Sample records for jc virus induces

  1. Could JC virus provoke metastasis in colon cancer?

    PubMed Central

    Sinagra, Emanuele; Raimondo, Dario; Gallo, Elena; Stella, Mario; Cottone, Mario; Orlando, Ambrogio; Rossi, Francesca; Orlando, Emanuele; Messina, Marco; Tomasello, Giovanni; Lo Monte, Attilio Ignazio; La Rocca, Ennio; Rizzo, Aroldo Gabriele

    2014-01-01

    AIM: To evaluate the prevalence of John Cunningham virus (JC virus) in a small cohort of patients with colon cancer and to assess its presence in hepatic metastasis. METHODS: Nineteen consecutive patients with histologically diagnosed colon cancer were included in our study, together with ten subjects affected by histologically and serologically diagnosed hepatitis C virus infection. In the patients included in the colon cancer group, JC virus was searched for in the surgical specimen; in the control group, JC virus was searched for in the hepatic biopsy. The difference in the prevalence of JC virus in the hepatic biopsy between the two groups was assessed through the χ2 test. RESULTS: Four out of 19 patients with colon cancer had a positive polymerase chain reaction (PCR) test for JC virus, and four had liver metastasis. Among the patients with liver metastasis, three out of four had a positive PCR test for JC virus in the surgical specimen and in the liver biopsy; the only patient with liver metastasis with a negative test for JC virus also presented a negative test for JC virus in the surgical specimen. In the control group of patients with hepatitis C infection, none of the ten patients presented JC virus infection in the hepatic biopsy. The difference between the two groups regarding JC virus infection was statistically significant (χ2 = 9.55, P = 0.002). CONCLUSION: JC virus may play a broader role than previously thought, and may be mechanistically involved in the late stages of these tumors. PMID:25400458

  2. Transformation of Primary Hamster Brain Cells with JC Virus and Its DNA

    PubMed Central

    Frisque, R. J.; Rifkin, D. B.; Walker, D. L.

    1980-01-01

    We transformed primary hamster brain cells with four isolates of JC virus and JC virus DNA. Several properties of these transformants were characterized and compared to those of simian virus 40 transformants isolated under identical conditions. Images PMID:6251275

  3. JC virus chromogenic in situ hybridization in brain biopsies from patients with and without PML.

    PubMed

    Procop, Gary W; Beck, Rose C; Pettay, James D; Kohn, Debra J; Tuohy, Marion J; Yen-Lieberman, Belinda; Prayson, Richard A; Tubbs, Raymond R

    2006-06-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC polyoma virus. Electron microscopy and immunohistochemistry are the traditional methods of confirming the presence of the virus in brain biopsies from these patients. We studied the brain biopsies from 7 patients with PML and 6 patients without PML with chromogenic in situ hybridization (CISH) for the JC polyoma virus using a commercially available probe. The biopsies from the patients with the PML cases were proven to contain the JC polyoma virus by traditional and molecular methods. The CISH findings were compared with the known state of infection. All (7/7) of the biopsies from patients with PML were positive for the presence of polyoma virus by CISH, whereas the biopsies from patients without PML were uniformly negative. CISH seems to be a useful tool for the detection of the JC virus in brain biopsies from patients with PML, and is more accessible because a commercial probe is available.

  4. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarraymore » technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.« less

  5. Investigation of Molecular Mechanism of JC virus Viroporin Activity.

    PubMed

    Suzuki, Tadaki

    2015-01-01

    Viroporins are small and hydrophobic viral proteins that form pores on host cell membranes, and their expression can increase the permeability of cellular membranes and the production of progeny virus particles. JC virus (JCV) is the causative agent of progressive multifocal leukoenchephalopathy (PML). We demonstrate that JCV Agno, which is the small and hydrophobic protein, andincreases the plasma membrane permeability and virion release, acts as a viroporin. We also demonstrate that an interaction of Agno with a host cellular protein regulates the viroporin activity of Agno. These findings indicate a new paradigm in virus-host interactions regulating viroporin activity and viral replication.

  6. Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC).

    PubMed

    Vilkin, Alex; Niv, Yaron

    2011-04-01

    Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.

  7. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    PubMed Central

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein. PMID:15717928

  8. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orba, Yasuko; Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, 060-8638, Sapporo; Research Fellow of the Japan Society for the Promotion of Science

    2008-01-05

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation ofmore » the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)« less

  9. Tracing Jomon and Yayoi ancestries in Japan using ALDH2 and JC virus genotype distributions.

    PubMed

    Miyamori, Daisuke; Ishikawa, Noboru; Idota, Nozomi; Kakiuchi, Yasuhiro; McLean, Stuart; Kitamura, Tadaichi; Ikegaya, Hiroshi

    2015-01-01

    According to the dual structure model, the modern Japanese ethnic population consists of a mixture of the Jomon people, who have existed in Japan since at least the New Stone Age, and the Yayoi people, who migrated to western Japan from China around the year 300 bc Some reports show that the Yayoi are linked to a mutation of the aldehyde dehydrogenase 2 gene (ALDH2). Recent viral studies indicate two major groups found in the Japanese population: a group with the CY genotype JC virus (JCV) and a group with the MY genotype JCV. It is unclear whether either genotype of the JC virus is related to the Jomon or Yayoi. In this study, we attempted to detect JCV genotypes and ALDH2 mutations from the DNA of 247 Japanese urine samples to clarify the relationship between the dual structure model and the JCV genotype through ALDH2 mutation analysis and JCV genotyping. The ALDH2 polymorphism among 66 JC virus-positive samples was analyzed, and it was found that the ALDH2 variant is significantly higher in the population with CY genotype JCV (51.5 %) than in the population with the MY genotype (24.2 %) (p < 0.05). From these findings, it may be inferred that the ALDH2 mutation, which is related to the Yayoi, is related to CY genotype JCV. When the Yayoi migrated to the Japanese archipelago, they brought the ALDH2 mutation as well as the CY genotype JCV.

  10. Recombined sequences between the non-coding control regions of JC and BK viruses found in the urine of a renal transplantation patient.

    PubMed

    Liaw, Yu-Ching; Chen, Cheng-Hsu; Shu, Kuo-Hsiung; Fang, Chiung-Yao; Ou, Wei-Chih; Chen, Pei-Lain; Shen, Cheng-Huang; Lin, Mien-Chun; Chang, Deching; Wang, Meilin

    2012-12-01

    Kidney cells are the common host for JC virus (JCV) and BK virus (BKV). Reactivation of JCV and/or BKV in patients after organ transplantation, such as renal transplantation, may cause hemorrhagic cystitis and polyomavirus-associated nephropathy. Furthermore, JCV and BKV may be shed in the urine after reactivation in the kidney. Rearranged as well as archetypal non-coding control regions (NCCRs) of JCV and BKV have been frequently identified in human samples. In this study, three JC/BK recombined NCCR sequences were identified in the urine of a patient who had undergone renal transplantation. They were designated as JC-BK hybrids 1, 2, and 3. The three JC/BK recombinant NCCRs contain up-stream JCV as well as down-stream BKV sequences. Deletions of both JCV and BKV sequences were found in these recombined NCCRs. Recombination of DNA sequences between JCV and BKV may occur during co-infection due to the relatively high homology of the two viral genomes.

  11. JC Virus Leuko-Encephalopathy in Reduced Intensity Conditioning Cord Blood Transplant Recipient with a Review of the Literature.

    PubMed

    El-Cheikh, Jean; Fürst, Sabine; Casalonga, Francois; Crocchiolo, Roberto; Castagna, Luca; Granata, Angela; Oudin, Claire; Faucher, Catherine; Berger, Pierre; Sarran, Anthony; Blaise, Didier

    2012-01-01

    We report here the case of progressive multifocal leukoencephalopathy (PML) related to human polyomavirus JC (JCV) infection after an allogeneic transplantation with umbilical cord blood cells in 59-year-old woman with follicular Non Hodgkin lymphoma. She presented with dysphagia and weakness; magnetic resonance imaging demonstrated marked signal abnormality in the sub-cortical white matter of the left frontal lobe and in the posterior limb of the right internal capsule. Polymerase chain reaction (PCR) analysis of the cerebrospinal fluid (CSF) was positive for John Cunningham (JC) virus. JC viral DNA in the CSF was positive, establishing the diagnosis of PML. Brain biopsy was not done. Extensive investigations for other viral infections seen in immuno-compromised patients were negative. The patient's neurologic deficits rapidly increased throughout her hospital stay, and she died one month after the diagnosis. These findings could have practical implications and demonstrate that in patients presenting neurological symptoms and radiological signs after UCBT, the JCV encephalitis must be early suspected.

  12. JC Virus Leuko-Encephalopathy in Reduced Intensity Conditioning Cord Blood Transplant Recipient with a Review of the Literature

    PubMed Central

    El-Cheikh, Jean; Fürst, Sabine; Casalonga, Francois; Crocchiolo, Roberto; Castagna, Luca; Granata, Angela; Oudin, Claire; Faucher, Catherine; Berger, Pierre; Sarran, Anthony; Blaise, Didier

    2012-01-01

    We report here the case of progressive multifocal leukoencephalopathy (PML) related to human polyomavirus JC (JCV) infection after an allogeneic transplantation with umbilical cord blood cells in 59-year-old woman with follicular Non Hodgkin lymphoma. She presented with dysphagia and weakness; magnetic resonance imaging demonstrated marked signal abnormality in the sub-cortical white matter of the left frontal lobe and in the posterior limb of the right internal capsule. Polymerase chain reaction (PCR) analysis of the cerebrospinal fluid (CSF) was positive for John Cunningham (JC) virus. JC viral DNA in the CSF was positive, establishing the diagnosis of PML. Brain biopsy was not done. Extensive investigations for other viral infections seen in immuno-compromised patients were negative. The patient’s neurologic deficits rapidly increased throughout her hospital stay, and she died one month after the diagnosis. These findings could have practical implications and demonstrate that in patients presenting neurological symptoms and radiological signs after UCBT, the JCV encephalitis must be early suspected. PMID:22811792

  13. Transcriptional activation of JC virus by human T-lymphotropic virus type I Tax protein in human neuronal cell lines.

    PubMed

    Okada, Y; Sawa, H; Tanaka, S; Takada, A; Suzuki, S; Hasegawa, H; Umemura, T; Fujisawa, J; Tanaka, Y; Hall, W W; Nagashima, K

    2000-06-02

    Polyomavirus JC (JCV) causes the human demyelinating disease, progressive multifocal leukoencephalopathy (PML). The recent demonstration of cases of PML in association with human T-lymphotropic virus type I (HTLV-I) infection prompted us to examine whether the HTLV-I-encoded regulatory protein Tax activates JCV transcription. By employing a dual luciferase assay, we initially found that the expression of Tax activated the transcriptional potential of both early and late promoters of JCV in human neuronal but not in non-neuronal cells. We subsequently analyzed the mechanism of Tax-induced activation of the JCV promoter in neuronal cells with the following results: 1) the JCV promoter that lacks the NF-kappaB-binding motif could not be activated by Tax; 2) the overexpression of IkappaBalpha abolished Tax-induced transcriptional activation of the JCV promoter; 3) a Tax mutant (M22) lacking the potential for activation via the NF-kappaB pathway did not activate the JCV promoter. Furthermore, Tax enhances the gene expression of JCV T antigen and VP1. We examined mechanisms of the cell-specific activation of the JCV promoter by Tax. Electrophoretic mobility shift assay demonstrated the presence of Tax-bound protein(s) that were specifically present in non-neuronal cells. This study is the first demonstration of the activation of JCV promoter by HTLV-I Tax in an NF-kappaB-dependent manner.

  14. Use of hybridot assay to screen for BK and JC polyomaviruses in non-immunosuppressed patients.

    PubMed Central

    Cobb, J J; Wickenden, C; Snell, M E; Hulme, B; Malcolm, A D; Coleman, D V

    1987-01-01

    Urine samples from 50 patients attending a genitourinary outpatient clinic and from 13 renal allograft recipients were investigated for evidence of infection with human BK and JC polyomaviruses using cytology and a new DNA hybridot assay. Forty four per cent of samples from the renal allograft recipients were positive by cytology and 75% by DNA hybridisation, indicating that hybridot assay is more sensitive than cytological screening. BK and JC viral DNA was found in 20% of the patients attending the genitourinary clinic, showing infection with BK virus and JC virus in a group of patients with clinical conditions not normally associated with immunological deficiency-a finding that has not been reported before. Images Figure PMID:3040812

  15. Progressive Multifocal Leukoencephalopathy: Endemic Viruses and Lethal Brain Disease.

    PubMed

    Haley, Sheila A; Atwood, Walter J

    2017-09-29

    In 1971, the first human polyomavirus was isolated from the brain of a patient who died from a rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy. The virus was named JC virus after the initials of the patient. In that same year a second human polyomavirus was discovered in the urine of a kidney transplant patient and named BK virus. In the intervening years it became clear that both viruses were widespread in the human population but only rarely caused disease. The past decade has witnessed the discovery of eleven new human polyomaviruses, two of which cause unusual and rare cancers. We present an overview of the history of these viruses and the evolution of JC polyomavirus-induced progressive multifocal leukoencephalopathy over three different epochs. We review what is currently known about JC polyomavirus, what is suspected, and what remains to be done to understand the biology of how this mostly harmless endemic virus gives rise to lethal disease.

  16. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  17. Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Demyelinating Disease of the Human Brain

    PubMed Central

    Ferenczy, Michael W.; Marshall, Leslie J.; Nelson, Christian D. S.; Atwood, Walter J.; Nath, Avindra; Khalili, Kamel

    2012-01-01

    Summary: Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies. PMID:22763635

  18. Molecular Cloning and Characterization of Viruses Isolated from Chimpanzees with Pathogenic Human Immunodeficiency Virus Type 1 Infections

    PubMed Central

    Mwaengo, Dufton M.; Novembre, Francis J.

    1998-01-01

    We have previously described the development of AIDS in a chimpanzee (C499) infected with human immunodeficiency virus type 1 (HIV-1) and the subsequent pathogenic HIV-1 infection in another chimpanzee (C455) transfused with blood from C499 (F. J. Novembre et al., J. Virol. 71:4086–4091, 1997). In the present study, two virus isolates were derived from these animals: HIV-1JC from peripheral blood mononuclear cells (PBMC) of C499, and HIV-1NC from plasma of C455. These virus isolates were used to generate two infectious molecular clones, termed HIV-1JC16 and HIV-1NC7 (JC16 and NC7, respectively). Comparative analyses of the sequences of the two clones showed that they were highly interrelated but distinct. Based on heteroduplex mobility assays, JC16 and NC7 appear to represent dominant viruses in the uncloned stock population. Compared with amino acid sequences of the parental viruses HIV-1SF2, HIV-1LAV-1b, and HIV-1NDK, JC16 and NC7 showed a number of differences, including insertions, deletions, and point mutations spread throughout the genome. However, insertion/deletion footprints in several genes of both JC16 and NC7 suggested that recombination between SF2 and LAV-1b could have occurred, possibly contributing to the generation of a pathogenic virus. Comparative in vitro analyses of the molecular clones and the uncloned stocks of HIV-1JC and HIV-1NC revealed that these viruses had strikingly similar replicative abilities in mitogen-stimulated PBMC and in macrophages. Compared to the SF2 and LAV-1b isolates of HIV-1, HIV-1JC and HIV-1NC isolates were more similar to LAV-1b with respect to the ability to replicate in mitogen-stimulated PBMC and macrophages. These viruses should prove to be useful in mapping determinants of pathogenesis. PMID:9765443

  19. Genotypes of JC virus, DNA of cytomegalovirus, and proviral DNA of human immunodeficiency virus in eyes of acquired immunodeficiency syndrome patients.

    PubMed

    Eberwein, Philipp; Hansen, Lutz L; Agostini, Hansjürgen T

    2005-02-01

    JC virus (JCV) is a human polyomavirus that exists in at least eight different genotypes as a result of coevolution with different human populations all over the world. Well adapted to its host, it usually persists in the kidneys and possibly the brain. If the host becomes immunodeficient, JCV can cause the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). There is increasing evidence that JCV is transactivated by cytomegalovirus (CMV) and the human immunodeficiency virus (HIV). Both CMV and HIV can infect the retina of acquired immunodeficiency syndrome (AIDS) patients, causing severe necrosis in the case of CMV retinitis or a mild HIV-associated vasculopathy, with bleeding and cotton wool spots. The authors therefore investigated by polymerase chain reaction (PCR) whether DNA of these three viruses was detectable in paraffin-embedded eyes of AIDS patients with a clinical history of CMV retinitis. From a total of 65 eyes, JCV was detected in 21 (32%). Thirty-six (55%) were positive for CMV and 6 (9%) for proviral DNA of HIV. JCV and CMV were found in 13 eyes, JCV and HIV in 3 eyes, CMV and HIV in 1 eye, and DNA from all three viruses in 1 eye. The JCV genotypes were types 1A, 2A, 2E, 3, and 4. In 21 eyes of patients without AIDS, only one sample was JCV positive. In conclusion, JCV DNA can be detected in ocular tissue of AIDS patients at a significantly higher level than in eyes of nonimmunosuppressed patients. Further investigations will help to decide if JCV contributes to the retinopathy caused by CMV and HIV.

  20. JC Virus Mediates Invasion and Migration in Colorectal Metastasis

    PubMed Central

    Link, Alexander; Shin, Sung Kwan; Nagasaka, Takeshi; Balaguer, Francesc; Koi, Minoru; Jung, Barbara; Boland, C. Richard; Goel, Ajay

    2009-01-01

    Introduction JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. Material and Methods CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. Results T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). Conclusion These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC. PMID:19997600

  1. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    PubMed

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  2. A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    PubMed Central

    Boson, Bertrand; Granio, Ophélia; Bartenschlager, Ralf; Cosset, François-Loïc

    2011-01-01

    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly. PMID:21814513

  3. Serologic evidence of Jamestown Canyon and Keystone virus infection in vertebrates of the DelMarVa Peninsula.

    PubMed

    Watts, D M; LeDuc, J W; Bailey, C L; Dalrymple, J M; Gargan, T P

    1982-11-01

    Serological data accumulated during the past decade indicated that a variety of feral and domestic animals of the Delaware-Maryland-Virginia (DelMarVa) Peninsula were infected with Jamestown Canyon (JC) and/or Keystone (KEY) viruses (Bunyaviridae, California serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and horses. KEY virus N antibody was detected most frequently in gray squirrels and domestic goats. N antibody indicative of past infection by one or both viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of small mammals and reptiles. Investigations were extended to evaluate the role of domestic goats as an amplifying host of JC and KEY viruses and to assess their potential as sentinels of virus transmission. Goats maintained in the Pocomoke Cypress Swamp during the summer season of 1978, acquired N antibodies to JC and KEY viruses. Following experimental inoculation with either JC or KEY virus, all goats developed N antibody despite the absence of a demonstrable viremia in most animals. Goats proved to be effective as sentinels for monitoring the transmission of JC and KEY viruses; however, the exceptionally low titers or absence of viremia following inoculation with these viruses would seem to preclude a potential virus-amplifying role for this species. Although findings implicated primarily gray squirrels and white-tailed deer as possible amplifying hosts of KEY and JC virus, respectively, further investigations will be required to clarify their role, particularly since both viruses may be maintained entirely by transovarial transmission.

  4. Serologic Evidence of Jamestown Canyon and Keystone Virus Infection in Vertebrates of the Delmarva Peninsula

    DTIC Science & Technology

    1982-01-01

    as a potential tailed deer neutralized both JC and KEY viruses , amplifying host of this virus . Sika deer, and cot- Evidence based on PRN.,, titers...Bunyaviridae, Cali- fornia serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and... viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of

  5. Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus.

    PubMed

    O'Hara, Bethany A; Gee, Gretchen V; Atwood, Walter J; Haley, Sheila A

    2018-04-15

    JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML. IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood

  6. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    PubMed

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  7. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

    PubMed Central

    2014-01-01

    Background Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha. PMID:24886195

  8. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCVmore » DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.« less

  9. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  10. Serum IgG antibodies from healthy subjects up to 100 years old react to JC polyomavirus.

    PubMed

    Bononi, Ilaria; Mazzoni, Elisa; Pietrobon, Silvia; Manfrini, Marco; Torreggiani, Elena; Rossini, Marika; Lotito, Francesca; Guerra, Giovanni; Rizzo, Paola; Martini, Fernanda; Tognon, Mauro

    2018-08-01

    JC polyomavirus (JCPyV) was identified in 1971 in the brain tissue of a patient (J.C.) affected by the progressive multifocal leukoencephalopathy (PML). JCPyV encodes for the oncoproteins large T antigen (Tag) and small t-antigen (tag). These oncoproteins are responsible of the cell transformation and tumorigenesis in experimental animals. JCPyV is ubiquitous in human populations. After the primary infection, which is usually asymptomatic, JCPyV remains lifelong in the host in a latent phase. Its reactivation may occur in heathy subjects and immunocompromised patients. Upon reactivation, JCPyV could reach (i) the CNS inducing the PML, (ii) the kidney of transplant patients causing the organ rejection. Association between JCPyV, which is a small DNA tumor virus, and gliomas and colorectal carcinomas has been published. In the present investigation, we report on a new indirect ELISA with two specific synthetic peptides mimicking JCPyV VP1 immunogenic epitopes to detect specific serum IgG antibodies against JCPyV. Serum samples of healthy subjects (n = 355) ranging 2-100 years old, were analyzed by this new indirect ELISA. The linear peptides VP1 K and VP1 N resemble the natural JCPyV VP1 capsidic epitopes constituting a docking site for serum antibodies. Data from this innovative immunologic assay indicate that the overall prevalence of JCPyV-VP1 antibodies in healthy subjects is at 39%. The innovative indirect ELISA with JCPyV VP1 mimotopes seems to be a useful method to detect specific IgG antibodies against this virus, without cross-reactivity with the closely related SV40 and BKPyV polyomaviruses. © 2018 Wiley Periodicals, Inc.

  11. Evidence that a sequence similar to TAR is important for induction of the JC virus late promoter by human immunodeficiency virus type 1 Tat.

    PubMed Central

    Chowdhury, M; Taylor, J P; Chang, C F; Rappaport, J; Khalili, K

    1992-01-01

    A specific RNA sequence located in the leader of all human immunodeficiency virus type 1 (HIV-1) mRNAs termed the transactivation response element, or TAR, is a primary target for induction of HIV-1 long terminal repeat activity by the HIV-1-derived trans-regulatory protein, Tat. Human neurotropic virus, JC virus (JCV), a causative agent of the degenerative demyelinating disease progressive multifocal leukoencephalopathy, contains sequences in the 5' end of the late RNA species with an extensive homology to HIV-1 TAR. In this study, we examined the possible role of the JCV-derived TAR-homologous sequence in Tat-mediated activation of the JCV late promoter (Tada et al., Proc. Natl. Acad. Sci. USA 87:3479-3483, 1990). Results from site-directed mutagenesis revealed that critical G residues required for the function of HIV-1 TAR that are conserved in the JCV TAR homolog play an important role in Tat activation of the JCV promoter. In addition, in vivo competition studies suggest that shared regulatory components mediate Tat activation of the JCV late and HIV-1 long terminal repeat promoters. Furthermore, we showed that the JCV-derived TAR sequence behaves in the same way as HIV-1 TAR in response to two distinct Tat mutants, one of which that has no ability to bind to HIV-1 TAR and another that lacks transcriptional activity on a responsive promoter. These results suggest that the TAR homolog of the JCV late promoter is responsive to HIV-1 Tat induction and thus may participate in the overall activation of the JCV late promoter mediated by this transactivation. Images PMID:1331525

  12. Performance of Microbial Concrete Developed Using Bacillus Subtilus JC3

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Seshagiri; Reddy, V. Srinivasa; Sasikala, Ch.

    2017-12-01

    Concrete is vulnerable to deterioration, corrosion, and cracks, and the consequent damage and loss of strength requires immensely expensive remediation and repair. So need for special concrete that they would respond to crack formation with an autonomous self-healing action lead to research and development of microbial concrete. The microbial concrete works on the principle of calcite mineral precipitation by a specific group of alkali-resistant spore-forming bacteria related to the genus Bacillus called Bacillus subtilis JC3, this phenomenon is called biomineralization or Microbiologically Induced Calcite Crystal Precipitation. Bacillus subtilis JC3, a common soil bacterium, has inherent ability to precipitate calcite crystals continuously which enhances the strength and durability performance of concrete enormously. This microbial concrete can be called as a "Self healing Bacterial Concrete" because it can remediate its cracks by itself without any human intervention and would make the concrete more durable and sustainable. This paper discuss the incorporation of microorganism Bacillus subtilis JC3 (developed at JNTU, India) into concrete and presents the results of experimental investigations carried out to study the improved durability and sustainability characteristics of microbial concrete.

  13. Hypothesis: {open_quotes}Rogue cell{close_quotes}-type chromosomal damage in lymphocytes is associated with infection with the JC human polyoma virus and has implications for oncopenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neel, J.V.; Glover, T.; Burgess, A.

    The hemagglutination inhibition antibody titers against the JC and BK polyoma viruses (JCV and BKV, respectively) are significantly elevated in individuals exhibiting {open_quotes}rogue{close_quotes} cells among their cultured lymphocytes. However, the elevation is so much greater with respect to JCV that the BKV elevation could readily be explained by cross reactivity to the capsid protein of these two closely related viruses. The JCV exhibits highly sequence homology with the simian papovavirus, simian virus 40 (SV40), and inoculation of human fetal brain cells with JCV produces polyploidy and chromosomal damage very similar to that produced by SV40. We suggest, by analogy withmore » the effects of SV40, that these changes are due to the action of the viral large tumor antigen, a pluripotent DNA binding protein that acts in both transcription and replication. The implications of these findings for oncogenesis are briefly discussed. 45 refs., 1 fig., 3 tabs.« less

  14. California serogroup and Powassan virus infection of cats.

    PubMed

    Keane, D P; Parent, J; Little, P B

    1987-08-01

    One hundred and seventy five sera from cats in Ontario, Canada, were tested for hemagglutination inhibition (HI) antibodies to three arboviruses; namely, Powassan (POW) of the Flavivirus serogroup, and Snowshoe hare (SSH) and Jamestown Canyon (JC) viruses of the California (CAL) serogroup. All sera were negative for antibodies to POW virus. Twelve cats possessed CAL serogroup antibodies including 3 with antibodies to SSH alone, 6 with antibodies to JC alone, and 3 with antibodies to both SSH and JC antigens. POW virus was inoculated into seven cats, one intracerebrally and six intravenously. Neurologic signs were not detected in any of the cats. Histologic lesions of a nonsuppurative encephalitis and encephalomyelitis were observed in the intracerebrally inoculated cat and in one of the intravenously inoculated cats, respectively. POW virus was not isolated from the brain or spinal cord of either of these two cats. HI antibodies were detected in the sera of all inoculated animals. HI antibodies were not detected in the CSF of any animal.

  15. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector.

    PubMed

    Chao, Chun-Nun; Yang, Yu-Hsuan; Wu, Mu-Sheng; Chou, Ming-Chieh; Fang, Chiung-Yao; Lin, Mien-Chun; Tai, Chien-Kuo; Shen, Cheng-Huang; Chen, Pei-Lain; Chang, Deching; Wang, Meilin

    2018-02-02

    Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.

  16. JC Polyomavirus Attachment, Entry, and Trafficking: Unlocking the Keys to a Fatal Infection

    PubMed Central

    Maginnis, Melissa S.; Nelson, Christian D.S.; Atwood, Walter J.

    2014-01-01

    The human JC polyomavirus (JCPyV) causes a lifelong persistent infection in the reno-urinary tract in the majority of the adult population worldwide. In healthy individuals infection is asymptomatic, while in immunocompromised individuals the virus can spread to the central nervous system and cause a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). There are currently very few treatment options for this rapidly progressing and devastating disease. Understanding the basic biology of JCPyV-host cell interactions is critical for the development of therapeutic strategies to prevent or treat PML. Research in our laboratory has focused on gaining a detailed mechanistic understanding of the initial steps in the JCPyV life cycle in order to define how JCPyV selectively targets cells in the kidney and brain. JCPyV requires sialic acids to attach to host cells and initiate infection, and JCPyV demonstrates specificity for the oligosaccharide lactoseries tetrasaccharide c (LSTc) with an α2,6-linked sialic acid. Following viral attachment, JCPyV entry is facilitated by the 5-hydroxytryptamine (5-HT)2 family of serotonin receptors via clathrin-dependent endocytosis. JCPyV then undergoes retrograde transport to the endoplasmic reticulum (ER) where viral disassembly begins. A novel retrograde transport inhibitor termed Retro-2cycl prevents trafficking of JCPyV to the ER and inhibits both initial virus infection and infectious spread in cell culture. Understanding the molecular mechanisms by which JCPyV establishes infection will open up new avenues for the prevention or treatment of virus-induced disease. PMID:25078361

  17. An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination.

    PubMed

    Bauman, Yoav; Nachmani, Daphna; Vitenshtein, Alon; Tsukerman, Pinchas; Drayman, Nir; Stern-Ginossar, Noam; Lankry, Dikla; Gruda, Raizy; Mandelboim, Ofer

    2011-02-17

    The human polyoma viruses JCV and BKV establish asymptomatic persistent infection in 65%-90% of humans but can cause severe illness under immunosuppressive conditions. The mechanisms by which these viruses evade immune recognition are unknown. Here we show that a viral miRNA identical in sequence between JCV and BKV targets the stress-induced ligand ULBP3, which is a protein recognized by the killer receptor NKG2D. Consequently, viral miRNA-mediated ULBP3 downregulation results in reduced NKG2D-mediated killing of virus-infected cells by natural killer (NK) cells. Importantly, when the activity of the viral miRNA was inhibited during infection, NK cells killed the infected cells more efficiently. Because NKG2D is also expressed by various T cell subsets, we propose that JCV and BKV use an identical miRNA that targets ULBP3 to escape detection by both the innate and adaptive immune systems, explaining how these viruses remain latent without being eliminated by the immune system. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. COS-7-based model: methodological approach to study John Cunningham virus replication cycle.

    PubMed

    Prezioso, C; Scribano, D; Rodio, D M; Ambrosi, C; Trancassini, M; Palamara, A T; Pietropaolo, V

    2018-02-05

    John Cunningham virus (JCV) is a human neurotropic polyomavirus whose replication in the Central Nervous System (SNC) induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV propagation and PML investigation have been severely hampered by the lack of an animal model and cell culture systems to propagate JCV have been very limited in their availability and robustness. We previously confirmed that JCV CY strain efficiently replicated in COS-7 cells as demonstrated by the progressive increase of viral load by quantitative PCR (Q-PCR) during the time of transfection and that archetypal regulatory structure was maintained, although two characteristic point mutations were detected during the viral cycle. This short report is an important extension of our previous efforts in defining our reliable model culture system able to support a productive JCV infection.Supernatants collected from transfected cells have been used to infect freshly seeded COS-7 cell line. An infectious viral progeny was obtained as confirmed by Western blot and immunofluorescence assay. During infection, the archetype regulatory region was conserved.Importantly, in this study we developed an improved culture system to obtain a large scale production of JC virus in order to study the genetic features, the biology and the pathogenic mechanisms of JC virus that induce PML.

  19. JcDREB2, a Physic Nut AP2/ERF Gene, Alters Plant Growth and Salinity Stress Responses in Transgenic Rice.

    PubMed

    Tang, Yuehui; Liu, Kun; Zhang, Ju; Li, Xiaoli; Xu, Kedong; Zhang, Yi; Qi, Jing; Yu, Deshui; Wang, Jian; Li, Chengwei

    2017-01-01

    Transcription factors of the AP2/ERF family play important roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, a physic nut AP2/ERF gene, JcDREB2 , was functionally characterized. Real-time PCR analysis revealed that JcDREB2 was expressed mainly in the leaf and could be induced by abscisic acid but suppressed by gibberellin (GA) and salt. Transient expression of a JcDREB2-YFP fusion protein in Arabidopsis protoplasts cells suggested that JcDREB2 is localized in the nucleus. Rice plants overexpressing JcDREB2 exhibited dwarf and GA-deficient phenotypes with shorter shoots and roots than those of wild-type plants. The dwarfism phenotype could be rescued by the application of exogenous GA 3 . The expression levels of GA biosynthetic genes including OsGA20ox1 , OsGA20ox2 , OsGA20ox4 , OsGA3ox2, OsCPS1 , OsKO2 , and OsKAO were significantly reduced in plants overexpressing JcDREB2 . Overexpression of JcDREB2 in rice increased sensitivity to salt stress. Increases in the expression levels of several salt-tolerance-related genes in response to salt stress were impaired in JcDREB2 -overexpressing plants. These results demonstrated not only that JcDREB2 influences GA metabolism, but also that it can participate in the regulation of the salt stress response in rice.

  20. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    PubMed Central

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  1. DNA from BK Virus and JC Virus and from KI, WU, and MC Polyomaviruses as Well as from Simian Virus 40 Is Not Detected in Non-UV-Light-Associated Primary Malignant Melanomas of Mucous Membranes ▿

    PubMed Central

    Giraud, Géraldine; Ramqvist, Torbjörn; Ragnarsson-Olding, Boel; Dalianis, Tina

    2008-01-01

    The single most important causative factor for malignant melanomas of the skin is UV radiation. However, this is not true for melanomas on body surfaces sheltered from the sun; thus, it is important to seek new causative factors of melanoma genesis. Human papillomaviruses and gammaherpesviruses are associated with human skin cancer; for example, human papillomavirus types 5 and 8 are associated with epidermodysplasia verruciformis, and human herpesvirus 8 is associated with Kaposi's sarcoma. Recently, a newly described human polyomavirus, Merkel cell polyomavirus (MCPyV), has been associated with Merkel cell carcinoma, an unusual form of neurotropic skin cancer. Moreover, melanocytes are of neuroepithelial origin. This background impelled us to investigate if human polyomavirus DNA could play a role in the development of extracutaneous melanomas. Sixty-four extracutaneous melanomas were initially collected and dissected. Of these, 38 could be successfully used for further testing for the presence of the five human polyomaviruses known so far—BK virus (BKV), JC virus (JCV), KI polyomavirus (KIPyV), WU polyomavirus (WUPyV), and MCPyV—and of simian virus 40 (SV40). No polyomavirus DNA could be detected in any of the samples tested by use of a nested PCR detecting BKV, JCV, and SV40; a newly designed PCR detecting KIPyV and WUPyV; or a newly designed PCR for MCPyV. We conclude that since no human polyomavirus DNA was detected in primary malignant melanomas on non-sun-exposed body surfaces, these polyomaviruses presumably are not major factors for the development of extracutaneous melanomas. PMID:18768658

  2. HIV-associated progressive multifocal leukoencephalopathy: longitudinal study of JC virus non-coding control region rearrangements and host immunity.

    PubMed

    Iannetta, Marco; Bellizzi, Anna; Lo Menzo, Sara; Anzivino, Elena; D'Abramo, Alessandra; Oliva, Alessandra; D'Agostino, Claudia; d'Ettorre, Gabriella; Pietropaolo, Valeria; Vullo, Vincenzo; Ciardi, Maria Rosa

    2013-06-01

    John Cunningham virus (JCV), the etiological agent of progressive multifocal leukoencephalopathy (PML), contains a hyper-variable non-coding control region usually detected in urine of healthy individuals as archetype form and in the brain and cerebrospinal fluid (CSF) of PML patients as rearranged form. We report a case of HIV-related PML with clinical, immunological and virological data longitudinally collected. On admission (t0), after 8-week treatment with a rescue highly active antiretroviral therapy (HAART), the patient showed a CSF-JCV load of 16,732 gEq/ml, undetectable HIV-RNA and an increase of CD4+ cell count. Brain magnetic resonance imaging (MRI) showed PML-compatible lesions without contrast enhancement. We considered PML-immune reconstitution inflammatory syndrome as plausible because of the sudden onset of neurological symptoms after the effective HAART. An experimental JCV treatment with mefloquine and mirtazapine was added to steroid boli. Two weeks later (t1), motor function worsened and MRI showed expanded lesions with cytotoxic oedema. CSF JCV-DNA increased (26,263 gEq/ml) and JCV viremia was detected. After 4 weeks (t2), JCV was detected only in CSF (37,719 gEq/ml), and 8 weeks after admission (t3), JC viral load decreased in CSF and JCV viremia reappeared. The patient showed high level of immune activation both in peripheral blood and CSF. He died 4 weeks later. Considering disease progression, combined therapy failure and immune hyper-activation, we finally classified the case as classical PML. The archetype variant found in CSF at t0/t3 and a rearranged sequence detected at t1/t2 suggest that PML can develop from an archetype virus and that the appearance of rearranged genotypes contribute to faster disease progression.

  3. Development of strong vortex pinning and very high Jc in iron based superconductors

    NASA Astrophysics Data System (ADS)

    Tarantini, Chiara

    2015-03-01

    Ba(Fe1-xCox)2 As2 (Ba122) is the most tunable of the Fe-based superconductors (FBS) in terms of its acceptance of high densities of secondary phases capable of acting as effective pinning centers without depressing the properties of the superconducting matrix. It has been demonstrated that self-assembled nanorods made of Ba-Fe-O generate a strong correlated pinning along the c-axis, enhancing the critical current density, Jc, in this direction and reducing the Jc anisotropy. However, when 20% of secondary phases are introduced, the reduction of the cross-section becomes significant, decreasing the low field performance. In order to overcome this issue, artificially introduced pinning centers can be added by multilayer deposition producing an almost isotropic increase of Jc. Moreover, FBS are very sensitive to strain, allowing an important enhancement in the critical temperature, Tc, of the material. It will be shown that strain induced by the substrate can further improve Jc of both single and multilayer films by more than expected because of the Tc increase. The multilayer deposition of Ba122 on CaF2 increases the pinning force density, Fp, by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5T and 4.2 K, the highest value ever reported in any 122 phase. This work shows that the in-field performance of Ba122 widely exceeds that of Nb3Sn above 10T, attracting attention for possible applications.

  4. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    PubMed

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.

  5. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling.

    PubMed

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K; Joshi, Priyanka S; Agarwal, Pradeep K

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H 2 O 2 and [Formula: see text]) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K + /Na + ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes ( CAT and SOD ) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants.

  6. Enhancement of Hc2 and Jc by carbon-based chemical doping

    NASA Astrophysics Data System (ADS)

    Yeoh, W. K.; Dou, S. X.

    2007-06-01

    In the past 5 years, various kinds of doping of MgB 2, including single elements (metal and non-metal), silicates, various carbon sources, and other compounds have been investigated and reported. Most nanoparticle doping leads to improvement of critical current density, Jc( H), and performance, but some types show a negative effect. In this paper, the effect of carbon doping on Jc and the upper critical field, Hc2, of MgB 2 is reviewed. Carbon substitution effects make two distinguishable contributions to the enhancement of Jc field performance: increase of Hc2 and improvement of flux pinning, both because carbon substitutes for boron in the MgB 2 lattice. Among all the carbon sources so far, nano-SiC has been confirmed to be the most effective dopant to enhance the Jc in magnetic fields and Hc2. An irreversibility field, Hirr, of 10 T has been achieved with nano-SiC doping at 20 K, exceeding Hirr of NbTi at 4.2 K. Besides that, Hc2 of carbon alloyed MgB 2 film has reached the value of 71 T. The significant enhancement in Jc( H) and Hc2 via carbon substitution has provided great potential for practical applications of MgB 2. The dual reaction model proposed by the authors’ group provides a comprehensive understanding of the mechanism of enhancement in Jc and Hc2 by chemical doping. Further improvement in self-field Jc performance while maintaining the already achieved in-field performance remains as a major challenge in the development of MgB 2.

  7. Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples▿

    PubMed Central

    McQuaig, Shannon M.; Scott, Troy M.; Lukasik, Jerzy O.; Paul, John H.; Harwood, Valerie J.

    2009-01-01

    In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens. PMID:19346361

  8. Mutations Allow JC Polyomaviruses to Elude Antibody Recognition | Center for Cancer Research

    Cancer.gov

    JC polyomavirus (JCV) infects the urinary tract of most adults. In healthy individuals, JCV infection does not cause noticeable symptoms. However, in those with compromised immune systems, JCV can cause a lethal brain disease called progressive multifocal leukoencephalopathy (PML). Data from a recently approved assay to detect serum antibodies specific for the JCV protein VP1 revealed that patients with antibodies are at increased risk of developing PML. At the same time, sequencing studies of JCV in cerebrospinal fluid (CSF) identified a number of mutations in VP1. Christopher Buck, Ph.D., and Diana Pastrana, Ph.D., of CCR’s Laboratory of Cellular Oncology, and their colleagues hypothesized that the VP1 mutations could allow the virus to evade antibody-mediated elimination.

  9. Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

    PubMed Central

    Hu, Ying-Xiong; Tao, Yan-Bin; Xu, Zeng-Fu

    2017-01-01

    Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism. PMID:29312375

  10. Diagnostic value of JC/BK virus antibody immunohistochemistry staining in urine samples from posttransplant immunosuppressed patients in relation to polyomavirus reactivation.

    PubMed

    Yuste, Rosario Sanchez; Frías, Carolina; López, Ana; Vallejo, Carlos; Martín, Paloma; Bellas, Carmen

    2008-01-01

    To compare the diagnostic value of cytology and immunohistochemistry staining (IHS) of urine samples for polyomavirus reactivation diagnosis. Sixty-eight urine samples collected from 18 immunosuppressed patients were analyzed by Papanicolaou and IHS with a JC/BK virus-specific monoclonal antibody. Overall, polyomavirus BK (BKV) was positive in 11 of 18 patients (61.1%) (3 of whom developed hemorrhagic cystitis) and in 23 of 68 urine samples (28%). Of 23 samples, 4 (17%) were positive by 1 of the 2 techniques, only. Of 23 samples, 19 (83%) were positive by both methods. In matching urine samples from the same patient, the number of BKV-infected positive cells detected by IHS in urine slides was higher than those detected by Papanicolaou staining (71.3%). The main advantage of LHS is that it allowed confirmation of BKV infection diagnosis in urine samples. IHS detected more BKV-infected cells in samples with few positive urothelial cells, which would have gone undetected if only Papanicolaou staining had been used as the BKV screening method. Urine samples testing for BKV by both techniques will improve diagnosis in asymptomatic patients, allowing early therapeutic intervention and a better clinical outcome.

  11. Association of Progressive Multifocal Leukoencephalopathy Lesion Volume With JC Virus Polymerase Chain Reaction Results in Cerebrospinal Fluid of Natalizumab-Treated Patients With Multiple Sclerosis.

    PubMed

    Wijburg, Martijn T; Kleerekooper, Iris; Lissenberg-Witte, Birgit I; de Vos, Marlieke; Warnke, Clemens; Uitdehaag, Bernard M J; Barkhof, Frederik; Killestein, Joep; Wattjes, Mike P

    2018-03-12

    The JC virus (JCV) was named after the first patient to be described with progressive multifocal leukoencephalopathy (PML), John Cunningham. Detection of JC virus DNA in cerebrospinal fluid (CSF) by polymerase chain reaction (PCR), and of specific lesions by brain magnetic resonance imaging (MRI), are both considered essential for the diagnosis of natalizumab-associated PML (NTZ-PML) in patients with multiple sclerosis. However, strict pharmacovigilance by MRI can result in detection of patients with small lesions and undetectable JCV DNA in CSF. To investigate the association of PML lesion characteristics on MRI with both qualitative and quantitative JCV PCR results in CSF of patients with NTZ-PML. This was a retrospective, cross-sectional study conducted from January 2007 to December 2014 in patients considered to have NTZ-PML based on a set of predefined criteria. Follow-up was at least 6 months. Data of patients from the Dutch-Belgian NTZ-PML cohort and patients treated at multiple medical centers in Belgium and the Netherlands and selected for research purposes were included as a convenience sample. Brain MRI scans were analyzed for PML lesion volume, location, dissemination, and signs of inflammation. Associations of the qualitative and quantitative CSF JCV PCR results with PML MRI characteristics were calculated. Of the 73 patients screened, 56 were included (37 were women). At inclusion, 9 patients (16.1%) had undetectable JCV DNA in CSF. Patients with a positive PCR had larger total PML lesion volumes than those with undetectable JCV DNA (median volume, 22.9 mL; interquartile range, 9.2-60.4 mL vs median volume, 6.7 mL; interquartile range, 4.9-14.7 mL; P = .008), and logistic regression showed that a lower PML lesion volume significantly increased the probability for undetectable JCV DNA. There was a positive correlation between PML lesion volume and JCV copy numbers (Spearman ρ, 0.32; P = .03). Progressive multifocal leukoencephalopathy lesion

  12. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    PubMed

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  13. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  14. Influenza Virus Induces Apoptosis via BAD-Mediated Mitochondrial Dysregulation

    PubMed Central

    Tran, Anh T.; Cortens, John P.; Du, Qiujiang; Wilkins, John A.

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication. PMID:23135712

  15. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    PubMed

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.

    PubMed

    Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C

    2014-11-01

    Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses

  17. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  18. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors.

    PubMed

    Egli, Adrian; Infanti, Laura; Dumoulin, Alexis; Buser, Andreas; Samaridis, Jacqueline; Stebler, Christine; Gosert, Rainer; Hirsch, Hans H

    2009-03-15

    The replication of BK virus (BKV) and JC virus (JCV) is linked to polyomavirus-associated nephropathy, hemorrhagic cystitis, and multifocal leukoencephalopathy in immunodeficient patients, but the behavior of these viruses in immunocompetent individuals has hardly been characterized. We used EIA to study samples obtained from 400 healthy blood donors aged 20-59 years for BKV- and JCV-specific antibodies against virus-like particles. We also studied BKV and JCV loads in plasma and urine among these individuals by use of real-time polymerase chain reaction. IgG seroprevalence was 82% (328 of 400 donors) for BKV and 58% (231 of400) for JCV. As age increased (age groups were divided by decade), the seroprevalence of BKV decreased from 87% (87 of 100) in the youngest group (aged 20-29 years) to 71% (71 of 100) in the oldest group (aged 50-59 years) (P = .006), whereas the seroprevalence of JCV increased from 50% (50 of 100) in the youngest group to 68% (68 of 100) in the oldest group (P = .06). Asymptomatic urinary shedding of BKV and JCV was observed in 28 (7%) and 75 (19%) of 400 subjects, respectively, with median viral loads of 3.51 and 4.64 log copies/mL, respectively (P < .001). Unlike urinary BKV loads, urinary JCV loads were positively correlated with IgG levels. The shedding of JCV was more commonly observed among individuals who were seropositive only for JCV, compared with individuals who were seropositive for both BKV and JCV, suggesting limited cross-protection from BKV immunity. Noncoding control regions were of archetype architecture in all cases, except for 1 rearranged JCV variant. Neither BKV nor JCV DNA was detected in plasma. Our study provides important data about polyomavirus infection and replication in healthy, immunocompetent individuals. These data indicate significant differences between BKV and JCV with respect to virus-host interaction and epidemiology.

  19. Recombinant measles viruses expressing respiratory syncytial virus proteins induced virus-specific CTL responses in cotton rats.

    PubMed

    Yamaji, Yoshiaki; Nakayama, Tetsuo

    2014-07-31

    Respiratory syncytial virus (RSV) is a common cause of serious lower respiratory tract illnesses in infants. Natural infections with RSV provide limited protection against reinfection because of inefficient immunological responses that do not induce long-term memory. RSV natural infection has been shown to induce unbalanced immune response. The effective clearance of RSV is known to require the induction of a balanced Th1/Th2 immune response, which involves the induction of cytotoxic T lymphocytes (CTL). In our previous study, recombinant AIK-C measles vaccine strains MVAIK/RSV/F and MVAIK/RSV/G were developed, which expressed the RSV fusion (F) protein or glycoprotein (G). These recombinant viruses elicited antibody responses against RSV in cotton rats, and no infectious virus was recovered, but small amounts of infiltration of inflammatory cells were observed in the lungs following RSV challenge. In the present study, recombinant AIK-C measles vaccine strains MVAIK/RSV/M2-1 and MVAIK/RSV/NP were developed, expressing RSV M2-1 or Nucleoprotein (NP), respectively. These viruses exhibited temperature-sensitivity (ts), which was derived from AIK-C, and expressed respective RSV antigens. The intramuscular inoculation of cotton rats with the recombinant measles virus led to the induction of CD8(+) IFN-γ(+) cells. No infectious virus was recovered from a lung homogenate following the challenge. A Histological examination of the lungs revealed a significant reduction in inflammatory reactions without alveolar damage. These results support the recombinant measles viruses being effective vaccine candidates against RSV that induce RSV-specific CTL responses with or without the development of an antibody response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.

    PubMed

    Tang, Yan-Dong; Guo, Jin-Chao; Wang, Tong-Yun; Zhao, Kuan; Liu, Ji-Ting; Gao, Jia-Cong; Tian, Zhi-Jun; An, Tong-Qing; Cai, Xue-Hui

    2018-03-06

    Several groups have used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) for DNA virus editing. In most cases, one single-guide RNA (sgRNA) is used, which produces inconsistencies in gene editing. In this study, we used a swine herpesvirus, pseudorabies virus, as a model to systematically explore the application of CRISPR/Cas9 in DNA virus editing. In our current report, we demonstrated that cotransfection of 2 sgRNAs and a viral genome resulted in significantly better knockout efficiency than the transfection-infection-based approach. This method could result in 100% knockout of ≤3500 bp of viral nonessential large fragments. Furthermore, knockin efficiency was significantly improved by using 2 sgRNAs and was also correlated with the number of background viruses. We also demonstrated that the background viruses were all 2-sgRNA-mediated knockout mutants. Finally, this study demonstrated that the efficacy of gene knockin is determined by the replicative kinetics of background viruses. We propose that CRISPR/Cas9 coupled with 2 sgRNAs creates a powerful tool for DNA virus editing and offers great potential for future applications.-Tang, Y.-D., Guo, J.-C., Wang, T.-Y., Zhao, K., Liu, J.-T., Gao, J.-C., Tian, Z.-J., An, T.-Q., Cai, X.-H. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.

  1. Incidence, clinical outcome, and management of virus-induced hemorrhagic cystitis in children and adolescents after allogeneic hematopoietic cell transplantation.

    PubMed

    Gorczynska, Ewa; Turkiewicz, Dominik; Rybka, Katarzyna; Toporski, Jacek; Kalwak, Krzysztof; Dyla, Agnieszka; Szczyra, Zofia; Chybicka, Alicja

    2005-10-01

    We analyzed the incidence, etiology, risk factors, and clinical management of hemorrhagic cystitis (HC) in 102 children who underwent allogeneic stem cell transplantation: 28 from matched siblings, 57 from unrelated donors, and 17 from mismatched relatives. Conditioning regimens consisted of high-dose chemotherapy (n=83) or total body irradiation (n=19). In all children, urine and plasma were prospectively screened for human polyomavirus (HPV; BK virus [BKV] and JC virus [JCV]) or adenovirus (AdV) DNA with a polymerase chain reaction-based assay. Viral DNA was detected in the urine of 56 children (54.9%): BKV in 48 (47%), JCV in 4 (3.9%), and AdV in 4 (3.9%). HC occurred in 26 children (25.5%), and viruria was detected in all of them: BKV in 21 (80.8%), AdV in 4 (14.4%), and JCV in 1 (3.8%). All patients with AdV viruria developed HC. The cumulative incidence of HC in patients with HPV viruria was 0.43. The only significant risk factor for HC in patients with HPV-positive urine was conditioning with high-dose chemotherapy. Twenty-two children were treated with cidofovir, with no significant toxicity. In all treated patients but 1, the clinical symptoms were moderate, and no HC-related death was observed. We conclude that virus-induced HC is a frequent complication after allogeneic hematopoietic cell transplantation. Treatment with cidofovir is feasible, and further studies are warranted to evaluate its activity in HC mediated by BKV or JCV.

  2. #GeriMedJC: The Twitter Complement to the Traditional-Format Geriatric Medicine Journal Club.

    PubMed

    Gardhouse, Amanda I; Budd, Laura; Yang, Seu Y C; Wong, Camilla L

    2017-06-01

    Twitter is a public microblogging platform that overcomes physical limitations and allows unrestricted participation beyond academic silos, enabling interactive discussions. Twitter-based journal clubs have demonstrated growth, sustainability, and worldwide communication, using a hashtag (#) to follow participation. This article describes the first year of #GeriMedJC, a monthly 1-hour live, 23-hour asynchronous Twitter-based complement to the traditional-format geriatric medicine journal club. The Twitter moderator tweets from the handle @GeriMedJC; encourages use of #GeriMedJC; and invites content experts, study authors, and followers to participate in critical appraisal of medical literature. Using the hashtag #GeriMedJC, tweets were categorized according to thematic content, relevance to the journal club, and authorship. Third-party analytical tools Symplur and Twitter Analytics were used for growth and effect metrics (number of followers, participants, tweets, retweets, replies, impressions). Qualitative analysis of follower and participant profiles was used to establish country of origin and occupation. A semistructured interview of postgraduate trainees was conducted to ascertain qualitative aspects of the experience. In the first year, @GeriMedJC has grown to 541 followers on six continents. Most followers were physicians (43%), two-thirds of which were geriatricians. Growth metrics increased over 12 months, with a mean of 121 tweets, 25 participants, and 105,831 impressions per journal club. Tweets were most often related to the article being appraised (87.5%) and ranged in thematic content from clinical practice (29%) to critical appraisal (24%) to medical education (20%). #GeriMedJC is a feasible example of using social media platforms such as Twitter to encourage international and interprofessional appraisal of medical literature. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  3. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis.

    PubMed

    Watson, Neva B; Schneider, Karin M; Massa, Paul T

    2015-03-15

    Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced

  4. Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Barley stripe mosaic virus (BSMV; genus Hordeivirus family Virgaviridae) was the first reported and still widely used virus-induced gene silencing (VIGS) vector for monocotyledons. The utility of the virus as VIGS vector has been demonstrated in monocotyledonous hosts including wheat and barley. Des...

  5. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    PubMed Central

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  6. Virus-induced gene silencing in cultivated cotton (Gossypium spp.) using Tobacco rattle virus

    USDA-ARS?s Scientific Manuscript database

    The study described here has optimized the conditions for virus induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloro...

  7. J.C. Nalle Community School: A Study of a School Turnaround Effort. Publication #2015-14

    ERIC Educational Resources Information Center

    Redd, Zakia; Princiotta, Daniel; Stratford, Brandon; Caal, Selma; Li, Weilin; Murphy, Kelly; Coffey, Amelia; Carrington, Nicholas; Carney, Rachel; Oster, Maryjo; Horton, Susannah

    2015-01-01

    J.C. Nalle is a Community School located in the Marshall Heights neighborhood of Ward 7 in Washington, D.C. The community in which J.C. Nalle is located, historically one of the more economically disadvantaged areas of the city, has experienced a number of changes in recent years. This report of evaluation findings begins with an introduction to…

  8. JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment.

    PubMed

    Costa, Helen P S; Oliveira, Jose T A; Sousa, Daniele O B; Morais, Janne K S; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Viegas, Ricardo A; Vasconcelos, Ilka M

    2014-01-01

    Jatropha curcas seed cake is a low-value by-product resulting from biodiesel production. The seed cake is highly toxic, but it has great potential for biotechnology applications as it is a repository of biomolecules that could be important in agriculture, medicine, and industry. To explore this potential, a novel trypsin inhibitor called JcTI-I was purified by fractionation of the crude extract with trichloroacetic acid (2.5%, v/v) followed by affinity chromatography (Trypsin-Sepharose 4B) and molecular exclusion (Sephacryl S-200). Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration showed that JcTI-I has approximately 20.0~kDa. Mass spectrometry analysis revealed that the intact molecular mass of JcTI-I is 10.252~kDa. Moreover, JcTI-I is a glycoprotein with 6.4% (m/m) carbohydrates, pI of 6.6, N-terminal sequence similarity around 60% to plant albumins and high stability to heat, pH, and salinity. JcTI-I presented antibacterial activity against the human pathogenic bacteria Salmonella enterica subspecies enterica serovar choleraesuis and Staphylococcus aureus, with minimum inhibitory concentration less than 5~μg/mL. Furthermore, JcTI-I did have inhibitory activity against the serine proteases from the tested bacteria. Otherwise, no hemolytic activity of human erythrocytes and signs of acute toxicity to mice were observed for JcTI-I. The results demonstrate the benefits of J. curcas seed cake as a source of trypsin inhibitor with potential for biotechnological application as a new antimicrobial agent against human pathogenic bacteria.

  9. JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment

    PubMed Central

    Costa, Helen P. S.; Oliveira, Jose T. A.; Sousa, Daniele O. B.; Morais, Janne K. S.; Moreno, Frederico B.; Monteiro-Moreira, Ana Cristina O.; Viegas, Ricardo A.; Vasconcelos, Ilka M.

    2014-01-01

    Jatropha curcas seed cake is a low-value by-product resulting from biodiesel production. The seed cake is highly toxic, but it has great potential for biotechnology applications as it is a repository of biomolecules that could be important in agriculture, medicine, and industry. To explore this potential, a novel trypsin inhibitor called JcTI-I was purified by fractionation of the crude extract with trichloroacetic acid (2.5%, v/v) followed by affinity chromatography (Trypsin-Sepharose 4B) and molecular exclusion (Sephacryl S-200). Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration showed that JcTI-I has approximately 20.0~kDa. Mass spectrometry analysis revealed that the intact molecular mass of JcTI-I is 10.252~kDa. Moreover, JcTI-I is a glycoprotein with 6.4% (m/m) carbohydrates, pI of 6.6, N-terminal sequence similarity around 60% to plant albumins and high stability to heat, pH, and salinity. JcTI-I presented antibacterial activity against the human pathogenic bacteria Salmonella enterica subspecies enterica serovar choleraesuis and Staphylococcus aureus, with minimum inhibitory concentration less than 5~μg/mL. Furthermore, JcTI-I did have inhibitory activity against the serine proteases from the tested bacteria. Otherwise, no hemolytic activity of human erythrocytes and signs of acute toxicity to mice were observed for JcTI-I. The results demonstrate the benefits of J. curcas seed cake as a source of trypsin inhibitor with potential for biotechnological application as a new antimicrobial agent against human pathogenic bacteria. PMID:24523715

  10. INTRINSIC NEURONAL PLASTICITY IN THE JUXTACAPSULAR NUCLEUS OF THE BED NUCLEI OF THE STRIA TERMINALIS (jcBNST)

    PubMed Central

    Francesconi, Walter; Berton, Fulvia; Koob, George F.; Sanna, Pietro Paolo

    2010-01-01

    The juxtacapsular nucleus of the anterior division of the BNST (jcBNST) receives robust glutamatergic projections from the basolateral nucleus of the amygdala (BLA), the postpiriform transition area, and the insular cortex as well as dopamine (DA) inputs from the midbrain. In turn the jcBNST sends GABAergic projections to the medial division of the central nucleus of the amygdala (CEAm) as well as other brain regions. We recently described a form of long-term potentiation of the intrinsic excitability (LTP-IE) of neurons of the juxtacapsular nucleus of BNST (jcBNST) in response to high-frequency stimulation (HFS) of the stria terminalis that was impaired during protracted withdrawal from alcohol, cocaine, and heroin and in rats chronically treated with corticotropin releasing factor (CRF) intracerebroventricularly. Here we show that DAergic neurotransmission is required for the induction of LTP-IE of jcBNTS neurons through dopamine (DA) D1 receptors. Thus, activation of the central CRF stress system and altered DAergic neurotransmission during protracted withdrawal from alcohol and drugs of abuse may contribute to the disruption of LTP-IE in the jcBNST. Impairment of this form of intrinsic neuronal plasticity in the jcBNST could result in inadequate neuronal integration and reduced inhibition of the CEA, contributing to the negative affective state that characterizes protracted abstinence in post-dependent individuals. These results provide a novel neurobiological target for vulnerability to alcohol and drug dependence. PMID:19683025

  11. Improved Pinning Morphology in HTS with Order of Magnitude Increase in Jc and Pinned Field

    DTIC Science & Technology

    2008-01-27

    Patricia Nieto 0.25 Lilliana Phamnguyen 0.25 William Rifenburgh 0.25 Adriana Rodriguez 0.25 Jonathan Salazar 0.25 Michael Saldana 0.25 Clinton Seibert...times higher than the initial Jc. Bulk YBCO was used in the experiment, and Jc set a new world’s record of 321 kA /cc for this variety of HTS, over 5

  12. Oxidative Lung Injury in Virus-Induced Wheezing

    DTIC Science & Technology

    2012-05-01

    Syncytial Virus Infection. Am J Physiol-Lung Cell & Mol Physiol, in press. 1 Annual Progress Report for the period ending 04/30/2012...epithelial cells infected with Respiratory Syncytial Virus: role in viral-induced Interferon Regulatory Factor activation. J Biol Chem. 276:19715-19722...severe RSV bronchiolitis. 2011. Amer J Resp Critic Care Med. 10. Kahn, J . S. 2003. Human metapneumovirus: a newly emerging respiratory pathogen

  13. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.

    PubMed

    Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu

    2016-08-01

    The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.

  14. A Japanese Encephalitis Virus Peptide Present on Johnson Grass Mosaic Virus-Like Particles Induces Virus-Neutralizing Antibodies and Protects Mice against Lethal Challenge

    PubMed Central

    Saini, Manisha; Vrati, Sudhanshu

    2003-01-01

    Protection against Japanese encephalitis virus (JEV) is antibody dependent, and neutralizing antibodies alone are sufficient to impart protection. Thus, we are aiming to develop a peptide-based vaccine against JEV by identifying JEV peptide sequences that could induce virus-neutralizing antibodies. Previously, we have synthesized large amounts of Johnson grass mosaic virus (JGMV) coat protein (CP) in Escherichia coli and have shown that it autoassembled to form virus-like particles (VLPs). The envelope (E) protein of JEV contains the virus-neutralization epitopes. Four peptides from different locations within JEV E protein were chosen, and these were fused to JGMV CP by recombinant DNA methods. The fusion protein autoassembled to form VLPs that could be purified by sucrose gradient centrifugation. Immunization of mice with the recombinant VLPs containing JEV peptide sequences induced anti-peptide and anti-JEV antibodies. A 27-amino-acid peptide containing amino acids 373 to 399 from JEV E protein, present on JGMV VLPs, induced virus-neutralizing antibodies. Importantly, these antibodies were obtained without the use of an adjuvant. The immunized mice showed significant protection against a lethal JEV challenge. PMID:12610124

  15. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  16. Fingolimod treatment abrogates chikungunya virus-induced arthralgia.

    PubMed

    Teo, Teck-Hui; Chan, Yi-Hao; Lee, Wendy W L; Lum, Fok-Moon; Amrun, Siti Naqiah; Her, Zhisheng; Rajarethinam, Ravisankar; Merits, Andres; Rötzschke, Olaf; Rénia, Laurent; Ng, Lisa F P

    2017-02-01

    Chikungunya virus (CHIKV) is one of the many rheumatic arthropod-borne alphaviruses responsible for debilitating joint inflammation in humans. Despite the severity in many endemic regions, clinically approved intervention targeting the virus remains unavailable. CD4 + T cells have been shown to mediate CHIKV-induced joint inflammation in mice. We demonstrate here that transfer of splenic CD4 + T cells from virus-infected C57BL/6 mice into virus-infected T cell receptor-deficient (TCR -/- ) mice recapitulated severe joint pathology including inflammation, vascular leakages, subcutaneous edema, and skeletal muscle necrosis. Proteome-wide screening identified dominant CD4 + T cell epitopes in nsP1 and E2 viral antigens. Transfer of nsP1- or E2-specific primary CD4 + T cell lines into CHIKV-infected TCR -/- recipients led to severe joint inflammation and vascular leakage. This pathogenic role of virus-specific CD4 + T cells in CHIKV infections led to the assessment of clinically approved T cell-suppressive drugs for disease intervention. Although drugs targeting interleukin-2 pathway were ineffective, treatment with fingolimod, an agonist of sphingosine 1-phosphate receptor, successfully abrogated joint pathology in CHIKV-infected animals by blocking the migration of CD4 + T cells into the joints without any effect on viral replication. These results set the stage for further clinical evaluation of fingolimod in the treatment of CHIKV-induced joint pathologies. Copyright © 2017, American Association for the Advancement of Science.

  17. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. Asmore » reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.« less

  18. Apoptosis induced in an early step of African swine fever virus entry into vero cells does not require virus replication.

    PubMed

    Carrascosa, Angel L; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; Revilla, Yolanda

    2002-03-15

    Permissive Vero cells develop apoptosis, as characterized by DNA fragmentation, caspases activation, cytosolic release of mitochondrial cytochrome c, and flow cytometric analysis of DNA content, upon infection with African swine fever virus (ASFV). To determine the step in virus replication that triggers apoptosis, we used UV-inactivated virus, inhibitors of protein and nucleic acid synthesis, and lysosomotropic drugs that block virus uncoating. ASFV-induced apoptosis was accompanied by caspase-3 activation, which was detected even in the presence of either cytosine arabinoside or cycloheximide, indicating that viral DNA replication and protein synthesis were not required to activate the apoptotic process. The activation of caspase-3 was released from chloroquine inhibition 2 h after virus absorption, while the infection with UV-inactivated ASFV did not induce the activation of the caspase cascade. We conclude that ASFV induces apoptosis in the infected cell by an intracellular pathway probably triggered during the process of virus uncoating.

  19. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep

    PubMed Central

    2012-01-01

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus. PMID:23083136

  20. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  1. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation.

    PubMed

    Zhuang, Yongliang; Hou, Hu; Zhao, Xue; Zhang, Zhaohui; Li, Bafang

    2009-08-01

    Collagen (JC) was extracted from jellyfish (Rhopilema esculentum) and hydrolyzed to prepare collagen hydrolysate (JCH). The protective effects of JC and JCH against UV-induced damages to mice skin were evaluated and compared in this article. JC and JCH could alleviate the UV-induced abnormal changes of antioxidative indicators, including the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities and the contents of glutathione (GSH) and malondiaidehyde (MDA). JC and JCH could protect skin lipid and collagen from the UV radiation damages. Furthermore, the changes of total ceramide and glycosaminoglycan in skin were recovered significantly by JC and JCH. The action mechanisms mainly involved the antioxidative properties and the repairing to endogenous collagen synthesis of JC and JCH in vivo. JCH with the lower molecular weight showed much higher effects than JC. The results indicated that JCH was a novel antiphotoaging agent from natural resources.

  2. Drug-induced hypersensitivity syndrome associated with Epstein-Barr virus infection.

    PubMed

    Descamps, V; Mahe, E; Houhou, N; Abramowitz, L; Rozenberg, F; Ranger-Rogez, S; Crickx, B

    2003-05-01

    Association of drug-induced hypersensitivity syndrome with viral infection is debated. Human herpesvirus 6 (HHV-6) reactivation has been the most frequently reported infection associated with this syndrome. However, a case of cytomegalovirus (CMV) infection was recently described associated with anticonvulsant-induced hypersensitivity syndrome. We report a case of severe allopurinol-induced hypersensitivity syndrome with pancreatitis associated with Epstein-Barr virus (EBV) infection. Active EBV infection was demonstrated in two consecutive serum samples by the presence of anti-EBV early antigen (EA) IgM antibodies and an increase in anti-EBV EA IgG antibodies, whereas no anti-EBV nuclear antigen IgG antibodies were detected. EBV DNA was detected by polymerase chain reaction (PCR) in peripheral blood mononuclear cells. Reactivation of HHV-6 was suggested only by the presence of anti-HHV-6 IgM antibodies, but HHV-6 DNA was not detected by PCR in the serum. Other viral investigations showed previous infection (CMV, rubella, measles, parvovirus B19), immunization after vaccination (hepatitis B virus), or absence of previous infection (hepatitis C virus, human immunodeficiency virus). We suggest that EBV infection may participate in some cases, as do the other herpesviruses HHV-6 or CMV, in the development of drug-induced hypersensitivity syndrome.

  3. JC2Sat-FF : An International Collaboration Nano-Sat Project Overview of the System Analyses and Design

    NASA Astrophysics Data System (ADS)

    Yoshihara, K.; van Mierlo, M.; Ng, A.; Shankar Kumar, B.; De Ruiter, A.; Komatsu, Y.; Horiguchi, H.; Hashimoto, H.

    2008-08-01

    This paper introduces the Japan Canada Joint Collaboration Satellites - Formation Flying (JC2Sat-FF) project. JC2Sat-FF is a joint project between the Canadian Space Agency (CSA) and the Japan Aerospace Exploration Agency (JAXA) with the end goal of building, launching and operating two 20kg- class nanosatellites for technical demonstration of formation flight (FF) using differential drag technique, relative navigation using commercial off-the-shelf (COTS) dual band GPS receivers and far infra-red radiance measurement. A unique aspect of this project is that the two JC2Sats are developed by a united small team consisting of engineers and researchers from both agencies. Technical exchange in this international team gives stimulation to the members and generates a synergistic effect for the project.

  4. The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide.

    PubMed

    Jin, Huali; Yan, Zhipeng; Prabhakar, Bellur S; Feng, Zongdi; Ma, Yijie; Verpooten, Dustin; Ganesh, Balaji; He, Bin

    2010-02-01

    Ebola virus causes rapidly progressive haemorrhagic fever, which is associated with severe immuosuppression. In infected dendritic cells (DCs), Ebola virus replicates efficiently and inhibits DC maturation without inducing cytokine expression, leading to impaired T-cell proliferation. However, the underlying mechanism remains unclear. In this study, we report that Ebola virus VP35 impairs the maturation of mouse DCs. When expressed in mouse immature DCs, Ebola virus VP35 prevents virus-stimulated expression of CD40, CD80, CD86 and major histocompatibility complex class II. Further, it suppresses the induction of cytokines such as interleukin (IL)-6, IL-12, tumour necrosis factor alpha and alpha/beta interferon (IFN-alpha/beta). Notably, Ebola VP35 attenuates the ability of DCs to stimulate the activation of CD4(+) T cells. Addition of type I IFN to mouse DCs only partially reverses the inhibitory effects of VP35. Moreover, VP35 perturbs mouse DC functions induced by lipopolysaccharide, an agonist of Toll-like receptor 4. Deletion of the amino terminus abolishes its activity, whereas a mutation in the RNA binding motif has no effect. Our work highlights a critical role of VP35 in viral interference in DC function with resultant deficiency in T-cell function, which may contribute to the profound virulence of Ebola virus infection.

  5. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses.

    PubMed

    Dunkel, Amber; Shen, Shixue; LaBranche, Celia C; Montefiori, David; McGettigan, James P

    2015-11-01

    We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.

  6. Genetic studies of cell fusion induced by herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less

  7. Virus Innexins induce alterations in insect cell and tissue function

    USDA-ARS?s Scientific Manuscript database

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  8. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains

    PubMed Central

    1980-01-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction. PMID:6249881

  9. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    PubMed

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  10. Measles virus-induced suppression of immune responses.

    PubMed

    Griffin, Diane E

    2010-07-01

    Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.

  11. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    PubMed

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  12. Enhancement of the in-field Jc of MgB2 via SiCl4 doping

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.

    2010-06-01

    We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .

  13. The Interaction Between Human Papillomavirus and Other Viruses

    PubMed Central

    Guidry, J. T.; Scott, R. S.

    2016-01-01

    The etiological role of human papillomavirus (HPV) in anogenital tract and head and neck cancers is well established. However, only a low percentage of HPV-positive women develop cancer, indicating that HPV is necessary but not sufficient in carcinogenesis. Several biological and environmental cofactors have been implicated in the development of HPV-associated carcinoma that include immune status, hormonal changes, parity, dietary habits, tobacco usage, and co-infection with other sexually transmissible agents. Such cofactors likely contribute to HPV persistent infection through diverse mechanisms related to immune control, efficiency of HPV infection, and influences on tumor initiation and progression. Conversely, HPV co-infection with other factors may also harbor anti-tumor effects. Here, we review epidemiological and experimental studies investigating human immunodeficiency virus (HIV), herpes simplex virus (HSV) 1 and 2, human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), BK virus (BKV) JC virus (JCV), and adeno-associated virus (AAV) as viral cofactors in or therapeutic factors against the development of genital and oral HPV-associated carcinomas. PMID:27826043

  14. Immunotherapy of Human Papilloma Virus Induced Disease

    PubMed Central

    van der Burg, Sjoerd H

    2012-01-01

    Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment. PMID:23341861

  15. Virus-induced gene silencing and transient gene expression in soybean using Bean pod mottle virus infectious clones

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a powerful and rapid approach for determining the functions of plant genes. The basis of VIGS is that a viral genome is engineered so that it can carry fragments of plant genes, typically in the 200-300 base pair size range. The recombinant viruses are used to ...

  16. A canine distemper model of virus-induced anergy.

    PubMed

    Mangi, R J; Munyer, T P; Krakowka, S; Jacoby, R O; Kantor, F S

    1976-05-01

    For development of an animal model of virus-induced anergy, the effect of canine distemper virus (CDV) upon cell-mediated immunity in dogs was investigated. First, canine cutaneous reactions and in vitro lymphocyte responses to soluble protein antigens were characterized. Dogs immunized with picryl guinea pig albumin and with keyhole limpet hemocyanin (both in complete Freund's adjuvant) responded reproducibly to intracutaneous challenge with these antigens. Reactivity peaked in 20-40 days (maximal induration, 6-50 mm). Lymphocytes from these animals responded in vitro to stimulation with keyhole limpet hemocyanin or purified protein derivative. This stimulation was antigen-specific and was maximal on day 6 of culture. Infection with CDV depressed cutaneous reactivity and lymphocyte response in vitro to antigens and mitogens. This effect was transient in animals previously vaccinated with attenuated CDV; however, gnotobiotic puppies (susceptible to CDV) had prolonged depression of cell-mediated immunity and lymphopenia. Some of these animals developed neurologic symptoms and died. The findings indicate that CDV infection is a potentially useful model for study of virus-induced depression of T (thymus)-cell responses and support the hypothesis that there is more than one mechanism responsible for this phenomenon.

  17. Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread

    PubMed Central

    McCarty, Thomas; Martin, Scott E.; Le Nouën, Cyril; Buehler, Eugen; Chen, Yu-Chi; Smelkinson, Margery; Ganesan, Sundar; Fischer, Elizabeth R.; Brock, Linda G.; Liang, Bo; Munir, Shirin; Collins, Peter L.; Buchholz, Ursula J.

    2016-01-01

    Human respiratory syncytial virus (RSV) is an enveloped RNA virus that is the most important viral cause of acute pediatric lower respiratory tract illness worldwide, and lacks a vaccine or effective antiviral drug. The involvement of host factors in the RSV replicative cycle remains poorly characterized. A genome-wide siRNA screen in human lung epithelial A549 cells identified actin-related protein 2 (ARP2) as a host factor involved in RSV infection. ARP2 knockdown did not reduce RSV entry, and did not markedly reduce gene expression during the first 24 hr of infection, but decreased viral gene expression thereafter, an effect that appeared to be due to inhibition of viral spread to neighboring cells. Consistent with reduced spread, there was a 10-fold reduction in the release of infectious progeny virions in ARP2-depleted cells at 72 hr post-infection. In addition, we found that RSV infection induced filopodia formation and increased cell motility in A549 cells and that this phenotype was ARP2 dependent. Filopodia appeared to shuttle RSV to nearby uninfected cells, facilitating virus spread. Expression of the RSV F protein alone from a plasmid or heterologous viral vector in A549 cells induced filopodia, indicating a new role for the RSV F protein, driving filopodia induction and virus spread. Thus, this study identified roles for ARP2 and filopodia in RSV-induced cell motility, RSV production, and RSV cell-to-cell spread. PMID:27926942

  18. Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest

    PubMed Central

    Khaperskyy, Denys A.; Emara, Mohamed M.; Johnston, Benjamin P.; Anderson, Paul; Hatchette, Todd F.; McCormick, Craig

    2014-01-01

    Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication. PMID:25010204

  19. CLEC5A Regulates Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality

    PubMed Central

    Chen, Szu-Ting; Liu, Ren-Shyan; Wu, Ming-Fang; Lin, Yi-Ling; Chen, Se-Yi; Tan, David Tat-Wei; Chou, Teh-Ying; Tsai, I-Shuen; Li, Lei; Hsieh, Shie-Liang

    2012-01-01

    CLEC5A/MDL-1, a member of the myeloid C-type lectin family expressed on macrophages and neutrophils, is critical for dengue virus (DV)-induced hemorrhagic fever and shock syndrome in Stat1 −/− mice and ConA-treated wild type mice. However, whether CLEC5A is involved in the pathogenesis of viral encephalitis has not yet been investigated. To investigate the role of CLEC5A to regulate JEV-induced neuroinflammation, antagonistic anti-CLEC5A mAb and CLEC5A-deficient mice were generated. We find that Japanese encephalitis virus (JEV) directly interacts with CLEC5A and induces DAP12 phosphorylation in macrophages. In addition, JEV activates macrophages to secrete proinflammatory cytokines and chemokines, which are dramatically reduced in JEV-infected Clec5a−/− macrophages. Although blockade of CLEC5A cannot inhibit JEV infection of neurons and astrocytes, anti-CLEC5A mAb inhibits JEV-induced proinflammatory cytokine release from microglia and prevents bystander damage to neuronal cells. Moreover, JEV causes blood-brain barrier (BBB) disintegrity and lethality in STAT1-deficient (Stat1 −/−) mice, whereas peripheral administration of anti-CLEC5A mAb reduces infiltration of virus-harboring leukocytes into the central nervous system (CNS), restores BBB integrity, attenuates neuroinflammation, and protects mice from JEV-induced lethality. Moreover, all surviving mice develop protective humoral and cellular immunity against JEV infection. These observations demonstrate the critical role of CLEC5A in the pathogenesis of Japanese encephalitis, and identify CLEC5A as a target for the development of new treatments to reduce virus-induced brain damage. PMID:22536153

  20. Association between simian virus 40 and non-Hodgkin lymphoma

    NASA Technical Reports Server (NTRS)

    Vilchez, Regis A.; Madden, Charles R.; Kozinetz, Claudia A.; Halvorson, Steven J.; White, Zoe S.; Jorgensen, Jeffrey L.; Finch, Chris J.; Butel, Janet S.

    2002-01-01

    BACKGROUND: Non-Hodgkin lymphoma has increased in frequency over the past 30 years, and is a common cancer in HIV-1-infected patients. Although no definite risk factors have emerged, a viral cause has been postulated. Polyomaviruses are known to infect human beings and to induce tumours in laboratory animals. We aimed to identify which one of the three polyomaviruses able to infect human beings (simian virus 40 [SV40], JC virus, and BK virus) was associated with non-Hodgkin lymphoma. METHODS: We analysed systemic non-Hodgkin lymphoma from 76 HIV-1-infected and 78 HIV-1-uninfected patients, and non-malignant lymphoid samples from 79 HIV-1-positive and 107 HIV-1-negative patients without tumours; 54 colon and breast carcinoma samples served as cancer controls. We used PCR followed by Southern blot hybridisation and DNA sequence analysis to detect DNAs of polyomaviruses and herpesviruses. FINDINGS: Polyomavirus T antigen sequences, all of which were SV40-specific, were detected in 64 (42%) of 154 non-Hodgkin lymphomas, none of 186 non-malignant lymphoid samples, and none of 54 control cancers. This difference was similar for HIV-1-infected patients and HIV-1-uninfected patients alike. Few tumours were positive for both SV40 and Epstein-Barr virus. Human herpesvirus type 8 was not detected. SV40 sequences were found most frequently in diffuse large B-cell and follicular-type lymphomas. INTERPRETATION: SV40 is significantly associated with some types of non-Hodgkin lymphoma. These results add lymphomas to the types of human cancers associated with SV40.

  1. [Progress on mechanism of cell apoptosis induced by rubella virus].

    PubMed

    Li, Zhen-mei; Chu, Fu-lu; Liu, Ying; Wang, Zhi-yu

    2013-09-01

    Rubella virus (RV), a member of the family Togaviridae, can induce apoptosis of host cells in vitro. Protein kinases of the Ras-Raf-MEK-ERK pathway and PI3K-Akt pathway play essential roles in virus multiplication, cell survival and apoptosis. Proteins p53 and TAp63 that bind to specific DNA sequences stimulate Bax in a manner to produce functional pores that facilitate release of mitochondrial cytochrome c and downstream caspase activation. In this review, the molecular mechanisms of RV-induced cell apoptosis, including RV-infected cell lines, pathological changes in cell components and apoptosis signaling pathways are summarized.

  2. Resistance to Virus Infection Conferred by the Interferon-Induced Promyelocytic Leukemia Protein

    PubMed Central

    Chelbi-Alix, Mounira K.; Quignon, Frédérique; Pelicano, Luis; Koken, Marcel H. M.; de Thé, Hugues

    1998-01-01

    The interferon (IFN)-induced promyelocytic leukemia (PML) protein is specifically associated with nuclear bodies (NBs) whose functions are yet unknown. Two of the NB-associated proteins, PML and Sp100, are induced by IFN. Here we show that overexpression of PML and not Sp100 induces resistance to infections by vesicular stomatitis virus (VSV) (a rhabdovirus) and influenza A virus (an orthomyxovirus) but not by encephalomyocarditis virus (a picornavirus). Inhibition of viral multiplication was dependent on both the level of PML expression and the multiplicity of infection and reached 100-fold. PML was shown to interfere with VSV mRNA and protein synthesis. Compared to the IFN mediator MxA protein, PML had less powerful antiviral activity. While nuclear body localization of PML did not seem to be required for the antiviral effect, deletion of the PML coiled-coil domain completely abolished it. Taken together, these results suggest that PML can contribute to the antiviral state induced in IFN-treated cells. PMID:9444998

  3. Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections.

    PubMed

    Jiang, Dong; Weidner, Jessica M; Qing, Min; Pan, Xiao-Ben; Guo, Haitao; Xu, Chunxiao; Zhang, Xianchao; Birk, Alex; Chang, Jinhong; Shi, Pei-Yong; Block, Timothy M; Guo, Ju-Tao

    2010-08-01

    Interferons (IFNs) are key mediators of the host innate antiviral immune response. To identify IFN-stimulated genes (ISGs) that instigate an antiviral state against two medically important flaviviruses, West Nile virus (WNV) and dengue virus (DENV), we tested 36 ISGs that are commonly induced by IFN-alpha for antiviral activity against the two viruses. We discovered that five ISGs efficiently suppressed WNV and/or DENV infection when they were individually expressed in HEK293 cells. Mechanistic analyses revealed that two structurally related cell plasma membrane proteins, IFITM2 and IFITM3, disrupted early steps (entry and/or uncoating) of the viral infection. In contrast, three IFN-induced cellular enzymes, viperin, ISG20, and double-stranded-RNA-activated protein kinase, inhibited steps in viral proteins and/or RNA biosynthesis. Our results thus imply that the antiviral activity of IFN-alpha is collectively mediated by a panel of ISGs that disrupt multiple steps of the DENV and WNV life cycles.

  4. Isolation and application of Gordonia sp. JC11 for removal of boat lubricants.

    PubMed

    Chanthamalee, Jirapat; Luepromchai, Ekawan

    2012-01-01

    Boat lubricants are continuously released into the marine environment and thereby cause chronic oil pollution. This study aims to isolate lubricant-degrading microorganisms from Thai coastal areas as well as to apply a selected strain for removal of boat lubricants. Ten microorganisms in the genera of Gordonia, Microbacterium, Acinetobacter, Pseudomonas, Brucella, Enterococcus and Candida were initially isolated by crude oil enrichment culture techniques. The lubricant-removal activity of these isolates was investigated with mineral-based lubricants that had been manufactured for the 4-stroke diesel engines of fishing boats. Gordonia sp. JC11, the most effective strain was able to degrade 25-55% of 1,000 mg L(-1) total hydrocarbons in six tested lubricants, while only 0-15% of the lubricants was abiotically removed. The bacterium had many characteristics that promoted lubricant degradation such as hydrocarbon utilization ability, emulsification activity and cell surface hydrophobicity. For bioaugmentation treatment of lubricant contaminated seawater, the inoculum of Gordonia sp. JC11 was prepared by immobilizing the bacterium on polyurethane foam (PUF). PUF-immobilized Gordonia sp. JC11 was able to remove 42-56% of 100-1,000 mg L(-1) waste lubricant No. 2 within 5 days. This lubricant removal efficiency was higher than those of free cells and PUF without bacterial cells. The bioaugmentation treatment significantly increased the number of lubricant-degrading microorganisms in the fishery port seawater microcosm and resulted in rapid removal of waste lubricant No. 2.

  5. Virus reactivation: a panoramic view in human infections

    PubMed Central

    Traylen, Christopher M; Patel, Hersh R; Fondaw, Wylder; Mahatme, Sheran; Williams, John F; Walker, Lia R; Dyson, Ossie F; Arce, Sergio; Akula, Shaw M

    2011-01-01

    Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is ‘quiescent’ (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein–Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi’s sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus. PMID:21799704

  6. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-03-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs.

  7. Characterization of anemia induced by avian osteopetrosis virus.

    PubMed Central

    Paterson, R W; Smith, R E

    1978-01-01

    Chickens infected intravenously at 8 days after hatching with an avian osteopetrosis virus developed a severe, progressive anemia in the absence of osteopetrosis. The anemia was characterized as a pancytopenia, in which erythrocytes, granulocytes, and thrombocytes decreased concomitantly. Serum bilirubin levels were normal, whereas erythrocytes from infected chickens demonstrated a slightly elevated osmotic fragility. A negative Coombs test indicated that there was no evidence for erythrocyte-bound antibody. Erythrocytes from infected animals had slightly decreased 51Cr-labeled erythrocyte survival time when compared with normal. Examination of marrow histological preparations, together with ferrokinetic studies with 59Fe, indicated that marrow failure occurred during the acute phase of the anemia. Circulating virus was present during the development and acute phases of the anemia, but disappeared during the recovery phase of the disease. Neutralizing antibody appeared after the disappearance of circulating virus. It is concluded that virus infection induced both marrow failure (aplastic crisis) and decreased erythrocyte survival. Images PMID:215554

  8. Toscana virus induces interferon although its NSs protein reveals antagonistic activity.

    PubMed

    Gori Savellini, Gianni; Weber, Friedemann; Terrosi, Chiara; Habjan, Matthias; Martorelli, Barbara; Cusi, Maria Grazia

    2011-01-01

    Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.

  9. Exhaled breath temperature increases during mild exacerbations in children with virus-induced asthma.

    PubMed

    Xepapadaki, P; Xatziioannou, A; Chatzicharalambous, M; Makrinioti, H; Papadopoulos, N G

    2010-01-01

    Exhaled breath temperature (EBT) has been suggested as a non-invasive surrogate marker of airway inflammation in asthma. The aim of the study was to evaluate differences in EBT between periods of controlled disease and during exacerbations in children with virus-induced asthma. Twenty-nine children (aged 6-14 years) with a history of intermittent, virus-induced asthma were included in this case-control study. Cases presented with a common cold and/or mild exacerbation of asthma, while controls were free of asthmatic or common cold symptoms during the previous 6 weeks. A baseline questionnaire was obtained. Atopy assessment, central temperature and a spirometric measurement were recorded. EBT was measured with a new device (Delmedica, Singapore). A nasal wash (for identification of common respiratory viruses) was obtained. Twenty-four children (12 from each group) completed the study. Groups were homogeneous with respect to baseline characteristics. PCR revealed the presence of a virus in 3 out of 17 controls and 10 out of 12 cases (17.6 and 83.3%, respectively, p = 0.002). The most commonly identified virus was rhinovirus (3/3 controls and 7/10 cases, p = 0.02). EBT values were significantly higher for cases (34.91 +/- 0.62 degrees C) compared to controls (34.18 +/- 1.1 degrees C, p = 0.032). No important differences were observed in the increase rate of EBT (Deltae degrees T) between groups. Changes in airway inflammation during virus-induced asthma exacerbations are reflected in EBT changes. These preliminary data suggest a possible role of EBT measurements in the assessment of airway inflammation in children with virus-induced asthma. Copyright (c) 2010 S. Karger AG, Basel.

  10. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    PubMed

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimericmore » SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.« less

  12. Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.

    PubMed

    Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun

    2018-05-01

    Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  14. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions

    PubMed Central

    Glennon, Nicole B.; Jabado, Omar; Lo, Michael K.

    2015-01-01

    ABSTRACT Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral

  15. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions.

    PubMed

    Glennon, Nicole B; Jabado, Omar; Lo, Michael K; Shaw, Megan L

    2015-08-01

    Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral maintenance, research

  16. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation

    PubMed Central

    Wu, Chunyan

    2018-01-01

    Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided. PMID:29662014

  17. Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Braccini, V.; Soltanian, S.; Klie, R.; Zhu, Y.; Li, S.; Wang, X. L.; Larbalestier, D.

    2004-12-01

    The effect of nanoscale-SiC doping of MgB2 was investigated in comparison with undoped, clean-limit, and Mg-vapor-exposed samples using transport and magnetic measurements. It was found that there are two distinguishable but related mechanisms that control the critical current-density-field Jc(H ) behavior: increase of upper critical field Hc2 and improvement of flux pinning. There is a clear correlation between the critical temperature Tc, the resistivity ρ, the residual resistivity ratio RRR =R(300K)/R(40K), the irreversibility field H*, and the alloying state in the samples. The Hc2 is about the same within the measured field range for both the Mg-vapor-treated and the SiC-doped samples. However, the Jc(H ) for the latter is higher than the former in a high-field regime by an order of magnitude. Mg vapor treatment induced intrinsic scattering and contributed to an increase in Hc2. SiC doping, on the other hand, introduced many nanoscale precipitates and disorder at B and Mg sites, provoking an increase of ρ(40K ) from 1μΩcm (RRR=15) for the clean-limit sample to 300μΩcm (RRR=1.75) for the SiC-doped sample, leading to significant enhancement of both Hc2 and H * with only a minor effect on Tc. Electron energy-loss spectroscope and transmission electron microscope analysis revealed impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, and BC at a scale below 10nm and an extensive domain structure of 2-4-nm domains in the doped sample, which serve as strong pinning centers.

  18. Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent.

    PubMed

    Kirscher, Lorenz; Deán-Ben, Xosé Luis; Scadeng, Miriam; Zaremba, Angelika; Zhang, Qian; Kober, Christina; Fehm, Thomas Felix; Razansky, Daniel; Ntziachristos, Vasilis; Stritzker, Jochen; Szalay, Aladar A

    2015-01-01

    We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.

  19. Cellular immunotherapy for patients with reactivation of JC and BK polyomaviruses after transplantation.

    PubMed

    Mani, Jiju; Jin, Nan; Schmitt, Michael

    2014-10-01

    Immunosuppression of patients after hematopoietic stem cell or kidney transplantation potentially leads to reactivation of JC and BK polyomaviruses. In hematopoietic stem cell transplantation, the reactivation rate of BKV can be up to 60%, resulting in severe complications of the urogenital tract, particularly hemorrhagic cystitis and renal dysfunction. After kidney transplantation, BKV reactivation can cause a loss of the graft. JCV can cause progressive multifocal leukoencephalopathy, a lethal disease. Adoptive transfer of donor-derived polyomavirus-specific T cells is an attractive and promising treatment that restores virus-specific cellular immunity. Pioneering work in the early 1990s on the reconstitution of cellular immunity against cytomegalovirus and recent development in the field of monitoring and isolation of antigen-specific T cells paved the way toward a personalized T-cell therapy. Multimer technology and magnetic beads are available to produce untouched T cells in a single-step, good manufacturing practice-compliant procedure. Another exciting aspect of T-cell therapy against polyomaviruses is the fact that both JCV and BKV can be targeted simultaneously because of their high sequence homology. Finally, "designer T cells" can be redirected to recognize polyomavirus antigens with high-affinity T-cell receptors. This review summarizes the state-of-the art technologies and gives an outlook of future developments in the field. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    PubMed

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  1. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies

    PubMed Central

    Blanchfield, Kristy; Belser, Jessica A.; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R.; Levine, Min Z.; York, Ian A.

    2017-01-01

    ABSTRACT Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with

  2. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas

    PubMed Central

    2014-01-01

    Background Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. They consist of three fatty acid chains (usually C16 or C18) covalently linked to glycerol. SDP1 is a specific lipase for the first step of TAG catabolism in Arabidopsis seeds. Arabidopsis mutants deficient in SDP1 accumulate high levels of oils, probably due to blockage in TAG degradation. We applied this knowledge from the model plant, Arabidopsis thaliana, to engineer increased seed oil content in the biodiesel plant Jatropha curcas using RNA interference (RNAi) technology. Results As Jatropha is a biodiesel crop, any significant increase in its seed oil content would be an important agronomic trait. Using A. thaliana as a model plant, we found that a deficiency of SDP1 led to higher TAG accumulation and a larger number of oil bodies in seeds compared with wild type (Columbia-0; Col-0). We cloned Jatropha JcSDP1, and verified its function by complementation of the Arabidopsis sdp1-5 mutant. Taking advantage of the observation with Arabidopsis, we used RNAi technology to generate JcSDP1 deficiency in transgenic Jatropha. We found that Jatropha JcSDP1-RNAi plants accumulated 13 to 30% higher total seed storage lipid, along with a 7% compensatory decrease in protein content, compared with control (CK; 35S:GFP) plants. Free fatty acid (FFA) content in seeds was reduced from 27% in control plants to 8.5% in JcSDP1-RNAi plants. Conclusion Here, we showed that SDP1 deficiency enhances seed oil accumulation in Arabidopsis. Based on this result, we generated SDP1-deficient transgenic Jatropha plants using by RNAi technology with a native JcSDP1 promoter to silence endogenous JcSDP1 expression. Seeds of Jatropha JcSDP1-RNAi plants accumulated up to 30% higher total lipid and had reduced FFA content compared with control (CK; 35S:GFP) plants. Our strategy of improving an important agronomic trait of Jatropha can be extended to other oil crops to yield higher seed oil. PMID:24606605

  3. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mutations Allow JC Polyomaviruses to Elude Antibody Recognition | Center for Cancer Research

    Cancer.gov

    JC polyomavirus (JCV) infects the urinary tract of most adults. In healthy individuals, JCV infection does not cause noticeable symptoms. However, in those with compromised immune systems, JCV can cause a lethal brain disease called progressive multifocal leukoencephalopathy (PML). Data from a recently approved assay to detect serum antibodies specific for the JCV protein VP1

  5. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. Copyright © 2017 American Society for Microbiology.

  6. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens

    PubMed Central

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping

    2017-01-01

    received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. PMID:28148801

  7. A poliovirus-induced cytoplasmic membrane complex is exploited by the RNA polymerase of superinfecting Mouse Elberfeld (ME) virus.

    PubMed

    Zeichhardt, H; Habermehl, K O; Wetz, K

    1983-04-01

    The preexistence of a cytoplasmic membrane complex in HEp-2 cells, induced by poliovirus when inhibited in its reproduction by guanidine, was a prerequisite for accelerated reproduction of superinfecting Mouse Elberfeld (ME) virus. Guanidine-inhibited poliovirus induced a membrane complex of 470S that was successively modified into a faster sedimenting membrane complex (up to 700S) by superinfecting ME virus and exploited for ME virus reproduction. The modified membrane complex was the site for ME virus-specific RNA polymerization characterized by the existence of in vivo and in vitro activity of ME virus RNA polymerase associated with the modified membrane complex. Proof of membrane-bound RNA polymerase and newly synthesized ME virus RNA including replicative intermediate led to the conclusion that superinfecting ME virus exploits the 'poliovirus/guanidine'-induced complex as the site of action of its replication complex.

  8. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen

  9. Broadly Neutralizing Immune Responses against Hepatitis C Virus Induced by Vectored Measles Viruses and a Recombinant Envelope Protein Booster

    PubMed Central

    Reyes-del Valle, Jorge; de la Fuente, Cynthia; Turner, Mallory A.; Springfeld, Christoph; Apte-Sengupta, Swapna; Frenzke, Marie E.; Forest, Amelie; Whidby, Jillian; Marcotrigiano, Joseph; Rice, Charles M.

    2012-01-01

    Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination. PMID:22896607

  10. ALIX/AIP1 is required for NP incorporation into Mopeia virus Z-induced virus-like particles.

    PubMed

    Shtanko, Olena; Watanabe, Shinji; Jasenosky, Luke D; Watanabe, Tokiko; Kawaoka, Yoshihiro

    2011-04-01

    During virus particle assembly, the arenavirus nucleoprotein (NP) associates with the viral genome to form nucleocapsids, which ultimately become incorporated into new virions at the cell membrane. Virion release is facilitated by the viral matrix Z protein through its interaction with the cellular endosomal sorting complex required for transport (ESCRT) machinery. However, the mechanism of nucleocapsid incorporation into virions is not well understood. Here, we demonstrate that ALIX/AIP1, an ESCRT-associated host protein, is required for the incorporation of the NP of Mopeia virus, a close relative of Lassa virus, into Z-induced virus-like particles (VLPs). Furthermore, we show that the Bro1 domain of ALIX/AIP1 interacts with the NP and Z proteins simultaneously, facilitating their interaction, and we identify residues 342 to 399 of NP as being necessary for its interaction with ALIX/AIP1. Our observations suggest a potential role for ALIX/AIP1 in linking Mopeia virus NP to Z and the budding apparatus, thereby promoting NP incorporation into virions.

  11. False negative PCR despite high levels of JC virus DNA in spinal fluid: Implications for diagnostic testing

    PubMed Central

    Landry, Marie L.; Eid, Tore; Bannykh, Serguei; Major, Eugene

    2009-01-01

    Genome amplification methods such as polymerase chain reaction (PCR) have revolutionized our ability to detect viruses in spinal fluids of patients with neurologic diseases. It is not as well appreciated among clinicians that PCR protocols, quality assurance, and technical expertise vary significantly among laboratories. In a multi-laboratory blinded study of herpes simplex virus PCR, the most widely used and best validated CSF PCR assay, low-level positives were often missed and false positives were not uncommon [Schloss L, van Loon AM, Cinque P, Cleator G, Echevarria JM, Falk KI, et al. An international external quality assessment of nucleic acid amplification of herpes simplex virus. J Clin Virol 2003;28(2):175–85]. In addition, genome variability and mutations, which are increasingly recognized for a number of different viruses, can lead to falsely low or negative results. Both clinicians and laboratories must recognize the limitations of PCR, since misleading results may have serious consequences. We present here a case of a rapidly progressive, fatal neurologic illness in a young mother, whose CSF JCV DNA PCR at a reference laboratory was falsely negative. Ultimately, brain biopsy established the diagnosis of progressive multifocal leukoencephalopathy (PML). Repeat PCR testing of the same CSF targeting a different region of the genome yielded a high positive result. PMID:18701345

  12. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  13. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    USDA-ARS?s Scientific Manuscript database

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we ...

  14. Herpes simplex virus 1 induces egress channels through marginalized host chromatin

    DOE PAGES

    Myllys, Markko; Ruokolainen, Visa; Aho, Vesa; ...

    2016-06-28

    Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less

  15. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios

    PubMed Central

    Gromek, Samantha M.; Suria, Andrea M.; Fullmer, Matthew S.; Garcia, Jillian L.; Gogarten, Johann Peter; Nyholm, Spencer V.; Balunas, Marcy J.

    2016-01-01

    Female members of many cephalopod species house a bacterial consortium in the accessory nidamental gland (ANG), part of the reproductive system. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens, and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium. PMID:27660622

  16. Virus-induced gene silencing (VIGS) in barley seedling leaves

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  17. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection.

    PubMed

    Nandakumar, Athira; Uwatoko, Futoshi; Yamamoto, Megumi; Tomita, Kazuo; Majima, Hideyuki J; Akiba, Suminori; Koriyama, Chihaya

    2017-07-01

    Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.

  18. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient.

    PubMed

    Ates, İhsan; Kaplan, Mustafa; Yilmaz, Nisbet; Çiftçi, Filiz

    2015-01-01

    Acute hepatitis is a disorder that goes with liver cell necrosis and liver inflammation. Among the causes of acute hepatitis, the most common reasons are viral hepatitis. About 95% of the acute hepatitis generate because of hepatotropic viruses. Epstein-barr virus (EBV) and cytomegalovirus (CMV) are from the family of herpes viruses and rare causes of acute hepatitis. In this case report, acute hepatitis due to EBV and CMV coinfection will be described. Ates İ, Kaplan M, Yilmaz N, Çiftçi F. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient. Euroasian J Hepato-Gastroenterol 2015;5(1):60-61.

  19. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.

    PubMed

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo; Liu, Yule

    2016-07-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-08-18

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.

  1. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis

    PubMed Central

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  2. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization

    PubMed Central

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan

    2016-01-01

    ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To

  3. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization.

    PubMed

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan; Vitour, Damien

    2017-01-01

    Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this

  4. Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured Co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes

    NASA Astrophysics Data System (ADS)

    Trommler, S.; Hänisch, J.; Matias, V.; Hühne, R.; Reich, E.; Iida, K.; Haindl, S.; Schultz, L.; Holzapfel, B.

    2012-08-01

    Optimized, biaxially textured BaFe1.8Co0.2As2 thin films with an in-plane alignment of 1.7° have been realized on high-quality IBAD-textured MgO-coated technical substrates utilizing additional Fe buffer layers. High critical current densities (Jc) were achieved, comparable to films on single crystalline MgO (Jc ≥ 1 MA cm-2 at 4 K, self-field). Transmission electron microscopy investigations reveal a small number of c-axis correlated defects introduced by the MgO template. The effect of these defects on the Jc anisotropy was determined in angular-dependent electronic transport measurements.

  5. Influenza Virus Directly Infects Human Natural Killer Cells and Induces Cell Apoptosis▿

    PubMed Central

    Mao, Huawei; Tu, Wenwei; Qin, Gang; Law, Helen Ka Wai; Sia, Sin Fun; Chan, Ping-Lung; Liu, Yinping; Lam, Kwok-Tai; Zheng, Jian; Peiris, Malik; Lau, Yu-Lung

    2009-01-01

    Influenza is an acute respiratory viral disease that is transmitted in the first few days of infection. Evasion of host innate immune defenses, including natural killer (NK) cells, is important for the virus's success as a pathogen of humans and other animals. NK cells encounter influenza viruses within the microenvironment of infected cells and are important for host innate immunity during influenza virus infection. It is therefore important to investigate the direct effects of influenza virus on NK cells. In this study, we demonstrated for the first time that influenza virus directly infects and replicates in primary human NK cells. Viral entry into NK cells was mediated by both clathrin- and caveolin-dependent endocytosis rather than through macropinocytosis and was dependent on the sialic acids on cell surfaces. In addition, influenza virus infection induced a marked apoptosis of NK cells. Our findings suggest that influenza virus can directly target and kill NK cells, a potential novel strategy of influenza virus to evade the NK cell innate immune defense that is likely to facilitate viral transmission and may also contribute to virus pathogenesis. PMID:19587043

  6. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient

    PubMed Central

    Kaplan, Mustafa; Yilmaz, Nisbet; Çiftçi, Filiz

    2015-01-01

    Acute hepatitis is a disorder that goes with liver cell necrosis and liver inflammation. Among the causes of acute hepatitis, the most common reasons are viral hepatitis. About 95% of the acute hepatitis generate because of hepatotropic viruses. Epstein-barr virus (EBV) and cytomegalovirus (CMV) are from the family of herpes viruses and rare causes of acute hepatitis. In this case report, acute hepatitis due to EBV and CMV coinfection will be described. How to cite this article Ates İ, Kaplan M, Yilmaz N, Çiftçi F. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient. Euroasian J Hepato-Gastroenterol 2015;5(1):60-61. PMID:29201691

  7. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis

    PubMed Central

    Ivanov, Alexander V.; Valuev-Elliston, Vladimir T.; Tyurina, Daria A.; Ivanova, Olga N.; Kochetkov, Sergey N.; Bartosch, Birke; Isaguliants, Maria G.

    2017-01-01

    Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review. PMID:27965466

  8. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  9. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells

    PubMed Central

    Basu, Mausumi; Courtney, Sean C.

    2017-01-01

    Oxidative stress activates the cellular kinase HRI, which then phosphorylates eIF2α, resulting in stalled translation initiation and the formation of stress granules (SGs). SG assembly redirects cellular translation to stress response mRNAs and inhibits cap-dependent viral RNA translation. Flavivirus infections were previously reported to induce oxidative stress in infected cells but flavivirus-infected cells paradoxically develop resistance to arsenite (Ars)-induced SG formation with time after infection. This resistance was previously postulated to be due to sequestration of the SG protein Caprin1 by Japanese encephalitis virus capsid protein. However, Caprin1 did not co-localize with West Nile virus (WNV) capsid protein in infected cells. Other stressors induced SGs with equal efficiency in mock- and WNV-infected cells indicating the intrinsic ability of cells to assemble SGs was not disabled. Induction of both reactive oxygen species (ROS) and the antioxidant response was detected at early times after WNV-infection. The transcription factors, Nrf2 and ATF4, which activate antioxidant genes, were upregulated and translocated to the nucleus. Knockdown of Nrf2, ATF4 or apoptosis-inducing factor (AIF), a mitochondrial protein involved in regenerating intracellular reduced glutathione (GSH) levels, with siRNA or treatment of cells with buthionine sulphoximine, which induces oxidative stress by inhibiting GSH synthesis, decreased intracellular GSH levels and increased the number of SG-positive, infected cells. Mitochondria were protected from Ars-induced damage by WNV infection until late times in the infection cycle. The results indicate that the increase in virus-induced ROS levels is counterbalanced by a virus-induced antioxidant response that is sufficient to also overcome the increase in ROS induced by Ars treatment and prevent Ars-induced SG assembly and mitochondrial damage. The virus-induced alterations in the cellular redox status appear to provide benefits

  10. Immunizations with chimeric hepatitis B virus-like particles to induce potential anti-hepatitis C virus neutralizing antibodies.

    PubMed

    Vietheer, Patricia T K; Boo, Irene; Drummer, Heidi E; Netter, Hans-Jürgen

    2007-01-01

    Virus-like particles (VLPs) are highly immunogenic and proven to induce protective immunity. The small surface antigen (HBsAg-S) of hepatitis B virus (HBV) self-assembles into VLPs and its use as a vaccine results in protective antiviral immunity against HBV infections. Chimeric HBsAg-S proteins carrying foreign epitopes allow particle formation and have the ability to induce anti-foreign humoral and cellular immune responses. The insertion of the hypervariable region 1 (HVR1) sequence derived from the envelope protein 2 (E2) of hepatitis C virus (HCV) into the major antigenic site of HBsAg-S ('a'-determinant) resulted in the formation of highly immunogenic VLPs that retained the antigenicity of the inserted HVR1 sequence. BALB/c mice were immunized with chimeric VLPs, which resulted in antisera with anti-HCV activity. The antisera were able to immunoprecipitate native HCV envelope complexes (E1E2) containing homologous or heterologous HVR1 sequences. HCV E1E2 pseudotyped HIV-1 particles (HCVpp) were used to measure entry into HuH-7 target cells in the presence or absence of antisera that were raised against chimeric VLPs. Anti-HVR1 VLP sera interfered with entry of entry-competent HCVpps containing either homologous or heterologous HVR1 sequences. Also, immunizations with chimeric VLPs induced antisurface antigen (HBsAg) antibodies, indicating that HBV-specific antigenicity and immunogenicity of the 'a'-determinant region is retained. A multivalent vaccine against different pathogens based on the HBsAg delivery platform should be possible. We hypothesize that custom design of VLPs with an appropriate set of HCV-neutralizing epitopes will induce antibodies that would serve to decrease the viral load at the initial infecting inoculum.

  11. Effects of long term feeding of raw soya bean flour on virus-induced pancreatic carcinogenesis in guinea fowl.

    PubMed

    Kirev, T; Woutersen, R A; Kiril, A

    1999-01-29

    The effects of a diet enriched with 25% raw soya bean flour (RSF) on the pancreas and on the avian retrovirus Pts 56-induced pancreatic carcinogenesis in guinea fowl were studied. It has been shown that prolonged RSF feeding of new-hatched virus-infected and uninfected guinea fowl-poults induced enlargement of the pancreas, which was less pronounced when administration of the RSF supplemented diet started at the age of 75 days. Time-dependent multifocal inter- and intralobular hyperplasia of pleomorphic ducts lined by mucin-producing epithelium in the exocrine pancreas of virus-infected guinea fowls fed a RSF supplemented diet was regularly observed. Enlargement of virus-induced ductular neoplasms has been shown only after simultaneous RSF and virus administration.

  12. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome.

    PubMed

    Ermler, Megan E; Traylor, Zachary; Patel, Krupen; Schattgen, Stefan A; Vanaja, Sivapriya K; Fitzgerald, Katherine A; Hise, Amy G

    2014-01-20

    Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1β processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1β during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells. © 2013 Published by Elsevier Inc.

  13. Investigation of antiviral state mediated by interferon-inducible transmembrane protein 1 induced by H9N2 virus and inactivated viral particle in human endothelial cells.

    PubMed

    Feng, Bo; Zhao, Lihong; Wang, Wei; Wang, Jianfang; Wang, Hongyan; Duan, Huiqin; Zhang, Jianjun; Qiao, Jian

    2017-11-03

    Endothelial cells are believed to play an important role in response to virus infection. Our previous microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells (HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells that are considered target cells of the influenza virus were selected as a reference control. First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1 on the antiviral state in HUVECs by siRNA and activation plasmid transfection. Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly decreased the virus titers in culture supernatants of HUVECs. Our results showed that inactivated viral particle inoculation increased the expression of IFITM1 at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.

  14. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    PubMed

    Chen, Yong; Chen, Qian; Li, Manman; Mao, Qianzhuo; Chen, Hongyan; Wu, Wei; Jia, Dongsheng; Wei, Taiyun

    2017-11-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  15. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector

    PubMed Central

    Mao, Qianzhuo; Chen, Hongyan; Wu, Wei

    2017-01-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors. PMID:29125860

  16. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X

    PubMed Central

    2011-01-01

    Background Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1. Results Antimycin A (an alternative respiratory pathway inducer and also an inducer of resistance to viruses) and SA triggered resistance to tobacco mosaic virus (TMV). Resistance to TMV induced by antimycin A, but not by SA, was inhibited in Aox transgenic plants while SA-induced resistance to this virus appeared to be stronger in Aox-E transgenic plants. These effects, which were limited to directly inoculated leaves, were not affected by the presence or absence of a transgene constitutively expressing a functional RNA-dependent RNA polymerase (MtRDR1). Unexpectedly, Aox-transgenic plants infected with potato virus X (PVX) showed markedly increased susceptibility to systemic disease induction and virus accumulation in inoculated and systemically infected leaves. SA-induced resistance to PVX was compromised in Aox-transgenic plants but plants expressing AOX-E exhibited enhanced SA-induced resistance to this virus. Conclusions We conclude that AOX-regulated mechanisms not only play a role in SA-induced resistance but also make an important contribution to basal resistance against certain viruses such as PVX. PMID:21356081

  17. Responses of In vitro-Grown Plantlets (Vitis vinifera) to Grapevine leafroll-Associated Virus-3 and PEG-Induced Drought Stress.

    PubMed

    Cui, Zhen-Hua; Bi, Wen-Lu; Hao, Xin-Yi; Xu, Yan; Li, Peng-Min; Walker, M Andrew; Wang, Qiao-Chun

    2016-01-01

    Stresses caused by viral diseases and drought have long threatened sustainable production of grapevine. These two stresses frequently occur simultaneously in many of grapevine growing regions of the world. We studied responses of in vitro-grown plantlets (Vitis vinifera) to Grapevine leafroll associated virus-3 (GLRaV-3) and PEG-induced drought stress. Results showed that stress induced by either virus infection or drought had negative effects on vegetative growth, caused significant decreases and increases in total soluble protein and free proline, respectively, induced obvious cell membrane damage and cell death, and markedly increased accumulations of [Formula: see text] and H2O2. Co-stress by virus and drought had much severer effects than single stress on the said parameters. Virus infection alone did not cause significant alternations in activities of POD, ROS, and SOD, and contents of MDA, which, however, markedly increased in the plantlets when grown under single drought stress and co-stress by the virus and drought. Levels of ABA increased, while those of IAA decreased in the plantlets stressed by virus infection or drought. Simultaneous stresses by the virus and drought had co-effects on the levels of ABA and IAA. Up-regulation of expressions of ABA biosynthesis genes and down-regulation of expressions of IAA biosynthesis genes were responsible for the alternations of ABA and IAA levels induced by either the virus infection or drought stress and co-stress by them. Experimental strategies established in the present study using in vitro system facilitate investigations on 'pure' biotic and abiotic stress on plants. The results obtained here provide new insights into adverse effects of stress induced by virus and drought, in single and particularly their combination, on plants, and allow us to re-orientate agricultural managements toward sustainable development of the agriculture.

  18. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines.

    PubMed

    Peng, Jiaojiao; Zhu, Shenghe; Hu, Lili; Ye, Pingping; Wang, Yifei; Tian, Qin; Mei, Mingzhu; Chen, Hao; Guo, Xiaofeng

    2016-10-02

    Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.

  19. Genome-Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress

    PubMed Central

    Tang, Yuehui; Qin, Shanshan; Guo, Yali; Chen, Yanbo; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2016-01-01

    The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress. PMID:26943337

  20. Genome-Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress.

    PubMed

    Tang, Yuehui; Qin, Shanshan; Guo, Yali; Chen, Yanbo; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2016-01-01

    The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.

  1. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.

    2008-05-10

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganizationmore » of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV ({approx} 5 log) and VSV ({approx} 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells.« less

  2. Zika Virus Induces Autophagy in Human Umbilical Vein Endothelial Cells.

    PubMed

    Peng, Haoran; Liu, Bin; Yves, Toure Doueu; He, Yanhua; Wang, Shijie; Tang, Hailin; Ren, Hao; Zhao, Ping; Qi, Zhongtian; Qin, Zhaoling

    2018-05-15

    Autophagy is a common strategy for cell protection; however, some viruses can in turn adopt cellular autophagy to promote viral replication. Zika virus (ZIKV) is the pathogen that causes Zika viral disease, and it is a mosquito-borne virus. However, its pathogenesis, especially the interaction between ZIKV and target cells during the early stages of infection, is still unclear. In this study, we demonstrate that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy. We observed both an increase in the conversion of LC3-I to LC3-II and increased accumulation of fluorescent cells with LC3 dots, which are considered to be the two key indicators of autophagy. The ratio of LC3-II/GAPDH in each group was significantly increased at different times after ZIKV infection at different MOIs, indicating that the production of lipidated LC3-II increased. Moreover, both the ratio of LC3-II/GAPDH and the expression of viral NS3 protein increased with increasing time of viral infection. The expression level of p62 decreased gradually from 12 h post-infection. Expression profile of double fluorescent protein labelling LC3 indicated that the autophagy induced by ZIKV infection was a complete process. We further investigated the role of autophagy in ZIKV replication. We demonstrated that either the treatment with inhibitors of autophagosomes formation or short hairpin RNA targeting the Beclin-1 gene, which is critical for the formation of autophagosomes, significantly reduced viral production. Taken together, our results indicate that ZIKV infection induces autophagy of HUVEC, and inhibition of ZIKV-induced autophagy restrains viral replication.

  3. Characterization of the Rana grylio virus 3{beta}-hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang Youhua; Zhao Zhe

    2006-12-08

    The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSDmore » in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.« less

  4. Occurrence of virus-induced COPD exacerbations during four seasons.

    PubMed

    Djamin, Remco S; Uzun, Sevim; Snelders, Eveline; Kluytmans, Jan J W; Hoogsteden, Henk C; Aerts, Joachim G J V; Van Der Eerden, Menno M

    2015-02-01

    In this study, we investigated the occurrence of viral infections in acute exacerbations of chronic obstructive pulmonary disease (COPD) during four seasons. Viral infections were detected by the use of real-time reverse transcriptase polymerase chain reaction on pharyngeal swabs. During a 12-month period pharyngeal swabs were obtained in 136 exacerbations of 63 patients. In 35 exacerbations (25.7%) a viral infection was detected. Most viral infections occurred in the winter (n = 14, 40.0%), followed by summer (n = 9, 25.7%), autumn (n = 6, 17.1%), and spring (n = 6, 17.1%). Rhinovirus was the most frequently isolated virus (n = 19, 51.4%), followed by respiratory syncytial virus (n = 6, 16.2%), human metapneumovirus (n = 5, 13.5%), influenza A (n = 4, 10.8%), parainfluenza 4 (n = 2, 5.4%), and parainfluenza 3 (n = 1, 2.7%). This study showed that virus-induced COPD exacerbations occur in all four seasons with a peak in the winter months. However, the distribution of rhinovirus infections showed a different pattern, with most infections occurring in July.

  5. Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong

    1992-01-01

    Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.

  6. TRV Based Virus Induced Gene Silencing in Gladiolus (Gladiolus grandiflorus L.), A Monocotyledonous Ornamental Plant

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) has not yet successfully been used as a tool for gene functional analysis in non-grass monocotyledonous geophytes. We therefore tested VIGS in gladiolus (Gladiolus grandiflora L) using a Tobacco Rattle Virus (TRV) vector containing a fragment of the gladiolus gene...

  7. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells

    PubMed Central

    Qiao, Wenjie; Medina, Vicente; Falk, Bryce W.

    2017-01-01

    Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses. PMID:29021801

  8. West nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response.

    PubMed

    Courtney, S C; Scherbik, S V; Stockman, B M; Brinton, M A

    2012-04-01

    West Nile virus (WNV) recently became endemic in the United States and is a significant cause of human morbidity and mortality. Natural WNV strain infections do not induce stress granules (SGs), while W956IC (a lineage 2/1 chimeric WNV infectious clone) virus infections produce high levels of early viral RNA and efficiently induce SGs through protein kinase R (PKR) activation. Additional WNV chimeric viruses made by replacing one or more W956IC genes with the lineage 1 Eg101 equivalent in the W956IC backbone were analyzed. The Eg-NS4b+5, Eg-NS1+3+4a, and Eg-NS1+4b+5 chimeras produced low levels of viral RNA at early times of infection and inefficiently induced SGs, suggesting the possibility that interactions between viral nonstructural proteins and/or between viral nonstructural proteins and cell proteins are involved in suppressing early viral RNA synthesis and membrane remodeling during natural WNV strain infections. Detection of exposed viral double-stranded RNA (dsRNA) in W956IC-infected cells suggested that the enhanced early viral RNA synthesis surpassed the available virus-induced membrane protection and allowed viral dsRNA to activate PKR.

  9. A role for the C terminus of Mopeia virus nucleoprotein in its incorporation into Z protein-induced virus-like particles.

    PubMed

    Shtanko, Olena; Imai, Masaki; Goto, Hideo; Lukashevich, Igor S; Neumann, Gabriele; Watanabe, Tokiko; Kawaoka, Yoshihiro

    2010-05-01

    Arenaviruses are enveloped, negative-strand RNA viruses. For several arenaviruses, virus-like particle (VLP) formation requires the viral matrix Z protein. However, the mechanism by which viral ribonucleoprotein complexes are incorporated into virions is poorly understood. Here, we show that the expression of the Z protein and nucleoprotein (NP) of Mopeia virus, a close relative of the pathogenic Lassa virus, resulted in the highly selective incorporation of the NP protein into Z protein-induced VLPs. Moreover, the Z protein promoted the association of NP with cellular membranes, suggesting that the association of NP, Z, and the cellular membranes may facilitate the efficient incorporation of NP into VLPs. By employing a series of NP deletion constructs and testing their VLP incorporation, we further demonstrated an important role for the C-terminal half of NP in its incorporation into VLPs.

  10. Cytotoxic T lymphocytes to Ebola Zaire virus are induced in mice by immunization with liposomes containing lipid A.

    PubMed

    Rao, M; Matyas, G R; Grieder, F; Anderson, K; Jahrling, P B; Alving, C R

    1999-08-06

    An eight amino acid sequence (TELRTFSI) present in the carboxy terminal end (aa 577-584) of membrane-anchored GP, the major structural protein of Ebola virus, was identified as an H-2k-specific murine cytotoxic T cell epitope. Cytotoxic T lymphocytes (CTLs) to this epitope were induced by immunizing B10.BR mice intravenously with either irradiated Ebola virus or with irradiated Ebola virus encapsulated in liposomes containing lipid A. The CTL response induced by irradiated Ebola virus could not be sustained after the second round of in vitro stimulation of immune splenocytes with the peptide, unless the irradiated virus was encapsulated in liposomes containing lipid A. The identification of an Ebola GP-specific CTL epitope and the requirement of liposomal lipid A for CTL memory recall responses could prove to be a promising approach for developing a vaccine against Ebola virus infection.

  11. Synergistic hepatoprotective potential of ethanolic extract of Solanum xanthocarpum and Juniperus communis against paracetamol and azithromycin induced liver injury in rats.

    PubMed

    Singh, Hem; Prakash, Atish; Kalia, A N; Majeed, Abu Bakar Abdul

    2016-10-01

    Previously explored combination therapies mostly involved the use of bioactive molecules. It is believed that herbal compounds containing multiple plant products have synergistic hepatoprotective effects and could enhance the desired actions. To investigate the combination of ethanolic fruits extract of Solanum xanthocarpum (SX) and Juniperus communis (JC) against Paracetamol (PCM) and Azithromycin (AZM) induced liver toxicity in rats. Liver toxicity was induced by combine oral administration of PCM (250 mg/kg) and AZM (200 mg/kg) for 7 days in Wistar rats. Fruit extract of SX (200 and 400 mg/kg) and JC (200 and 400 mg/kg) were administered daily for 14 days. The hepatoprotective activity was assessed using liver functional test, oxidative parameters and histopathological examination. The results demonstrated that combine administration of AZM and PCM significantly produced liver toxicity by increasing the serum level of hepatic enzymes and oxidative parameters in liver of rats. Histopathological examination also indicated that AZM and PCM produced liver damage in rats. Chronic treatment of SX and JC extract significantly and dose-dependently attenuated the liver toxicity by normalizing the biochemical factors and no gross histopathological changes were observed in liver of rats. Furthermore, combine administration of lower dose of SX and JC significantly potentiated their hepatoprotective effect which was significant as compared to their effect per se. The results clearly indicated that SX and JC extract has hepatoprotective potential against AZM and PCM induced liver toxicity due to their synergistic anti-oxidant properties.

  12. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    PubMed

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  13. Evasion of superinfection exclusion and elimination of primary viral RNA by an adapted strain of hepatitis C virus.

    PubMed

    Webster, Brian; Ott, Melanie; Greene, Warner C

    2013-12-01

    Cells that are productively infected by hepatitis C virus (HCV) are refractory to a second infection by HCV via a block in viral replication known as superinfection exclusion. The block occurs at a postentry step and likely involves translation or replication of the secondary viral RNA, but the mechanism is largely unknown. To characterize HCV superinfection exclusion, we selected for an HCV variant that could overcome the block. We produced a high-titer HC-J6/JFH1 (Jc1) viral genome with a fluorescent reporter inserted between NS5A and NS5B and used it to infect Huh7.5 cells containing a Jc1 replicon. With multiple passages of these infected cells, we isolated an HCV variant that can superinfect cells at high levels. Notably, the superinfectious virus rapidly cleared the primary replicon from superinfected cells. Viral competition experiments, using a novel strategy of sequence-barcoding viral strains, as well as superinfection of replicon cells demonstrated that mutations in E1, p7, NS5A, and the poly(U/UC) tract of the 3' untranslated region were important for superinfection. Furthermore, these mutations dramatically increased the infectivity of the virus in naive cells. Interestingly, viruses with a shorter poly(U/UC) and an NS5A domain II mutation were most effective in overcoming the postentry block. Neither of these changes affected viral RNA translation, indicating that the major barrier to postentry exclusion occurs at viral RNA replication. The evolution of the ability to superinfect after less than a month in culture and the concomitant exclusion of the primary replicon suggest that superinfection exclusion dramatically affects viral fitness and dynamics in vivo.

  14. Space Flight-Induced Reactivation of Latent Epstein-Barr Virus

    NASA Technical Reports Server (NTRS)

    Stowe, Raymond P.; Barrett, Alan D. T.; Pierson, Duane L.

    2001-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Decreased cellular immune function has been reported both during and after space flight. Preliminary studies have demonstrated increased EBV shedding in saliva as well as increased antibody titers to EBV lytic proteins. We hypothesize that the combined effects of microgravity along with associated physical and psychological stress will decrease EBV-specific T-cell immunity and reactivate latent EBV in infected B-lymphocytes. If increased virus production and clonal expansion of infected B-lymphocytes are detected, then pharmacological measures can be developed and instituted prior to onset of overt clinical disease. More importantly, we will begin to understand the basic mechanisms involved in stress-induced reactivation of EBV in circulating B-lymphocytes.

  15. Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes

    PubMed Central

    Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555

  16. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    PubMed

    Dunmire, Samantha K; Odumade, Oludare A; Porter, Jean L; Reyes-Genere, Juan; Schmeling, David O; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C; Balfour, Henry H; Hogquist, Kristin A

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  17. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  18. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants1[OPEN

    PubMed Central

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo

    2016-01-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. PMID:27225900

  19. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity.

    PubMed

    Pascual, Elena; Mata, Carlos P; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L; Castón, José R

    2015-03-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign

  20. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    PubMed

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Whole Transcriptome Sequencing Enables Discovery and Analysis of Viruses in Archived Primary Central Nervous System Lymphomas

    PubMed Central

    DeBoever, Christopher; Reid, Erin G.; Smith, Erin N.; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A.

    2013-01-01

    Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples. PMID:24023918

  2. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    PubMed

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  3. Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    PubMed Central

    Adeyemi, Richard O.; Landry, Sebastien; Davis, Meredith E.; Weitzman, Matthew D.; Pintel, David J.

    2010-01-01

    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells. PMID:20949077

  4. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro.

    PubMed

    Smith, S E; Gibson, M S; Wash, R S; Ferrara, F; Wright, E; Temperton, N; Kellam, P; Fife, M

    2013-12-01

    Interferon-inducible transmembrane protein 3 (IFITM3) is an effector protein of the innate immune system. It confers potent, cell-intrinsic resistance to infection by diverse enveloped viruses both in vitro and in vivo, including influenza viruses, West Nile virus, and dengue virus. IFITM3 prevents cytosolic entry of these viruses by blocking complete virus envelope fusion with cell endosome membranes. Although the IFITM locus, which includes IFITM1, -2, -3, and -5, is present in mammalian species, this locus has not been unambiguously identified or functionally characterized in avian species. Here, we show that the IFITM locus exists in chickens and is syntenic with the IFITM locus in mammals. The chicken IFITM3 protein restricts cell infection by influenza A viruses and lyssaviruses to a similar level as its human orthologue. Furthermore, we show that chicken IFITM3 is functional in chicken cells and that knockdown of constitutive expression in chicken fibroblasts results in enhanced infection by influenza A virus. Chicken IFITM2 and -3 are constitutively expressed in all tissues examined, whereas IFITM1 is only expressed in the bursa of Fabricius, gastrointestinal tract, cecal tonsil, and trachea. Despite being highly divergent at the amino acid level, IFITM3 proteins of birds and mammals can restrict replication of viruses that are able to infect different host species, suggesting IFITM proteins may provide a crucial barrier for zoonotic infections.

  5. A Cerebellar Tremor in a Patient with Human Immunodeficiency Virus-1 Associated with Progressive Multifocal Leukoencephalopathy

    PubMed Central

    Kim, Hee-Jin; Lee, Jae-Jung; Lee, Phil Hyu

    2009-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS). Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML. PMID:24868366

  6. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    PubMed

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  7. The effect of 45° grain boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 thin films

    NASA Astrophysics Data System (ADS)

    Hänisch, J.; Iida, K.; Kurth, F.; Thersleff, T.; Trommler, S.; Reich, E.; Hühne, R.; Schultz, L.; Holzapfel, B.

    2014-01-01

    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45° [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45° in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45° GBs seem to be good pinning centers rather than detrimental to current flow.

  8. Role of Phosphatidylinositol 3-Kinase in Friend Spleen Focus-Forming Virus-Induced Erythroid Disease▿

    PubMed Central

    Umehara, Daigo; Watanabe, Shinya; Ochi, Haruyo; Anai, Yukari; Ahmed, Nursarat; Kannagi, Mari; Hanson, Charlotte; Ruscetti, Sandra; Nishigaki, Kazuo

    2010-01-01

    Infection of erythroid cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator, erythropoietin (Epo), because of interaction of the viral envelope protein with the erythropoietin receptor and a short form of the receptor tyrosine kinase Stk (sf-Stk), leading to constitutive activation of several signal transduction pathways. Our previous in vitro studies showed that phosphatidylinositol 3-kinase (PI3-kinase) is activated in SFFV-infected cells and is important in mediating the biological effects of the virus. To determine the role of PI3-kinase in SFFV-induced disease, mice deficient in the p85α regulatory subunit of class IA PI3-kinase were inoculated with different strains of SFFV. We observed that p85α status determined the extent of erythroid hyperplasia induced by the sf-Stk-dependent viruses SFFV-P (polycythemia-inducing strain of SFFV) and SFFV-A (anemia-inducing strain of SFFV) but not by the sf-Stk-independent SFFV variant BB6. Our data also indicate that p85α status determines the response of mice to stress erythropoiesis, consistent with a previous report showing that SFFV uses a stress erythropoiesis pathway to induce erythroleukemia. We further showed that sf-Stk interacts with p85α and that this interaction depends upon sf-Stk kinase activity and tyrosine 436 in the multifunctional docking site. Pharmacological inhibition of PI3-kinase blocked proliferation of primary erythroleukemia cells from SFFV-infected mice and the erythroleukemia cell lines derived from them. These results indicate that p85α may regulate sf-Stk-dependent erythroid proliferation induced by SFFV as well as stress-induced erythroid hyperplasia. PMID:20504929

  9. Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes.

    PubMed

    Zhang, Zhenfeng; Filzmayer, Christina; Ni, Yi; Sültmann, Holger; Mutz, Pascal; Hiet, Marie-Sophie; Vondran, Florian W R; Bartenschlager, Ralf; Urban, Stephan

    2018-07-01

    Hepatitis B virus (HBV) and D virus (HDV) co-infections cause the most severe form of viral hepatitis. HDV induces an innate immune response, but it is unknown how the host cell senses HDV and if this defense affects HDV replication. We aim to characterize interferon (IFN) activation by HDV, identify the responsible sensor and evaluate the effect of IFN on HDV replication. HDV and HBV susceptible hepatoma cell lines and primary human hepatocytes (PHH) were used for infection studies. Viral markers and cellular gene expression were analyzed at different time points after infection. Pattern recognition receptors (PRRs) required for HDV-mediated IFN activation and the impact on HDV replication were studied using stable knock-down or overexpression of the PRRs. Microarray analysis revealed that HDV but not HBV infection activated a broad range of interferon stimulated genes (ISGs) in HepG2 NTCP cells. HDV strongly activated IFN-β and IFN-λ in cell lines and PHH. HDV induced IFN levels remained unaltered upon RIG-I (DDX58) or TLR3 knock-down, but were almost completely abolished upon MDA5 (IFIH1) depletion. Conversely, overexpression of MDA5 but not RIG-I and TLR3 in HuH7.5 NTCP cells partially restored ISG induction. During long-term infection, IFN levels gradually diminished in both HepG2 NTCP and HepaRG NTCP cell lines. MDA5 depletion had little effect on HDV replication despite dampening HDV-induced IFN response. Moreover, treatment with type I or type III IFNs did not abolish HDV replication. Active replication of HDV induces an IFN-β/λ response, which is predominantly mediated by MDA5. This IFN response and exogenous IFN treatment have only a moderate effect on HDV replication in vitro indicating the adaption of HDV replication to an IFN-activated state. In contrast to hepatitis B virus, infection with hepatitis D virus induces a strong IFN-β/λ response in innate immune competent cell lines. MDA5 is the key sensor for the recognition of hepatitis D virus

  10. Studies of Genetic Variation in the AIDS Virus: Relevance to Disease Pathogenesis, Anti-Viral Therapy, and Vaccine Development

    DTIC Science & Technology

    1990-06-15

    lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868-870. 4. Berkelman, R.L., W.L. Heyward...J.K. Stehr-Green and J.W. Curran. 1989. Epidemiology of human immunodeficiency virus infection and acquired immunodeficiency syndrome . Amer. J. of Med...cytopathicity. In: Acquired Immunodeficiency Syndrome . Eds. J.C. Gluckman and E. Vilmer. (Elsevier) pp. 47- 56. 26. Henderson, L.E., R.C. Sowder, T.D

  11. Virus-induced gene silencing in Rauwolfia species.

    PubMed

    Corbin, Cyrielle; Lafontaine, Florent; Sepúlveda, Liuda Johana; Carqueijeiro, Ines; Courtois, Martine; Lanoue, Arnaud; Dugé de Bernonville, Thomas; Besseau, Sébastien; Glévarec, Gaëlle; Papon, Nicolas; Atehortúa, Lucia; Giglioli-Guivarc'h, Nathalie; Clastre, Marc; St-Pierre, Benoit; Oudin, Audrey; Courdavault, Vincent

    2017-07-01

    Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.

  12. Evaluating Exosome Protein Content Changes Induced by Virus Activity Using SILAC Labeling and LC-MS/MS.

    PubMed

    Zhao, X; Xie, Y; Liu, J

    2017-01-01

    Exosomes are small membrane vesicles that are produced by cells and excreted into extracellular space. Contents of exosomes generally include lipid, membrane, and soluble proteins, and various types of coding and noncoding RNAs. Over the past decades, it has become clear that exosomes constitute an important vector for intercellular transport and communication with significant functional relevance. Evaluating exosome contents and their changes are vital for understanding its role in different physiological and pathological processes. Infection by certain pathogens, including viruses as well as intracellular bacteria, fungi, and parasites, has been shown to induce specific content changes in exosomes produced by infected cells. Evidences also indicate that exosomes produced by infected cells may actively participate in host-virus interactions, including immune responses. Studies of exosome content changes involve highly complex experimental and computational procedures, which can become even more complicated in the context of viral infections, due to the production and secretion of multiple virus-derived proteins and particles by infected cells. In this chapter, general and specific considerations relating to studies of exosome content changes induced by virus activities are discussed and illustrated with the detailed protocols previously used to identify protein content changes in Huh-7 cell exosomes induced by transfection with hepatitis B virus replicon plasmids, using SILAC labeling and LS-MS/MS. Hopefully, this would help enable more and further studies along similar lines and enhance the understanding of this new aspect of host-pathogen interactions. © 2017 Elsevier Inc. All rights reserved.

  13. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    PubMed Central

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  14. Immune deficiency as a risk factor in Epstein-Barr virus-induced malignant diseases.

    PubMed Central

    Purtilo, D T; Okano, M; Grierson, H L

    1990-01-01

    Epstein-Barr virus (EBV) is a ubiquitous DNA virus that normally infects silently, establishing lifelong latency. Substantial empirical observations support the view that immunodeficiency is permissive in EBV-induced lymphoproliferative diseases (LPD). Primary immune deficient patients such as those with X-linked lymphoproliferative disease and individuals with acquired immune deficiency secondary to immunosuppressive drugs for organ transplantation or individuals infected with human immunodeficiency virus are also at very high risk for lethal LPD. The importance of immunodeficiency and EBV in the development of head and neck carcinomas and uterine cervical carcinoma is less clear. Methods are available for detecting immunodeficiency and EBV genome and thus preventive strategies are being developed to preclude LPD from occurring. PMID:2176975

  15. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    PubMed

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Specificity in the immunosuppression induced by avian reticuloendotheliosis virus.

    PubMed Central

    Walker, M H; Rup, B J; Rubin, A S; Bose, H R

    1983-01-01

    Several parameters of the cellular and humoral immune responses of chickens infected with reticuloendotheliosis virus (REV-T), an avian defective acute leukemia virus, or with its helper virus, reticuloendotheliosis-associated virus (REV-A), were evaluated. Spleen cells from chickens infected with REV-T (REV-A) or REV-A exhibited depressed mixed lymphocyte and mitogen responses in vitro. Allograft rejection was delayed by 6 to 14 days in birds infected with REV-A. The specific antitumor cell immune response was also studied by a 51Cr-release cytotoxicity assay. Lymphocytes from chickens infected with low numbers of the REV-T-transformed cells exhibited significant levels of cytolytic reactivity against the 51Cr-labeled REV-T tumor cells in vitro. The mitogen response of lymphocytes from these injected birds was similar to that of uninjected chickens. In contrast, lymphocytes from chickens injected with higher numbers of REV-T-transformed cells exhibited suppressed mitogen reactivity and failed to develop detectable levels of cytotoxic activity directed against the REV-T tumor cells. These results suggest that the general depression of cellular immune competence which occurs during REV-T (REV-A) infection could contribute to the development of this acute leukemia by inhibiting the proliferation of cytotoxic cells directed against the tumor cell antigens. The cytotoxic effect observed after the injection of chickens with non-immunosuppressive levels of REV-T-transformed cells appears to be specific for the REV-T tumor cell antigens since cells transformed by Marek's disease virus or avian erythroblastosis virus were not lysed. In marked contrast, birds whose cellular immune responses were suppressed by infection with REV-A were capable of producing a humoral immune response to viral antigens. Detectable levels of viral antibody, however, did not appear until 12 to 15 days after REV-A infection. Since REV-T (REV-A) induced an acute leukemia resulting in death within 7

  17. Measles virus induces persistent infection by autoregulation of viral replication.

    PubMed

    Doi, Tomomitsu; Kwon, Hyun-Jeong; Honda, Tomoyuki; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2016-11-24

    Natural infection with measles virus (MV) establishes lifelong immunity. Persistent infection with MV is likely involved in this phenomenon, as non-replicating protein antigens never induce such long-term immunity. Although MV establishes stable persistent infection in vitro and possibly in vivo, the mechanism by which this occurs is largely unknown. Here, we demonstrate that MV changes the infection mode from lytic to non-lytic and evades the innate immune response to establish persistent infection without viral genome mutation. We found that, in the persistent phase, the viral RNA level declined with the termination of interferon production and cell death. Our analysis of viral protein dynamics shows that during the establishment of persistent infection, the nucleoprotein level was sustained while the phosphoprotein and large protein levels declined. The ectopic expression of nucleoprotein suppressed viral replication, indicating that viral replication is self-regulated by nucleoprotein accumulation during persistent infection. The persistently infected cells were able to produce interferon in response to poly I:C stimulation, suggesting that MV does not interfere with host interferon responses in persistent infection. Our results may provide mechanistic insight into the persistent infection of this cytopathic RNA virus that induces lifelong immunity.

  18. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    PubMed

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  19. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses.

    PubMed

    Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen

    2016-02-01

    Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    PubMed Central

    Allison, Andrew B.; Keel, M. Kevin; Philips, Jamie E.; Cartoceti, Andrew N.; Munk, Brandon A.; Nemeth, Nicole M.; Welsh, Trista I.; Thomas, Jesse M.; Crum, James M.; Lichtenwalner, Anne B.; Fadly, Aly M.; Zavala, Guillermo; Holmes, Edward C.; Brown, Justin D.

    2014-01-01

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown. PMID:24503062

  1. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    PubMed

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  2. Epstein-Barr virus-induced infectious mononucleosis after two separate episodes of virus-associated hemophagocytic syndrome.

    PubMed

    Ohno, Tatsuharu; Ueda, Yo; Kishimoto, Wataru; Arimoto-Miyamoto, Kazue; Takeoka, Tomoharu; Tsuji, Masaaki

    2009-01-01

    A 24-year-old man, who had suffered previous two episodes of non- Epstein-Barr virus (EBV)-associated hemophagocytic syndrome (HPS) at the ages of 16 and 18, developed EBV-induced infectious mononucleosis. His antibody pattern to EBV highlighted the initial infection. The disease took a self-limited course without developing into HPS. No reactivation of EBV infection was noted over the following 6 years. The patient may have attained immune competency in adulthood, which was somehow impaired during his adolescence.

  3. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  4. Modulation of a Pore in the Capsid of JC Polyomavirus Reduces Infectivity and Prevents Exposure of the Minor Capsid Proteins

    PubMed Central

    Nelson, Christian D. S.; Ströh, Luisa J.; Gee, Gretchen V.; O'Hara, Bethany A.; Stehle, Thilo

    2015-01-01

    ABSTRACT JC polyomavirus (JCPyV) infection of immunocompromised individuals results in the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). The viral capsid of JCPyV is composed primarily of the major capsid protein virus protein 1 (VP1), and pentameric arrangement of VP1 monomers results in the formation of a pore at the 5-fold axis of symmetry. While the presence of this pore is conserved among polyomaviruses, its functional role in infection or assembly is unknown. Here, we investigate the role of the 5-fold pore in assembly and infection of JCPyV by generating a panel of mutant viruses containing amino acid substitutions of the residues lining this pore. Multicycle growth assays demonstrated that the fitness of all mutants was reduced compared to that of the wild-type virus. Bacterial expression of VP1 pentamers containing substitutions to residues lining the 5-fold pore did not affect pentamer assembly or prevent association with the VP2 minor capsid protein. The X-ray crystal structures of selected pore mutants contained subtle changes to the 5-fold pore, and no other changes to VP1 were observed. Pore mutant pseudoviruses were not deficient in assembly, packaging of the minor capsid proteins, or binding to cells or in transport to the host cell endoplasmic reticulum. Instead, these mutant viruses were unable to expose VP2 upon arrival to the endoplasmic reticulum, a step that is critical for infection. This study demonstrated that the 5-fold pore is an important structural feature of JCPyV and that minor modifications to this structure have significant impacts on infectious entry. IMPORTANCE JCPyV is an important human pathogen that causes a severe neurological disease in immunocompromised individuals. While the high-resolution X-ray structure of the major capsid protein of JCPyV has been solved, the importance of a major structural feature of the capsid, the 5-fold pore, remains poorly understood. This pore is conserved across

  5. Lethal Nipah Virus Infection Induces Rapid Overexpression of CXCL10

    PubMed Central

    Mathieu, Cyrille; Guillaume, Vanessa; Sabine, Amélie; Ong, Kien Chai; Wong, Kum Thong; Legras-Lachuer, Catherine; Horvat, Branka

    2012-01-01

    Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis. PMID:22393386

  6. Prevalence and stability of human serum antibodies to simian virus 40 VP1 virus-like particles.

    PubMed

    Lundstig, Annika; Eliasson, Linda; Lehtinen, Matti; Sasnauskas, Kestutis; Koskela, Pentti; Dillner, Joakim

    2005-06-01

    Possible human infection with simian virus 40 (SV40) has been of great concern ever since SV40 was discovered in polio vaccines. Human populations are SV40-seropositive, but because of serological cross-reactivity between SV40 and the human polyomaviruses BK virus (BKV) and JC virus (JCV), it is debatable whether these antibodies are specific. An SV40-specific serological assay was established, based on purified virus-like particles (VLPs), where the SV40 VLPs were blocked with hyperimmune sera to BKV and JCV. Competition with SV40 hyperimmune sera was used as a confirmatory test. Among 288 Swedish children of between 1 and 13 years of age, 7.6 % had SV40-specific antibodies. SV40 seroprevalence reached a peak of 14 % at 7-9 years of age. Among 100 control patients with benign tumours, 9 % were SV40-seropositive. However, SV40 DNA was not detectable in corresponding buffy-coat samples. In serial samples taken up to 5 years apart from 141 Finnish women participating in the population-based serological screening for congenital infections, only two of 141 women were SV40-seropositive in both samples. Six women seroconverted and eight women had a loss of antibodies over time. None of the SV40-seropositive samples contained detectable SV40 DNA. In conclusion, there is a low prevalence of SV40-specific antibodies in the Nordic population. The SV40 antibodies appear to have a low stability over time and their origin is not clear.

  7. RAPID COMMUNICATION: Large-area uniform ultrahigh-Jc YBa2Cu3O7-x film fabricated by the metalorganic deposition method using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Araki, Takeshi; Yamagiwa, Katsuya; Hirabayashi, Izumi; Suzuki, Katsumi; Tanaka, Shoji

    2001-07-01

    Ultrahigh-Jc YBa2Cu3O7-x (YBCO) films have been successfully fabricated by the metalorganic deposition method using a trifluoroacetate coating solution which is prepared by a newly developed purification technique, the solvent-into-gel (SIG) method. The prepared pure coating solution has less than 0.25% impurities and has a wide flexibility in process conditions to obtain high-Jc YBCO film. Using this feature, we have successfully formed 50 mm diameter YBCO films, which have a critical current density over 10 MA cm-2 (77 K, 0 T) on LaAlO3 single crystalline substrates.

  8. T Regulatory Cell Induced Foxp3 Binds the IL2, IFNγ, and TNFα Promoters in Virus-Specific CD8+ T Cells from Feline Immunodeficiency Virus Infected Cats.

    PubMed

    Wang, Yan; Nag, Mukta; Tuohy, Joanne L; De Paris, Kristina; Fogle, Jonathan E

    2018-03-01

    Polyfunctional CD8 + T cells play a critical role in controlling viremia during AIDS lentiviral infections. However, for most HIV-infected individuals, virus-specific CD8 + T cells exhibit loss of polyfunctionality, including loss of IL2, TNFα, and IFNγ. Using the feline immunodeficiency virus (FIV) model for AIDS lentiviral persistence, our laboratory has demonstrated that FIV-activated Treg cells target CD8 + T cells, leading to a reduction in IL2 and IFNγ production. Furthermore, we have demonstrated that Treg cells induce expression of the repressive transcription factor, Foxp3, in CD8 + T cells. Based upon these findings, we asked if Treg-induced Foxp3 could bind to the IL2, TNFα, and IFNγ promoter regions in virus-specific CD8 + T cells. Following coculture with autologous Treg cells, we demonstrated decreased mRNA levels of IL2 and IFNγ at weeks 4 and 8 postinfection and decreased TNFα at week 4 postinfection in virus-specific CD8 + T cells. We also clearly demonstrated Treg cell-induced Foxp3 expression in virus-specific CD8 + T cells at weeks 1, 4, and 8 postinfection. Finally, we documented Foxp3 binding to the IL2, TNFα, and IFNγ promoters at 8 weeks and 6 months postinfection in virus-specific CD8 + T cells following Treg cell coculture. In summary, the results here clearly demonstrate that Foxp3 inhibits IL2, TNFα, and IFNγ transcription by binding to their promoter regions in lentivirus-specific CD8 + T cells. We believe this is the first description of this process during the course of AIDS lentiviral infection.

  9. Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas

    PubMed Central

    Justice, James F.; Morgan, Robin W.

    2015-01-01

    ABSTRACT Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. PMID:26670384

  10. Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein.

    PubMed

    Leemans, A; De Schryver, M; Van der Gucht, W; Heykers, A; Pintelon, I; Hotard, A L; Moore, M L; Melero, J A; McLellan, J S; Graham, B S; Broadbent, L; Power, U F; Caljon, G; Cos, P; Maes, L; Delputte, P

    2017-07-15

    Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication. IMPORTANCE Current research into the development of new immunoprophylaxis and vaccines is mainly focused on the RSV F protein since, among others, RSV F-specific antibodies are

  11. Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein

    PubMed Central

    Leemans, A.; De Schryver, M.; Van der Gucht, W.; Heykers, A.; Pintelon, I.; Hotard, A. L.; Moore, M. L.; Melero, J. A.; McLellan, J. S.; Graham, B. S.; Broadbent, L.; Power, U. F.; Caljon, G.; Cos, P.; Maes, L.

    2017-01-01

    ABSTRACT Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication. IMPORTANCE Current research into the development of new immunoprophylaxis and vaccines is mainly focused on the RSV F protein since, among others, RSV F

  12. Amino Acid Variation in HLA Class II Proteins Is a Major Determinant of Humoral Response to Common Viruses

    PubMed Central

    Hammer, Christian; Begemann, Martin; McLaren, Paul J.; Bartha, István; Michel, Angelika; Klose, Beate; Schmitt, Corinna; Waterboer, Tim; Pawlita, Michael; Schulz, Thomas F.; Ehrenreich, Hannelore; Fellay, Jacques

    2015-01-01

    The magnitude of the human antibody response to viral antigens is highly variable. To explore the human genetic contribution to this variability, we performed genome-wide association studies of the immunoglobulin G response to 14 pathogenic viruses in 2,363 immunocompetent adults. Significant associations were observed in the major histocompatibility complex region on chromosome 6 for influenza A virus, Epstein-Barr virus, JC polyomavirus, and Merkel cell polyomavirus. Using local imputation and fine mapping, we identified specific amino acid residues in human leucocyte antigen (HLA) class II proteins as the most probable causal variants underlying these association signals. Common HLA-DRβ1 haplotypes showed virus-specific patterns of humoral-response regulation. We observed an overlap between variants affecting the humoral response to influenza A and EBV and variants previously associated with autoimmune diseases related to these viruses. The results of this study emphasize the central and pathogen-specific role of HLA class II variation in the modulation of humoral immune response to viral antigens in humans. PMID:26456283

  13. Influenza Virus-Like Particles Containing M2 Induce Broadly Cross Protective Immunity

    PubMed Central

    Song, Jae-Min; Wang, Bao-Zhong; Park, Kyoung-Mi; Van Rooijen, Nico; Quan, Fu-Shi; Kim, Min-Chul; Jin, Hyun-Tak; Pekosz, Andrew; Compans, Richard W.; Kang, Sang-Moo

    2011-01-01

    Background Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health. Methodology/Principal Findings To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms. Conclusions/Significance These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines. PMID:21267073

  14. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    PubMed

    Allison, Andrew B; Kevin Keel, M; Philips, Jamie E; Cartoceti, Andrew N; Munk, Brandon A; Nemeth, Nicole M; Welsh, Trista I; Thomas, Jesse M; Crum, James M; Lichtenwalner, Anne B; Fadly, Aly M; Zavala, Guillermo; Holmes, Edward C; Brown, Justin D

    2014-02-01

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown. © 2013 Published by Elsevier Inc.

  15. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses.

    PubMed

    Blyth, Graham A D; Chan, Wing Fuk; Webster, Robert G; Magor, Katharine E

    2016-01-01

    Interferon-inducible transmembrane proteins (IFITMs) can restrict the entry of a wide range of viruses. IFITM3 localizes to endosomes and can potently restrict the replication of influenza A viruses (IAV) and several other viruses that also enter host cells through the endocytic pathway. Here, we investigate whether IFITMs are involved in protection in ducks, the natural host of influenza virus. We identify and sequence duck IFITM1, IFITM2, IFITM3, and IFITM5. Using quantitative PCR (qPCR), we demonstrate the upregulation of these genes in lung tissue in response to highly pathogenic IAV infection by 400-fold, 30-fold, 30-fold, and 5-fold, respectively. We express each IFITM in chicken DF-1 cells and show duck IFITM1 localizes to the cell surface, while IFITM3 localizes to LAMP1-containing compartments. DF-1 cells stably expressing duck IFITM3 (but not IFITM1 or IFITM2) show increased restriction of replication of H1N1, H6N2, and H11N9 IAV strains but not vesicular stomatitis virus. Although duck and human IFITM3 share only 38% identity, critical residues for viral restriction are conserved. We generate chimeric and mutant IFITM3 proteins and show duck IFITM3 does not require its N-terminal domain for endosomal localization or antiviral function; however, this N-terminal end confers endosomal localization and antiviral function on IFITM1. In contrast to mammalian IFITM3, the conserved YXXθ endocytosis signal sequence in the N-terminal domain of duck IFITM3 is not essential for correct endosomal localization. Despite significant structural and amino acid divergence, presumably due to host-virus coevolution, duck IFITM3 is functional against IAV. Immune IFITM genes are poorly conserved across species, suggesting that selective pressure from host-specific viruses has driven this divergence. We wondered whether coevolution between viruses and their natural host would result in the evasion of IFITM restriction. Ducks are the natural host of avian influenza A viruses

  17. Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses.

    PubMed

    Santhakumar, Diwakar; Rohaim, Mohammed Abdel Mohsen Shahaat; Hussein, Hussein A; Hawes, Pippa; Ferreira, Helena Lage; Behboudi, Shahriar; Iqbal, Munir; Nair, Venugopal; Arns, Clarice W; Munir, Muhammad

    2018-05-01

    The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFITs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFIT5) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFIT5 protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFIT5-stable chicken fibroblasts whereas CRISPR/Cas9-edited chIFIT5 gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFIT5 protein or knocked-down for endogenous chIFIT5 gene. Replication kinetics of RNA viruses in these transgenic chicken embryos demonstrated the antiviral potential of chIFIT5 in ovo. Taken together, these findings propose that IFIT5 specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health significance.

  18. A TRANSPLANTABLE RABBIT CARCINOMA ORIGINATING IN A VIRUS-INDUCED PAPILLOMA AND CONTAINING THE VIRUS IN MASKED OR ALTERED FORM

    PubMed Central

    Kidd, John G.; Rous, Peyton

    1940-01-01

    A squamous cell carcinoma derived from a virus-induced rabbit papilloma has been propagated in fourteen successive groups of animals. It grows rapidly now in most individuals to which it is transplanted, killing early and metastasizing frequently. The original cancer was the outcome of alterations in epidermal cells already rendered neoplastic by the virus, and the latter, or an agent nearly related to it, has persisted and increased in the malignant tissue, as a study of the blood of the first ten groups of cancerous animals has shown. An antibody capable of specifically neutralizing the virus in vitro appeared in the blood of every new host in which the tumor enlarged progressively, and reached a titer comparable with that obtaining in animals which had long carried large papillomas. The antibody was absent from normal rabbits and those in which the cancer failed to grow. The implications of these facts are considered. PMID:19871000

  19. Identification and characterization of the p35 gene of Bombyx mori nuclear polyhedrosis virus that prevents virus-induced apoptosis.

    PubMed Central

    Kamita, S G; Majima, K; Maeda, S

    1993-01-01

    Nucleotide sequence analysis of the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome revealed the existence of a gene homologous to the p35 gene of Autographa californica NPV (AcNPV), which has been shown to prevent virus-induced apoptosis. The BmNPV p35 gene showed 96.1% nucleotide and 89.6% predicted amino acid sequence identity to the AcNPV p35 gene. A mutant BmNPV (BmP35Z) lacking a functional p35 gene induced apoptosis-like cell degradation in infected BmN cells. However, unlike the p35-deleted AcNPV mutant (vAcAnh), BmP35Z replicated normally and produced polyhedral inclusion bodies. The patterns of protein synthesis and the percentages of viable BmN cells remaining following infection with either wild-type BmNPV or BmP35Z were nearly identical. BmP35Z also replicated in silkworm larvae without showing any apparent apoptotic response in infected hemocytes, fat body, or other tissues. Time to death of larvae infected with BmP35Z was similar to that for wild-type-infected larvae, and significant numbers of polyhedral inclusion bodies were produced. These results indicate that viral factors (or genes) other than p35 or host cell factors play a role in inducing, accelerating, or interfering with apoptotic processes. The evolution of baculovirus genomes is also discussed with reference to comparative analysis of the p35 and p94 gene sequences. The p94 gene is found immediately upstream of p35 in AcNPV; in BmNPV, however, the p94 gene was nearly completely missing, presumably because of large deletions in a BmNPV ancestor virus having a gene similar to the AcNPV p94 gene. Images PMID:8416377

  20. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation.

    PubMed

    Wong, Joyce J W; Young, Tracy A; Zhang, Jiayan; Liu, Shiheng; Leser, George P; Komives, Elizabeth A; Lamb, Robert A; Zhou, Z Hong; Salafsky, Joshua; Jardetzky, Theodore S

    2017-10-03

    Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.

  1. Role of ribonuclease L in viral pathogen-associated molecular pattern/influenza virus and cigarette smoke-induced inflammation and remodeling.

    PubMed

    Zhou, Yang; Kang, Min-Jong; Jha, Babal Kant; Silverman, Robert H; Lee, Chun Geun; Elias, Jack A

    2013-09-01

    Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-β1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.

  2. Are the Polyomaviruses BK and JC Associated with Opportunistic Infections, Graft-versus-Host Disease, or Worse Outcomes in Adult Patients Receiving Their First Allogeneic Stem Cell Transplantation with Low-Dose Alemtuzumab?

    PubMed

    Schneidewind, Laila; Neumann, Thomas; Knoll, Florian; Zimmermann, Kathrin; Smola, Sigrun; Schmidt, Christian Andreas; Krüger, William

    2017-01-01

    The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (<10%). There was no association of BKPyV or JCPyV with CMV reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding. © 2017 S. Karger AG, Basel.

  3. Porcine reproductive and respiratory syndrome virus infection induces both eIF2α-phosphorylation-dependent and -independent host translation shutoff.

    PubMed

    Li, Yang; Fang, Liurong; Zhou, Yanrong; Tao, Ran; Wang, Dang; Xiao, Shaobo

    2018-06-13

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. Nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest. IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation

  4. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle

  5. A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots

    PubMed Central

    Yan, Lijie; Jackson, Andrew O.; Liu, Zhiyong; Han, Chenggui; Yu, Jialin; Li, Dawei

    2011-01-01

    Barley stripe mosaic virus (BSMV) is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS) vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC) strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS), magnesium chelatase subunit H (ChlH), and plastid transketolase (TK) gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5) also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici) infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies. PMID:22031834

  6. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants.

    PubMed

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. © 2013 Elsevier Inc. All rights reserved.

  7. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells.

    PubMed

    Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao

    2018-04-30

    IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.

  8. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells

    PubMed Central

    Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao

    2018-01-01

    IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection. PMID:29629559

  9. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses.

    PubMed

    Fereidouni, Sasan R; Starick, Elke; Beer, Martin; Wilking, Hendrik; Kalthoff, Donata; Grund, Christian; Häuslaigner, Rafaela; Breithaupt, Angele; Lange, Elke; Harder, Timm C

    2009-08-20

    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 microl at 3 dpi: 3.0 x 10(2) vs. 2.3 x 10(4) vs. 8.7 x 10(4); p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections.

  10. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    PubMed Central

    Costa, Vivian V.; Del Sarto, Juliana L.; Rocha, Rebeca F.; Silva, Flavia R.; Doria, Juliana G.; Olmo, Isabella G.; Marques, Rafael E.; Queiroz-Junior, Celso M.; Foureaux, Giselle; Araújo, Julia Maria S.; Cramer, Allysson; Real, Ana Luíza C. V.; Ribeiro, Lucas S.; Sardi, Silvia I.; Ferreira, Anderson J.; Machado, Fabiana S.; de Oliveira, Antônio C.; Teixeira, Antônio L.; Nakaya, Helder I.; Souza, Danielle G.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. PMID:28442607

  11. LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1

    PubMed Central

    Moss, Charles Randall; Whitehurst, Christopher B.; Moody, Cary A.

    2015-01-01

    ABSTRACT As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a

  12. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Immunogenicity of Newcastle Disease Virus Vectors Expressing Norwalk Virus Capsid Protein in the Presence or Absence of VP2 Protein

    PubMed Central

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.

    2015-01-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695

  14. Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus.

    PubMed

    Mustafa, Roma; Shafiq, Muhammad; Mansoor, Shahid; Briddon, Rob W; Scheffler, Brian E; Scheffler, Jodi; Amin, Imran

    2016-01-01

    The study described here has optimized the conditions for virus-induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum, and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloroplastos alterados 1 (AtCLA1) gene, involved in chloroplast development, in G. herbaceum, G. arboreum, and six commercial G. hirsutum cultivars. All plants inoculated with the TRV vector to silence CLA1 developed a typical albino phenotype indicative of silencing this gene. Although silencing in G. herbaceum and G. arboreum was complete, silencing efficiency differed for each G. hirsutum cultivar. Reverse transcriptase polymerase chain reaction (PCR) and real-time quantitative PCR showed a reduction in mRNA levels of the CLA1 homolog in all three species, with the highest efficiency (lowest CLA1 mRNA levels) in G. arboreum followed by G. herbaceum and G. hirsutum. The results indicate that TRV is a useful vector for VIGS in Gossypium species. However, selection of host cultivar is important. With the genome sequences of several cotton species recently becoming publicly available, this system has the potential to provide a very powerful tool for the rapid, large-scale reverse-genetic analysis of genes in Gossypium spp.

  15. An Early Tobacco Mosaic Virus-Induced Oxidative Burst in Tobacco Indicates Extracellular Perception of the Virus Coat Protein1

    PubMed Central

    Allan, Andrew C.; Lapidot, Moshe; Culver, James N.; Fluhr, Robert

    2001-01-01

    Induction of reactive oxygen species (ROS) was observed within seconds of the addition of exogenous tobacco mosaic virus (TMV) to the outside of tobacco (Nicotiana tabacum cv Samsun NN, EN, or nn) epidermal cells. Cell death was correlated with ROS production. Infectivity of the TMV virus was not a prerequisite for this elicitation and isolated coat protein (CP) subunits could also elicit the fast oxidative burst. The rapid induction of ROS was prevented by both inhibitors of plant signal transduction and inhibitors of NAD(P)H oxidases, suggesting activation of a multi-step signal transduction pathway. Induction of intracellular ROS by TMV was detected in TMV-resistant and -susceptible tobacco cultivars isogenic for the N allele. The burst was also detected with strains of virus that either elicit (ToMV) or fail to elicit (TMV U1) N′ gene-mediated responses. Hence, early ROS generation is independent or upstream of known genetic systems in tobacco that can mediate hypersensitive responses. Analysis of other viruses and TMV CP mutants showed marked differences in their ability to induce ROS showing specificity of the response. Thus, initial TMV-plant cell interactions that lead to early ROS induction occur outside the plasma membrane in an event requiring specific CP epitopes. PMID:11351074

  16. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses.

    PubMed

    Carney, Daniel W; Nelson, Christian D S; Ferris, Bennett D; Stevens, Julia P; Lipovsky, Alex; Kazakov, Teymur; DiMaio, Daniel; Atwood, Walter J; Sello, Jason K

    2014-09-01

    Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2(cycl), an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2(cycl) and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.

    PubMed

    Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T

    2017-11-14

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence

  18. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage

    NASA Astrophysics Data System (ADS)

    de Ruiter, Mark V.; Overeem, Nico J.; Singhai, Gaurav; Cornelissen, Jeroen J. L. M.

    2018-05-01

    Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.

  19. Immunological responses against human papilloma virus and human papilloma virus induced laryngeal cancer.

    PubMed

    Chitose, Shun-ichi; Sakazaki, T; Ono, T; Kurita, T; Mihashi, H; Nakashima, T

    2010-06-01

    This study aimed to clarify the local immune status in the larynx in the presence of infection or carcinogenesis associated with human papilloma virus. Cytological samples (for human papilloma virus detection) and laryngeal secretions (for immunoglobulin assessment) were obtained from 31 patients with laryngeal disease, during microscopic laryngeal surgery. On histological examination, 12 patients had squamous cell carcinoma, four had laryngeal papilloma and 15 had other benign laryngeal disease. Cytological samples were tested for human papilloma virus DNA using the Hybrid Capture 2 assay. High risk human papilloma virus DNA was detected in 25 per cent of patients (three of 12) with laryngeal cancer. Low risk human papilloma virus DNA was detected only in three laryngeal papilloma patients. The mean laryngeal secretion concentrations of immunoglobulins M, G and A and secretory immunoglobulin A in human papilloma virus DNA positive patients were more than twice those in human papilloma virus DNA negative patients. A statistically significant difference was observed between the secretory immunoglobulin A concentrations in the two groups. Patients with laryngeal cancer had higher laryngeal secretion concentrations of each immunoglobulin type, compared with patients with benign laryngeal disease. The study assessed the mean laryngeal secretion concentrations of each immunoglobulin type in the 12 laryngeal cancer patients, comparing human papilloma virus DNA positive patients (n = 3) and human papilloma virus DNA negative patients (n = 9); the mean concentrations of immunoglobulins M, G and A and secretory immunoglobulin A tended to be greater in human papilloma virus DNA positive cancer patients, compared with human papilloma virus DNA negative cancer patients. These results suggest that the local laryngeal immune response is activated by infection or carcinogenesis due to human papilloma virus. The findings strongly suggest that secretory IgA has inhibitory activity

  20. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity.

    PubMed

    Zheng, Zifeng; Yang, Jieyu; Jiang, Xuan; Liu, Yalan; Zhang, Xiaowei; Li, Mei; Zhang, Mudan; Fu, Ming; Hu, Kai; Wang, Hanzhong; Luo, Min-Hua; Gong, Peng; Hu, Qinxue

    2018-05-14

    Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    PubMed

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3β inhibitor, SB216763.

    PubMed

    Brooks, Morgan M; Neelam, Sudha; Fudala, Rafal; Gryczynski, Ignacy; Cammarata, Patrick R

    2013-01-01

    Dissipation of the electrochemical gradient across the inner mitochondrial membrane results in mitochondrial membrane permeability transition (mMPT), a potential early marker for the onset of apoptosis. In this study, we demonstrate a role for glycogen synthase kinase-3β (GSK-3β) in regulating mMPT. Using direct inhibition of GSK-3β with the GSK-3β inhibitor SB216763, mitochondria may be prevented from depolarizing (hereafter referred to as mitoprotection). Cells treated with SB216763 showed an artifact of fluorescence similar to the green emission spectrum of the JC-1 dye. We demonstrate the novel use of spectral deconvolution to negate the interfering contributing fluorescence by SB216763, thus allowing an unfettered analysis of the JC-1 dye to determine the mitochondrial membrane potential. Secondary cultures of virally transfected human lens epithelial cells (HLE-B3) were exposed to acute hypoxic conditions (approximately 1% O₂) followed by exposure to atmospheric oxygen (approximately 21% O₂). The fluorescent dye JC-1 was used to monitor the extent of mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Annexin V-fluorescein isothiocyanate/propidium iodide staining was implemented to determine cell viability. Treatment of HLE-B3 cells with SB216763 (12 µM), when challenged by oxidative stress, suppressed mitochondrial depolarization relative to control cells as demonstrated with JC-1 fluorescent dye analysis. Neither the control nor the SB216763-treated HLE-B3 cells tested positive with annexin V-fluorescein isothiocyanate/propidium iodide staining under the conditions of the experiment. Inhibition of GSK-3β activity by SB216763 blocked mMPT relative to the slow but consistent depolarization observed with the control cells. We conclude that inhibition of GSK-3β activity by the GSK-3β inhibitor SB216763 provides positive protection against mitochondrial

  3. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: A prospective cohort study.

    PubMed

    Bjerregaard, A; Laing, I A; Backer, V; Sverrild, A; Khoo, S-K; Chidlow, G; Sikazwe, C; Smith, D W; Le Souëf, P; Porsbjerg, C

    2017-08-01

    The major trigger of asthma exacerbations is infection with a respiratory virus, most commonly rhinovirus. Type 2 inflammation is known to be associated with an increased risk of exacerbations in general. Whether type 2 inflammation at baseline increases the risk of future virus-induced exacerbations is unknown. To assess whether type 2 inflammation is associated with an increased risk of virus-induced exacerbations of asthma. Stable asthmatics had spirometry, skin prick test, measurement of FeNO and sputum induced for differential cell counts. Patients were followed up for 18 months, during which they were assessed at the research unit when they had symptoms of an exacerbation. Nasal swabs collected at these assessments underwent viral detection by PCR. A total of 81 asthma patients were recruited, of which 22 (27%) experienced an exacerbation during the follow-up period. Of these, 15 (68%) had a respiratory virus detected at exacerbation. Sputum eosinophils >1% at baseline increased the risk of having a subsequent virus-induced exacerbation (HR 7.6 95% CI: 1.6-35.2, P=.010) as did having FeNO >25 ppb (HR 3.4 95% CI: 1.1-10.4, P=.033). Established type 2 inflammation during stable disease is a risk factor for virus-induced exacerbations in a real-life setting. Measures of type 2 inflammation, such as sputum eosinophils and FeNO, could be included in the risk assessment of patients with asthma in future studies. © 2017 John Wiley & Sons Ltd.

  4. The Ebola virus matrix protein VP40 selectively induces vesiculation from phosphatidylserine-enriched membranes.

    PubMed

    Soni, Smita P; Stahelin, Robert V

    2014-11-28

    Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, butmore » porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.« less

  6. In elderly persons live attenuated influenza A virus vaccines do not offer an advantage over inactivated virus vaccine in inducing serum or secretory antibodies or local immunologic memory.

    PubMed Central

    Powers, D C; Fries, L F; Murphy, B R; Thumar, B; Clements, M L

    1991-01-01

    In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group. PMID:2037667

  7. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  8. Dengue virus induces and requires glycolysis for optimal replication.

    PubMed

    Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman; Lagunoff, Michael

    2015-02-01

    Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of

  9. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma

    PubMed Central

    Arikkatt, Jaisy; Ullah, Md Ashik; Short, Kirsty Renfree; Zhang, Vivan; Gan, Wan Jun; Loh, Zhixuan; Werder, Rhiannon B; Simpson, Jennifer; Sly, Peter D; Mazzone, Stuart B; Spann, Kirsten M; Ferreira, Manuel AR; Upham, John W; Sukkar, Maria B; Phipps, Simon

    2017-01-01

    Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.21199.001 PMID:28099113

  10. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    PubMed Central

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  11. Quantification of Human and Animal Viruses to Differentiate the Origin of the Fecal Contamination Present in Environmental Samples

    PubMed Central

    Bofill-Mas, Sílvia; Rusiñol, Marta; Fernandez-Cassi, Xavier; Carratalà, Anna; Hundesa, Ayalkibet

    2013-01-01

    Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking). In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples. PMID:23762826

  12. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo.

    PubMed

    Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S

    2011-06-01

    Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for

  13. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses

    PubMed Central

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Zimmer, Gert; Marz, Manja; Müller, Marcel A.

    2017-01-01

    ABSTRACT Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including

  14. Protective immunity against H7N3 highly pathogenic avian influenza induced following inoculation of chickens with H7 low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In the poultry industry, live virus vaccines are used to induce immunity against numerous respiratory pathogens. These are typically lower virulent forms of virus which are limited in replication and pathology, but induce mucosal, humoral, and cellular immunity. Because of the potential for revers...

  15. Human Herpesvirus 6B Induces Hypomethylation on Chromosome 17p13.3, Correlating with Increased Gene Expression and Virus Integration.

    PubMed

    Engdahl, Elin; Dunn, Nicky; Niehusmann, Pitt; Wideman, Sarah; Wipfler, Peter; Becker, Albert J; Ekström, Tomas J; Almgren, Malin; Fogdell-Hahn, Anna

    2017-06-01

    Human herpesvirus 6B (HHV-6B) is a neurotropic betaherpesvirus that achieves latency by integrating its genome into host cell chromosomes. Several viruses can induce epigenetic modifications in their host cells, but no study has investigated the epigenetic modifications induced by HHV-6B. This study analyzed methylation with an Illumina 450K array, comparing HHV-6B-infected and uninfected Molt-3 T cells 3 days postinfection. Bisulfite pyrosequencing was used to validate the Illumina results and to investigate methylation over time in vitro Expression of genes was investigated using quantitative PCR (qPCR), and virus integration was investigated with PCR. A total of 406 CpG sites showed a significant HHV-6B-induced change in methylation in vitro Remarkably, 86% (351/406) of these CpGs were located <1 Mb from chromosomal ends and were all hypomethylated in virus-infected cells. This was most evident at chromosome 17p13.3, where HHV-6B had induced CpG hypomethylation after 2 days of infection, possibly through TET2, which was found to be upregulated by the virus. In addition, virus-induced cytosine hydroxymethylation was observed. Genes located in the hypomethylated region at 17p13.3 showed significantly upregulated expression in HHV-6B-infected cells. A temporal experiment revealed HHV-6B integration in Molt-3 cell DNA 3 days after infection. The telomere at 17p has repeatedly been described as an integration site for HHV-6B, and we show for the first time that HHV-6B induces hypomethylation in this region during acute infection, which may play a role in the integration process, possibly by making the DNA more accessible. IMPORTANCE The ability to establish latency in the host is a hallmark of herpesviruses, but the mechanisms differ. Human herpesvirus 6B (HHV-6B) is known to establish latency through integration of its genome into the telomeric regions of host cells, with the ability to reactivate. Our study is the first to show that HHV-6B specifically induces

  16. Comparison of irradiation-induced shifts of K{sub Jc} and Charpy impact toughness for reactor pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, M.A.; Nanstad, R.K.

    1999-10-01

    The current provisions for determination of the upward temperature shift of the lower-bound static fracture toughness curve due to irradiation of reactor pressure vessel steels are based on the assumption that they are the same as the Charpy 41-J shifts as a consequence of irradiation. The objective of this paper is to evaluate this assumption relative to data reported in open publications. Depending on the specific source, different sizes of fracture toughness specimens, procedures of the K{sub Jc} determination, and fitting functions were used. It was anticipated that the scatter might be reduced by using a consistent approach to analyzemore » the published data. A method employing Weibull statistics is applied to analyze original fracture toughness data of unirradiated and irradiated pressure vessel steels. Application of the master curve concept is used to determine shifts of fracture toughness transition curves. A hyperbolic tangent function is used to fit charpy absorbed energy data. The fracture toughness shifts are compared to Charpy impact shifts evaluated with various criteria. Linear regression analysis showed that for weld metals, on average, the fracture toughness shift is the same as the Charpy 41-J temperature shift, while for base metals, on average, the fracture toughness shift at 41 J is 16% greater than the shift of the Charpy 41-J transition temperature, with both correlations having relatively large 95% confidence intervals.« less

  17. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    PubMed Central

    Lai, Chih-Yun; Strange, Daniel P.; Wong, Teri Ann S.; Lehrer, Axel T.; Verma, Saguna

    2017-01-01

    Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are

  18. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy

    PubMed Central

    Shao, Minglong; Zhang, Xian; Rao, Zhiming; Xu, Meijuan; Yang, Taowei; Li, Hui; Xu, Zhenghong

    2015-01-01

    To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry. PMID:26352898

  19. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication

    PubMed Central

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K.; McCormick, Frank; Graeber, Thomas G.; Christofk, Heather R.

    2014-01-01

    SUMMARY Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. While recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. PMID:24703700

  20. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, andmore » infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.« less

  1. Salivary gland hypertrophy viruses (SGHVs): a novel group of insect pathogenic viruses

    USDA-ARS?s Scientific Manuscript database

    Salivary gland hypertrophy viruses (SGHVs) are a unique, unclassified group of entomopathogenic, double-stranded DNA viruses that have been reported from three genera of Diptera. These viruses replicate in nuclei of salivary gland cells in adult flies, inducing gland enlargement with little obvious ...

  2. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain.

    PubMed

    Liu, Yuan; Gordesky-Gold, Beth; Leney-Greene, Michael; Weinbren, Nathan L; Tudor, Matthew; Cherry, Sara

    2018-06-09

    The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor. Copyright © 2018. Published by Elsevier Inc.

  3. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    PubMed Central

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  4. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology.

    PubMed

    Ahn, Sun-Young; Sohn, Sung-Hwa; Lee, Sang-Yeon; Park, Hye-Lim; Park, Yong-Wook; Kim, Hun; Nam, Jae-Hwan

    2015-11-01

    Obese individuals show increased susceptibility to infection, low vaccine efficacy, and worse pathophysiology. However, it is unclear how obesity affects these events. The aim of this study was to investigate the effect of obesity-triggered chronic inflammation on immune cells after influenza virus infection. Control and lipopolysaccharide mice, in which an osmotic pump continually released Tween saline or lipopolysaccharide, were prepared and 3 weeks later were infected with pandemic H1N1 2009 influenza A virus. In lipopolysaccharide mice, we found a reduction in macrophage activation markers in the steady state, and reduced production of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in restimulated peritoneal macrophages. Interestingly, lipopolysaccharide-triggered chronic inflammation exacerbated the severity of pathological symptoms in the lungs after challenge with influenza virus. Taken together, the increased severity of virus-induced symptoms in obese individuals with chronic inflammation may be, at least partially, caused by macrophage dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Stress-induced reactivation of Epstein-Barr virus in astronauts

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Feeback, D. L.; Barrett, A. D.

    2000-01-01

    Herpesviruses are leading causes of infectious blindness and death in immunocompromised individuals. Impaired cellular immunity, which is known to result in increased frequency and severity of herpesvirus infections, has been demonstrated both during and after spaceflight. Therefore, we examined whether Epstein-Barr virus (EBV), a well-characterized latent herpesvirus, undergoes reactivation in astronauts. Sera from Shuttle astronauts, taken before and after spaceflight, were examined for evidence of EBV reactivation. The geometric mean antibody titer to EBV viral capsid antigen (VCA) was significantly increased prior to flight compared to baseline (p = 0. 0001). After spaceflight, evidence of acute lytic replication was found in which 8- to 64-fold increases in EBV early antigen (EA) antibodies occurred without significant increases in antibodies to measles virus. Additionally, stress-induced shifts in circulating leukocytes and elevated levels of urinary cortisol and epinephrine were found. Overall, significant increases in EA or high VCA/EA antibody titers were found in 8 of 23 (35%) male astronauts and 3 of 5 (60%) female astronauts. These results indicate that stress reactivates EBV prior to flight and suggest that acute lytic replication of EBV occurs during spaceflight. Copyright 2000 S. Karger AG, Basel.

  6. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  7. Characterization of recent and minimally passaged Brazilian dengue viruses inducing robust infection in rhesus macaques.

    PubMed

    Borges, Maria Beatriz; Marchevsky, Renato Sergio; Mendes, Ygara S; Mendes, Luiz Gustavo; Duarte, Ana Claudia; Cruz, Michael; de Filippis, Ana Maria Bispo; Vasconcelos, Pedro Fernando C; Freire, Marcos; Homma, Akira; Mossman, Sally; Lepine, Edith; Vanloubbeeck, Yannick; Lorin, Clarisse; Malice, Marie-Pierre; Caride, Elena; Warter, Lucile

    2018-01-01

    The macaque is widely accepted as a suitable model for preclinical characterization of dengue vaccine candidates. However, the only vaccine for which both preclinical and clinical efficacy results were reported so far showed efficacy levels that were substantially different between macaques and humans. We hypothesized that this model's predictive capacity may be improved using recent and minimally passaged dengue virus isolates, and by assessing vaccine efficacy by characterizing not only the post-dengue virus challenge viremia/RNAemia but also the associated-cytokine profile. Ten recent and minimally passaged Brazilian clinical isolates from the four dengue virus serotypes were tested for their infectivity in rhesus macaques. For the strains showing robust replication capacity, the associated-changes in soluble mediator levels, and the elicited dengue virus-neutralizing antibody responses, were also characterized. Three isolates from dengue virus serotypes 1, 2 and 4 induced viremia of high magnitude and longer duration relative to previously reported viremia kinetics in this model, and robust dengue virus-neutralizing antibody responses. Consistent with observations in humans, increased MCP-1, IFN-γ and VEGF-A levels, and transiently decreased IL-8 levels were detected after infection with the selected isolates. These results may contribute to establishing a dengue macaque model showing a higher predictability for vaccine efficacy in humans.

  8. Characterization of recent and minimally passaged Brazilian dengue viruses inducing robust infection in rhesus macaques

    PubMed Central

    Borges, Maria Beatriz; Marchevsky, Renato Sergio; Mendes, Ygara S.; Mendes, Luiz Gustavo; Duarte, Ana Claudia; Cruz, Michael; de Filippis, Ana Maria Bispo; Vasconcelos, Pedro Fernando C.; Freire, Marcos; Homma, Akira; Mossman, Sally; Lepine, Edith; Vanloubbeeck, Yannick; Lorin, Clarisse; Malice, Marie-Pierre; Caride, Elena

    2018-01-01

    The macaque is widely accepted as a suitable model for preclinical characterization of dengue vaccine candidates. However, the only vaccine for which both preclinical and clinical efficacy results were reported so far showed efficacy levels that were substantially different between macaques and humans. We hypothesized that this model’s predictive capacity may be improved using recent and minimally passaged dengue virus isolates, and by assessing vaccine efficacy by characterizing not only the post-dengue virus challenge viremia/RNAemia but also the associated-cytokine profile. Ten recent and minimally passaged Brazilian clinical isolates from the four dengue virus serotypes were tested for their infectivity in rhesus macaques. For the strains showing robust replication capacity, the associated-changes in soluble mediator levels, and the elicited dengue virus-neutralizing antibody responses, were also characterized. Three isolates from dengue virus serotypes 1, 2 and 4 induced viremia of high magnitude and longer duration relative to previously reported viremia kinetics in this model, and robust dengue virus-neutralizing antibody responses. Consistent with observations in humans, increased MCP-1, IFN-γ and VEGF-A levels, and transiently decreased IL-8 levels were detected after infection with the selected isolates. These results may contribute to establishing a dengue macaque model showing a higher predictability for vaccine efficacy in humans. PMID:29694440

  9. Replication of Minute Virus of Mice in Murine Cells Is Facilitated by Virally Induced Depletion of p21

    PubMed Central

    Adeyemi, Richard O.

    2012-01-01

    The DNA damage response to infection with minute virus of mice (MVM) leads to activated p53; however, p21 levels are reduced via a proteasome-mediated mechanism. This loss was sustained, as virus replicated in infected cells held at the G2/M border. Addition of the cyclin-dependent kinase (CDK) inhibitor roscovitine after S-phase entry reduced MVM replication, suggesting that CDK activity was critical for continued viral replication and virus-induced reduction of p21 may thus be necessary to prevent inhibition of CDK. PMID:22623787

  10. Bag3-Induced Autophagy Is Associated with Degradation of JCV Oncoprotein, T-Ag

    PubMed Central

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C.; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases. PMID:22984599

  11. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    PubMed

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  12. Grapevine fleck virus-like viruses in Vitis.

    PubMed

    Sabanadzovic, S; Abou-Ghanem, N; Castellano, M A; Digiaro, M; Martelli, G P

    2000-01-01

    Two sets of degenerate primers for the specific amplification of 572-575 nt and 386 nt segments of the methyltransferase and RNA- dependent RNA polymerase cistrons of members of the genera Tymovirus and Marafivirus and of the unassigned virus Grapevine fleck virus (GFkV) were designed on the basis of available sequences. These primers were used for amplifying and subsequent cloning and sequencing part of the open reading frame 1 of the genome of GFkV, Grapevine asteroid mosaic-associated virus (GAMaV) and of another previously unreported virus, for which the name Grapevine red globe virus (GRGV) is proposed. Computer-assisted analysis of the amplified genome portions showed that the three grapevine viruses are phylogenetically related with one another and with sequenced tymoviruses and marafiviruses. The relationships with tymoviruses was confirmed by the type of ultrastructural modifications induced in the host cells. RdRp-specific degenerate primers were successfully used for the aspecific detection of the three viruses in crude grapevine sap extracts. Specific virus identification was obtained with RT-PCR using antisense virus-specific primers.

  13. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    PubMed

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity

  14. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis*

    PubMed Central

    Barnwal, Bhaskar; Karlberg, Helen; Mirazimi, Ali; Tan, Yee-Joo

    2016-01-01

    Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells. PMID:26574543

  15. Virus reactivations after autologous hematopoietic stem cell transplantation detected by multiplex PCR assay.

    PubMed

    Inazawa, Natsuko; Hori, Tsukasa; Nojima, Masanori; Saito, Makoto; Igarashi, Keita; Yamamoto, Masaki; Shimizu, Norio; Yoto, Yuko; Tsutsumi, Hiroyuki

    2017-02-01

    Several studies have indicated that viral reactivations following allogeneic hematopoietic stem cell transplantation (allo-HSCT) are frequent, but viral reactivations after autologous HSCT (auto-HSCT) have not been investigated in detail. We performed multiplex polymerase chain reaction (PCR) assay to examine multiple viral reactivations simultaneously in 24 patients undergoing auto-HSCT between September 2010 and December 2012. Weekly whole blood samples were collected from pre- to 42 days post-HSCT, and tested for the following 13 viruses; herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, adeno virus (ADV), BK virus (BKV), JC virus (JCV), parvovirus B19 (B19V), and hepatitis B virus (HBV).  Fifteen (63%) patients had at least one type of viral reactivation. HHV6 (n = 10; 41.7%) was most frequently detected followed by EBV (n = 7; 29.2%). HHV-6 peaked on day 21 after HSCT and promptly declined. In addition, HBV, CMV, HHV7, and B19V were each detected in one patient. HHV6 reactivation was detected in almost half the auto-HSCT patients, which was similar to the incidence in allo-HSCT patients. The incidence of EBV was unexpectedly high. Viral infections in patients undergoing auto-HSCT were higher than previously reported in other studies. Although there were no particular complications of viral infection, we should pay attention to possible viral reactivations in auto-HSCT patients. J. Med. Virol. 89:358-362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models.

    PubMed

    Li, Penghui; Ke, Xianliang; Wang, Ting; Tan, Zhongyuan; Luo, Dan; Miao, Yuanjiu; Sun, Jianhong; Zhang, Yuan; Liu, Yan; Hu, Qinxue; Xu, Fuqiang; Wang, Hanzhong; Zheng, Zhenhua

    2018-06-20

    Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized, and recovered by reverse genetics, containing large amounts of underrepresented codon pairs in E gene and/or NS1 gene. Amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections. IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms including Guillain-Barré syndrome, microcephaly and other birth defects in human, there is an urgent need for ZIKV vaccine development. Here, we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammalian-attenuated, and preferred

  17. Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State.

    PubMed

    Liu, Ruikang; Moss, Bernard

    2018-05-01

    Type I interferons (IFNs) induce expression of more than 300 cellular genes that provide protection against viruses and other pathogens. For survival, viruses evolved defenses to prevent the IFN response or counteract the IFN-induced antiviral state. However, because viruses and cells coevolved, the dynamic relationship between virus and host is difficult to discern. In the present study, we demonstrated that vaccinia virus with a large deletion near the left end of the genome had a diminished ability to replicate in cells that had been pretreated with beta interferon (IFN-β), suggesting that one or more of the missing 17 open reading frames (ORFs) encode an antagonist of the IFN-induced antiviral state. By systematically deleting groups of ORFs and then individual ORFs, the C9L gene was shown to be required for IFN resistance. Replication of the C9L deletion mutant (vΔC9) was impaired in human cells that had been pretreated with IFN-β. Expression of viral early genes occurred, but subsequent events, including genome uncoating, genome replication, and postreplicative gene expression, were inhibited. Expression of the C9 protein occurred prior to genome replication, consistent with an early role in counteracting the IFN-induced antiviral state. C9 contains six ankyrin repeat motifs and a near C-terminal F-box. Mass spectrometry and immunoblotting identified host proteins that copurified with a functional epitope-tagged C9. The most abundant proteins were components of the SCF (CUL1, SKP1, F-box) and signalosome/deneddylation complexes, which interact with each other, suggesting a possible role in proteolysis of one or more interferon-induced proteins. IMPORTANCE Poxviruses comprise a family of large DNA viruses that replicate in the cytoplasm of vertebrate and insect hosts and cause human and zoonotic diseases. In most cases the primary infection is moderated by innate immune defenses. Vertebrates, including fish, amphibians, reptiles, birds, and mammals, all

  18. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi.

    PubMed

    Liu, Jingwen; Cai, Weicong; Fang, Xian; Wang, Xueting; Li, Guiling

    2018-04-01

    Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. PCD (apoptosis) is mainly brought about by the activation of caspases, a protease family with unique substrate selectivity. Here, we demonstrated that virus infection induced apoptosis of marine coccolithophorid Emiliania huxleyi BOF92 involving activation of metacaspase. E. huxleyi cells exhibited cell death process akin to that of apoptosis when exposed to virus infection. We observed typical hallmarks of apoptosis including cell shrinkage, associated nuclear morphological changes and DNA fragmentation. Immunoblotting revealed that antibody against human active-caspase-3 shared epitopes with a protein of ≈ 23 kDa; whose pattern of expression correlated with the onset of cell death. Moreover, analysis on two-dimensional gel electrophoresis revealed that two spots of active caspase-3 co-migrated with the different isoelectric points. Phosphatase treatment of cytosolic extracts containing active caspases-3 showed a mobility shift, suggesting that phosphorylated form of this enzyme might be present in the extracts. Computational prediction of phosphorylation sites based on the amino acid sequence of E. huxleyi metacaspase showed multiple phosphorylated sites for serine, threonine and tyrosine residues. This is the first report showing that phosphorylation modification of metacaspase in E. huxleyi might be required for certain biochemical and morphological changes during virus induced apoptosis.

  19. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

    PubMed Central

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian Dong; Kang, Sang-Moo

    2014-01-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. PMID:25110201

  20. Time course of Paclitaxel-induced apoptosis in an experimental model of virus-induced breast cancer.

    PubMed

    Erba, Paola A; Manfredi, Chiara; Lazzeri, Elena; Minichilli, Fabrizio; Pauwels, Ernest K J; Sbrana, Alberto; Strauss, H William; Mariani, Giuliano

    2010-05-01

    Early assessment of the efficacy of treatment is important in patients with breast cancer, whose routine adjuvant regimen frequently includes chemotherapy. Irrespective of the exact mechanisms involved in induction, the common early phenotypic marker of apoptosis is the expression on the outer cell membrane surface of phosphatidylserine, which avidly binds annexin V. (99m)Tc-labeled annexin V has been proposed for in vivo scintigraphic detection of apoptosis, albeit with contradicting results. This study was performed to define the time course of apoptosis induced by the chemotherapeutic agent paclitaxel in a model of virus-induced murine breast cancer. The RIII virus induces an estrogen-dependent, slow-growing breast cancer; BALB-c/cRIII female mice with breast tumors averaging 10 mm were studied, both in baseline conditions and at various times after the intravenous administration of paclitaxel (equivalent to a human dose of 20 mg/70 kg of body weight). The biodistribution of (99m)Tc-annexin V was evaluated at baseline and then at 1, 3, 6, and 24 h after paclitaxel administration. Apoptotic and antiapoptotic markers were also evaluated in tumor samples obtained at the same time points: DNA breaks (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling [TUNEL]), active caspase-3, apoptosis-inducing factor, and Bcl-2 protein. Baseline uptake of (99m)Tc-annexin V in breast tumors was about 2-fold higher than the uptake in normal breast tissue (demonstrating some ongoing apoptosis); tracer uptake increased at 1 and 3 h after paclitaxel administration (to almost double the baseline value) and then declined to levels even lower than baseline. Although no activation of the apoptosis-inducing factor mechanism was detected, a peak in TUNEL-positive tumor cells was reached 3 h after paclitaxel administration (to more than 6-fold the baseline level). The antiapoptotic marker Bcl-2 exhibited a biphasic pattern, with a maximum drop at 3 h, followed by return

  1. Endomembrane Ca2+ -ATPases play significant role in virus-induced adaptation to oxidative stress

    USDA-ARS?s Scientific Manuscript database

    In our recently published paper (Plant Cell Environ 34: 406-417) we have reported a phenomenon of Potato Virus X (PVX) - induced cross tolerance to oxidative stress in Nicotiana benthamiana plants and showed a critical role of plasma membrane Ca2+/H+ exchangers in this process. The current study fol...

  2. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System

    PubMed Central

    Wang, Chao-Wen; Cheng, Yun-Hsin; Irokawa, Hayato; Hwang, Gi-Wook; Naganuma, Akira; Kuge, Shusuke

    2016-01-01

    Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1), is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins. PMID:27459103

  3. Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells.

    PubMed

    Luo, Huanle; Winkelmann, Evandro R; Fernandez-Salas, Ildefonso; Li, Li; Mayer, Sandra V; Danis-Lozano, Rogelio; Sanchez-Casas, Rosa Ma; Vasilakis, Nikos; Tesh, Robert; Barrett, Alan D; Weaver, Scott C; Wang, Tian

    2018-03-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neonatal birth defects, but the causative mechanism is incompletely understood. ZIKV shares sequence homology and early clinical manifestations with yellow fever virus (YFV) and dengue virus (DENV) and are all transmitted in urban cycles by the same species of mosquitoes. However, YFV and DENV have been rarely reported to cause congenital diseases. Here, we compared infection with a contemporary ZIKV strain (FSS13025) to YFV17D and DENV-4 in human monocytic cells (THP-1) and first-trimester trophoblasts (HTR-8). Our results suggest that all three viruses have similar tropisms for both cells. Nevertheless, ZIKV induced strong type 1 IFN and inflammatory cytokine and chemokine production in monocytes and peripheral blood mononuclear cells. Furthermore, ZIKV infection in trophoblasts induced lower IFN and higher inflammatory immune responses. Placental inflammation is known to contribute to the risk of brain damage in preterm newborns. Inhibition of toll-like receptor (TLR)3 and TLR8 each abrogated the inflammatory cytokine responses in ZIKV-infected trophoblasts. Our findings identify a potential link between maternal immune activation and ZIKV-induced congenital diseases, and a potential therapeutic strategy that targets TLR-mediated inflammatory responses in the placenta. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Autophagic machinery activated by dengue virus enhances virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.-R.; Lei, H.-Y.; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that ismore » favorable for viral replication.« less

  5. Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge

    PubMed Central

    Goatley, Lynnette C.; Jabbar, Tamara; Sanchez-Cordon, Pedro J.; Netherton, Christopher L.; Chapman, David A. G.; Dixon, Linda K.

    2017-01-01

    these, DP148R, is transcribed early during virus replication in cells and can be deleted from the virus genome without reducing virus replication. The virus with the gene deletion, BeninΔDP148R, caused mild clinical signs in pigs and induced high levels of protection against challenge with the parental virulent virus. Therefore, deletion of this gene can provide a target for the rational development of vaccines. PMID:28978700

  6. Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge.

    PubMed

    Reis, Ana L; Goatley, Lynnette C; Jabbar, Tamara; Sanchez-Cordon, Pedro J; Netherton, Christopher L; Chapman, David A G; Dixon, Linda K

    2017-12-15

    148R, is transcribed early during virus replication in cells and can be deleted from the virus genome without reducing virus replication. The virus with the gene deletion, BeninΔDP148R, caused mild clinical signs in pigs and induced high levels of protection against challenge with the parental virulent virus. Therefore, deletion of this gene can provide a target for the rational development of vaccines. Copyright © 2017 Reis et al.

  7. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection.

    PubMed

    Gouma, Sigrid; Ten Hulscher, Hinke I; Schurink-van 't Klooster, Tessa M; de Melker, Hester E; Boland, Greet J; Kaaijk, Patricia; van Els, Cécile A C M; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-07-29

    Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild

  8. Current-induced switching in CoGa/L10 MnGa/(CoGa)/Pt structure with different thicknesses

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Mizukami, S.

    2018-06-01

    In this paper, we present the results of our study into current-induced spin-orbit torque (SOT) switching in perpendicularly magnetized CoGa/MnGa/Pt trilayers with different thicknesses of MnGa and Pt. The SOT switching was observed for all films that undergo Joule heating. We also investigate SOT switching in the bottom (CoGa)/MnGa/top(CoGa/Pt) films with different top layers. Although both the bottom and top layers contribute to the SOT, the relative magnitudes of the switching current densities JC in the top and bottom layers indicate that the SOT is dominant in the top layer. The JC as a function of thickness is discussed in terms of the magnetic properties and resistivity. Experimental data suggested that the MnGa thickness dependence of JC may originate from the perpendicular magnetic anisotropy thickness product Kueff t value. On the other hand, JC as a function of the Pt thickness shows weak dependence. This may be attributed to the slight change of spin-Hall angle θSH value with different thicknesses of Pt, when we assumed that the SOT switching is primarily due to the spin-Hall effect.

  9. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells

    PubMed Central

    Lin, Zhen; Swan, Kenneth; Zhang, Xin; Cao, Subing; Brett, Zoe; Drury, Stacy; Fewell, Claire; Puetter, Adriane; Wang, Xia; Ferris, MaryBeth; Sullivan, Deborah E.; Li, Li

    2016-01-01

    ABSTRACT In the oral epithelium, peripheral stores of Epstein-Barr virus (EBV) are transmitted from infiltrating B cells to epithelial cells. Once the virus is transmitted to epithelial cells, the highly permissive nature of this cell type for lytic replication allows virus amplification and exchange to other hosts. Since the initial transfer of EBV from B cells to epithelial cells requires transitioning of the B-cell to a state that induces virus reactivation, we hypothesized that there might be epithelium-specific signals that allow the infiltrating B cells to sense the appropriate environment to initiate reactivation and begin this exchange process. We previously found that the epithelium-specific miR-200 family of microRNAs promotes EBV lytic replication. Here we show that there are high levels of miR-200 family members in oral and tonsillar epithelia and in saliva. Analysis of cultured oral epithelial cells (OKF6) showed that they actively secrete membrane vesicles (exosomes) that are enriched with miR-200 family members. Coculturing of EBV-positive B cells with OKF6 cells induced viral reactivation. Further, treatment of EBV-positive B cells with OKF6 cell-derived membrane vesicles promoted reactivation. Using a cell system that does not naturally express miR-200 family members, we found that enforced expression of a miR-200 family member produced membrane vesicles that were able to induce the lytic cascade in EBV-positive B cells. We propose that membrane vesicles secreted by oral and tonsillar epithelial cells may serve as a tissue-specific environmental cue that initiates reactivation in B cells, promoting the transfer of virus from peripheral B-cell stores to the oral epithelium to facilitate virus amplification and exchange to other hosts. IMPORTANCE Epstein-Barr virus (EBV) is an important human pathogen that is causally associated with several lymphomas and carcinomas. The switch from latency to the lytic cycle is critical for successful host infection

  10. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    PubMed

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication.

    PubMed

    Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-07-04

    EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.

  12. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  13. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    PubMed

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  14. Immunotherapy against cancer-related viruses

    PubMed Central

    Tashiro, Haruko; Brenner, Malcolm K

    2017-01-01

    Approximately 12% of all cancers worldwide are associated with viral infections. To date, eight viruses have been shown to contribute to the development of human cancers, including Epstein-Barr virus (EBV), Hepatitis B and C viruses, and Human papilloma virus, among others. These DNA and RNA viruses produce oncogenic effects through distinct mechanisms. First, viruses may induce sustained disorders of host cell growth and survival through the genes they express, or may induce DNA damage response in host cells, which in turn increases host genome instability. Second, they may induce chronic inflammation and secondary tissue damage favoring the development of oncogenic processes in host cells. Viruses like HIV can create a more permissive environment for cancer development through immune inhibition, but we will focus on the previous two mechanisms in this review. Unlike traditional cancer therapies that cannot distinguish infected cells from non-infected cells, immunotherapies are uniquely equipped to target virus-associated malignancies. The targeting and functioning mechanisms associated with the immune response can be exploited to prevent viral infections by vaccination, and can also be used to treat infection before cancer establishment. Successes in using the immune system to eradicate established malignancy by selective recognition of virus-associated tumor cells are currently being reported. For example, numerous clinical trials of adoptive transfer of ex vivo generated virus-specific T cells have shown benefit even for established tumors in patients with EBV-associated malignancies. Additional studies in other virus-associated tumors have also been initiated and in this review we describe the current status of immunotherapy for virus-associated malignancies and discuss future prospects. PMID:28008927

  15. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques.

    PubMed

    Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao

    2016-10-01

    The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing

  16. Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymberopoulos, Maria H.; Pearson, Angela

    2007-07-05

    UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went frommore » clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection.« less

  17. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    PubMed Central

    Jones, Jennifer E.; Long, Kristin M.; Whitmore, Alan C.; Sanders, Wes; Thurlow, Lance R.; Brown, Julia A.; Morrison, Clayton R.; Vincent, Heather; Browning, Christian; Moorman, Nathaniel; Lim, Jean K.

    2017-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. PMID:29138302

  18. Evaluation of Measles Vaccine Virus as a Vector to Deliver Respiratory Syncytial Virus Fusion Protein or Epstein-Barr Virus Glycoprotein gp350

    PubMed Central

    Mok, Hoyin; Cheng, Xing; Xu, Qi; Zengel, James R; Parhy, Bandita; Zhao, Jackie; Wang, C. Kathy; Jin, Hong

    2012-01-01

    Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1st or the 3rd position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3rd position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation. PMID:22383906

  19. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    PubMed

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.

  20. SARS-CoV spike protein-expressing recombinant vaccinia virus efficiently induces neutralizing antibodies in rabbits pre-immunized with vaccinia virus.

    PubMed

    Kitabatake, Masahiro; Inoue, Shingo; Yasui, Fumihiko; Yokochi, Shoji; Arai, Masaaki; Morita, Kouichi; Shida, Hisatoshi; Kidokoro, Minoru; Murai, Fukashi; Le, Mai Quynh; Mizuno, Kyosuke; Matsushima, Kouji; Kohara, Michinori

    2007-01-08

    A vaccine for severe acute respiratory syndrome (SARS) is being intensively pursued against its re-emergence. We generated a SARS coronavirus (SARS-CoV) spike protein-expressing recombinant vaccinia virus (RVV-S) using highly attenuated strain LC16m8. Intradermal administration of RVV-S into rabbits induced neutralizing (NT) antibodies against SARS-CoV 1 week after administration and the NT titer reached 1:1000 after boost immunization with RVV-S. Significantly, NT antibodies against SARS-CoV were induced by administration of RVV-S to rabbits that had been pre-immunized with LC16m8. RVV-S can induce NT antibodies against SARS-CoV despite the presence of NT antibodies against VV. These results suggest that RVV-S may be a powerful SARS vaccine, including in patients previously immunized with the smallpox vaccine.

  1. Influenza A virus-induced degradation of eukaryotic translation initiation factor 4B contributes to viral replication by suppressing IFITM3 protein expression.

    PubMed

    Wang, Song; Chi, Xiaojuan; Wei, Haitao; Chen, Yuhai; Chen, Zhilong; Huang, Shile; Chen, Ji-Long

    2014-08-01

    Although alteration in host cellular translation machinery occurs in virus-infected cells, the role of such alteration and the precise pathogenic processes are not well understood. Influenza A virus (IAV) infection shuts off host cell gene expression at transcriptional and translational levels. Here, we found that the protein level of eukaryotic translation initiation factor 4B (eIF4B), an integral component of the translation initiation apparatus, was dramatically reduced in A549 cells as well as in the lung, spleen, and thymus of mice infected with IAV. The decrease in eIF4B level was attributed to lysosomal degradation of eIF4B, which was induced by viral NS1 protein. Silencing eIF4B expression in A549 cells significantly promoted IAV replication, and conversely, overexpression of eIF4B markedly inhibited the viral replication. Importantly, we observed that eIF4B knockdown transgenic mice were more susceptible to IAV infection, exhibiting faster weight loss, shorter survival time, and more-severe organ damage. Furthermore, we demonstrated that eIF4B regulated the expression of interferon-induced transmembrane protein 3 (IFITM3), a critical protein involved in immune defense against a variety of RNA viruses, including influenza virus. Taken together, our findings reveal that eIF4B plays an important role in host defense against IAV infection at least by regulating the expression of IFITM3, which restricts viral entry and thereby blocks early stages of viral production. These data also indicate that influenza virus has evolved a strategy to overcome host innate immunity by downregulating eIF4B protein. Influenza A virus (IAV) infection stimulates the host innate immune system, in part, by inducing interferons (IFNs). Secreted IFNs activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, leading to elevated transcription of a large group of IFN-stimulated genes that have antiviral function. To circumvent the host innate

  2. Increased capillary permeability mediated by a dengue virus-induced lymphokine.

    PubMed Central

    Khanna, M; Chaturvedi, U C; Sharma, M C; Pandey, V C; Mathur, A

    1990-01-01

    The mechanism of increased capillary permeability, seen in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), is not known. Dengue type 2 virus (DV) is known to induce production of a lymphokine, the cytotoxic factor (CF), by the T lymphocytes of mouse spleen. The data presented here show that intraperitoneal inoculation of CF in mice results in increased capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radiolabelled iodine (125I) or Evans blue dye. Peak leakage occurred 30 min after inoculation of CF and the vascular integrity was restored by 2 hr. The increase in capillary permeability was abrogated by pretreatment of mice with anti-CF antibodies, avil (H1 receptor blocker) or ranitidine (H2 receptor blocker). The findings thus show that a DV-induced lymphokine, the CF, increases the capillary permeability via release of histamine. PMID:2312168

  3. The Double-Stranded RNA Bluetongue Virus Induces Type I Interferon in Plasmacytoid Dendritic Cells via a MYD88-Dependent TLR7/8-Independent Signaling Pathway

    PubMed Central

    Ruscanu, Suzana; Pascale, Florentina; Bourge, Mickael; Hemati, Behzad; Elhmouzi-Younes, Jamila; Urien, Céline; Bonneau, Michel; Takamatsu, Haru; Hope, Jayne; Mertens, Peter; Meyer, Gilles; Stewart, Meredith; Roy, Polly; Meurs, Eliane F.; Dabo, Stéphanie; Zientara, Stéphan; Breard, Emmanuel; Sailleau, Corinne; Chauveau, Emilie; Vitour, Damien; Charley, Bernard

    2012-01-01

    Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/β) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/β production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/β induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/β in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/β. BTV replication in pDCs was not mandatory for IFN-α/β production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/β required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/β induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/β in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses. PMID:22438548

  4. Characterization of Influenza Virus-Induced Leukocyte Adherence to Human Umbilical Vein Endothelial Cell Monolayers

    DTIC Science & Technology

    1993-07-01

    Minick. antibodies in infectious mononucleosis . Am. J. Med. 76:85. 1973. Culture of human endothelial cells derived from um- 5I. Friedman. H. M.. E...TCIDs5 ,, 50% tissue culture infectious dose, totoxicity assay using a colorimetric kit (LK-1(X), Proteins • • • •• • • S •112 VIRUS-INDUCED

  5. Abacavir/Dolutegravir/Lamivudine (Triumeq)-Induced Liver Toxicity in a Human Immunodeficiency Virus-Infected Patient.

    PubMed

    Christensen, Erin S; Jain, Rupali; Roxby, Alison C

    2017-01-01

    Drug-induced liver injury related to Triumeq (abacavir/lamivudine/dolutegravir) has not been reported in clinical trials. We report a case of hepatotoxicity related to Triumeq exposure in a human immunodeficiency virus-infected patient. Clinicians should remain aware of the risk for acute and late-onset hepatitis with these agents. Close monitoring is recommended.

  6. PLC-γ1 is involved in the inflammatory response induced by influenza A virus H1N1 infection.

    PubMed

    Zhu, Liqian; Yuan, Chen; Ding, Xiuyan; Xu, Shuai; Yang, Jiayun; Liang, Yuying; Zhu, Qiyun

    2016-09-01

    We have previously reported that phosphoinositide-specific phospholipase γ1 (PLC-γ1) signaling is activated by influenza virus H1N1 infection and mediates efficient viral entry in human epithelial cells. In this study, we show that H1N1 also activates PLCγ-1 signaling in human promonocytic cell line -derived macrophages. Surprisingly, the activated PLCγ-1 signaling is not important for viral replication in macrophages, but is involved in the virus-induced inflammatory responses. PLC-γ1-specific inhibitor U73122 strongly inhibits the H1N1 virus-induced NF-κB signaling, blocking the up-regulation of TNF-α, IL-6, MIP-1α, and reactive oxidative species. In a positive feedback loop, IL-1β and TNF-α activate the PLCγ-1 signaling in both epithelial and macrophage cell lines. In summary, we have shown for the first time that the PLCγ-1 signaling plays an important role in the H1N1-induced inflammatory responses. Our study suggests that targeting the PLCγ-1 signaling is a potential antiviral therapy against H1N1 by inhibiting both viral replication and excessive inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.

    PubMed

    Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J

    2009-12-24

    Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Human H7N9 virus induces a more pronounced pro-inflammatory cytokine but an attenuated interferon response in human bronchial epithelial cells when compared with an epidemiologically-linked chicken H7N9 virus.

    PubMed

    To, Kelvin K W; Lau, Candy C Y; Woo, Patrick C Y; Lau, Susanna K P; Chan, Jasper F W; Chan, Kwok-Hung; Zhang, Anna J X; Chen, Honglin; Yuen, Kwok-Yung

    2016-03-15

    Avian influenza virus H7N9 has jumped species barrier, causing sporadic human infections since 2013. We have previously isolated an H7N9 virus from a patient, and an H7N9 virus from a chicken in a live poultry market where the patient visited during the incubation period. These two viruses were genetically highly similar. This study sought to use a human bronchial epithelial cell line model to infer the virulence of these H7N9 viruses in humans. Human bronchial epithelial cell line Calu-3 was infected with two H7N9 viruses (human H7N9-HU and chicken H7N9-CK), a human H5N1 virus and a human 2009 pandemic H1N1 virus. The infected cell lysate was collected at different time points post-infection for the determination of the levels of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α] and interleukin 6 [IL-6]), anti-inflammatory cytokines (interleukin 10 [IL-10] and transforming growth factor beta [TGF-β]), chemokines (interleukin 8 [IL-8] and monocyte chemoattractant protein 1 [MCP-1]), and interferons (interferon β [IFN-β] and interferon lambda 1 [IFNL1]). The viral load in the cell lysate was also measured. Comparison of the human and chicken H7N9 viruses showed that H7N9-HU induced significantly higher levels of TNF-α at 12 h post-infection, and significantly higher levels of IL-8 from 12 to 48 h post-infection than those of H7N9-CK. However, the level of IFNL1 was lower for H7N9-HU than that of H7N9-CK at 48 h post-infection (P < 0.001). H7N9-HU had significantly higher viral loads than H7N9-CK at 3 and 6 h post-infection. H5N1 induced significantly higher levels of TNF-α, IL-6, IL-8, IL-10 and MCP-1 than those of H7N9 viruses at 48 h post-infection. Conversely, H1N1 induced lower levels of TNF-α, IL-10, MCP-1, IFNL1 and IFN-β when compared with H7N9 viruses at the same time point. H7N9-HU induced higher levels of pro-inflammatory IL-6 and IL-8 and exhibited a more rapid viral replication than H7N9-CK. However, the level of antiviral IFNL1 was

  9. [HPLC specific chromatogram spectrum-effect relationship for Shuanghuanglian on MDCK cell injury induced by influenza A virus (H1N1)].

    PubMed

    Liu, Ting; Wang, Hai-dan; Di, Liu-qing; Kang, An; Zhao, Xiao-li; Zhu, Xuan-xuan; Li, Jun-song

    2015-11-01

    To establish HPLC specific chromatogram and its correlation with the protection effect of Shuanghuanglian on MDCK (Madin-Darby canine kidney) cell injury induced by influenza A virus( H1N1). Nine recipes of Shuanghuanglian based on the official prescription were prepared according to orthogonal test for HPLC analysis and MDCK cells protection experiment separately (cytopathic effect (CPE) method was used for observing the virus infectivity and MTT staining results were used as the determining indexes for drug concentration selection and analyzing cell viability). The results suggested that all the other Shuang-Huang-Lian recipes except recipe1 demonstrate protecting effect on MDCK cell injury induced by influenza A virus (P < 0.01, P < 0.001). Stepwise regression analysis was used for analyzing the relationships between HPLC fingerprint and the protecting effect of Shuanghuanglian on influenza A virus induced MDCK cell injury. Peak 2, 3, 6, 8 and 12 were found to be strongly related with anti-influenza A virus efficacy. Stepwise regression analysis of recipes data and efficacy data showed that Lonicerae Japonicae Flos and Forsythiae Fructus were positively associated with the protecting effect of cells injury. From HPLC fingerprints, we found that peak 2, 3, 12 were from Lonicerae Japonicae Flos and peak 6, 8 were from Forsythiae Fructus. Four peaks were identified through comparing the retention time between the standard and Shuanghuanglian recipes, and they were chlorogenicacid, cryptochlorogenic acid, forsythoside B and 3,4-dicaffeoylquinic acid respectively. Caffeic acid derivatives in Lonicerae Japonicae Flos and Forsythiae Fructus were found to be greatly correlated with anti-influenza A virus efficacy and maybe the substance basis of Shuanghuanglian.

  10. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  11. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    PubMed

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  12. A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes.

    PubMed

    Qin, Cheng; Chen, Weiwei; Shen, Jiajia; Cheng, Linming; Akande, Femi; Zhang, Ke; Yuan, Chen; Li, Chunyang; Zhang, Pengcheng; Shi, Nongnong; Cheng, Qi; Liu, Yule; Jackson, Stephen; Hong, Yiguo

    2017-06-01

    Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T ( FT ) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis ( Arabidopsis thaliana ) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4 ; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato ( Solanum lycopersicum ) SFT and rice ( Oryza sativa ) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice.

    PubMed

    Altenburg, A F; Magnusson, S E; Bosman, F; Stertman, L; de Vries, R D; Rimmelzwaan, G F

    2017-10-01

    Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8 + T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8 + T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation. © 2017 British Society for Immunology.

  14. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat.

    PubMed

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-09-23

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus-virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes.

  15. Induced maturation of human immunodeficiency virus.

    PubMed

    Mattei, Simone; Anders, Maria; Konvalinka, Jan; Kräusslich, Hans-Georg; Briggs, John A G; Müller, Barbara

    2014-12-01

    HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release

  16. In Vitro Product of a Ribonucleic Acid Polymerase Induced by Influenza Virus

    PubMed Central

    Mahy, B. W. J.; Bromley, P. A.

    1970-01-01

    The ribonucleic acid (RNA)-dependent RNA polymerase induced in the microsomal fraction of cells infected with influenza virus synthesized a mixture of single-and double-stranded RNA in vitro. The single-stranded RNA sedimented mainly in the 8S region on sucrose density gradients, with a smaller proportion of the RNA sedimenting at 18S. This sedimentation pattern corresponds closely to that of incomplete influenza virus RNA. The double-stranded RNA formed in vitro sedimented at 11S, but molecules which may be replicative intermediate, sedimenting at 14 to 20S, were also detected in the in vitro reaction product. Similar species of RNA were detected in vivo by pulse-labeling infected cells at the time of polymerase harvest, but the proportion of each RNA species was different, most of the RNA being single-stranded and sedimenting in the 18S region. An 11S double-stranded RNA was also synthesized in vivo. Pulse chase analysis of the double-stranded RNA synthesized in vitro showed that most is stable, and only a small proportion turns over during the reaction. A proportion of the RNA formed in vitro could be annealed to RNA formed in infected cells and to RNA extracted from purified virus. PMID:5480408

  17. Immune and histopathological responses in animals vaccinated with recombinant vaccinia viruses that express individual genes of human respiratory syncytial virus.

    PubMed

    Stott, E J; Taylor, G; Ball, L A; Anderson, K; Young, K K; King, A M; Wertz, G W

    1987-12-01

    Previous reports have established that vaccinia virus (VV) recombinants expressing G, F, or N protein of respiratory syncytial (RS) virus protect small animals against intranasal challenge with live RS virus. This work demonstrates that a variety of parameters affect the protection induced by recombinant viruses. The route of vaccination, the subtype of challenge virus, and the species used influenced the antibody titers and extent of protection. During these studies, observations were also made on the subclass of antibody generated, and pulmonary histopathological changes induced by challenge after vaccination were noted. The effect of route of inoculation on host response was examined by vaccinating mice intranasally, intraperitoneally, or by scarification with a recombinant VV expressing the RS virus G glycoprotein. Intranasal vaccination induced 25-fold-higher titers of antibody to RS virus in the lung than the intraperitoneal route did, but both routes resulted in complete suppression of virus replication after intranasal challenge 21 days after vaccination. Scarification was a less effective method of vaccination. The antibody induced by recombinant VV in mice was mostly immunoglobulin G2a (IgG2a) with some IgG2b. No antibody to RS virus was detected in the IgA, IgM, IgG1, or IgG3 subclass irrespective of the vaccination route. The G and F glycoproteins were shown to elicit similar subclasses of antibody. However, animals vaccinated with the G and F vectors differed strikingly in their response to challenge by heterologous virus. Mice or cotton rats vaccinated with recombinant VV carrying the G gene of RS virus were protected against challenge only with homologous subtype A virus. Vaccination with a recombinant VV expressing the F glycoprotein induced protection against both homologous and heterologous subtype B virus challenge. The protection induced in mice was greater than that detected in cotton rats, indicating that the host may also affect immunity

  18. The effects of annealing temperature on the in-field Jc and surface pinning in silicone oil doped MgB2 bulks and wires

    NASA Astrophysics Data System (ADS)

    Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.

    2012-12-01

    The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.

  19. Herpes Simplex Virus Selectively Induces Expression of the CC Chemokine RANTES/CCL5 in Macrophages through a Mechanism Dependent on PKR and ICP0

    PubMed Central

    Melchjorsen, Jesper; Pedersen, Finn S.; Mogensen, Søren C.; Paludan, Søren R.

    2002-01-01

    Recruitment of leukocytes is essential for eventual control of virus infections. Macrophages represent a leukocyte population involved in the first line of defense against many infections, including herpes simplex virus (HSV) infection. Through presentation of antigens to T cells and production of cytokines and chemokines, macrophages also constitute an important link between the innate and adaptive immune systems. Here, we have investigated the chemokine expression profile of macrophages after HSV infection and the virus-cell interactions involved. By reverse transcription-PCR and cDNA arrays, we found that HSV type 1 (HSV-1) and HSV-2 induced expression of the CC chemokine RANTES/CCL5 in murine macrophage cell lines and peritoneal cells. The CXC chemokine BCA-1/CXCL13 was also induced in peritoneal cells. Twenty-six other chemokines tested were not affected. Accumulation of RANTES mRNA was detectable after 5 h of infection, was sensitive to UV irradiation of the virus, and was preceded by accumulation of viral immediate-early mRNA and proteins. The viral components responsible for initiation of RANTES expression were examined with virus mutants and RAW 264.7 macrophage-like cells expressing a dominant negative mutant of the double-stranded-RNA-activated protein kinase (PKR). The PKR mutant cell line displayed reduced constitutive and HSV-inducible RANTES expression compared to the control cell line. HSV-1 mutants deficient in genes encoding the immediate-early proteins ICP4, ICP22, and ICP27 remained fully capable of inducing RANTES expression in macrophages. By contrast, the ability of an ICP0-deficient HSV-1 mutant to induce RANTES expression was compromised. Thus, HSV selectively induces expression of RANTES in macrophages through a mechanism dependent on cellular PKR and viral ICP0. PMID:11861845

  20. Sequential detection of different antigens induced by Epstein-Barr virus and herpes simplex virus in the same Western blot by using dual antibody probes.

    PubMed

    Lin, J C; Pagano, J S

    1986-08-01

    A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.

  1. Nitric oxide induced by Indian ginseng root extract inhibits Infectious Bursal Disease virus in chicken embryo fibroblasts in vitro.

    PubMed

    Ganguly, Bhaskar; Umapathi, Vijaypillai; Rastogi, Sunil Kumar

    2018-01-01

    Infectious Bursal Disease is a severe viral disease of chicken responsible for serious economic losses to poultry farmers. The causative agent, Infectious Bursal Disease virus, is inhibited by nitric oxide. Root extract of the Indian ginseng, Withania somnifera , inhibits Infectious Bursal Disease virus in vitro. Also, Withania somnifera root extract is known to induce nitric oxide production in vitro. Therefore, the present study was undertaken to determine if the inhibitory activity of Withania somnifera against Infectious Bursal Disease virus was based on the production of nitric oxide. We show that besides other mechanisms, the inhibition of Infectious Bursal Disease virus by Withania somnifera involves the production of nitric oxide. Our results also highlight the paradoxical role of nitric oxide in the pathogenesis of Infectious Bursal Disease.

  2. A recombinant pseudorabies virus expressing rabies virus glycoprotein: safety and immunogenicity in dogs.

    PubMed

    Yuan, Ziguo; Zhang, Shoufeng; Liu, Ye; Zhang, Fei; Fooks, Anthony R; Li, Qianxue; Hu, Rongliang

    2008-03-04

    Several recombinant vaccines expressing the rabies virus glycoprotein have been developed, particularly for the oral vaccination of wildlife. While these vaccines induce protective immunity in some animal species such as foxes, they are less effective in others. Pseudorabies virus (PRV) has been licensed for use as a live vaccine in pigs and possesses an excellent safety and efficacy record. We have used it to construct a recombinant virus, rPRV/eGFP/rgp, expressing the rabies virus glycoprotein. This recombinant virus has been shown to be safe for dogs by oral and intramuscular routes of inoculation and was demonstrated to induce immune responses against both pseudorabies and rabies in dogs after a single oral dose of 2 x 10(7.0) plaque forming units (PFU). Neutralizing antibody titers against rabies reached > 0.5 IU/ml and 1:64-1:128 against pseudorabies by 5 weeks post-vaccination in all dogs, indicating that the pseudorabies virus vector infected dogs and replicated in vivo, and that the rabies virus glycoprotein had been expressed and an effective immune response elicited. Antibody titers were maintained for over 6 months. This suggests that pseudorabies virus could be an effective live vector for recombinant rabies oral vaccination.

  3. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes.

    PubMed

    Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C

    2016-01-01

    Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the

  4. Duck Enteritis Virus Glycoprotein D and B DNA Vaccines Induce Immune Responses and Immunoprotection in Pekin Ducks

    PubMed Central

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks. PMID:24736466

  5. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  6. B cells in chronically hepatitis C virus-infected individuals lack a virus-induced mutation signature in the TP53, CTNNB1, and BCL6 genes.

    PubMed

    Tucci, Felicia Anna; Broering, Ruth; Johansson, Patricia; Schlaak, Joerg F; Küppers, Ralf

    2013-03-01

    Hepatitis C virus (HCV) is considered to have a causative role in B-cell lymphoproliferative diseases, including B-cell lymphomas, in chronic virus carriers. Previous data from in vitro HCV-infected B-cell lines and peripheral blood mononuclear cells from HCV-positive individuals suggested that HCV might have a direct mutagenic effect on B cells, inducing mutations in the tumor suppressor gene TP53 and the proto-oncogenes BCL6 and CTNNB1 (β-catenin). To clarify whether HCV indeed has a mutagenic effect on B cells in vivo, we analyzed naive and memory B cells from the peripheral blood of four chronic HCV carriers and intrahepatic B cells from the livers of two HCV-positive patients for mutations in the three reported target genes. However, no mutations were found in the TP53 and CTNNB1 genes. For BCL6, which is a physiological target of the somatic hypermutation process in germinal-center B cells, the mutation levels identified were not higher than those reported in the respective B-cell subsets in healthy individuals. Hence, we conclude that in chronic HCV carriers, the virus does not generally induce mutations in the cancer-related genes TP53, CTNNB1, and BCL6 in B cells. Based on these findings, new targets have to be investigated as potential mediators of HCV-associated B-cell lymphomagenesis.

  7. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human

    PubMed Central

    Gillet, Nicolas; Florins, Arnaud; Boxus, Mathieu; Burteau, Catherine; Nigro, Annamaria; Vandermeers, Fabian; Balon, Hervé; Bouzar, Amel-Baya; Defoiche, Julien; Burny, Arsène; Reichert, Michal; Kettmann, Richard; Willems, Luc

    2007-01-01

    In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far. PMID:17362524

  8. Latent Herpes Simplex Virus 1 Infection Does Not Induce Apoptosis in Human Trigeminal Ganglia

    PubMed Central

    Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-01-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+ T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. PMID:25762734

  9. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Ling; Lin Jianguo; Sun Yuliang

    2006-08-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less

  10. Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State ▿†

    PubMed Central

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-01-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses. PMID:21613402

  11. Evaluation of the Efficacy, Potential for Vector Transmission, and Duration of Immunity of MP-12, an Attenuated Rift Valley Fever Virus Vaccine Candidate, in Sheep

    DTIC Science & Technology

    2015-08-01

    testing by virus isolation (VI). Positive-control mosquitoes were sampled whole on the day of the spiked blood meal. b NA, not applicable. Miller et al ...percent inhibition of the negative control, calculated as 1 (test serum OD/negative serum OD) 100. Miller et al . 934 cvi.asm.org August 2015 Volume 22...Trop Med Hyg 44:278 –282. 34. Morrill JC, Mebus CA, Peters CJ. 1997. Safety of a mutagen-attenuated Miller et al . 936 cvi.asm.org August 2015 Volume 22

  12. [Immune system and influenza virus].

    PubMed

    Wierzbicka-Woś, Anna; Tokarz-Deptuła, Beata; Deptuła, Wiesław

    2015-02-15

    Influenza viruses are a significant cause of respiratory infections, causing 3-5 million clinical infections and 250-500 thousand deaths per year. Infections caused by the influenza virus induce a host immune response at the non-specific and specific level (defined as natural and acquired), which leads to limitation of virus replication. Moreover the elements of immunological memory are induced so that they can protect against subsequent infection by the influenza virus. However, there is still no effective way for the total elimination of this virus, and the only effective method to combat this pathogen appears to be vaccination, which through immune system activation greatly limits its spread. The present paper presents the immune reaction at different levels in response to the influenza virus after entering the body and the mechanisms of the influenza virus for avoiding reactions of the immune system, which correspond to its high variability at the molecular level. Moreover, in this paper we describe various methods of stimulating the organism's immune systems with different generations of vaccines and their effectiveness in the fight against this pathogen.

  13. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems

    PubMed Central

    Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan

    2018-01-01

    The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073

  14. INHIBITION OF RESPIRATORY SYNCYTIAL VIRUS (RSV)-INDUCED INFLAMMATION BY 3-NITROTYROSINE IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Inhibition of Respiratory Syncytial Virus (RSV)-Induced Inflammation by 3-Nitrotyrosine in Human Bronchial Epithelial Cells. J. M. Soukup, MPH 1, ZW. Li, MD 2 and YC. T. Huang, MD 1. 1 NHEERL, US Environmental Protection Agency, RTP, NC and 2 CEMALB, University of North Carolina,...

  15. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoenen, Antje; Gillespie, Leah; Department of Microbiology and Immunology, University of Melbourne, Melbourne

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions ofmore » virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.« less

  16. Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus.

    PubMed

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra; Verdaguer, Núria

    2015-04-01

    The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  18. [Natalizumab for the treatment of Crohn’s disease: Report of three cases].

    PubMed

    Fluxá, Daniela; Ibáñez, Patricio; Flores, Lilian; Figueroa, Carolina; Lubascher, Jaime; Kronberg, Udo; Simian, Daniela; Pizarro, Gonzalo; Toche, Paola; Quera, Rodrigo

    2017-04-01

    Anti-tumor necrosis factor-α (TNF) agents have dramatically changed the management of Crohn’s Disease (CD). However, a significant number of these patients do not respond at all or cease to respond to antibodies against TNF. In this clinical situation, the options include intensification of anti-TNF therapy by either increasing the dose or by shortening the administration interval, the use of a second anti-TNF or medications with a different mechanism of action. Among the later, Natalizumab, a humanized IgG4 monoclonal antibody against α4β1 and α4β7 integrins, is safe and effective in inducing and maintaining remission in active CD patient’s refractory to anti-TNF. In spite of this, Natalizumab use has been limited because of an increased risk of progressive multifocal leukoencephalophaty which results from reactivation of the John Cunningham (JC) virus. However, the presence of antibodies against JC virus in serum can be used to reduce the risk for this complication. We report three patients with Crohn’s disease refractory to treatment with infliximab, who responded successfully to the use of Natalizumab.

  19. Disruption of Akt kinase activation is important for immunosuppression induced by measles virus.

    PubMed

    Avota, E; Avots, A; Niewiesk, S; Kane, L P; Bommhardt, U; ter Meulen, V; Schneider-Schaulies, S

    2001-06-01

    Surface-contact-mediated signaling induced by the measles virus (MV) fusion and hemagglutinin glycoproteins is necessary and sufficient to induce T-cell unresponsiveness in vitro and in vivo. To define the intracellular pathways involved, we analyzed interleukin (IL)-2R signaling in primary human T cells and in Kit-225 cells. Unlike IL-2-dependent activation of JAK/STAT pathways, activation of Akt kinase was impaired after MV contact both in vitro and in vivo. MV interference with Akt activation was important for immunosuppression, as expression of a catalytically active Akt prevented negative signaling by the MV glycoproteins. Thus, we show here that MV exploits a novel strategy to interfere with T-cell activation during immunosuppression.

  20. Lassa virus entry requires a trigger-induced receptor switch

    PubMed Central

    Jae, Lucas T.; Raaben, Matthijs; Herbert, Andrew S.; Kuehne, Ana I.; Wirchnianski, Ariel S.; Soh, Timothy; Stubbs, Sarah H.; Janssen, Hans; Damme, Markus; Saftig, Paul; Whelan, Sean P.; Dye, John M.; Brummelkamp, Thijn R.

    2014-01-01

    Lassa virus spreads from rodents to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported to resist infection thirty years ago. We show that Lassa virus readily engaged its cell surface receptor α-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo. PMID:24970085

  1. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of

  2. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection

  3. Use of serologic tests to predict resistance to Canine distemper virus-induced disease in vaccinated dogs.

    PubMed

    Jensen, Wayne A; Totten, Janet S; Lappin, Michael R; Schultz, Ronald D

    2015-09-01

    The objective of the current study was to determine whether detection of Canine distemper virus (CDV)-specific serum antibodies correlates with resistance to challenge with virulent virus. Virus neutralization (VN) assay results were compared with resistance to viral challenge in 2 unvaccinated Beagle puppies, 9 unvaccinated Beagle dogs (4.4-7.2 years of age), and 9 vaccinated Beagle dogs (3.7-4.7 years of age). Eight of 9 (89%) unvaccinated adult dogs exhibited clinical signs after virus challenge, and 1 (13%) dog died. As compared to adult dogs, the 2 unvaccinated puppies developed more severe clinical signs and either died or were euthanized after challenge. In contrast, no clinical signs were detected after challenge of the 9 adult vaccinated dogs with post-vaccination intervals of up to 4.4 years. In vaccinated dogs, the positive and negative predictive values of VN assay results for resistance to challenge were 100% and 0%, respectively. Results indicate that dogs vaccinated with modified live CDV can be protected from challenge for ≤4.4 years postvaccination and that detection of virus-specific antibodies is predictive of whether dogs are resistant to challenge with virulent virus. Results also indicate that CDV infection in unvaccinated dogs results in age-dependent morbidity and mortality. Knowledge of age-dependent morbidity and mortality, duration of vaccine-induced immunity, and the positive and negative predictive values of detection of virus-specific serum antibodies are useful in development of rational booster vaccination intervals for the prevention of CDV-mediated disease in adult dogs. © 2015 The Author(s).

  4. [Studies on the immunologic behavior of standardized virus-induced rat tumor after cryosurgical and surgical treatment].

    PubMed

    Jaeschock, R R

    1976-01-01

    The authors report on the behavior of a virus-induced tumor in the rat after cryosurgical and surgical treatment and re-implantation of different tumor suspensions. No specific "immune-cryothermic response" could be demonstrated. The principle of the lysis of the re-implantate lies in devitalizing the primary tumor.

  5. Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct

    PubMed Central

    Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre

    2015-01-01

    ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of

  6. Epstein-Barr virus infection induces lupus autoimmunity.

    PubMed

    Harley, John B; James, Judith A

    2006-01-01

    Systemic lupus erythematosus (SLE or lupus) is a systemic autoimmune disease characterized by a constellation of varied clinical presentations, although the nearly universal presence of autoantibodies is a salient unifying feature. Ongoing research efforts focus on understanding the complex combination of genetic and environmental factors that lead to SLE in select individuals. Our previous work has demonstrated that years before diagnosis abnormal autoantibody responses are present in the sera of patients who will subsequently develop lupus and, further, that the initial targets of two of these key responses (anti-Sm B' and anti-60 kD Ro alone) have been identified for some patients. Indeed, our results suggest that the first lupus-specific autoantibodies arise from particular antibodies directed against Epstein-Barr virus Nuclear Antigen-1 (EBNA-1) and that infection with Epstein-Barr virus (EBV) is an environmental risk factor for lupus. The predicted sequence of events is normal immunity, followed by Epstein- Barr virus infection, the generation of anti-EBNA-1 antibodies, then followed by those particular anti-EBNA-1 antibodies that also bind lupus-specific autoantigens (Sm or Ro), followed by the development of more complex autoimmune responses, and, finally, culminating in clinical disease. Studies from others and those underway suggest that lupus patients have unusual immune responses to Epstein-Barr virus. In aggregate, these results are consistent with an immune response against Epstein-Barr virus being important in at least some patients for the initiation of lupus autoimmunity.

  7. The Best of All Possible Worlds: Applying the Model Driven Architecture Approach to a JC3IEDM OWL Ontology Modeled in UML

    DTIC Science & Technology

    2014-06-01

    from the ODM standard. Leveraging SPARX EA’s Java application programming interface (API), the team built a tool called OWL2EA that can ingest an OWL...server MySQL creates the physical schema that enables a user to store and retrieve data conforming to the vocabulary of the JC3IEDM. 6. GENERATING AN

  8. West Nile Virus-Induced Neuroinflammation: Glial Infection and Capsid Protein-Mediated Neurovirulence▿

    PubMed Central

    van Marle, Guido; Antony, Joseph; Ostermann, Heather; Dunham, Christopher; Hunt, Tracey; Halliday, William; Maingat, Ferdinand; Urbanowski, Matt D.; Hobman, Tom; Peeling, James; Power, Christopher

    2007-01-01

    West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1β, and indolamine-2′,3′-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNVC induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important

  9. Characterizing virus-induced gene silencing at the cellular level with in situ multimodal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhow, Sadie J.; Stephens, Nicole M.; Mei, Yu

    Reverse genetic strategies, such as virus-induced gene silencing, are powerful techniques to study gene function. Currently, there are few tools to study the spatial dependence of the consequences of gene silencing at the cellular level. Here, we report the use of multimodal Raman and mass spectrometry imaging to study the cellular-level biochemical changes that occur from silencing the phytoene desaturase ( pds) gene using a Foxtail mosaic virus (FoMV) vector in maize leaves. The multimodal imaging method allows the localized carotenoid distribution to be measured and reveals differences lost in the spatial average when analyzing a carotenoid extraction of themore » whole leaf. The nature of the Raman and mass spectrometry signals are complementary: silencing pds reduces the downstream carotenoid Raman signal and increases the phytoene mass spectrometry signal.« less

  10. Characterizing virus-induced gene silencing at the cellular level with in situ multimodal imaging

    DOE PAGES

    Burkhow, Sadie J.; Stephens, Nicole M.; Mei, Yu; ...

    2018-05-25

    Reverse genetic strategies, such as virus-induced gene silencing, are powerful techniques to study gene function. Currently, there are few tools to study the spatial dependence of the consequences of gene silencing at the cellular level. Here, we report the use of multimodal Raman and mass spectrometry imaging to study the cellular-level biochemical changes that occur from silencing the phytoene desaturase ( pds) gene using a Foxtail mosaic virus (FoMV) vector in maize leaves. The multimodal imaging method allows the localized carotenoid distribution to be measured and reveals differences lost in the spatial average when analyzing a carotenoid extraction of themore » whole leaf. The nature of the Raman and mass spectrometry signals are complementary: silencing pds reduces the downstream carotenoid Raman signal and increases the phytoene mass spectrometry signal.« less

  11. Epstein-Barr virus (EBV)-encoded dUTPase and chronic restraint induce impaired learning and memory and sickness responses.

    PubMed

    Aubrecht, Taryn G; Weil, Zachary M; Ariza, Maria Eugenia; Williams, Marshall; Reader, Brenda F; Glaser, Ronald; Sheridan, John F; Nelson, Randy J

    2014-10-01

    Most adult humans have been infected with Epstein-Barr virus (EBV) and carry the latent virus. The EBV genome codes for several proteins that form an early antigen complex important for viral replication; one of these proteins is deoxyuridine triphosphate nucleotidohydrolase (dUTPase). The EBV-encoded dUTPase can induce sickness responses in mice. Because stress can increase latent virus reactivation, we hypothesized that chronic restraint would exacerbate sickness behaviors elicited by EBV-encoded dUTPase. Male Swiss-Webster mice were injected daily for 15 days with either saline or EBV-encoded dUTPase. Additionally, half of the mice from each condition were either restrained for 3h daily or left undisturbed. Restraint stress impaired learning and memory in the passive avoidance chamber; impaired learning and memory was due to EBV-encoded dUTPase injected into restrained mice. EBV-encoded dUTPase induced sickness responses and restraint stress interacts with EBV-encoded dUTPase to exacerbate the sickness response. These data support a role for EBV-encoded dUTPase and restraint stress in altering the pathophysiology of EBV independent of viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hepatitis C Virus Induces the Mitochondrial Translocation of Parkin and Subsequent Mitophagy

    PubMed Central

    Kim, Seong-Jun; Syed, Gulam H.; Siddiqui, Aleem

    2013-01-01

    Hepatitis C Virus (HCV) induces intracellular events that trigger mitochondrial dysfunction and promote host metabolic alterations. Here, we investigated selective autophagic degradation of mitochondria (mitophagy) in HCV-infected cells. HCV infection stimulated Parkin and PINK1 gene expression, induced perinuclear clustering of mitochondria, and promoted mitochondrial translocation of Parkin, an initial event in mitophagy. Liver tissues from chronic HCV patients also exhibited notable levels of Parkin induction. Using multiple strategies involving confocal and electron microscopy, we demonstrated that HCV-infected cells display greater number of mitophagosomes and mitophagolysosomes compared to uninfected cells. HCV-induced mitophagy was evidenced by the colocalization of LC3 puncta with Parkin-associated mitochondria and lysosomes. Ultrastructural analysis by electron microscopy and immunoelectron microscopy also displayed engulfment of damaged mitochondria in double membrane vesicles in HCV-infected cells. The HCV-induced mitophagy occurred irrespective of genotypic differences. Silencing Parkin and PINK1 hindered HCV replication suggesting the functional relevance of mitophagy in HCV propagation. HCV-mediated decline of mitochondrial complex I enzyme activity was rescued by chemical inhibition of mitophagy or by Parkin silencing. Overall our results suggest that HCV induces Parkin-dependent mitophagy, which may have significant contribution in mitochondrial liver injury associated with chronic hepatitis C. PMID:23555273

  13. Latent herpes simplex virus 1 infection does not induce apoptosis in human trigeminal Ganglia.

    PubMed

    Himmelein, Susanne; Lindemann, Anja; Sinicina, Inga; Strupp, Michael; Brandt, Thomas; Hüfner, Katharina

    2015-05-01

    Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8(+) T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus

    PubMed Central

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection. PMID:24378590

  15. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.

    PubMed

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi; Cao, Yongchang

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.

  16. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  17. Stabilisation of p53 enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation.

    PubMed

    Pan, D; Pan, L-Z; Hill, R; Marcato, P; Shmulevitz, M; Vassilev, L T; Lee, P W K

    2011-09-27

    Naturally oncolytic reovirus preferentially kills cancer cells, making it a promising cancer therapeutic. Mutations in tumour suppressor p53 are prevalent in cancers, yet the role of p53 in reovirus oncolysis is relatively unexplored. Human cancer cell lines were exposed to Nutlin-3a, reovirus or a combination of the two and cells were processed for reovirus titration, western blot, real-time PCR and apoptosis assay using Annexin V and 7-AAD staining. Confocal microscopy was used to determine translocation of the NF-κB p65 subunit. We show that despite similar reovirus replication in p53(+/+) and p53(-/-) cells, stabilisation of p53 by Nutlin-3a significantly enhanced reovirus-induced apoptosis and hence virus release and dissemination while having no direct effect on virus replication. Enhanced apoptosis by Nutlin-3a was not observed in p53(-/-) or p53 knockdown cells; however, increased expression of Bax and p21 are required. Moreover, elevated NF-κB activation in reovirus-infected cells following Nutlin-3a treatment was necessary for enhanced reovirus-induced apoptosis, as synergistic cytotoxicity was overcome by specific NF-κB inhibitors. Nutlin-3a treatment enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation, and combination of reovirus and Nutlin-3a might represent an improved therapy against cancers harbouring wild-type p53.

  18. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    PubMed

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  19. Hepatitis B virus infection and vaccine-induced immunity in Madrid (Spain).

    PubMed

    Pedraza-Flechas, Ana María; García-Comas, Luis; Ordobás-Gavín, María; Sanz-Moreno, Juan Carlos; Ramos-Blázquez, Belén; Astray-Mochales, Jenaro; Moreno-Guillén, Santiago

    2014-01-01

    To estimate the prevalence of hepatitis B virus (HBV) infection and vaccine-induced immunity in the region of Madrid, and to analyze their evolution over time. An observational, analytical, cross-sectional study was carried out in the population aged 16-80 years between 2008 and 2009. This was the last of four seroprevalence surveys in the region of Madrid. The prevalence of HBV infection and vaccine-induced immunity was estimated using multivariate logistic models and were compared with the prevalences in the 1989, 1993 and 1999 surveys. In the population aged 16-80 years, the prevalence of HBV infection was 11.0% (95% CI: 9.8-12.3) and that of chronic infection was 0.7% (95% CI: 0.5-1.1). The prevalence of vaccine-induced immunity in the population aged 16-20 years was 73.0% (95% CI: 70.0-76.0). Compared with previous surveys, there was a decrease in the prevalence of HBV infection. Based on the prevalence of chronic infection (<1%), Madrid is a region with low HBV endemicity. Preventive strategies against HBV should especially target the immigrant population. Copyright © 2013. Published by Elsevier Espana.

  20. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improvement in Jc performance below liquid nitrogen temperature for SmBa2Cu3Oy superconducting films with BaHfO3 nano-rods controlled by low-temperature growth

    NASA Astrophysics Data System (ADS)

    Miura, S.; Yoshida, Y.; Ichino, Y.; Xu, Q.; Matsumoto, K.; Ichinose, A.; Awaji, S.

    2016-01-01

    For use in high-magnetic-field coil-based applications, the critical current density (Jc) of REBa2Cu3Oy (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the Jc for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO3 (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (Ts = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 103 μm-2 of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In Jc measurements, the Jc of the Ts = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The Jcmin (6.4 MA/cm2) of the former was more than 6 times higher than that (1.0 MA/cm2) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m3 was realized; this value was comparable to the highest value recorded, to date.

  2. Effects of charge density waves on flux dynamics in weak-pinning single crystals of NbSe2 : free flux flow, flux-core size effects, and unexpected doubling of Jc(H) `peak effect'

    NASA Astrophysics Data System (ADS)

    Favreau, Peter; Gapud, Albert A.; Moraes, Sunhee; Delong, Lance; Reyes, Arneil P.; Thompson, James R.; Christen, David K.

    2010-03-01

    The interaction of two different ordering schemes -- charge density waves (CDWs) and superconductivity -- is studied in high-quality samples of NbSe2, particularly in the motion of magnetic flux quanta. More specifically, the study is on the effect of ``switching off'' the CDW phase -- effected by doping with Ta -- on the magnetic-field H dependence of: (i) the Lorentz-force-driven free flux flow (FFF) resistivity ρf associated with the ordered motion of vortices, and (ii) critical current density Jc. FFF is achieved for the first time in this material. The field dependence of ρf deviates from traditional Bardeen-Stephen flux flow and is more consistent with effects of flux core size as predicted by Kogan and Zelezhina. However, the suppression of CDW's seems to have no significant effect on these properties. On the other hand, Jc(H) shows a surprising double peak for the CDW-suppressed sample --contrary to previous studies in which the Jc peak was shown to disappear. Possible mechanisms are discussed.

  3. Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system

    PubMed Central

    2012-01-01

    Background We previously developed a virus-induced gene silencing (VIGS) vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV). The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment. Here we describe the adaptation of this system for delivery by Agrobacterium (Agrobacterium tumefaciens). We also describe the construction of two low-cost particle inflow guns. Results The biolistic CLCrV vector was transferred into two Agrobacterium binary plasmids. Agroinoculation of the binary plasmids into cotton resulted in silencing and GFP expression comparable to the biolistic vector. Two homemade low-cost gene guns were used to successfully inoculate cotton (G. hirsutum) and N. benthamiana with either the CLCrV VIGS vector or the Tomato golden mosaic virus (TGMV) VIGS vector respectively. Conclusions These innovations extend the versatility of CLCrV-based VIGS for analyzing gene function in cotton. The two low-cost gene guns make VIGS experiments affordable for both research and teaching labs by providing a working alternative to expensive commercial gene guns. PMID:22853641

  4. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses.

    PubMed

    Santiago, Felix W; Covaleda, Lina M; Sanchez-Aparicio, Maria T; Silvas, Jesus A; Diaz-Vizarreta, Ana C; Patel, Jenish R; Popov, Vsevolod; Yu, Xue-jie; García-Sastre, Adolfo; Aguilar, Patricia V

    2014-04-01

    Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-β) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.

  5. Hijacking of RIG-I Signaling Proteins into Virus-Induced Cytoplasmic Structures Correlates with the Inhibition of Type I Interferon Responses

    PubMed Central

    Santiago, Felix W.; Covaleda, Lina M.; Sanchez-Aparicio, Maria T.; Silvas, Jesus A.; Diaz-Vizarreta, Ana C.; Patel, Jenish R.; Popov, Vsevolod; Yu, Xue-jie; García-Sastre, Adolfo

    2014-01-01

    ABSTRACT Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-β) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions. PMID:24478431

  6. Mefloquine improved progressive multifocal leukoencephalopathy in a patient with systemic lupus erythematosus.

    PubMed

    Beppu, Minako; Kawamoto, Michi; Nukuzuma, Souichi; Kohara, Nobuo

    2012-01-01

    We describe a case of a 67-year-old man with systemic lupus erythematosus who presented with progressive left hemiplegia. Although the cerebral spinal fluid (CSF) polymerase chain reaction (PCR) for the JC virus was negative, a brain biopsy confirmed the diagnosis of progressive multifocal leukoencephalopathy (PML). The tapering of prednisone and the use of cidofovir could not arrest the disease progression. Administration of mefloquine stopped the extension of the lesion, and resulted in obvious clinical improvement. The CSF nested PCR for the JC virus also became negative. This widely used drug should be tried for the treatment of non-HIV PML.

  7. Anti-inflammatory effect of thalidomide on H1N1 influenza virus-induced pulmonary injury in mice.

    PubMed

    Zhu, Haiyan; Shi, Xunlong; Ju, Dianwen; Huang, Hai; Wei, Wei; Dong, Xiaoying

    2014-12-01

    The purpose of this study is to investigate the anti-inflammatory effect of thalidomide (Thd) on H1N1-induced acute lung injury in mice. BALB/C mice were infected intranasally with influenza A virus (H1N1) and then treated with Thd at a dose of 100 or 200 mg/kg/day for 7 days. Weight loss and survival of mice were monitored for 14 days after virus challenge, and the serum and lung tissues were collected at 4 days for histological and biochemical analysis. The results showed that Thd significantly improved the survival rate, reduced the infiltration of inflammatory cells and cytokine (e.g., IL-6, TNF-α) and chemokine (e.g., RANTES, IP-10) levels, and inhibited activated p-NFκB p65 in infected mice. These findings suggested that Thd may attenuate H1N1-induced pulmonary injury and thus may find use in the treatment of viral diseases.

  8. Cowpea viruses: Effect of single and mixed infections on symptomatology and virus concentration

    PubMed Central

    Taiwo, Moni A; Kareem, Kehinde T; Nsa, Imade Y; D'A Hughes, Jackies

    2007-01-01

    Natural multiple viral infections of cultivated cowpeas have been reported in Nigeria. In this study, three Nigerian commercial cowpea cultivars ("Olo 11", "Oloyin" and "White") and two lines from the IITA (IT86D- 719 and TVU 76) were mechanically inoculated with Cowpea aphid-borne mosaic virus (CABMV), Bean southern mosaic virus (SBMV) and Cowpea mottle virus (CMeV) singly, as well as in all possible combinations at 10, 20 and 30 days after planting (DAP). Samples of leaves or stems were collected at 10, 20 and 30 days after inoculation (DAI) and analyzed for relative virus concentration by Enzyme-Linked Immunosrbent Assay. All the cultivars and lines {CVS/L} were susceptible to the viruses but the commercial CVS showed more severe symptoms and had relatively higher viral concentration. In single virus infections, CABMV which induced the most severe symptoms had absorbance values (at 405 nm) of 0.11 to 0.46 while SBMV and CMeV which induced moderate symptoms had virus titre of 0.74 to 1.99 and 0.11 to 0.90 respectively. Plants inoculated 10 DAP had significantly higher virus concentration than those inoculated 30 DAP. In mixed infections involving CABMV (10 DAP) apical necrosis and death were observed in commercial cultivars "Olo 11" and "White". Enhancement of CMeV titers were observed in plants infected with CMeV + CABMV. Multiple viral infections of cowpeas may result in complete yield loss, hence, the availability of seeds of cultivars with a high level of multiple virus resistance is recommended as a means of control. PMID:17900355

  9. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    PubMed

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  10. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles.

    PubMed

    Palm, Mélanie; Garigliany, Mutien-Marie; Cornet, François; Desmecht, Daniel

    2010-01-01

    The interferon-induced Mx proteins of vertebrates are dynamin-like GTPases, some isoforms of which can additionally inhibit the life cycle of certain RNA viruses. Here we show that the porcine Mx1 protein (poMx1) inhibits replication of influenza A virus and we attempt to identify the step at which the viral life cycle is blocked. In infected cells expressing poMx1, the level of transcripts encoding the viral nucleoprotein is significantly lower than normal, even when secondary transcription is prevented by exposure to cycloheximide. This reveals that a pretranscriptional block participates to the anti-influenza activity. Binding and internalization of incoming virus particles are normal in the presence of poMx1 but centripetal traffic to the late endosomes is interrupted. Surprisingly but decisively, poMx1 significantly alters binding of early endosome autoantigen 1 to early endosomes and/or early endosome size and spatial distribution. This is compatible with impairment of traffic of the endocytic vesicles to the late endosomes. INRA, EDP Sciences, 2010.

  11. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection

    PubMed Central

    McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A.; Baric, Ralph S.; Lazear, Helen M.

    2017-01-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity. PMID:28418292

  12. Avian leukosis virus subgroup J induces VEGF expression via NF-κB/PI3K-dependent IL-6 production.

    PubMed

    Gao, Yanni; Zhang, Yao; Yao, Yongxiu; Guan, Xiaolu; Liu, Yongzhen; Qi, Xiaole; Wang, Yongqiang; Liu, Changjun; Zhang, Yanping; Gao, Honglei; Nair, Venugopal; Wang, Xiaomei; Gao, Yulong

    2016-12-06

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.

  13. Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication

    PubMed Central

    Jansens, Robert J. J.; Van den Broeck, Wim; De Pelsmaeker, Steffi; Lamote, Jochen A. S.; Van Waesberghe, Cliff; Couck, Liesbeth

    2017-01-01

    ABSTRACT Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in

  14. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice.

    PubMed

    Dai, Shiyu; Zhang, Tao; Zhang, Yanfang; Wang, Hualin; Deng, Fei

    2018-06-01

    The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.

  15. Mutation of a Short Variable Region in HCpro Protein of Potato virus A Affects Interactions with a Microtubule-Associated Protein and Induces Necrotic Responses in Tobacco.

    PubMed

    Haikonen, Tuuli; Rajamäki, Minna-Liisa; Tian, Yan-Ping; Valkonen, Jari P T

    2013-07-01

    Helper component proteinase (HCpro) is a multifunctional protein of potyviruses (genus Potyvirus). HCpro of Potato virus A (PVA) interacts with the microtubule-associated protein HIP2 in host cells, and depletion of HIP2 reduces virus accumulation. This study shows that HCpro of Potato virus Y and Tobacco etch virus also interact with HIP2. The C-proximal portion of PVA HCpro determines the interaction with HIP2 and was found to contain a stretch of six residues comprising a highly variable region (HVR) in potyviruses. Mutations in HVR reduced PVA accumulation in tobacco plants and induced necrotic symptoms novel to PVA. Microarray and quantitative reverse transcription polymerase chain reaction analyses revealed induction of many defense-related genes including ethylene- and jasmonic acid-inducible pathways in systemically infected leaves at necrosis onset. Salicylic acid-mediated signaling was dispensable for the response. Genes related to microtubule functions were down-regulated. Structural modeling of HCpro suggested that all mutations in HVR caused conformational changes in adjacent regions containing functionally important motifs conserved in potyviruses. Those mutations, which also caused conformational changes in HVR, led to the greatest reduction of fitness. Our results implicate HVR in the regulation of HCpro conformation and virus-host interactions and suggest that mutation of HVR induces host defense.

  16. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-02-23

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.

  17. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2010-01-01

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719

  18. Serum PAI-1 and PAI-1 4G/5G Polymorphism in Hepatitis C Virus-Induced Cirrhosis and Hepatitis C Virus-Induced Hepatocellular Carcinoma Patients.

    PubMed

    El Edel, Rawhia H; Essa, Enas Said; Essa, Abdallah S; Hegazy, Sara A; El Rowedy, Dalia I

    2016-11-01

    Association between variable agent-induced hepatocellular carcinoma (HCC) and both PAI-1 4G/5G polymorphism and plasminogen activator inhibitor (PAI-1) levels compared to healthy controls have been reported in earlier studies. We aimed to assess serum PAI-1 and PAI-1 4G/5G polymorphism in hepatitis C virus (HCV)-induced HCC, HCV-induced liver cirrhosis, and viral infection-free apparently healthy control subjects. Forty nine HCC, 52 cirrhosis, and 105 controls were genotyped for PAI-1 4G/5G using an allele-specific polymerase chain reaction analysis. In addition, for 31 HCC, 24 cirrhosis, and 28 controls, serum PAI-1 level was measured by enzyme-linked immunosorbent assay (ELISA). There was no significant difference in PAI-1 4G/5G genotype distribution between cirrhosis and controls (p = 0.33, p = 0.15, and p = 0.38 for the codominant, dominant, and recessive models, respectively) or between HCC and cirrhosis (p = 0.5, p = 0.24, and p = 0.69 for the codominant, dominant, and recessive models, respectively). Serum PAI-1 was significantly higher in cirrhosis than controls and significantly lower in HCC than cirrhosis (p < 0.001 for both). Serum PAI-1 did not differ significantly among the three PAI-1 4G/5G genotypes in controls, cirrhosis, and HCC (p = 0.29, p = 0.28, and p = 0.73 respectively). We documented higher serum PAI-1 in HCV-induced HCC than viral infection-free controls, but interestingly, lower than HCV-induced liver cirrhosis patients. This was not genotype related. Further studies will be needed to clearly elucidate the underlying mechanism.

  19. Vaccination with recombinant Modified Vaccinia Ankara (MVA) viruses expressing single African horse sickness virus VP2 antigens induced cross-reactive virus neutralising antibodies (VNAb) in horses when administered in combination.

    PubMed

    Manning, Nicola Mary; Bachanek-Bankowska, Katarzyna; Mertens, Peter Paul Clement; Castillo-Olivares, Javier

    2017-10-20

    African horse sickness is a lethal viral disease of equids transmitted by biting midges of the Genus Culicoides. The disease is endemic to sub-Saharan Africa but outbreaks of high mortality and economic impact have occurred in the past in non-endemic regions of Africa, Asia and Southern Europe. Vaccination is critical for the control of this disease but only live attenuated vaccines are currently available. However, there are bio-safety concerns over the use of this type of vaccines, especially in non-endemic countries, and live attenuated vaccines do not have DIVA (Differentiation of Infected from Vaccinated Animals) capacity. In addition, large scale manufacturing of live attenuated vaccines of AHSV represents a significant environmental and health risk and level 3 bio-safety containment facilities are required for their production. A variety of different technologies have been investigated over the years to develop alternative AHSV vaccines, including the use of viral vaccine vectors such Modified Vaccinia Ankara virus (MVA). In previous studies we demonstrated that recombinant MVA expressing outer capsid protein AHSV-VP2 induced virus neutralising antibodies and protection against virulent challenge both in a mouse model and in the horse. However, AHSV-VP2 is antigenically variable and determines the existence of 9 different AHSV serotypes. Immunity against AHSV is serotype-specific and there is limited cross-reactivity between certain AHSV serotypes: 1 and 2, 3 and 7, 5 and 8, 6 and 9. In Africa, multiple serotypes circulate simultaneously and a polyvalent attenuated vaccine comprising different AHSV serotypes is used. We investigated the potential of a polyvalent AHSV vaccination strategy based on combinations of MVA-VP2 viruses each expressing a single VP2 antigen from a specific serotype. We showed that administration of 2 different recombinant MVA viruses, each expressing a single VP2 protein from AHSV serotype 4 or 9, denoted respectively as MVA-VP2

  20. Antibodies induced by the HA2 glycopolypeptide of influenza virus haemagglutinin improve recovery from influenza A virus infection.

    PubMed

    Gocník, M; Fislová, T; Mucha, V; Sládková, T; Russ, G; Kostolansky, F; Varecková, E

    2008-04-01

    The haemagglutinin (HA) of influenza A virus consists of two glycopolypeptides designated HA1 and HA2. Antibodies recognizing HA1 inhibit virus haemagglutination, neutralize virus infectivity and provide good protection against infection, but do not cross-react with the HA of other subtypes. Little is known regarding the biological activities of antibodies against HA2. To study the role of antibodies directed against HA2 during influenza virus infection, two vaccinia virus recombinants (rVVs) were used expressing chimeric molecules of HA, in which HA1 and HA2 were derived from different HA subtypes. The KG-11 recombinant expressed HA1 from A/PR/8/34 (H1N1) virus and HA2 from A/NT/60 (H3N2) virus, whilst KG-12 recombinant expressed HA1 from A/NT/60 virus and HA2 from A/PR/8/34 virus. Immunization of BALB/c mice with rVV expressing HA2 of the HA subtype homologous to the challenge virus [A/PR/8/34 (H1N1) or A/Mississippi/1/85 (H3N2)] did not prevent virus infection, but nevertheless resulted in an increase in mice survival and faster elimination of virus from the lungs. Passive immunization with antibodies purified from mice immunized with rVVs confirmed that antibodies against HA2 were responsible for the described effect on virus infection. Based on the facts that HA2 is a rather conserved part of the HA and that antibodies against HA2, as shown here, may moderate virus infection, future vaccine design should deal with the problem of how to increase the HA2 antibody response.

  1. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens

    USDA-ARS?s Scientific Manuscript database

    Avian leukosis virus subgroup (ALV-J) is an oncogenic neoplasm-inducing retrovirus that causes significant economic losses in the poultry industry. Recent studies have demonstrated circular RNAs (circRNAs) are implicated in pathogenic processes; however, no research has indicated circRNAs are invol...

  2. STUDIES ON THE PATHOGENESIS OF FEVER WITH INFLUENZAL VIRUSES

    PubMed Central

    Atkins, Elisha; Huang, Wei Cheng

    1958-01-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN2 failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses. PMID:13513908

  3. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves

    PubMed Central

    Wyld, Sara; Valarcher, Jean-Francois; Guzman, Efrain; Thom, Michelle; Widdison, Stephanie; Buchholz, Ursula J.

    2014-01-01

    Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity. PMID:24700100

  4. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation

    PubMed Central

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A.; Simpson, Jennifer L.; Wechsler, Steven L.

    2015-01-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the explant TG induced reactivation model in mice. The eyes of mice latently infected with wild type HSV-1 strain McKrae (LAT(+) virus) or dLAT2903 (LAT(−) virus) were irradiated with UV-B and reactivation was determined. We found that compared to LAT(−) virus, LAT(+) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B induced reactivation model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs are discussed. PMID:26002839

  5. Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system.

    PubMed

    Kazakos, Evangelos I; Kountouras, Jannis; Polyzos, Stergios A; Deretzi, Georgia

    2017-05-01

    Recent research on re-circulation of interstitial fluid from the brain parenchyma to the periphery and its inferred importance in immune surveillance dysregulation are changing our conceptualization of the pathophysiology of virus-induced autoimmunity. In this context, it is necessary to reassess the immunomodulatory properties of human defensins that are variably expressed by cerebral microglia, astrocytes and choroid plexus epithelial cells and exhibit complex and often confounding roles in neuroinflammatory processes. Therefore, in this review we describe current contributions in this field and we propose novel hypotheses regarding the potential impact of defensin-related pathways on virus-driven autoimmune neurodegeneration. In this regard, we have previously proposed that abnormal expression of defensins by penetrating the blood-brain barrier (BBB) may contribute to the pathophysiology of Helicobacter pylori-related brain neurodegenerative disorders through variable modulations of innate and adaptive immune responses. We hereby propose that impaired expression of defensins by structural components of the BBB may impede glymphatic circulation and disrupt receptor signalling in pericytes that is essential for microvascular stability, thereby retaining blood-derived toxins and bystander activated T-cells in the brain and further impairing BBB integrity and hampering viral clearance. Autoreactive T-cell infiltrates in neuronaxonal lesions characteristic of chronic central nervous system diseases, such as multiple sclerosis, are directed against both, myelin and non-myelin, antigens the precise nature of which remains enigmatic. Inadequate expression of the autoimmune regulator (AIRE), a gene expressed in medullary thymic epithelial cells, induces the recruitment of defensin-specific T-cells. These cells may access the brain, thereby causing a decrease in defensin expression and subsequent down-regulation of CD91/LRP1-mediated clearance of amyloid-β that

  6. The IFITMs Inhibit Zika Virus Replication.

    PubMed

    Savidis, George; Perreira, Jill M; Portmann, Jocelyn M; Meraner, Paul; Guo, Zhiru; Green, Sharone; Brass, Abraham L

    2016-06-14

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses. Copyright © 2016. Published by Elsevier Inc.

  7. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  8. Mechanisms of B cell activation in patients with acquired immunodeficiency syndrome and related disorders. Contribution of antibody-producing B cells, of Epstein-Barr virus-infected B cells, and of immunoglobulin production induced by human T cell lymphotropic virus, type III/lymphadenopathy-associated virus.

    PubMed Central

    Yarchoan, R; Redfield, R R; Broder, S

    1986-01-01

    Patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex (ARC) have hyperimmunoglobulinemia and increased numbers of circulating immunoglobulin-secreting cells. In this paper, we studied the basis for this B cell hyperactivity. Limiting dilution studies of B cells from seven patients with ARC and four with AIDS revealed that some B cells spontaneously produced antibodies to human T cell lymphotropic virus, type III/lymphadenopathy-associated virus (HTLV-III/LAV) (39:10(6) and 7:10(6) B cells, respectively), suggesting that chronic antigenic stimulation by HTLV-III/LAV was one contributing factor. The patients also had an increased number of spontaneously outgrowing B cells than did normals (6:10(6) vs. less than 2:10(6) B cells), suggesting that they had an increased number of Epstein-Barr virus (EBV)-infected B cells. However, fewer B cells from patients were immortalized by exogenously added EBV than were B cells from normals. In additional studies, HTLV-III/LAV induced immunoglobulin secretion (mean 2,860 ng/ml) by peripheral blood mononuclear cells from normals; this HTLV-III/LAV-induced immunoglobulin secretion required the presence of both B and T cells. Thus, antigenic stimulation by HTLV-III/LAV, increased numbers of EBV-infected B cells, and HTLV-III/LAV-induced T cell-dependent B cell activation all contribute to the B cell hyperactivity in patients with HTLV-III/LAV disease. PMID:3016028

  9. Immunization against strontium-90 induction of bone tumors with inactivated FBJ virus and irradiated syngeneic strontium-90-induced tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reif, A.E.; Triest, W.E.

    1981-01-01

    Three hundred six C57BL/6J female mice were subdivided into a control group left untreated and an experimental group treated intraperitoneally with 1.0 ..mu..Ci strontium-90/g of body weight at an age of 66 days. Treatments for the groups were as follows: none, 6 injections of formalin-inactivated FBJ viral preparation, 6 injections of active FBJ viral preparation, and 2 injections of 10,000 rad irradiated transplantable osteosarcoma previously induced in C57BL/6J mice by strontium-90. In addition to the above groups, two other groups were treated with respectively 0.032 and 0.10 ..mu..Ci strontium-90/g body weight in order to obtain information on the dose-response relationshipmore » between the injection of strontium-90 and the yield of bone tumors. In the groups not treated with strontium-90, only 1 bone tumor developed; this occurred in the group injected with FBJ virus. The incidence of bone tumors in the groups treated with 1.0 ..mu..Ci strontium-90 was significantly lower (18.5% or 18.2%) in the two groups that had received injections of inactivated FBJ virus or irradiated isogenic osteosarcoma when compared to the group left uninjected, which developed 43.5% tumors. In contrast, the strontium-90-treated group that also received injections of active FBJ virus developed 63.0% tumors. Only a single bone tumor developed in the groups treated solely with intermediate doses of strontium-90. The results indicate that immunization with inactivated FBJ virus or with irradiated syngeneic strontium-90-induced tumor cells can significantly decrease the development of strontium-90-induced tumors.« less

  10. Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs.

    PubMed

    Khattar, Sunil K; Samal, Sweety; Devico, Anthony L; Collins, Peter L; Samal, Siba K

    2011-10-01

    Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.

  11. Effect of mixed pinning landscapes produced by 6 MeV oxygen irradiation on the resulting critical current densities Jc in 1.3 μm thick GdBa2Cu3O7-d coated conductors grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Suárez, S.; Pérez, P. D.; Troiani, H.; Granell, P.; Golmar, F.; Lee, Jae-Hun; Moon, S. H.

    2017-11-01

    We report the influence of crystalline defects introduced by 6 MeV 16O3+ irradiation on the critical current densities Jc and flux creep rates in 1.3 μm thick GdBa2Cu3O7-δ coated conductor produced by co-evaporation. Pristine films with pinning produced mainly by random nanoparticles with diameter close to 50 nm were irradiated with doses between 2 × 1013 cm-2 and 4 × 1014 cm-2. The irradiations were performed with the ion beam perpendicular to the surface of the samples. The Jc and the flux creep rates were analyzed for two magnetic field configurations: magnetic field applied parallel (H║c) and at 45° (H║45°) to the c-axis. The results show that at temperatures below 40 K the in-field Jc dependences can be significantly improved by irradiation. For doses of 1 × 1014 cm-2 the Jc values at μ0H = 5 T are doubled without affecting significantly the Jc at small fields. Analyzing the flux creep rates as function of the temperature in both magnetic field configurations, it can be observed that the irradiation suppresses the peak associated with double-kink relaxation and increases the flux creep rates at intermediate and high temperatures. Under 0.5 T, the flux relaxation for H‖c and H||45° in pristine films presents characteristic glassy exponents μ = 1.63 and μ = 1.45, respectively. For samples irradiated with 1 × 1014 cm-2, these values drop to μ = 1.45 and μ = 1.24, respectively

  12. Virus inhibition of RIP3-dependent necrosis.

    PubMed

    Upton, Jason W; Kaiser, William J; Mocarski, Edward S

    2010-04-22

    Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  14. Effects of collagen and collagen hydrolysate from jellyfish umbrella on histological and immunity changes of mice photoaging.

    PubMed

    Fan, Jian; Zhuang, Yongliang; Li, Bafang

    2013-01-17

    Jellyfish collagen (JC) was extracted from jellyfish umbrella and hydrolyzed to prepare jellyfish collagen hydrolysate (JCH). The effects of JC and JCH on UV-induced skin damage of mice were evaluated by the skin moisture, microscopic analyses of skin and immunity indexes. The skin moisture analyses showed that moisture retention ability of UV-induced mice skin was increased by JC and JCH. Further histological analysis showed that JC and JCH could repair the endogenous collagen and elastin protein fibers, and could maintain the natural ratio of type I to type III collagen. The immunity indexes showed that JC and JCH play a role in enhancing immunity of photoaging mice in vivo. JCH showed much higher protective ability than JC. These results suggest that JCH as a potential novel antiphotoaging agent from natural resources.

  15. Effects of Collagen and Collagen Hydrolysate from Jellyfish Umbrella on Histological and Immunity Changes of Mice Photoaging

    PubMed Central

    Fan, Jian; Zhuang, Yongliang; Li, Bafang

    2013-01-01

    Jellyfish collagen (JC) was extracted from jellyfish umbrella and hydrolyzed to prepare jellyfish collagen hydrolysate (JCH). The effects of JC and JCH on UV-induced skin damage of mice were evaluated by the skin moisture, microscopic analyses of skin and immunity indexes. The skin moisture analyses showed that moisture retention ability of UV-induced mice skin was increased by JC and JCH. Further histological analysis showed that JC and JCH could repair the endogenous collagen and elastin protein fibers, and could maintain the natural ratio of type I to type III collagen. The immunity indexes showed that JC and JCH play a role in enhancing immunity of photoaging mice in vivo. JCH showed much higher protective ability than JC. These results suggest that JCH as a potential novel antiphotoaging agent from natural resources. PMID:23344251

  16. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.

    PubMed

    Meng, Chunchun; Zhou, Zhizhi; Jiang, Ke; Yu, Shengqing; Jia, Lijun; Wu, Yantao; Liu, Yanqing; Meng, Songshu; Ding, Chan

    2012-06-01

    Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.

  17. Viruses Surveillance Under Different Season Scenarios of the Negro River Basin, Amazonia, Brazil.

    PubMed

    Vieira, Carmen Baur; de Abreu Corrêa, Adriana; de Jesus, Michele Silva; Luz, Sérgio Luiz Bessa; Wyn-Jones, Peter; Kay, David; Vargha, Marta; Miagostovich, Marize Pereira

    2016-03-01

    The Negro River is located in the Amazon basin, the largest hydrological catchment in the world. Its water is used for drinking, domestic activities, recreation and transportation and water quality is significantly affected by anthropogenic impacts. The goals of this study were to determine the presence and concentrations of the main viral etiological agents of acute gastroenteritis, such as group A rotavirus (RVA) and genogroup II norovirus (NoV GII), and to assess the use of human adenovirus (HAdV) and JC polyomavirus (JCPyV) as viral indicators of human faecal contamination in the aquatic environment of Manaus under different hydrological scenarios. Water samples were collected along Negro River and in small streams known as igarapés. Viruses were concentrated by an organic flocculation method and detected by quantitative PCR. From 272 samples analysed, HAdV was detected in 91.9%, followed by JCPyV (69.5%), RVA (23.9%) and NoV GII (7.4%). Viral concentrations ranged from 10(2) to 10(6) GC L(-1) and viruses were more likely to be detected during the flood season, with the exception of NoV GII, which was detected only during the dry season. Statistically significant differences on virus concentrations between dry and flood seasons were observed only for RVA. The HAdV data provides a useful complement to faecal indicator bacteria in the monitoring of aquatic environments. Overall results demonstrated that the hydrological cycle of the Negro River in the Amazon Basin affects the dynamics of viruses in aquatic environments and, consequently, the exposure of citizens to these waterborne pathogens.

  18. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants.

    PubMed

    Khandelwal, Nitin; Chander, Yogesh; Rawat, Krishan Dutt; Riyesh, Thachamvally; Nishanth, Chikkahonnaiah; Sharma, Shalini; Jindal, Naresh; Tripathi, Bhupendra N; Barua, Sanjay; Kumar, Naveen

    2017-08-01

    At a noncytotoxic concentration, emetine was found to inhibit replication of DNA viruses [buffalopoxvirus (BPXV) and bovine herpesvirus 1 (BHV-1)] as well as RNA viruses [peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV)]. Using the time-of-addition and virus step-specific assays, we showed that emetine treatment resulted in reduced synthesis of viral RNA (PPRV and NDV) and DNA (BPXV and BHV-1) as well as inhibiting viral entry (NDV and BHV-1). In addition, emetine treatment also resulted in decreased synthesis of viral proteins. In a cell free endogenous viral polymerase assay, emetine was found to significantly inhibit replication of NDV, but not BPXV genome, suggesting that besides directly inhibiting specific viral polymerases, emetine may also target other factors essentially required for efficient replication of the viral genome. Moreover, emetine was found to significantly inhibit BPXV-induced pock lesions on chorioallantoic membrane (CAM) along with associated mortality of embryonated chicken eggs. At a lethal dose 50 (LD 50 ) of 126.49 ng/egg and at an effective concentration 50 (EC 50 ) of 3.03 ng/egg, the therapeutic index of the emetine against BPXV was determined to be 41.74. Emetine was also found to significantly delay NDV-induced mortality in chicken embryos associated with reduced viral titers. Further, emetine-resistant mutants were not observed upon long-term (P = 25) sequential passage of BPXV and NDV in cell culture. Collectively, we have extended the effective antiviral activity of emetine against diverse groups of DNA and RNA viruses and propose that emetine could provide significant therapeutic value against some of these viruses without inducing an antiviral drug-resistant phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Immunogenicity of modified vaccinia virus Ankara expressing the hemagglutinin stalk domain of pandemic (H1N1) 2009 influenza virus.

    PubMed

    Di Mario, Giuseppina; Soprana, Elisa; Gubinelli, Francesco; Panigada, Maddalena; Facchini, Marzia; Fabiani, Concetta; Garulli, Bruno; Basileo, Michela; Cassone, Antonio; Siccardi, Antonio; Donatelli, Isabella; Castrucci, Maria R

    2017-03-01

    Vaccination offers protection against influenza, although current vaccines need to be reformulated each year. The development of a broadly protective influenza vaccine would guarantee the induction of heterosubtypic immunity also against emerging influenza viruses of a novel subtype. Vaccine candidates based on the stalk region of the hemagglutinin (HA) have the potential to induce broad and persistent protection against diverse influenza A viruses. Modified vaccinia virus Ankara (MVA) expressing a headless HA (hlHA) of A/California/4/09 (CA/09) virus was used as a vaccine to immunize C57BL/6 mice. Specific antibody and cell-mediated immune responses were determined, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. Immunization of mice with CA/09-derived hlHA, vectored by MVA, was able to elicit influenza-specific broad cross-reactive antibodies and cell-mediated immune responses, but failed to induce neutralizing antibodies and did not protect mice against virus challenge. Although highly immunogenic, our vaccine was unable to induce a protective immunity against influenza. A misfolded and unstable conformation of the hlHA molecule may have affected its capacity of inducing neutralizing antiviral, conformational antibodies. Design of stable hlHA-based immunogens and their delivery by recombinant MVA-based vectors has the potential of improving this promising approach for a universal influenza vaccine.

  20. T Cell Epitope Mapping of JC Polyoma Virus-Encoded Proteome Reveals Reduced T Cell Responses in HLA-DRB1*04:01+ Donors

    PubMed Central

    Jelčić, Ilijas; Aly, Lilian; Binder, Thomas M. C.; Jelčić, Ivan; Bofill-Mas, Sílvia; Planas, Raquel; Demina, Victoria; Eiermann, Thomas H.; Weber, Thomas; Girones, Rosina; Sospedra, Mireia

    2013-01-01

    JC polyomavirus (JCV) infection is highly prevalent and usually kept in a persistent state without clinical signs and symptoms. It is only during immunocompromise and especially impaired CD4+ T cell function in the brain, as seen in AIDS patients or natalizumab-treated multiple sclerosis patients, that JCV may cause progressive multifocal leukoencephalopathy (PML), an often life-threatening brain disease. Since CD4+ T cells likely play an important role in controlling JCV infection, we here describe the T cell response to JCV in a group of predominantly HLA-DR-heterozygotic healthy donors (HD) by using a series of overlapping 15-mer peptides spanning all JCV-encoded open reading frames. We identified immunodominant epitopes and compared T cell responses with anti-JCV VP1 antibody production and with the presence of urinary viral shedding. We observed positive JCV-specific T cell responses in 28.6% to 77.6%, humoral immune response in 42.6% to 89.4%, and urinary viral shedding in 36.4% to 45.5% of HD depending on the threshold. Four immunodominant peptides were mapped, and at least one immunogenic peptide per HLA-DRB1 allele was detected in DRB1*01+, DRB1*07+, DRB1*11+, DRB1*13+, DRB1*15+, and DRB1*03+ individuals. We show for the first time that JCV-specific T cell responses may be directed not only against JCV VP1 and large T antigen but also against all other JCV-encoded proteins. Heterozygotic DRB1*04:01+ individuals showed very low T cell responses to JCV together with normal anti-VP1 antibody levels and no urinary viral shedding, indicating a dominant-negative effect of this allele on global JCV-directed T cell responses. Our data are potentially relevant for the development of vaccines against JCV. PMID:23302880

  1. Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus.

    PubMed

    Fang, Shisong; Zhang, Kaining; Wang, Ting; Wang, Xin; Lu, Xing; Peng, Bo; Wu, Weihua; Zhang, Ran; Chen, Shiju; Zhang, Renli; Xue, Hong; Yu, Muhua; Cheng, Jinquan

    2014-12-01

    In order to investigate the lesions and proteins with differential expression in cells infected with the 2009 A (H1N1) virus and to determine the specific proteins involved in cell damage, the present study has been performed. BEAS-2B cells were infected with the 2009 A (H1N1) influenza virus or the seasonal H1N1 influenza virus for 12, 24, 48, and 72 h, and cell cycle and apoptosis were analyzed with flow cytometry. Total cellular proteins were extracted and underwent two-dimensional gel electrophoresis. The differentially expressed proteins underwent mass spectrometry for identification. The results showed that after 12 h, cells infected with the virus strain sourced from severe cases had the highest apoptosis rate (P < 0.05). After 48 h, cells infected with the virus strain sourced from fatal cases and severe cases had the highest apoptosis rate (P < 0.05), and after 72 h, cells infected with virus strains from fatal cases and ordinary cases had the highest apoptosis rate (P < 0.05). All the four influenza virus strains induced cell cycle arrest mainly at the G0/G1 phase. Eighteen differentially expressed proteins were identified, including galectin-1, cofilin-1, protein DJ-1, proteasome subunit α type-5, macrophage migration inhibitory factor, translationally controlled tumor protein, profilin 1, and interferon α-2. Galectin-1 was specifically observed in BEAS-2B infected with 2009 A (H1N1) influenza viruses, and cofilin-1 was specifically observed in BEAS-2B cells in the late stage of 2009 A (H1N1) influenza virus infection. In conclusion, differential effects of the 2009 A (H1N1) influenza virus and seasonal H1N1 influenza virus were identified on the cell cycle and apoptosis, and galectin-1 may play a role in cell apoptosis induced by 2009 A (H1N1) influenza virus.

  2. A Dynamic Model for Induced Reactivation of Latent Virus

    DTIC Science & Technology

    2005-12-04

    with human herpesvirus-6 in EBV -negative infectious mononucleosis , Journal of Medical Virology 71 (4), 569-577, 2003. [35] Wu FY, Ahn JH, Alcendor DJ...model that describes the reactivation of latent herpes virus by metabolic end products of anaerobic bacteria. Herpes viruses are double-stranded DNA ...cells that may be different from the types of cells targeted for primary infection. Latent virus persists in the cell nucleus as episomal DNA until it

  3. Detection of polyomavirus simian virus 40 tumor antigen DNA in AIDS-related systemic non-Hodgkin lymphoma

    NASA Technical Reports Server (NTRS)

    Vilchez, Regis A.; Lednicky, John A.; Halvorson, Steven J.; White, Zoe S.; Kozinetz, Claudia A.; Butel, Janet S.

    2002-01-01

    Systemic non-Hodgkin lymphoma (S-NHL) is a common malignancy during HIV infection, and it is hypothesized that infectious agents may be involved in the etiology. Epstein-Barr virus DNA is found in <40% of patients with AIDS-related S-NHL, suggesting that other oncogenic viruses, such as polyomaviruses, may play a role in pathogenesis. We analyzed AIDS-related S-NHL samples, NHL samples from HIV-negative patients, peripheral blood leukocytes from HIV-infected and -uninfected patients without NHL, and lymph nodes without tumors from HIV-infected patients. Specimens were examined by polymerase chain reaction analysis with use of primers specific for an N-terminal region of the oncoprotein large tumor antigen ( T-ag ) gene conserved among all three polyomaviruses (simian virus 40 [SV40], JC virus, and BK virus). Polyomavirus T-ag DNA sequences, proven to be SV40-specific, were detected more frequently in AIDS-related S-NHL samples (6 of 26) than in peripheral blood leukocytes from HIV-infected patients (6 of 26 vs. 0 of 69; p =.0001), NHL samples from HIV-negative patients (6 of 26 vs. 0 of 10; p =.09), or lymph nodes (6 of 26 vs. 0 of 7; p =.16). Sequences of C-terminal T-ag DNA from SV40 were amplified from two AIDS-related S-NHL samples. Epstein-Barr virus DNA sequences were detected in 38% (10 of 26) AIDS-related S-NHL samples, 50% (5 of 10) HIV-negative S-NHL samples, and 57% (4 of 7) lymph nodes. None of the S-NHL samples were positive for both Epstein-Barr virus DNA and SV40 DNA. Further studies of the possible role of SV40 in the pathogenesis of S-NHL are warranted.

  4. Studies on the pathogenesis of fever with influenzal viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus.

    PubMed

    ATKINS, E; HUANG, W C

    1958-03-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN(2) failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses.

  5. Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses

    PubMed Central

    Zolla-Pazner, Susan; Edlefsen, Paul T.; Rolland, Morgane; Kong, Xiang-Peng; deCamp, Allan; Gottardo, Raphael; Williams, Constance; Tovanabutra, Sodsai; Sharpe-Cohen, Sandra; Mullins, James I.; deSouza, Mark S.; Karasavvas, Nicos; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Pitisuttihum, Punnee; Kaewkungwal, Jaranit; O'Connell, Robert J.; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Gilbert, Peter

    2014-01-01

    To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees' V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p = 0.004) and 52% against viruses matching the vaccine at V3 site 307 (p = 0.004). This analysis was supported by data showing that vaccinees' plasma Abs were less reactive with I307 when replaced with residues found more often in vaccinees' breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine. PMID:25599085

  6. TOTAL CULTURABLE VIRUS QUANTAL ASSAY

    EPA Science Inventory

    This chapter describes a quantal method for assaying culturable human enteric viruses from water matrices. The assay differs from the plaque assay described in Chapter 10 (December 1987 Revision) in that it is based upon the direct microscopic viewing of cells for virus-induced ...

  7. Marek’s disease virus genomics

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) is one of the most oncogenic herpesviruses known and induces a rapid onset T-cell lymphoma and demyelinating disease in chickens. It represents the first of three neoplastic diseases (including hepatocellular carcinoma: hepatitis B virus; and cervical carcinoma: human pap...

  8. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat

    PubMed Central

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-01-01

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus—virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes. PMID:27669224

  9. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease.

    PubMed

    Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara

    2010-10-15

    Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active

  10. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    PubMed Central

    2010-01-01

    Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of

  11. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus.

    PubMed

    Nair, Vidya P; Anang, Saumya; Subramani, Chandru; Madhvi, Abhilasha; Bakshi, Karishma; Srivastava, Akriti; Shalimar; Nayak, Baibaswata; Ranjith Kumar, C T; Surjit, Milan

    2016-04-01

    Hepatitis E virus (HEV) causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER) stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4). Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp), X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1) and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient model of the

  12. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed Central

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013

  13. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    PubMed

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  14. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression.

    PubMed

    Hurtado, Carolina; Granja, Aitor G; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; de Yébenes, Virginia G; Salas, María L; Revilla, Yolanda; Carrascosa, Angel L

    2004-08-15

    The open reading frame EP153R of African swine fever virus (ASFV) encodes a nonessential protein that has been involved in the hemadsorption process induced in virus-infected cells. By the use of a virus deletion mutant lacking the EP153R gene, we have detected, in several virus-sensitive cells, increased levels of caspase-3 and cell death as compared with those obtained after infection with the parental BA71V strain. Both transient and stable expression of the EP153R gene in Vero or COS cells resulted in a partial protection of the transfected lines from the apoptosis induced in response to virus infection or external stimuli. The presence of gene EP153R resulted in a reduction of the transactivating activity of the cellular protein p53 in Vero cell cultures in which apoptosis was induced by virus infection or staurosporine treatment. This is to our knowledge the first description of a viral C-type lectin with anti-apoptotic properties.

  15. Characterization of the immune response to canine parvovirus induced by vaccination with chimaeric plant viruses.

    PubMed

    Nicholas, Benjamin L; Brennan, F R; Martinez-Torrecuadrada, J L; Casal, J I; Hamilton, W D; Wakelin, D

    2002-06-21

    NIH mice were vaccinated subcutaneously or intranasally with chimaeric cow pea mosaic virus (CPMV) constructs expressing a 17-mer peptide sequence from canine parvovirus (CPV) as monomers or dimers on the small or large protein surface subunits. Responses to the chimaeric virus particles (CVPs) were compared with those of mice immunized with the native virus or with parvovirus peptide conjugated to keyhole limpet haemocyanin (KLH). The characteristics of the immune response to vaccination were examined by measuring serum and mucosal antibody responses in ELISA, in vitro antigen-induced spleen cell proliferation and cytokine responses. Mice made strong antibody responses to the native plant virus and peptide-specific responses to two of the four CVP constructs tested which were approximately 10-fold lower than responses to native plant virus. The immune response generated by the CVP constructs showed a marked TH1 bias, as determined by a predominantly IgG(2a) isotype peptide-specific antibody response and the release of IFN-gamma but not IL-4 or IL-5 from lymphocytes exposed to antigen in vitro. In comparison, parvovirus peptide conjugated to KLH generated an IgG(1)-biased (TH2) response. These data indicate that the presentation of peptides on viral particles could be used to bias the immune response in favor of a TH1 response.Anti-viral and anti-peptide IgA were detected in intestinal and bronchial lavage fluid of immunized mice, demonstrating that a mucosal immune response to CPV can be generated by systemic and mucosal immunization with CVP vaccines. Serum antibody from both subcutaneously-vaccinated and intranasally-vaccinated mice showed neutralizing activity against CPV in vitro.

  16. A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread.

    PubMed

    Carmo-Sousa, Michele; Moreno, Aranzazu; Garzo, Elisa; Fereres, Alberto

    2014-06-24

    Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly, generally adapting to each type of virus-vector relationship in a way that enhances transmission efficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant, cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypii Glover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferous aphids changed their alighting, settling and probing behaviour activities over time when exposed to CMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate from CMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), but showed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min after release. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected over mock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage and aphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph (EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of short superficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (second hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much less time spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour including an early increase in the number of short superficial probes and intracellular punctures followed by a phloem feeding deterrence is known to enhance the transmission

  17. Identification of aberrantly expressed circRNAs in subgroup J avian leucosis virus induced tumor livers by RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    ALV-J (subgroup J avian leucosis virus) is a kind of oncogenic exogenous retrovirus and diseases associated with ALV-J have caused severe reproduction problems in the poultry industry worldwide. However, the pathogenesis of ALV-J-induced tumor formation is still unclear. In recent years, circRNAs ar...

  18. Evolution of Avian Tumor Viruses

    USDA-ARS?s Scientific Manuscript database

    Virus-induced neoplastic diseases of poultry, namely Marek’s disease (MD), induced by a herpesvirus, and the avian leukosis and reticuloendotheliosis induced by retroviruses, can cause significant economic losses from tumor mortality as well as poor performance. Successful control of MD is and has ...

  19. Virus Satellites Drive Viral Evolution and Ecology

    PubMed Central

    Frígols, Belén; Quiles-Puchalt, Nuria; Mir-Sanchis, Ignacio; Donderis, Jorge; Elena, Santiago F.; Buckling, Angus; Novick, Richard P.; Marina, Alberto; Penadés, José R.

    2015-01-01

    Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts. PMID:26495848

  20. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  1. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  2. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-04

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein

    PubMed Central

    Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul

    2010-01-01

    Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579

  4. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    PubMed

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A necrosis-inducing elicitor domain encoded by both symptomatic and asymptomatic Plantago asiatica mosaic virus isolates, whose expression is modulated by virus replication.

    PubMed

    Komatsu, Ken; Hashimoto, Masayoshi; Maejima, Kensaku; Shiraishi, Takuya; Neriya, Yutaro; Miura, Chihiro; Minato, Nami; Okano, Yukari; Sugawara, Kyoko; Yamaji, Yasuyuki; Namba, Shigetou

    2011-04-01

    Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.

  6. Vaccine efficacy of live-attenuated virus, whole inactivated virus and alphavirus vectored subunit vaccines against antigenically distinct H3N2 swine influenza A viruses

    USDA-ARS?s Scientific Manuscript database

    Introduction Influenza A virus (IAV) is an important pathogen in swine, and the main intervention strategy is vaccination to induce neutralizing antibodies against the hemagglutinin (HA). Three major antigenic clusters, cyan, red, and green, were identified among H3N2 viruses circulating in pigs in ...

  7. Avirulent Marek’s Disease Virus Type 1 Strain 814 Vectored Vaccine Expressing Avian Influenza (AI) Virus H5 Haemagglutinin Induced Better Protection Than Turkey Herpesvirus Vectored AI Vaccine

    PubMed Central

    Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng

    2013-01-01

    Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062

  8. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs.

    PubMed

    Kong, Dongni; Wen, Zhiyuan; Su, Hua; Ge, Jinying; Chen, Weiye; Wang, Xijun; Wu, Chao; Yang, Chinglai; Chen, Hualan; Bu, Zhigao

    2012-10-25

    Nipah virus (NiV), a member of the Paramyxoviridae family, causes deadly encephalitis in humans and huge economic losses to the pig industry. Here, we generated recombinant avirulent Newcastle disease virus (NDV) LaSota strains expressing the NiV G and F proteins respectively (designated as rLa-NiVG and rLa-NiVF), and evaluated their immunogenicity in mice and pigs. Both rLa-NiVG and rLa-NiVF displayed growth properties similar to those of LaSota virus in chicken eggs. Co-infection of rLa-NiVG and rLa-NiVF caused marked syncytia formation, while intracerebral co-inoculation of these viruses in mice showed they were safe in at least one mammalian species. Animal immunization studies showed rLa-NiVG and rLa-NiVF induced NiV neutralizing antibody responses in mice and pigs, and F protein-specific CD8+ T cell responses in mice. Most importantly, rLa-NiVG and rLa-NiVF administered alone or together, induced a long-lasting neutralizing antibody response in pigs. Recombinant rLa-NiVG/F thus appear to be promising NiV vaccine candidates for pigs and potentially humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Wild type measles virus attenuation independent of type I IFN.

    PubMed

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-02-03

    Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.

  10. Wild type measles virus attenuation independent of type I IFN

    PubMed Central

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-01-01

    Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351

  11. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    PubMed

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  12. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice.

    PubMed

    Li, Yan; Xu, Jun; Shi, Weiqing; Chen, Cheng; Shao, Yan; Zhu, Limei; Lu, Wei; Han, XiaoDong

    2016-10-28

    The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 10 4 MID 50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  13. Strong protection induced by an experimental DIVA subunit vaccine against bluetongue virus serotype 8 in cattle.

    PubMed

    Anderson, Jenna; Hägglund, Sara; Bréard, Emmanuel; Riou, Mickaël; Zohari, Siamak; Comtet, Loic; Olofson, Ann-Sophie; Gélineau, Robert; Martin, Guillaume; Elvander, Marianne; Blomqvist, Gunilla; Zientara, Stéphan; Valarcher, Jean Francois

    2014-11-20

    Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)-matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n=6) or with adjuvant alone (n=6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Multiplication of VHS virus in insect cells.

    PubMed

    Lorenzen, N; Olesen, N J

    1995-01-01

    Viral haemorrhagic septicaemia virus (VHSV) belongs to the rhabdovirus family and is a major pathogen in farmed rainbow trout. An insect cell culture traditionally used for production of recombinant proteins was found to be susceptible to VHS virus. At pH 6.2, VHSV multiplication induced formation of large syncytia similar to those obtained by baculovirus-induced expression of recombinant VHSV glycoprotein. The VHSV G protein produced in insect cells was smaller than G protein derived from fish cells. VHS virus produced in insect cells was still pathogenic to rainbow trout after 2 cell culture passages.

  15. Interferon production by cells infected with subacute sclerosing panencephalitis (SSPE) virus or measles virus.

    PubMed

    Hasegawa, Shunji; Mori, Natsumi; Satomi, Mika; Jiang, Da-Peng; Hotta, Hak; Matsushige, Takeshi; Ichiyama, Takashi

    2011-12-01

    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative encephalitis caused by some variants of measles virus (MV). The structure of SSPE virus in the brains of SSPE patients is different from that of MV. The difference in interferon (IFN) production between cells infected with SSPE virus and those infected with MV remains unclear. We measured the concentrations of IFN-α, β, γ, and λ1 (interleukin (IL)-29) from MV- or SSPE virus-infected B95a cells (a marmoset B-lymphoblastoid cell line). SSPE virus-infected B95a cells produced significantly higher levels of IFN-α and λ1 than did MV-infected or mock-infected cells. Our results suggest that SSPE virus and MV induce different IFN production profiles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    PubMed

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  17. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef.more » We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes.« less

  18. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  19. Resolution and prevention of feline immunodeficiency virus-induced neurological deficits by treatment with the protease inhibitor TL-3.

    PubMed

    Huitron-Resendiz, Salvador; De Rozières, Sohela; Sanchez-Alavez, Manuel; Bühler, Bernd; Lin, Ying-Chuan; Lerner, Danica L; Henriksen, Nicholas W; Burudi, Mboya; Fox, Howard S; Torbett, Bruce E; Henriksen, Steven; Elder, John H

    2004-05-01

    In vivo tests were performed to assess the influence of the protease inhibitor TL-3 on feline immunodeficiency virus (FIV)-induced central nervous system (CNS) deficits. Twenty cats were divided into four groups of five animals each. Group 1 received no treatment, group 2 received TL-3 only, group 3 received FIV strain PPR (FIV-PPR) only, and group 4 received FIV-PPR and TL-3. Animals were monitored for immunological and virological status, along with measurements of brain stem auditory evoked potential (BAEP) changes. Groups 1 and 2 remained FIV negative, and groups 3 and 4 became virus positive and seroconverted by 3 to 5 weeks postinoculation. No adverse effects were noted with TL-3 only. The average peak viral load for the virus-only group 3 animals was 1.32 x 10(6) RNA copies/ml, compared to 6.9 x 10(4) copies/ml for TL-3-treated group 4 cats. Group 3 (virus-only) cats exhibited marked progressive delays in BAEPs starting at 2 weeks post virus exposure, which is typical of infection with FIV-PPR. In contrast, TL-3-treated cats of group 4 exhibited BAEPs similar to those of control and drug-only cats. At 97 days postinfection, treatments were switched; i.e., group 4 animals were taken off TL-3 and group 3 animals were treated with TL-3. BAEPs in group 3 animals returned to control levels, while BAEPs in group 4 animals remained at control levels. After 70 days on TL-3, group 3 was removed from the drug treatment regimen. Delays in BAEPs immediately increased to levels observed prior to TL-3 treatment. The findings show that early TL-3 treatment can effectively eliminate FIV-induced changes in the CNS. Furthermore, TL-3 can counteract FIV effects on the CNS of infected cats, although continued treatment is required to maintain unimpaired CNS function.

  20. Resolution and Prevention of Feline Immunodeficiency Virus-Induced Neurological Deficits by Treatment with the Protease Inhibitor TL-3

    PubMed Central

    Huitron-Resendiz, Salvador; de Rozières, Sohela; Sanchez-Alavez, Manuel; Bühler, Bernd; Lin, Ying-Chuan; Lerner, Danica L.; Henriksen, Nicholas W.; Burudi, Mboya; Fox, Howard S.; Torbett, Bruce E.; Henriksen, Steven; Elder, John H.

    2004-01-01

    In vivo tests were performed to assess the influence of the protease inhibitor TL-3 on feline immunodeficiency virus (FIV)-induced central nervous system (CNS) deficits. Twenty cats were divided into four groups of five animals each. Group 1 received no treatment, group 2 received TL-3 only, group 3 received FIV strain PPR (FIV-PPR) only, and group 4 received FIV-PPR and TL-3. Animals were monitored for immunological and virological status, along with measurements of brain stem auditory evoked potential (BAEP) changes. Groups 1 and 2 remained FIV negative, and groups 3 and 4 became virus positive and seroconverted by 3 to 5 weeks postinoculation. No adverse effects were noted with TL-3 only. The average peak viral load for the virus-only group 3 animals was 1.32 × 106 RNA copies/ml, compared to 6.9 × 104 copies/ml for TL-3-treated group 4 cats. Group 3 (virus-only) cats exhibited marked progressive delays in BAEPs starting at 2 weeks post virus exposure, which is typical of infection with FIV-PPR. In contrast, TL-3-treated cats of group 4 exhibited BAEPs similar to those of control and drug-only cats. At 97 days postinfection, treatments were switched; i.e., group 4 animals were taken off TL-3 and group 3 animals were treated with TL-3. BAEPs in group 3 animals returned to control levels, while BAEPs in group 4 animals remained at control levels. After 70 days on TL-3, group 3 was removed from the drug treatment regimen. Delays in BAEPs immediately increased to levels observed prior to TL-3 treatment. The findings show that early TL-3 treatment can effectively eliminate FIV-induced changes in the CNS. Furthermore, TL-3 can counteract FIV effects on the CNS of infected cats, although continued treatment is required to maintain unimpaired CNS function. PMID:15078933

  1. Hemorrhagic cystitis in children undergoing bone marrow transplantation: a putative role for simian virus 40.

    PubMed

    Comar, Manola; D'Agaro, Pierlanfranco; Andolina, Marino; Maximova, Natasha; Martini, Fernanda; Tognon, Mauro; Campello, Cesare

    2004-08-27

    Late-onset hemorrhagic cystitis (HC) is a well-known severe complication of bone marrow transplantation (BMT), both in adults and in children. Protracted postengraftment HC is associated with graft-versus-host disease and viral infections, mainly caused by BK virus (BKV) or adenovirus (AV). This study investigated whether simian virus 40 (SV40) DNA sequences can be detected in specimens from pediatric patients affected by severe postengraftment HC. The clinical diagnosis of HC was made in 7 of 28 BMT children. DNA from peripheral blood mononuclear cells (PBMC) and urine sediment cells and supernatants was analyzed by polymerase chain reaction (PCR) for human cytomegalovirus (HCMV), AV, BKV, JC virus (JCV), and SV40. DNA filter hybridization and sequencing was carried out in SV40-positive samples. SV40 footprints were detected in two of seven cases of HC. Specific SV40 DNA sequences were detected by PCR and by filter hybridization both in urine and in PBMC samples at the HC onset and during the follow-up. The DNA sequencing proved that the amplicons belonged to the SV40 wild-type. Urine samples of the two HC cases tested negative by cell cultures, PCR, or both for HCMV, BKV, JCV, and AV. The detection of SV40 DNA sequences suggest that this simian polyomavirus could be involved, at least in some cases, in the HC occurring in children after BMT.

  2. Secreted Respiratory Syncytial Virus G Glycoprotein Induces Interleukin-5 (IL-5), IL-13, and Eosinophilia by an IL-4-Independent Mechanism

    PubMed Central

    Johnson, Teresa R.; Graham, Barney S.

    1999-01-01

    The attachment glycoprotein G of respiratory syncytial virus (RSV) is produced as both membrane-anchored and secreted forms by infected cells. Immunization with secreted RSV G (Gs) or formalin-inactivated alumprecipitated RSV (FI-RSV) predisposes mice to immune responses involving a Th2 cell phenotype which results in more severe illness and pathology, decreased viral clearance, and increased pulmonary eosinophilia upon subsequent RSV challenge. These responses are associated with increased interleukin-4 (IL-4) production in FI-RSV-primed mice, and the responses are IL-4 dependent. RNase protection assays demonstrated that similar levels of IL-4 mRNA were induced after RSV challenge in mice primed with vaccinia virus expressing Gs (vvGs) or a construct expressing only membrane-anchored G (vvGr). However, upon RSV challenge, vvGs-primed mice produced significantly greater levels of IL-5 and IL-13 mRNA and protein than vvGr-primed mice. Administration of neutralizing anti-IL-4 antibody 11.B11 during vaccinia virus priming did not alter the levels of vvGs-induced IL-5, IL-13, pulmonary eosinophilia, illness, or RSV titers upon RSV challenge, although immunoglobulin G (IgG) isotype profiles revealed that more IgG2a was produced. vvGs-priming of IL-4-deficient mice demonstrated that G-induced airway eosinophilia was not dependent on IL-4. In contrast, airway eosinophilia induced by FI-RSV priming was significantly reduced in IL-4-deficient mice. Thus we conclude that, in contrast to FI-RSV, the secreted form of RSV G can directly induce IL-5 and IL-13, producing pulmonary eosinophilia and enhanced illness in RSV-challenged mice by an IL-4-independent mechanism. PMID:10482601

  3. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to

  4. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    PubMed Central

    Fereres, Alberto; Peñaflor, Maria Fernanda G. V.; Favaro, Carla F.; Azevedo, Kamila E. X.; Landi, Carolina H.; Maluta, Nathalie K. P.; Bento, José Mauricio S.; Lopes, Joao R.S.

    2016-01-01

    , this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship. PMID:27529271

  5. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour.

    PubMed

    Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S

    2016-08-11

    , this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship.

  6. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease.

    PubMed

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1 β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1 β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1 β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.

  7. Inhibition of interferon-inducible MxA protein expression by hepatitis B virus capsid protein.

    PubMed

    Rosmorduc, O; Sirma, H; Soussan, P; Gordien, E; Lebon, P; Horisberger, M; Bréchot, C; Kremsdorf, D

    1999-05-01

    Chronic hepatitis B treatment has been significantly improved by interferon (IFN) treatment. However, some studies have suggested that hepatitis B virus (HBV) might have a direct effect on the resistance to IFN. Defective particles, generated by spliced HBV RNA and associated with chronic hepatitis B, have been previously characterized; expression of these particles leads to cytoplasmic accumulation of the capsid protein. The aim of this study was to investigate the role of these defective genomes in IFN resistance. The global antiviral activity of IFN was studied by virus yield reduction assays, the expression of three IFN-induced antiviral proteins was analysed by Western blotting and confocal microscopy, and the regulation of MxA gene expression was studied by Northern blotting and the luciferase assay, in Huh7 cells transfected with a complete or the defective HBV genome. Results showed that the expression of the defective genome reduces the antiviral activity of IFN and that this modulation involves a selective inhibition of MxA protein induction by the HBV capsid protein. Our results also show the trans-suppressive effect of the HBV capsid on the MxA promoter, which might participate in this phenomenon. In conclusion, this study shows a direct interplay between the IFN-sensitive pathway and the capsid protein and might implicate this defective HBV genome in virus persistence.

  8. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    PubMed

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  9. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    PubMed

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced

  10. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs

    PubMed Central

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Herold, Susanne

    2017-01-01

    ABSTRACT The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of

  11. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  12. Naturally induced humoral immunity to West Nile virus infection in raptors.

    PubMed

    Nemeth, Nicole M; Kratz, Gail E; Bates, Rebecca; Scherpelz, Judy A; Bowen, Richard A; Komar, Nicholas

    2008-09-01

    West Nile virus (WNV) infection can be fatal to many bird species, including numerous raptors, though population- and ecosystem-level impacts following introduction of the virus to North America have been difficult to document. Raptors occupy a diverse array of habitats worldwide and are important to ecosystems for their role as opportunistic predators. We documented initial (primary) WNV infection and then regularly measured WNV-specific neutralizing antibody titers in 16 resident raptors of seven species, plus one turkey vulture. Most individuals were initially infected and seroconverted between July and September of 2003, though three birds remained seronegative until summer 2006. Many of these birds became clinically ill upon primary infection, with clinical signs ranging from loss of appetite to moderate neurological disease. Naturally induced WNV neutralizing antibody titers remained essentially unchanged in some birds, while eight individuals experienced secondary rises in titer presumably due to additional exposures at 1, 2, or 3 years following primary infection. No birds experienced clinical signs surrounding or following the time of secondary exposure, and therefore antibodies were considered protective. Results of this study have implications for transmission dynamics of WNV and health of raptor populations, as well as the interpretation of serologic data from free-ranging and captive birds. Antibodies in raptors surviving WNV may persist for multiple years and protect against potential adverse effects of subsequent exposures.

  13. A diverse virome in kidney transplant patients contains multiple viral subtypes with distinct polymorphisms

    PubMed Central

    Rani, Asha; Ranjan, Ravi; McGee, Halvor S.; Metwally, Ahmed; Hajjiri, Zahraa; Brennan, Daniel C.; Finn, Patricia W.; Perkins, David L.

    2016-01-01

    Recent studies have established that the human urine contains a complex microbiome, including a virome about which little is known. Following immunosuppression in kidney transplant patients, BK polyomavirus (BKV) has been shown to induce nephropathy (BKVN), decreasing graft survival. In this study we investigated the urine virome profile of BKV+ and BKV− kidney transplant recipients. Virus-like particles were stained to confirm the presence of VLP in the urine samples. Metagenomic DNA was purified, and the virome profile was analyzed using metagenomic shotgun sequencing. While the BK virus was predominant in the BKV+ group, it was also found in the BKV− group patients. Additional viruses were also detected in all patients, notably including JC virus (JCV) and Torque teno virus (TTV) and interestingly, we detected multiple subtypes of the BKV, JCV and TTV. Analysis of the BKV subtypes showed that nucleotide polymorphisms were detected in the VP1, VP2 and Large T Antigen proteins, suggesting potential functional effects for enhanced pathogenicity. Our results demonstrate a complex urinary virome in kidney transplant patients with multiple viruses with several distinct subtypes warranting further analysis of virus subtypes in immunosuppressed hosts. PMID:27633952

  14. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    PubMed

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  15. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146

  16. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    NASA Astrophysics Data System (ADS)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  17. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  18. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.

    2017-01-01

    ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of

  19. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance.

    PubMed

    Lee, Wing-Sham; Rudd, Jason J; Kanyuka, Kostya

    2015-06-01

    Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors

    PubMed Central

    Ban, Hiroshi; Nishishita, Naoki; Fusaki, Noemi; Tabata, Toshiaki; Saeki, Koichi; Shikamura, Masayuki; Takada, Nozomi; Inoue, Makoto; Hasegawa, Mamoru; Kawamata, Shin; Nishikawa, Shin-Ichi

    2011-01-01

    After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. PMID:21821793

  1. RIG-I in RNA virus recognition

    PubMed Central

    Kell, Alison M.; Gale, Michael

    2015-01-01

    Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy. PMID:25749629

  2. Necrotizing herpetic retinopathies. A spectrum of herpes virus-induced diseases determined by the immune state of the host.

    PubMed

    Guex-Crosier, Y; Rochat, C; Herbort, C P

    1997-12-01

    Necrotizing herpetic retinopathies (NHR), a new spectrum of diseases induced by viruses of the herpes family (herpes simplex virus, varicella-zoster virus and cytomegalovirus), includes acute retinal necrosis (ARN) occurring in apparently immunocompetent patients and progressive outer retinal necrosis (PORN) described in severely immuno-compromised patients. Signs of impaired cellular immunity were seen in 16% of ARN patients in a review of 216 reported cases, indicating that immune dysfunction is not only at the origin of PORN but might also be at the origin of ARN. The aim of this study was to correlate clinical findings in NHR patients with their immunologic parameters. Charts from patients with the diagnosis of ARN or PORN seen from 1990 to 1995 were reviewed. Clinical characteristics and disease patterns were correlated with immunological parameters taking into account CD4 lymphocyte rate in AIDS patients and blood-lymphocyte subpopulation determination by flow cytometry, cutaneous delayed type hypersensitivity testing and lymphocytic proliferation rate to seven antigens in HIV-negative patients. During the period considered, 11 patients and 7 patients fulfilled the criteria of ARN and PORN respectively. Immune dysfunctions were identified in most patients. Mild type of ARN and classical ARN were associated with discrete immune dysfunctions, ARN with features of PORN was seen in more immunodepressed patients and classical PORN was always seen in severely immunodepressed HIV patients. Our findings suggest that NHR is a continuous spectrum of diseases induced by herpes viruses, whose clinical expression depends on the immune state of the host going from mild or classical ARN at one end in patients with non-detectable or slight immune dysfunction to PORN in severely immunodepressed patients at the other end and with intermediary forms between these extremes.

  3. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro, E-mail: fujii@sapmed.ac.j

    2011-05-25

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression ofmore » C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.« less

  4. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in preclinical models.

    PubMed

    Paulsen, Daniela; Urban, Andreas; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Mercer, Andrew A; Limmer, Andreas; Schumak, Beatrix; Knolle, Percy; Ruebsamen-Schaeff, Helga; Weber, Olaf

    2013-01-01

    Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  5. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    PubMed

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Detection of polyoma virus in brain tissue of patients with progressive multifocal leukoencephalopathy by real-time PCR and pyrosequencing.

    PubMed

    Beck, Rose C; Kohn, Debra J; Tuohy, Marion J; Prayson, Richard A; Yen-Lieberman, Belinda; Procop, Gary W

    2004-03-01

    We evaluated 2 methods, a LightCycler PCR assay and pyrosequencing for the detection of the JC polyoma virus (JCV) in fixed brain tissue of 10 patients with and 3 control patients without progressive multifocal leukoencephalopathy (PML). Nucleic acid extraction was performed after deparaffinization and proteinase K digestion. The LightCycler assay differentiates the BK virus (BKV), JCV, and SV40 using melt curve analysis. Conventional PCR was used with the same primers to generate products for pyrosequencing. Two sequencing primers were used that differentiate the polyoma viruses. Seven of 11 biopsies (1 patient had 2 biopsies) with PML were positive for JCV by real-time PCR and/or PCR/pyrosequencing. Three of 4 remaining biopsies were positive by real-time PCR but had melting points between JCV and SV40. The 4 specimens that were negative or atypical by LightCycler PCR were positive by traditional PCR, but 1 had an amplicon of lower molecular weight by gel electrophoresis. These were shown to represent JCV by at least 1 of the 2 pyrosequencing primers. The biopsies from patients without PML were PCR negative. Both the LightCycler and pyrosequencing assays are useful for confirming JCV in brain biopsies from patients with PML, but variant JCVs may require supplementary methods to confirm JCV infection.

  7. The role of hexon in egg drop syndrome virus (EDSV) inducing apoptosis in duck embryo fibroblast cells.

    PubMed

    Qi, Xuefeng; Xu, Jiamin; Wang, Zugui; Wang, Xueping; Wang, Jingyu

    2017-10-01

    Although extensive efforts have been made to understand adenovirus infection in human cells, little is known for egg drop syndrome virus (EDSV) infection in the avian-derived cells. In this study, the effects of EDSV infection as well as the possible role hexon protein, the main building block of the EDSV capsid, on apoptosis induction in duck embryo fibroblast (DEF) cells was examined. Flow cytometry analysis and TUNEL assay revealed that EDSV infection induced significant apoptosis in DEF cells compared with mock infected cells. Interestingly, the increase of the apoptosis rate detected in EDSV infected DEF cells were accompanied by an increased virus load in cells in a time-dependent manner. Furthermore, a time-dependent decrease in hexon protein expression levels in hexon transfected DEF cells in parallel with a gradual decrease in TUNEL-labeling cells was also observed in the current study. In addition, caspase activity detection and western blot analysis indicates that either EDSV infection or EDSV hexon transfection both induced apoptosis of DEF cells via activating both the exogenous and the mitochondrial pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    PubMed

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs

    PubMed Central

    García-Nicolás, Obdulio; Ricklin, Meret E.; Liniger, Matthias; Vielle, Nathalie J.; Python, Sylvie; Souque, Philippe; Charneau, Pierre; Summerfield, Artur

    2017-01-01

    The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs. PMID:28531165

  10. Basic fibroblast growth factor protects against influenza A virus-induced acute lung injury by recruiting neutrophils.

    PubMed

    Wang, Keyu; Lai, Chengcai; Li, Tieling; Wang, Cheng; Wang, Wei; Ni, Bing; Bai, Changqing; Zhang, Shaogeng; Han, Lina; Gu, Hongjing; Zhao, Zhongpeng; Duan, Yueqiang; Yang, Xiaolan; Xing, Li; Zhao, Lingna; Zhou, Shanshan; Xia, Min; Jiang, Chengyu; Wang, Xiliang; Yang, Penghui

    2017-11-07

    Influenza virus (IAV) infection is a major cause of severe respiratory illness that affects almost every country in the world. IAV infections result in respiratory illness and even acute lung injury and death, but the underlying mechanisms responsible for IAV pathogenesis have not yet been fully elucidated. In this study, the basic fibroblast growth factor 2 (FGF2) level was markedly increased in H1N1 virus-infected humans and mice. FGF2, which is predominately derived from epithelial cells, recruits and activates neutrophils via the FGFR2-PI3K-AKT-NFκB signaling pathway. FGF2 depletion or knockout exacerbated influenza-associated disease by impairing neutrophil recruitment and activation. More importantly, administration of the recombinant FGF2 protein significantly alleviated the severity of IAV-induced lung injury and promoted the survival of IAV-infected mice. Based on the results from experiments in which neutrophils were depleted and adoptively transferred, FGF2 protected mice against IAV infection by recruiting neutrophils. Thus, FGF2 plays a critical role in preventing IAV-induced lung injury, and FGF2 is a promising potential therapeutic target during IAV infection. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  11. The unfolded protein response and programmed cell death are induced by expression of Garlic virus X p11 in Nicotiana benthamiana.

    PubMed

    Lu, Yuwen; Yin, Mingyuan; Wang, Xiaodan; Chen, Binghua; Yang, Xue; Peng, Jiejun; Zheng, Hongying; Zhao, Jinping; Lin, Lin; Yu, Chulang; MacFarlane, Stuart; He, Jianqing; Liu, Yong; Chen, Jianping; Dai, Liangying; Yan, Fei

    2016-06-01

    Garlic virus X (GarVX) ORF3 encodes a p11 protein, which contributes to virus cell-to-cell movement and forms granules on the endoplasmic reticulum (ER) in Nicotiana benthamiana. Expression of p11 either from a binary vector, PVX or TMV induced ER stress and the unfolded protein response (UPR), as demonstrated by an increase in transcription of the ER luminal binding protein (BiP) and bZIP60 genes. UPR-related programmed cell death (PCD) was elicited by PVX : p11 or TMV : p11 in systemic infected leaves. Examination of p11 mutants with deletions of two transmembrane domains (TM) revealed that both were required for generating granules and for inducing necrosis. TRV-based VIGS was used to investigate the correlation between bZIP60 expression and p11-induced UPR-related PCD. Less necrosis was observed on local and systemic leaves of bZIP60 knockdown plants when infected with PVXp11, suggesting that bZIP60 plays an important role in the UPR-related PCD response to p11 in N. benthamiana.

  12. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate

    PubMed Central

    Liang, Bo; Surman, Sonja; Amaro-Carambot, Emerito; Kabatova, Barbora; Mackow, Natalie; Lingemann, Matthias; Yang, Lijuan; McLellan, Jason S.; Graham, Barney S.; Kwong, Peter D.; Schaap-Nutt, Anne; Collins, Peter L.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. IMPORTANCE Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F

  13. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    PubMed

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  14. Ferret hepatitis E virus infection induces acute hepatitis and persistent infection in ferrets.

    PubMed

    Li, Tian-Cheng; Yang, Tingting; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Ishii, Koji; Kishida, Noriko; Shirakura, Masayuki; Asanuma, Hideki; Takeda, Naokazu; Wakita, Takaji

    2016-02-01

    Ferret hepatitis E virus (HEV), a novel hepatitis E virus, has been identified in ferrets. However, the pathogenicity of ferret HEV remains unclear. In the present study, we compared the HEV RNA-positivity rates and alanine aminotransferase (ALT) levels of 63 ferrets between before and after import from the US to Japan. We found that the ferret HEV-RNA positivity rates were increased from 12.7% (8/63) to 60.3% (38/63), and ALT elevation was observed in 65.8% (25/38) of the ferret HEV RNA-positive ferrets, indicating that ferret HEV infection is responsible for liver damage. From long term-monitoring of ferret HEV infection we determined that this infection in ferrets exhibits three patterns: sub-clinical infection, acute hepatitis, and persistent infection. The ALT elevation was also observed in ferret HEV-infected ferrets in a primary infection experiment. These results indicate that the ferret HEV infection induced acute hepatitis and persistent infection in ferrets, suggesting that the ferrets are a candidate animal model for immunological as well as pathological studies of hepatitis E. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection

    PubMed Central

    Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.

    2011-01-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742

  16. Host-Pathogen Interactions : XXXII. A Fungal Glucan Preparation Protects Nicotianae against Infection by Viruses.

    PubMed

    Kopp, M; Rouster, J; Fritig, B; Darvill, A; Albersheim, P

    1989-05-01

    A glucan preparation obtained from the mycelial walls of the fungus Phytophthora megasperma f.sp. glycinea and known as an elicitor of phytoalexins in soybean was shown to be a very efficient inducer of resistance against viruses in tobacco. The glucan preparation protected against mechanically transmitted viral infections on the upper and lower leaf surfaces. Whether the glucan preparation was applied by injection, inoculation, or spraying, it protected the plants if applied before, at the same time as, or not later than 8 hours after virus inoculation. At concentrations ranging from 0.1 to 10 micrograms per milliliter, the glucan preparation induced protection ranging from 50 to 100% against both symptom production (necrotic local lesions, necrotic rings, or systemic mosaic) and virus accumulation in all Nicotiana-virus combinations examined. However, no significant protection against some of the same viruses was observed in bean or turnip. The host plants successfully protected included N. tabacum (9 different cultivars), N. sylvestris, N. glutinosa, and N. clevelandii. The viruses belonged to several taxonomic groups including tobacco mosaic virus, alfalfa mosaic virus, and tomato black ring virus. The glucan preparation did not act directly on the virus and did not interfere with virus disassembly; rather, it appeared to induce changes in the host plant that prevented infections from being initiated or recently established infections from enlarging. The induced resistance does not depend on induction of pathogenesis-related proteins, the phenylpropanoid pathway, lignin-like substances, or callose-like materials. We believe the induced resistance results from a mechanism that has yet to be described.

  17. Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements

    PubMed Central

    Wang, Jianglin; Wang, Lin; Li, Xin; Mao, Chuanbin

    2013-01-01

    Biochemical and topographical features of an artificial extracellular matrix (aECM) can direct stem cell fate. However, it is difficult to vary only the biochemical cues without changing nanotopography to study their unique role. We took advantage of two unique features of M13 phage, a non-toxic nanofiber-like virus, to generate a virus-activated aECM with constant ordered ridge/groove nanotopography but displaying different fibronectin-derived peptides (RGD, its synergy site PHSRN, and a combination of RGD and PHSRN). One feature is the self-assembly of phage into a ridge/groove structure, another is the ease of genetically surface-displaying a peptide. We found that the unique ridge/groove nanotopography and the display of RGD and PHSRN could induce the osteoblastic differentiation of mesenchymal stem cells (MSCs) without any osteogenic supplements. The aECM formed through self-assembly and genetic engineering of phage can be used to understand the role of peptide cues in directing stem cell behavior while keeping nanotopography constant. PMID:23393624

  18. Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations.

    PubMed

    de Oliveira Dos Santos Soares, Ricardo; Bortot, Leandro Oliveira; van der Spoel, David; Caliri, Antonio

    2017-12-20

    Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM 3 ) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process. In silico mutagenesis of two charged residues of the anchor helices of the envelope proteins of DENV shows that Arg-471 and Arg-60 are fundamental to produce bending stress on the membrane. The fine-tuning between the size of the EM 3 unit and its specific bending action suggests this protein unit is an important factor in determining the viral particle size.

  19. Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    de Oliveira dos Santos Soares, Ricardo; Oliveira Bortot, Leandro; van der Spoel, David; Caliri, Antonio

    2017-12-01

    Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM3) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process. In silico mutagenesis of two charged residues of the anchor helices of the envelope proteins of DENV shows that Arg-471 and Arg-60 are fundamental to produce bending stress on the membrane. The fine-tuning between the size of the EM3 unit and its specific bending action suggests this protein unit is an important factor in determining the viral particle size.

  20. Influenza Virus Induces Bacterial and Nonbacterial Otitis Media

    PubMed Central

    Diavatopoulos, Dimitri A.; Thornton, Ruth; Pedersen, John; Strugnell, Richard A.; Wise, Andrew K.; Reading, Patrick C.; Wijburg, Odilia L.

    2011-01-01

    Otitis media (OM) is one of the most common childhood diseases. OM can arise when a viral infection enables bacteria to disseminate from the nasopharynx to the middle ear. Here, we provide the first infant murine model for disease. Mice coinfected with Streptococcus pneumoniae and influenza virus had high bacterial load in the middle ear, middle ear inflammation, and hearing loss. In contrast, mice colonized with S. pneumoniae alone had significantly less bacteria in the ear, minimal hearing loss, and no inflammation. Of interest, infection with influenza virus alone also caused some middle ear inflammation and hearing loss. Overall, this study provides a clinically relevant and easily accessible animal model to study the pathogenesis and prevention of OM. Moreover, we provide, to our knowledge, the first evidence that influenza virus alone causes middle ear inflammation in infant mice. This inflammation may then play an important role in the development of bacterial OM. PMID:21930608

  1. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L.

    PubMed

    Shi, Xiaodong; Gu, Yuxi; Dai, Tingwei; Wu, Yang; Wu, Peng; Xu, Ying; Chen, Fang

    2018-06-05

    Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  3. The CD8 T Cell Response to Respiratory Virus Infections.

    PubMed

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  4. African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge.

    PubMed

    O'Donnell, Vivian; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Carlson, Jolene; Sanford, Brenton; Alfano, Marialexia; Kramer, Edward; Lu, Zhiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R; Borca, Manuel V

    2015-08-01

    African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 10(6) 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 10(4) HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (10(2) to 10(3) HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 10(2) HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 10(3) conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection

  5. African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge

    PubMed Central

    O'Donnell, Vivian; Holinka, Lauren G.; Krug, Peter W.; Gladue, Douglas P.; Carlson, Jolene; Sanford, Brenton; Alfano, Marialexia; Kramer, Edward; Lu, Zhiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R.

    2015-01-01

    ABSTRACT African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 106 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 104 HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (102 to 103 HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 102 HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 103 conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. IMPORTANCE The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce

  6. Spatial And Temporal Analysis Of Multiple Whitefly Transmitted Virus Infections In Watermelon

    USDA-ARS?s Scientific Manuscript database

    Squash vein yellowing virus (SqVYV), Cucurbit leaf crumple virus (CuLCrV), and Cucurbit yellow stunting disorder virus (CYSDV) are three whitefly-transmitted viruses recently introduced to Florida that induce visually distinguishable symptoms on watermelon. The epidemiology of these three viruses wa...

  7. Antigen-inducing ability of herpesvirus papio in human and baboon lymphoma lines, compared to Epstein-Barr virus.

    PubMed

    Klein, G; Falk, L; Falk, K

    1978-01-01

    Herpesvirus papio(HVP)-carrying baboon lymphoblastoid lines do not express a nuclear antigen like the Epstein-Barr virus(EBV)-determined nuclear antigen (EBNA), as judged by in situ anticomplement fluorescence staining, although the carry multiple viral genomes and, in the case of producerlines, early antigen (EA) and viral capsid antigen (VCA) that cross-react with the corresponding human EBV-determined antigens. To test whether the lack of in situ nuclear antigen expression is a property innate to the baboon virus or the baboon cell, nonproducer HVP-carrying baboon lymphoid cells of the 26 CB-1 line were superinfected with two human EBV strains. B95-8-derived EBV induced brilliant EBNA staining, proving that the baboon lymphoid cell was competent to synthesize EBNA. In the mirror experiment, HVP derived from the 9B or the 18C baboon line was added to the EBV-carrying Raji line, the EBV-negative Ramos and BJAB lines and the HVP-carrying nonproducer 26 CB-1 line, respectively. HVP induced EA and VCA in Raji, and EA in BJAB and 26 CB-1. EBNA was not induced in any of the three EBNA-negative lines, BJAB, Ramos and 26 CB-1. It is concluded that the lack of in situ nuclear staining in HVP-carrying baboon lines is a HVP-associated property and is not due to any innate inability of the baboon lymphoid cell to synthesize an antigen of the EBNA type.

  8. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer

    PubMed Central

    Vaqué, Dolors; Boras, Julia A.; Torrent-Llagostera, Francesc; Agustí, Susana; Arrieta, Jesús M.; Lara, Elena; Castillo, Yaiza M.; Duarte, Carlos M.; Sala, Maria M.

    2017-01-01

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1–100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1–1 m) and at the Deep Fluorescence Maximum (DFM, 12–55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 ± 0.3 × 107 viruses ml−1 d−1 in the Bellingshausen Sea to1.3 ± 0.7 × 107 viruses ml−1 d−1 in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 ± 0.05 × 107 viruses ml−1 d−1) and the highest in the Weddell Sea (4.3 ± 3.5 × 107 viruses ml−1 d−1). Average mortality rates due to viruses ranged from 9.7 ± 6.1 × 104 cells ml−1 d−1 in the Weddell Sea to 14.3 ± 4.0 × 104 cells ml−1 d−1 in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 ± 1.1 × 104 cells ml−1 d−1) and in the Bellingshausen Sea (6.8 ± 0.9 × 104 cells ml−1 d−1). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 ± 6.8 × 104 cells ml−1 d−1 and 6.5 ± 3.9 × 104 cells ml−1 d−1 in the Weddell Sea; 22.1 ± 9.6 × 104 cells ml−1 d−1 and 11.6 ± 1.4 × 104 cells ml−1 d−1 in the Bransfield Strait; and 16.1 ± 5.7 × 104 cells ml−1 d−1 and 7.9 ± 2.6 × 104 cells ml−1 d−1 in the Bellingshausen

  9. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer.

    PubMed

    Vaqué, Dolors; Boras, Julia A; Torrent-Llagostera, Francesc; Agustí, Susana; Arrieta, Jesús M; Lara, Elena; Castillo, Yaiza M; Duarte, Carlos M; Sala, Maria M

    2017-01-01

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 ± 0.3 × 10 7 viruses ml -1 d -1 in the Bellingshausen Sea to1.3 ± 0.7 × 10 7 viruses ml -1 d -1 in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 ± 0.05 × 10 7 viruses ml -1 d -1 ) and the highest in the Weddell Sea (4.3 ± 3.5 × 10 7 viruses ml -1 d -1 ). Average mortality rates due to viruses ranged from 9.7 ± 6.1 × 10 4 cells ml -1 d -1 in the Weddell Sea to 14.3 ± 4.0 × 10 4 cells ml -1 d -1 in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 ± 1.1 × 10 4 cells ml -1 d -1 ) and in the Bellingshausen Sea (6.8 ± 0.9 × 10 4 cells ml -1 d -1 ). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 ± 6.8 × 10 4 cells ml -1 d -1 and 6.5 ± 3.9 × 10 4 cells ml -1 d -1 in the Weddell Sea; 22.1 ± 9.6 × 10 4 cells ml -1 d -1 and 11.6 ± 1.4 × 10 4 cells ml -1 d -1 in the Bransfield Strait; and 16.1 ± 5.7 × 10 4 cells ml -1 d -1 and 7.9 ± 2.6 × 10 4 cells ml -1 d -1 in the Bellingshausen Sea, respectively

  10. Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses

    PubMed Central

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is a highly infectious member of the Picornaviridae inducing an acute disease of cloven-hoofed species. Vaccine-induced immune protection correlates with the presence of high levels of neutralizing antibodies but also opsonising antibodies have been proposed as an important mechanism of the immune response contributing to virus clearance by macrophages and leading to the production of type-I interferon (IFN) by plasmacytoid dendritic cells (pDC). The present study demonstrates that the opsonising antibody titres mediating enhanced IFN-α responses in pDC were similar to neutralizing titres, when antigenically related viruses from the same serotype were employed. However, sera cross-reacted also with non-neutralized isolates of multiple serotypes, when tested in this assay. Both uncomplexed virus and immune complexed virus stimulated pDC via Toll-like receptor 7. An additional finding of potential importance for strain-specific differences in virulence and/or immunogenicity was that pDC activation by FMDV strongly differed between viral isolates. Altogether, our results indicate that opsonising antibodies can have a broader reactivity than neutralizing antibodies and may contribute to antiviral responses induced against antigenically distant viruses. PMID:22934974

  11. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    PubMed

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  12. Virus detection and cytokine profile in relation to age among acute exacerbations of childhood asthma.

    PubMed

    Kato, Masahiko; Suzuki, Kazuo; Yamada, Yoshiyuki; Maruyama, Kenichi; Hayashi, Yasuhide; Mochizuki, Hiroyuki

    2015-09-01

    Little information is available regarding eosinophil activation and cytokine profiles in relation to age in virus-induced bronchial asthma. We therefore explored the association between age, respiratory viruses, serum eosinophil cationic protein (ECP), and cytokines/chemokines in acute exacerbations of childhood asthma. We investigated viruses in nasal secretions from 88 patients with acute exacerbation of childhood asthma by using antigen detection kits and/or RT-PCR, followed by direct DNA sequencing analysis. We also measured peripheral eosinophil counts, and the serum levels of ECP and 27 types of cytokines/chemokines in 71 virus-induced acute asthma cases and 13 controls. Viruses were detected in 71(80.7%) of the 88 samples. The three major viruses detected were rhinoviruses, RS viruses, and enteroviruses; enteroviruses were found to be dominant in patients aged ≥3 years. There was no change in the levels of rhinoviruses and RS viruses between the two age groups, defined as children aged <3 years and children aged ≥3 years. Serum concentrations of ECP, IL-5, and IP-10 were significantly elevated in virus-induced acute asthma cases compared with controls. Serum ECP values were significantly higher in patients with virus-induced asthma at age ≥3 years compared with those aged <3 years. Among the 27 cytokines/chemokines, serum IP-10 was significantly higher in virus-induced asthma in patients <3 years than in those ≥3 years. Serum ECP and IL-5 production correlated significantly with age, whereas serum IP-10 showed an inverse correlation with age. Age-related differences in cytokine profiles and eosinophil activation may be related to virus-induced acute exacerbations of childhood asthma. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs.

    PubMed

    Shuai, Lei; Wang, Xijun; Wen, Zhiyuan; Ge, Jinying; Wang, Jinliang; Zhao, Dandan; Bu, Zhigao

    2017-10-01

    Ebola viruses (EBOVs) are zoonotic pathogens that cause EBOV disease (EVD) with high case fatality in humans. Currently, EVD vaccines are still under development in several countries. Here, we generated two recombinant rabies viruses (RABVs), rERAG 333E /ZGP and rERAG 333E /SGP, expressing the Zaire EBOV glycoprotein (ZGP) or Sudan EBOV glycoprotein (SGP) gene based on a modified ERA vaccine strain (rERAG 333E ) vector platform. The recombinant RABVs retained growth properties similar to those of the vector virus in BSR cell culture and efficiently expressed ZGP or SGP. After intracerebral (i.c.) inoculation with rERAG 333E /ZGP or rERAG 333E /SGP, all adult mice showed no signs of disease or weight loss and suckling mice maintained similar survivorship curve as those mice inoculated with control vector rERAG 333E , demonstrating that ZGP or SGP expression did not increase the virulence of the vector. Mouse immunization studies showed that vaccination with rERAG 333E /ZGP and rERAG 333E /SGP induced Zaire or Sudan EBOV neutralizing antibody (VNA) responses and IgG, IgG2a responses to ZGP or SGP, suggesting their potential as oral or inactivated bivalent vaccines against rabies and EVD. Most importantly, all dogs immunized orally with rERAG 333E /ZGP developed long-lasting ZEBOV and RABV VNA responses with or without previous rabies vaccine immunization history. Live rERAG 333E with EBOV GP thus appear to have the potential to be oral vaccines for free-roaming animals in endemic areas of EVD and rabies, and may serve as inactivated vaccines for use in humans. Copyright © 2017. Published by Elsevier B.V.

  14. Comparable polyfunctionality of ectromelia virus- and vaccinia virus-specific murine T cells despite markedly different in vivo replication and pathogenicity.

    PubMed

    Hersperger, Adam R; Siciliano, Nicholas A; Eisenlohr, Laurence C

    2012-07-01

    Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (∼80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.

  15. Varicella-zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells

    PubMed Central

    Carpenter, John E.; Grose, Charles

    2014-01-01

    Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8-fold) roughly half of the array elements while downregulating only three (one ERAD and two FOLD components). VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64-fold) as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis. PMID:25071735

  16. pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest

    PubMed Central

    Zhang, Bao-cun; Zhou, Ze-jun; Sun, Li

    2016-01-01

    Megalocytivirus is a DNA virus that is highly infectious in a wide variety of marine and freshwater fish, including Japanese flounder (Paralichthys olivaceus), a flatfish that is farmed worldwide. However, the infection mechanism of megalocytivirus remains largely unknown. In this study, we investigated the function of a flounder microRNA, pol-miR-731, in virus-host interaction. We found that pol-miR-731 was induced in expression by megalocytivirus and promoted viral replication at the early infection stage. In vivo and in vitro studies revealed that pol-miR-731 (i) specifically suppresses the expression of interferon regulatory factor 7 (IRF7) and cellular tumor antigen p53 in a manner that depended on the integrity of the pol-miR-731 complementary sequences in the 3′ untranslated regions of IRF7 and p53, (ii) disrupts megalocytivirus-induced Type I interferon response through IRF7, (iii) inhibits megalocytivirus-induced splenocyte apoptosis and cell cycle arrest through p53. Furthermore, overexpression of IRF7 and p53 abolished both the inhibitory effects of pol-miR-731 on these biological processes and its stimulatory effect on viral replication. These results disclosed a novel evasion mechanism of megalocytivirus mediated by a host miRNA. This study also provides the first evidence that a virus-induced host miRNA can facilitate viral infection by simultaneously suppressing several antiviral pathways. PMID:27311682

  17. Maize Chlorotic Mottle Virus Induces Changes in Host Plant Volatiles that Attract Vector Thrips Species.

    PubMed

    Mwando, Nelson L; Tamiru, Amanuel; Nyasani, Johnson O; Obonyo, Meshack A O; Caulfield, John C; Bruce, Toby J A; Subramanian, Sevgan

    2018-06-02

    Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.

  18. Viruses and neurodegeneration

    PubMed Central

    2013-01-01

    Neurodegenerative diseases (NDs) are chronic degenerative diseases of the central nervous system (CNS), which affect 37 million people worldwide. As the lifespan increases, the NDs are the fourth leading cause of death in the developed countries and becoming increasingly prevalent in developing countries. Despite considerable research, the underlying mechanisms remain poorly understood. Although the large majority of studies do not show support for the involvement of pathogenic aetiology in classical NDs, a number of emerging studies show support for possible association of viruses with classical neurodegenerative diseases in humans. Space does not permit for extensive details to be discussed here on non-viral-induced neurodegenerative diseases in humans, as they are well described in literature. Viruses induce alterations and degenerations of neurons both directly and indirectly. Their ability to attack the host immune system, regions of nervous tissue implies that they can interfere with the same pathways involved in classical NDs in humans. Supporting this, many similarities between classical NDs and virus-mediated neurodegeneration (non-classical) have been shown at the anatomic, sub-cellular, genomic and proteomic levels suggesting that viruses can explain neurodegenerative disorders mechanistically. The main objective of this review is to provide readers a detailed snapshot of similarities viral and non-viral neurodegenerative diseases share, so that mechanistic pathways of neurodegeneration in human NDs can be clearly understood. Viruses can guide us to unveil these pathways in human NDs. This will further stimulate the birth of new concepts in the biological research, which is needed for gaining deeper insights into the treatment of human NDs and delineate mechanisms underlying neurodegeneration. PMID:23724961

  19. Interaction of Tsg101 with Marburg Virus VP40 Depends on the PPPY Motif, but Not the PT/SAP Motif as in the Case of Ebola Virus, and Tsg101 Plays a Critical Role in the Budding of Marburg Virus-Like Particles Induced by VP40, NP, and GP▿

    PubMed Central

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Morikawa, Shigeru; Yokosawa, Hideyoshi; Yasuda, Jiro

    2007-01-01

    Marburg virus (MARV) VP40 is a matrix protein that can be released from mammalian cells in the form of virus-like particles (VLPs) and contains the PPPY sequence, which is an L-domain motif. Here, we demonstrate that the PPPY motif is important for VP40-induced VLP budding and that VLP production is significantly enhanced by coexpression of NP and GP. We show that Tsg101 interacts with VP40 depending on the presence of the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and plays an important role in VLP budding. These findings provide new insights into the mechanism of MARV budding. PMID:17301151

  20. Dengue virus induces increased activity of the complement alternative pathway in infected cells.

    PubMed

    Cabezas, Sheila; Bracho, Gustavo; L Aloia, Amanda; Adamson, Penelope J; Bonder, Claudine S; Smith, Justine R; Gordon, David L; Carr, Jillian M

    2018-05-09

    Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro are investigated. mRNA for factor H (FH) a major negative regulator of the AP, is significantly increased in DENV-infected endothelial cells (EC) and macrophages but in contrast production of extracellular FH protein is not. This discord is not seen for the AP activator, factor B (FB), with DENV induction of both FB mRNA and protein, nor with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface bound and intracellular FH protein is however induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalised cell lines (ARPE-19 and HREC) FH protein is induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there is an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells - with lower FH relative to FB protein, increased ability to promote AP-mediated lytic activity and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease. IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with global medical and economic impact. DENV may cause serious and life-threatening disease with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however overactivity of the complement alternative pathway has been suggested to play a role. In this study we investigate the molecular events that may be