC anode has opened up a new potential for the realization of practical biofuel cell applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification

    Treesearch

    Mark A. Dietenberger; Mark Anderson

    2007-01-01

    Researchers at the Forest Product Laboratory (FPL) and the University of Wisconsin-Madison (UW) envision a future for biofuels based on biomass gasification with hydrogen enrichment. Synergisms between hydrogen production and biomass gasification technologies will be necessary to avoid being marginalized in the biofuel marketplace. Five feasible engineering solutions...

  4. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways: Economic impacts of biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: 1) cellulosic ethanol via biochemical conversion in Iowa, 2) renewable diesel blendstock via biological conversion in Georgia, and 3) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect, and induced effects, capital investment associated with the construction of a biorefinerymore » processing 2,000 dry metric tons of biomass per day (DMT/day) could yield between 5,960 and 8,470 full-time equivalent (FTE) jobs during the construction period. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized for one million dollars of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter more jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2,000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.« less

  5. Essays on the Economics of Climate Change, Biofuel and Food Prices

    NASA Astrophysics Data System (ADS)

    Seguin, Charles

    Climate change is likely to be the most important global pollution problem that humanity has had to face so far. In this dissertation, I tackle issues directly and indirectly related to climate change, bringing my modest contribution to the body of human creativity trying to deal with climate change. First, I look at the impact of non-convex feedbacks on the optimal climate policy. Second, I try to derive the optimal biofuel policy acknowledging the potential negative impacts that biofuel production might have on food supply. Finally, I test empirically for the presence of loss aversion in food purchases, which might play a role in the consumer response to food price changes brought about by biofuel production. Non-convexities in feedback processes are increasingly found to be important in the climate system. To evaluate their impact on the optimal greenhouse gas (GHG) abate- ment policy, I introduce non-convex feedbacks in a stochastic pollution control model. I numerically calibrate the model to represent the mitigation of greenhouse gas (GHG) emissions contributing to global climate change. This approach makes two contributions to the literature. First, it develops a framework to tackle stochastic non-convex pollu- tion management problems. Second, it applies this framework to the problem of climate change. This approach is in contrast to most of the economic literature on climate change that focuses either on linear feedbacks or environmental thresholds. I find that non-convex feedbacks lead to a decision threshold in the optimal mitigation policy, and I characterize how this threshold depends on feedback parameters and stochasticity. There is great hope that biofuel can help reduce greenhouse gas emissions from fossil fuel. However, there are some concerns that biofuel would increase food prices. In an optimal control model, a co-author and I look at the optimal biofuel production when it competes for land with food production. In addition oil is not

  6. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    PubMed

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  7. 2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, Amy; Geiger, Jesse; Lewis, John

    In order to understand the status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2013, the National Renewable Energy Laboratory (NREL) conducted the first of what is anticipated to be an annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this initial survey and describes the survey methodology. Subsequent surveys will report on the progress over time of the development of these facilities and companies.

  8. Algae-Based Biofuel Distribution System to Service the Department of Defense in Hawaii

    DTIC Science & Technology

    2013-03-01

    reliance on global sources of petroleum fuels by increasing use of alternative fuels. News articles were gathered that contained public statements... markets to reduce shared risks among stakeholders, discussion of scalability potential based on existing biofuels industry capabilities in Hawaii, and...biofuels objective given the growing economies of foreign entities within their operating regions and the highly volatile petroleum market . These

  9. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    EPA Science Inventory

    As crop and non-crop lands are increasingly converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples were obtained from diverse regionally distributed biofuel cropping si...

  10. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    PubMed Central

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. PMID:21318120

  11. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  12. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels

    PubMed Central

    Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  13. Near-zero emissions combustor system for syngas and biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. Inmore » this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused

  14. Environmental indicators of biofuel sustainability : What about context?

    EPA Science Inventory

    Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. These indicators include measures of soil quality, water quality and quantity, greenhouse...

  15. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    USDA-ARS?s Scientific Manuscript database

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  16. 78 FR 75560 - Biofuels Washington LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-506-000] Biofuels Washington LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Biofuels...

  17. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  18. Toward Wearable Energy Storage Devices: Paper-Based Biofuel Cells based on a Screen-Printing Array Structure.

    PubMed

    Shitanda, Isao; Momiyama, Misaki; Watanabe, Naoto; Tanaka, Tomohiro; Tsujimura, Seiya; Hoshi, Yoshinao; Itagaki, Masayuki

    2017-10-01

    A novel paper-based biofuel cell with a series/parallel array structure has been fabricated, in which the cell voltage and output power can easily be adjusted as required by printing. The output of the fabricated 4-series/4-parallel biofuel cell reached 0.97±0.02 mW at 1.4 V, which is the highest output power reported to date for a paper-based biofuel cell. This work contributes to the development of flexible, wearable energy storage device.

  19. New membranes could speed the biofuels conversion process and reduce cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael

    2014-07-23

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  20. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema

    Hu, Michael

    2018-01-26

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  1. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.

    PubMed

    Phulara, Suresh Chandra; Chaturvedi, Preeti; Gupta, Pratima

    2016-10-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Chlamydomonas as a model for biofuels and bio-products production.

    PubMed

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes

    PubMed Central

    Phulara, Suresh Chandra; Chaturvedi, Preeti

    2016-01-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. PMID:27422837

  4. Engineering industrial yeast for renewable advanced biofuels applications

    USDA-ARS?s Scientific Manuscript database

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  5. Forests, food, and fuel in the tropics: the uneven social and ecological consequences of the emerging political economy of biofuels.

    PubMed

    Dauvergne, Peter; Neville, Kate J

    2010-01-01

    The global political economy of biofuels emerging since 2007 appears set to intensify inequalities among the countries and rural peoples of the global South. Looking through a global political economy lens, this paper analyses the consequences of proliferating biofuel alliances among multinational corporations, governments, and domestic producers. Since many major biofuel feedstocks - such as sugar, oil palm, and soy - are already entrenched in industrial agricultural and forestry production systems, the authors extrapolate from patterns of production for these crops to bolster their argument that state capacities, the timing of market entry, existing institutions, and historical state-society land tenure relations will particularly affect the potential consequences of further biofuel development. Although the impacts of biofuels vary by region and feedstock, and although some agrarian communities in some countries of the global South are poised to benefit, the analysis suggests that already-vulnerable people and communities will bear a disproportionate share of the costs of biofuel development, particularly for biofuels from crops already embedded in industrial production systems. A core reason, this paper argues, is that the emerging biofuel alliances are reinforcing processes and structures that increase pressures on the ecological integrity of tropical forests and further wrest control of resources from subsistence farmers, indigenous peoples, and people with insecure land rights. Even the development of so-called 'sustainable' biofuels looks set to displace livelihoods and reinforce and extend previous waves of hardship for such marginalised peoples.

  6. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment

    DOE PAGES

    Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing; ...

    2017-08-31

    We present that bioenergy can be a promising solution to the energy, food and environment trilemma in China. Currently this coal-dependent nation is in urgent need of alternative fuels to secure its future energy and improve the environment. Biofuels derived from crop residues and bioenergy crops emerge as a great addition to renewable energy in China without compromising food production. This paper reviews bioenergy resources from existing conventional crop (e.g., corn, wheat and rice) residues and energy crops (e.g., Miscanthus) produced on marginal lands. The impacts of biofuel production on ecosystem services are also discussed in the context of biofuel'smore » life cycle. It is estimated that about 280 million metric tons (Mt) of crop residue-based biomass (or 65 Mt of ethanol) and over 150 Mt of energy crop-based ethanol can become available each year, which far exceeds current national fuel ethanol production (<2 Mt year -1) and the 2020 national target of 10 Mt year -1. Review on environmental impacts suggested that substituting fossil fuels with biofuels could significantly reduce greenhouse gas emissions and air pollution (e.g., particulate matter). However, the impacts of biofuel production on biodiversity, water quantity and quality vary greatly among biomass types, land sources and management practices. Improved agricultural management and landscape planning can be beneficial to ecosystem services. Lastly, a national investigation is desirable in China to inventory technical and economic potential of biomass feedstocks and evaluate the impacts of biofuel production on ecosystem services and the environment.« less

  7. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing

    We present that bioenergy can be a promising solution to the energy, food and environment trilemma in China. Currently this coal-dependent nation is in urgent need of alternative fuels to secure its future energy and improve the environment. Biofuels derived from crop residues and bioenergy crops emerge as a great addition to renewable energy in China without compromising food production. This paper reviews bioenergy resources from existing conventional crop (e.g., corn, wheat and rice) residues and energy crops (e.g., Miscanthus) produced on marginal lands. The impacts of biofuel production on ecosystem services are also discussed in the context of biofuel'smore » life cycle. It is estimated that about 280 million metric tons (Mt) of crop residue-based biomass (or 65 Mt of ethanol) and over 150 Mt of energy crop-based ethanol can become available each year, which far exceeds current national fuel ethanol production (<2 Mt year -1) and the 2020 national target of 10 Mt year -1. Review on environmental impacts suggested that substituting fossil fuels with biofuels could significantly reduce greenhouse gas emissions and air pollution (e.g., particulate matter). However, the impacts of biofuel production on biodiversity, water quantity and quality vary greatly among biomass types, land sources and management practices. Improved agricultural management and landscape planning can be beneficial to ecosystem services. Lastly, a national investigation is desirable in China to inventory technical and economic potential of biomass feedstocks and evaluate the impacts of biofuel production on ecosystem services and the environment.« less

  8. Influence of corticosterone treatment on nestling begging in Florida scrub-jays (Aphelocoma coerulescens).

    PubMed

    Elderbrock, Emily K; Small, Thomas W; Schoech, Stephan J

    2018-04-01

    Altricial young are dependent on adults for protection and food, and they display nutritional need by begging to elicit feeding from parents. Begging at high levels can be energetically expensive and attract predators; thus, an individual must balance its nutritional needs with these potential costs. Further, because a parent is limited in the amount of food it can provide, begging can contribute to both parent-offspring conflict and sibling-sibling competition. Many extrinsic and intrinsic factors may contribute to begging behavior. One intrinsic factor of interest is corticosterone (CORT), a metabolic hormone hypothesized to play a role in regulating a nestling's begging behavior. We investigated the hypothesis that increased exposure to CORT influences nestling begging behavior in an altricial species, the Florida scrub-jay (Aphelocoma coerulescens). We treated one nestling per treatment nest with a twice-daily dose of exogenous hormone via a CORT-injected waxworm, whereas a second individual received a vehicle-injected waxworm. We monitored individual nestling and adult behavior at all nests with the use of high-definition video cameras on several days during treatment. We found no difference in begging rate between CORT fed and vehicle fed nestlings within a treatment nest. Further, to determine whether CORT treatment had indirect effects on the entire brood, we monitored additional nests, in which nestlings were not manipulated. When treatment and controls were compared, overall begging rates of nestlings in treatment nests were greater than those in control nests. This result suggests that CORT treatment of an individual altered its behavior, as well as that of its siblings. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Leveraging microbial biosynthetic pathways for the generation of ‘drop-in’ biofuels

    DOE PAGES

    Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.; ...

    2017-04-17

    Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less

  10. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system.

    PubMed

    Batan, Liaw Y; Graff, Gregory D; Bradley, Thomas H

    2016-11-01

    This study focuses on the characterization of the technical and economic feasibility of an enclosed photobioreactor microalgae system with annual production of 37.85 million liters (10 million gallons) of biofuel. The analysis characterizes and breaks down the capital investment and operating costs and the production cost of unit of algal diesel. The economic modelling shows total cost of production of algal raw oil and diesel of $3.46 and $3.69 per liter, respectively. Additionally, the effects of co-products' credit and their impact in the economic performance of algal-to-biofuel system are discussed. The Monte Carlo methodology is used to address price and cost projections and to simulate scenarios with probabilities of financial performance and profits of the analyzed model. Different markets for allocation of co-products have shown significant shifts for economic viability of algal biofuel system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling.

    PubMed

    Erdrich, Philipp; Knoop, Henning; Steuer, Ralf; Klamt, Steffen

    2014-09-19

    Cyanobacteria are increasingly recognized as promising cell factories for the production of renewable biofuels and chemical feedstocks from sunlight, CO2, and water. However, most biotechnological applications of these organisms are still characterized by low yields. Increasing the production performance of cyanobacteria remains therefore a crucial step. In this work we use a stoichiometric network model of Synechocystis sp. PCC 6803 in combination with CASOP and minimal cut set analysis to systematically identify and characterize suitable strain design strategies for biofuel synthesis, specifically for ethanol and isobutanol. As a key result, improving upon other works, we demonstrate that higher-order knockout strategies exist in the model that lead to coupling of growth with high-yield biofuel synthesis under phototrophic conditions. Enumerating all potential knockout strategies (cut sets) reveals a unifying principle behind the identified strain designs, namely to reduce the ratio of ATP to NADPH produced by the photosynthetic electron transport chain. Accordingly, suitable knockout strategies seek to block cyclic and other alternate electron flows, such that ATP and NADPH are exclusively synthesized via the linear electron flow whose ATP/NADPH ratio is below that required for biomass synthesis. The products of interest are then utilized by the cell as sinks for reduction equivalents in excess. Importantly, the calculated intervention strategies do not rely on the assumption of optimal growth and they ensure that maintenance metabolism in the absence of light remains feasible. Our analyses furthermore suggest that a moderately increased ATP turnover, realized, for example, by ATP futile cycles or other ATP wasting mechanisms, represents a promising target to achieve increased biofuel yields. Our study reveals key principles of rational metabolic engineering strategies in cyanobacteria towards biofuel production. The results clearly show that achieving

  12. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  13. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  14. Biofuel Supply Chains: Impacts, Indicators and Sustainability Metrics

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development has introduced a program to study the environmental impacts and sustainability of biofuel supply chains. Analyses will provide indicators and metrics for valuating sustainability. In this context, indicators are supply chain rat...

  15. Improving Biofuel Recovery Processes For Efficiency and Sustainability

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) provided for increased production of biofuels with, among other provisions, a specified share to be derived from non-sugar or cellulose feedstocks. The EISA further established standards for renewable fuels achieving 20, 50, a...

  16. Inhibitors of biofilm formation by biofuel fermentation contaminants

    USDA-ARS?s Scientific Manuscript database

    Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, L. fermentum, and L. plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A var...

  17. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  18. USING GIS TO DETERMINE PLANTABLE AREA FOR PRAIRIE SWITCHGRASS BIOFUEL PRODUCTION IN KENTUCKY RIGHTS-OF-WAY

    EPA Science Inventory

    (1) The United States’ dependence on foreign fuel and other non-renewable resources has implications across disciplines including international relationships, the environment, and economics. Biofuels have been proposed as an alternative; however, land for biofuel product...

  19. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels

    DOE PAGES

    Mewalal, Ritesh; Rai, Durgesh K.; Kainer, David; ...

    2016-09-09

    Research toward renewable and sustainable energy has identified candidate terpenes capable of blending/replacing petroleum-derived jet, diesel and tactical fuels. Additionally, despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants due to low yields. Plant terpene biosynthesis is regulated at multiple levels leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit including annotated genomes, high-throughput omics profiling and genome-editing provides an ideal platform for high-resolution analysis and in-depth understanding of plant terpene metabolism. Concomitantly, such information is useful for bioengineering strategies of metabolic pathwaysmore » for candidate terpenes. Within this paper, we review the status of terpenes as an advanced biofuel and discuss the potential of plants as a viable agronomic solution for future advanced terpene-derived biofuels.« less

  20. Life-cycle assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia.

    PubMed

    Nie, Yuhao; Bi, Xiaotao

    2018-01-01

    Biofuels from hydrothermal liquefaction (HTL) of abundantly available forest residues in British Columbia (BC) can potentially make great contributions to reduce the greenhouse gas (GHG) emissions from the transportation sector. A life-cycle assessment was conducted to quantify the GHG emissions of a hypothetic 100 million liters per year HTL biofuel system in the Coast Region of BC. Three scenarios were defined and investigated, namely, supply of bulky forest residues for conversion in a central integrated refinery (Fr-CIR), HTL of forest residues to bio-oil in distributed biorefineries and subsequent upgrading in a central oil refinery (Bo-DBR), and densification of forest residues in distributed pellet plants and conversion in a central integrated refinery (Wp-CIR). The life-cycle GHG emissions of HTL biofuels is 20.5, 17.0, and 19.5 g CO 2 -eq/MJ for Fr-CIR, Bo-DBR, and Wp-CIR scenarios, respectively, corresponding to 78-82% reduction compared with petroleum fuels. The conversion stage dominates the total GHG emissions, making up more than 50%. The process emitting most GHGs over the life cycle of HTL biofuels is HTL buffer production. Transportation emission, accounting for 25% of Fr-CIR, can be lowered by 83% if forest residues are converted to bio-oil before transportation. When the credit from biochar applied for soil amendment is considered, a further reduction of 6.8 g CO 2 -eq/MJ can be achieved. Converting forest residues to bio-oil and wood pellets before transportation can significantly lower the transportation emission and contribute to a considerable reduction of the life-cycle GHG emissions. Process performance parameters (e.g., HTL energy requirement and biofuel yield) and the location specific parameter (e.g., electricity mix) have significant influence on the GHG emissions of HTL biofuels. Besides, the recycling of the HTL buffer needs to be investigated to further improve the environmental performance of HTL biofuels.

  1. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    NASA Astrophysics Data System (ADS)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  2. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    PubMed

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  3. Growing duckweed for biofuel production: a review.

    PubMed

    Cui, W; Cheng, J J

    2015-01-01

    Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Biorefinery of instant noodle waste to biofuels.

    PubMed

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Uncertainty, irreversibility, and investment in second-generation biofuels

    NASA Astrophysics Data System (ADS)

    McCarty, Tanner Joseph

    The present study formalizes and quantifies the importance of uncertainty for investment in a corn-stover based cellulosic biofuel plant. Using a real options model we recover prices of gasoline that would trigger entry into the market and calculate the portion of that entry trigger price required to cover cost and the portion that corresponds to risk premium. We then discuss the effect of managerial flexibility on the entry risk premium and the prices of gasoline that would trigger mothballing, reactivation, and exit. Results show that the risk premium required by plants to enter the second-generation biofuel market is likely to be substantial. The analysis also reveals that a break-even approach (which ignores the portion of entry price composed of risk premium), and the traditional Marshallian approach (which ignores the portion of entry price composed of both the risk premium and the drift rate), would significantly underestimate the gasoline entry trigger price and the magnitude of that underestimation increases as both volatility and mean of gasoline prices increase. Results also uncover a great deal of hysteresis (i.e. a range of gasoline prices for which there is neither entry nor exit in the market) in entry/exit behavior by plants. Hysteresis increases as gasoline prices become more volatile. Hysteresis suggests that, at the industry level, positive (negative) demand shocks will have a significant impact on prices (production) and a limited impact on production (prices). In combination all of these results suggest that policies supporting second generation biofuels may have fallen short of their targets because of their failure to alleviate uncertainty.

  6. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

    PubMed

    Ma, Ruoshui; Xu, Yan; Zhang, Xiao

    2015-01-01

    Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Genetic resources for advanced biofuel production described with the Gene Ontology.

    PubMed

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C; Mukhopadhyay, Biswarup; Tyler, Brett M

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  8. Next-Gen 3: Sequencing, Modeling, and Advanced Biofuels - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zengler, Karsten; Palsson, Bernhard; Lewis, Nathan

    Successful, scalable implementation of biofuels is dependent on the efficient and near complete utilization of diverse biomass sources. One approach is to utilize the large recalcitrant biomass fraction (or any organic waste stream) through the thermochemical conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon dioxide (CO 2), and hydrogen (H 2), which can subsequently be metabolized by acetogenic microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen biofuel production from cheap, renewable sources and to detail the interconnectivitymore » of metabolism, energy conservation, and regulation of acetogens using next-gen sequencing and next-gen modeling. To achieve this goal we determined optimization of carbon and energy utilization through differential translational efficiency in C. ljungdahlii. Furthermore, we reconstructed a next-generation model of all major cellular processes, such as macromolecular synthesis and transcriptional regulation and deployed this model to predicting proteome allocation, overflow metabolism, and metal requirements in this model acetogen. In addition we explored the evolutionary significance of tRNA operon structure using the next-gen model and determined the optimal operon structure for bioproduction. Our study substantially enhanced the knowledgebaase for chemolithoautotrophs and their potential for advanced biofuel production. It provides next-generation modeling capability, offer innovative tools for genome-scale engineering, and provide novel methods to utilize next-generation models for the design of tunable systems that produce commodity chemicals from inexpensive sources.« less

  9. Genetic resources for advanced biofuel production described with the Gene Ontology

    PubMed Central

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727

  10. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE PAGES

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; ...

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  11. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  12. Inhibition of Snl6 expression for biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bart, Rebecca; Chern, Mawsheng; Ronald, Pamela

    The invention provides compositions and methods for inhibiting the expression of the gene Snl6 in plants. Plants with inhibited expression of Snl6 have use in biofuel production, e.g., by increasing the amount of soluble sugar that can be extracted from the plant.

  13. Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent.

    PubMed

    Bluhm, Kerstin; Seiler, Thomas-Benjamin; Anders, Nico; Klankermayer, Jürgen; Schaeffer, Andreas; Hollert, Henner

    2016-10-01

    The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects. In this study, the three potential biofuels ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated for their acute embryo toxicity and teratogenicity using the fish embryo toxicity (FET) test to identify unknown hazard potentials and to allow focusing further research on substances with low toxic potentials. In addition, two fossil fuels (diesel and gasoline) and an established biofuel (rapeseed oil methyl ester) were investigated as references. The FET test is widely accepted and used in (eco)toxicology. It was performed using the zebrafish Danio rerio, a model organism useful for the prediction of human teratogenicity. Testing revealed a higher acute toxicity for EL (LC50: 83mg/L) compared to 2-MTHF (LC50: 2980mg/L), 2-MF (LC50: 405mg/L) and water accommodated fractions of the reference fuels including gasoline (LC50: 244mg DOC/L). In addition, EL caused a statistically significant effect on head development resulting in elevated head lengths in zebrafish embryos. Results for EL reduce its likelihood of use as a biofuel since other substances with a lower toxic potential are available. The FET test applied at an early stage of development might be a useful tool to avoid further time and money requiring steps regarding research on unfavorable biofuels. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less

  15. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I

    DOE PAGES

    Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.; ...

    2017-01-23

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less

  16. U.S. Biofuels Industry. Mind the Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This report was prepared is intended to provide an objective view of the evolving biofuels industry and many of its key participants. It is the second “Year in Review” report created for use by an intended audience of industry, investor, policy maker, and regulator stakeholders. This report covers the 2-year period of 2008-2009.

  17. Biofuels, causes of land-use change, and the role of fire in greenhouse gas emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Dale, Virginia H

    2008-07-01

    IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE ('LAND CLEARING AND THE BIOFUEL CARBON debt,' J. Fargione et al., p. 1235, and 'Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,' T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associatedmore » carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market. Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation for a study not designed to identify the causal factors of land clearing. The study analyzed satellite imagery from a single state in Brazil over a 4-year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of land-use change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire's escalating contribution to global climate change is largely a result of burning in tropical savannas and forests. Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005. By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land. Neither Searchinger et al. nor

  18. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  19. Irrigation as a determinant of the land use impacts of biofuels

    NASA Astrophysics Data System (ADS)

    Liu, J.; Hertel, T. W.; Taheripour, F.

    2011-12-01

    Previous research into the global land use impacts of biofuels has assumed that cropland area could expand in most regions of the world. Indeed, such expansion into more carbon-rich land cover such as grassland or forest is the focus of research into the contributions of indirect land use to the GHG impacts of biofuels. Several studies have examined the global land use consequences of biofuel production. However, all of these studies have effectively treated all cropland as being rainfed. The role of irrigation in biofuel-induced cropland expansion has been wholly ignored. Irrigated croplands typically have much higher yields than their rainfed counterparts. As a consequence, irrigated lands that represent 20% global cropland cover account for 42% of global crop production. Thus, the question of whether expansion of biofuel involves irrigated or rainfed lands makes a significant difference in terms of how much new land will be required to provide the additional production called for in the presence of biofuels. If the new lands are irrigated, and therefore have higher yields than rainfed lands in the same Agro Ecological Zone (AEZs), then less land conversion will be required. However, this land conversion saving may be impossible because expansion of irrigated area is often constrained, either by insufficient water, or insufficient capacity. In this paper we explore the impact on iLUC estimates if irrigated area cannot be expanded. Since earlier studies have assumed the opposite (no constraint whatsoever on expansion), this paper offers an upper bound on the change in land use patterns once one accounts for irrigation. Results show that the change in global cropland area is 15% larger when the irrigation constraint is imposed. This is a direct consequence of the lower yields in rainfed areas. The figure is larger in the US, where the elimination of potential for expanding irrigated areas results in 23% more cropland cover change. The results also show that the

  20. The Need for Governance by Experimentation: The Case of Biofuels.

    PubMed

    Asveld, Lotte

    2016-06-01

    The policies of the European Union concerning the development of biofuels can be termed a lock-in. Biofuels were initially hailed as a green, sustainability technology. However evidence to the contrary quickly emerged. The European Commission proposed to alter its policies to accommodate for these effects but met with fierce resistance from a considerable number of member states who have an economic interest in these first generation biofuels. In this paper I argue that such a lock-in might have been avoided if an experimental approach to governance had been adopted. Existing approaches such as anticipation and niche management either do not reduce uncertainty sufficiently or fail to explicitly address conflicts between values motivating political and economic support for new technologies. In this paper, I suggest to apply an experimental framework to the development of sustainable biobased technologies. Such an approach builds on insights from adaptive management and transition management in that it has the stimulation of learning effects at its core. I argue that these learning effects should occur on the actual impacts of new technologies, on the institutionalisation of new technologies and most specifically on the norms and values that underly policies supporting new technologies. This approach can be relevant for other emerging technologies.