Sample records for je virus jev

  1. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    PubMed

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Functional assignment to JEV proteins using SVM.

    PubMed

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  3. Functional assignment to JEV proteins using SVM

    PubMed Central

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658

  4. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area.

    PubMed

    Turtle, Lance; Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. clinicaltrials.gov (NCT01656200).

  5. Quantification of vector and host competence and abundance for Japanese Encephalitis Virus: a systematic review of the literature.

    USDA-ARS?s Scientific Manuscript database

    Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV) that affects humans in Eastern and Southeastern Asia. Although it could be prevented by a vaccine, JE has no treatment and the inadvertent introduction of the virus into JEV-free countries, such as t...

  6. Cross-protection between West Nile and Japanese encephalitis viruses in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Nemeth, Nicole M; Bosco-Lauth, Angela M; Bowen, Richard A

    2009-09-01

    Similar to West Nile virus (WNV), Japanese encephalitis virus (JEV) has a history of intercontinental spread, and birds are important for the maintenance and transmission of both of these closely related viruses. We examined viremic and serologic responses of blackbirds (Agelaius phoeniceus), with and without immunity to WNV, following experimental inoculation with two strains of JEV. Japanese encephalitis (JE) viremia was detected in only one of 16 (6.3%) WNV-immune birds, while all 16 nonimmune birds had detectable JE viremia. Two weeks after JEV inoculation, all birds without pre-existing WNV immunity had clearly distinguishable anti-JEV antibodies, while in all birds with pre-existing WNV immunity, antibodies to WNV and JEV were either indistinguishable or the anti-WNV antibody titers were significantly higher. As WNV is endemic throughout much of North America, WNV immunity among birds may dampen transmission while complicating the serologic diagnosis of JEV, should this pathogen be introduced to North America.

  7. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  8. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine.

    PubMed

    Fan, Yi-Chin; Chen, Jo-Mei; Lin, Jen-Wei; Chen, Yi-Ying; Wu, Guan-Hong; Su, Kuan-Hsuan; Chiou, Ming-Tang; Wu, Shang-Rung; Yin, Ji-Hang; Liao, Jiunn-Wang; Chang, Gwong-Jen J; Chiou, Shyan-Song

    2018-05-10

    Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.

  9. Immunogenicity of Japanese encephalitis virus envelope protein by Hyphantria cunea nuclear polyhedrosis virus vector in guinea pig.

    PubMed

    Lee, Hyung-Hoan; Hong, Seung-Kuk; Yoon, Sang-Ho; Jang, Sung-Jae; Bahk, Young-Yil; Song, Min-Dong; Park, Pyo-Jam; Lee, Kwang-Ho; Kim, Chan-Gil; Kim, Bokyung; Park, Tae-Kyu; Kang, Hyun

    2012-05-01

    Japanese encephalitis virus (JEV) is an important pathogen causing febrile syndrome, encephalitis, and death. Envelop (E) glycoprotein is the major target of inducing neutralizing antibodies and protective immunity in host. In this study, E glycoprotein of JEV was expressed in Spodoptera frugiperd 9 cells as a fusion protein containing a gX signal sequence of pseudorabies virus. This purified HcE recombinant protein was evaluated for their immunogenicity and protective efficacy in guinea pig. The survival rates of guinea pig immunized with HcE protein was significantly increased over that of JE vaccine. This result indicates helpful information for developing a subunit vaccine against JEV.

  10. Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines.

    PubMed

    Markoff, L

    2000-05-26

    Although an effective killed virus vaccine to prevent illness due to Japanese encephalitis virus (JEV) infection exists, many authorities recognize that a safe, effective live JEV vaccine is desirable in order to reduce the cost and the number of doses of vaccine required per immunization. A large-scale clinical efficacy trail for such a vaccine would be both unethical and impractical. Therefore, a surrogate for the efficacy of JE vaccines should be established. Detection of virus-neutralizing antibodies in sera of vaccinees could constitute such a surrogate for efficacy. Field studies of vaccinees in endemic areas and studies done in mice already exist to support this concept. Also, titers of virus-neutralizing antibodies are already accepted as a surrogate for the efficacy of yellow fever virus vaccines and for the efficacy of other viral vaccines as well. In developing a correlation between N antibody titers and protection from JEV infection, standard procedures must be validated and adopted for both measuring N antibodies and for testing in animals. A novel live virus vaccine could be tested in the mouse and/or the monkey model of JEV infection to establish a correlation between virus-neutralizing antibodies elicited by the vaccines and protection from encephalitis. In addition, sera of subjects receiving the novel live JEV vaccine in early clinical trials could be passively transferred to mice or monkeys in order to establish the protective immunogenicity of the vaccine in humans. A monkey model for JEV infection was recently established by scientists at WRAIR in the US. From this group, pools of JEV of known infectivity for Rhesus macaques may be obtained for testing of immunity elicited by live JE vaccine virus.

  11. Pathogenic and Genotypic Characterization of a Japanese Encephalitis Virus Isolate Associated with Reproductive Failure in an Indian Pig Herd

    PubMed Central

    Desingu, P. A.; Ray, Pradeep K.; Patel, B. H. M.; Singh, R.; Singh, R. K.; Saikumar, G

    2016-01-01

    Background India is endemic to Japanese encephalitis virus (JEV) and recurrent outbreaks occur mainly in rice growing areas. Pigs are considered to be the amplifying host for JEV and infection in gestating pigs results in reproductive failure. Most studies conducted on JEV infection in Indian pigs have been serological surveys and very little is known about JEV genotypes circulating in pigs. So the potential risk posed by pigs in JEV transmission and the genetic relationship between viruses circulating in pigs, mosquitoes and humans is poorly understood. Methodology/Principal Findings This study was conducted in pigs with a history of reproductive failure characterized by stillborn piglets with neuropathological lesions. Japanese encephalitis (JE) suspected brain specimens inoculated intracerebrally into mice and Vero cells resulted in successful isolation of JEV/SW/IVRI/395A/2014. Clinicopathological observations in infected mice, demonstration of JEV antigen in brain, and analysis of the envelope protein identified the swine isolate as being neurovirulent. Phylogenetic analysis based on prM and E gene sequences showed that it belonged to genotype III. This swine isolate was closely related to JEV associated with the 2005 outbreak in India and JaoArS982 from Japan. Phylogenetic analysis of JEV strains collected between 1956 and 2014 in India categorized the GIII viruses into different clades blurring their spatial distribution, which has been discernible in the previous century. Conclusions/Significance Isolation of JEV from stillborn piglets and its close genetic relationship with viruses detected at least three decades ago in humans and mosquitoes in Japan suggests that the virus may have been circulating among Indian pigs for several decades. The close similarity between the present swine isolate and those detected in humans affected in the 2005 outbreak in Uttar Pradesh, India, suggests the need for more intensive surveillance of pigs and implementation of

  12. Pigsties near dwellings as a potential risk factor for the prevalence of Japanese encephalitis virus in adult in Shanxi, China.

    PubMed

    Ren, Xiaojie; Fu, Shihong; Dai, Peifang; Wang, Huanyu; Li, Yuanyuan; Li, Xiaolong; Lei, Wenwen; Gao, Xiaoyan; He, Ying; Lv, Zhi; Cheng, Jingxia; Wang, Guiqin; Liang, Guodong

    2017-06-08

    The increasing trend of adult cases of Japanese encephalitis (JE) in China, particularly in northern China, has become an important public health issue. We conducted an epidemiological investigation in the south of Shanxi Province to examine the relationships between mosquitoes, Japanese encephalitis virus (JEV), and adult JE cases. Mosquito specimens were collected from the courtyards of farmers' households and pig farms in Shanxi Province. Mosquitoes were pooled, homogenized, and centrifuged. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect mosquito-borne arbovirus genes in homogenates. Specimens positive for these genes were inoculated into the baby hamster kidney cell line (BHK-21) to isolate virus. Minimum infection rate was calculated and phylogenetic analyses were performed. A total of 7 943 mosquitoes belonging to six species in four genera were collected; Culex tritaeniorhynchus accounted for 73.08% (5 805/7 943), C. pipiens pallens for 24.75% (1 966/7 943), and the remaining 3% (104/ 7943) consisted of Anopheles sinensis, Aedes vexans, Ae. dorsalis, and Armigeres subalbatus. Sixteen pools were positive for JEV based on RT-PCR using JEV pre-membrane gene nested primers. Phylogenetic analyses showed that all JEVs belonged to genotype I; two pools were positive using Getah Virus (GETV) gene primers. In addition, one JEV strain (SXYC1523) was isolated from C. pipiens pallens specimens. These results indicate that the minimum infection rate of JEV in mosquito specimens collected from the courtyards of farmers' households with pigsties was 7.39/1 000; the rate for pig farms was 2.68/1 000; and the rate for farmers' courtyards without pigsties was zero. The high-prevalence regions of adult JE investigated in this study are still the natural epidemic focus of JEV. Having pigsties near dwellings is a potential risk factor contributing to the prevalence of adult JE. To prevent the occurrence of local adult JE cases, a recommendation was

  13. Molecular Epidemiology of Japanese Encephalitis Virus in Mosquitoes in Taiwan during 2005–2012

    PubMed Central

    Su, Chien-Ling; Yang, Cheng-Fen; Teng, Hwa-Jen; Lu, Liang-Chen; Lin, Cheo; Tsai, Kun-Hsien; Chen, Yu-Yu; Chen, Li-Yu; Chang, Shu-Fen; Shu, Pei-Yun

    2014-01-01

    Japanese encephalitis (JE) is a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). Pigs and water birds are the main amplifying and maintenance hosts of the virus. In this study, we conducted a JEV survey in mosquitoes captured in pig farms and water bird wetland habitats in Taiwan during 2005 to 2012. A total of 102,633 mosquitoes were collected. Culex tritaeniorhynchus was the most common mosquito species found in the pig farms and wetlands. Among the 26 mosquito species collected, 11 tested positive for JEV by RT-PCR, including Cx. tritaeniorhynchus, Cx. annulus, Anopheles sinensis, Armigeres subalbatus, and Cx. fuscocephala. Among those testing positive, Cx. tritaeniorhynchus was the predominant vector species for the transmission of JEV genotypes I and III in Taiwan. The JEV infection rate was significantly higher in the mosquitoes from the pig farms than those from the wetlands. A phylogenetic analysis of the JEV envelope gene sequences isolated from the captured mosquitoes demonstrated that the predominant JEV genotype has shifted from genotype III to genotype I (GI), providing evidence for transmission cycle maintenance and multiple introductions of the GI strains in Taiwan during 2008 to 2012. This study demonstrates the intense JEV transmission activity in Taiwan, highlights the importance of JE vaccination for controlling the epidemic, and provides valuable information for the assessment of the vaccine's efficacy. PMID:25275652

  14. A novel immunochromatographic test applied to a serological survey of Japanese encephalitis virus on pig farms in Korea.

    PubMed

    Cha, Go-Woon; Lee, Eun Ju; Lim, Eun-Joo; Sin, Kang Suk; Park, Woo Won; Jeon, Doo Young; Han, Myung Guk; Lee, Won-Ja; Choi, Woo-Young; Jeong, Young Eui

    2015-01-01

    Among vertebrate species, pigs are a major amplifying host of Japanese encephalitis virus (JEV) and measuring their seroconversion is a reliable indicator of virus activity. Traditionally, the hemagglutination inhibition test has been used for serological testing in pigs; however, it has several limitations and, thus, a more efficient and reliable replacement test is required. In this study, we developed a new immunochromatographic test for detecting antibodies to JEV in pig serum within 15 min. Specifically, the domain III region of the JEV envelope protein was successfully expressed in soluble form and used for developing the immunochromatographic test. The test was then applied to the surveillance of Japanese encephalitis (JE) in Korea. We found that our immunochromatographic test had good sensitivity (84.8%) and specificity (97.7%) when compared with an immunofluorescence assay used as a reference test. During the surveillance of JE in Korea in 2012, the new immunochromatographic test was used to test the sera of 1,926 slaughtered pigs from eight provinces, and 228 pigs (11.8%) were found to be JEV-positive. Based on these results, we also produced an activity map of JEV, which marked the locations of pig farms in Korea that tested positive for the virus. Thus, the immunochromatographic test reported here provides a convenient and effective tool for real-time monitoring of JEV activity in pigs.

  15. A Novel Immunochromatographic Test Applied to a Serological Survey of Japanese Encephalitis Virus on Pig Farms in Korea

    PubMed Central

    Cha, Go-Woon; Lee, Eun Ju; Lim, Eun-Joo; Sin, Kang Suk; Park, Woo Won; Jeon, Doo Young; Han, Myung Guk; Lee, Won-Ja; Choi, Woo-Young; Jeong, Young Eui

    2015-01-01

    Among vertebrate species, pigs are a major amplifying host of Japanese encephalitis virus (JEV) and measuring their seroconversion is a reliable indicator of virus activity. Traditionally, the hemagglutination inhibition test has been used for serological testing in pigs; however, it has several limitations and, thus, a more efficient and reliable replacement test is required. In this study, we developed a new immunochromatographic test for detecting antibodies to JEV in pig serum within 15 min. Specifically, the domain III region of the JEV envelope protein was successfully expressed in soluble form and used for developing the immunochromatographic test. The test was then applied to the surveillance of Japanese encephalitis (JE) in Korea. We found that our immunochromatographic test had good sensitivity (84.8%) and specificity (97.7%) when compared with an immunofluorescence assay used as a reference test. During the surveillance of JE in Korea in 2012, the new immunochromatographic test was used to test the sera of 1,926 slaughtered pigs from eight provinces, and 228 pigs (11.8%) were found to be JEV-positive. Based on these results, we also produced an activity map of JEV, which marked the locations of pig farms in Korea that tested positive for the virus. Thus, the immunochromatographic test reported here provides a convenient and effective tool for real-time monitoring of JEV activity in pigs. PMID:25992769

  16. IMOJEV(®): a Yellow fever virus-based novel Japanese encephalitis vaccine.

    PubMed

    Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2010-12-01

    Japanese encephalitis (JE) is a disease of the CNS caused by Japanese encephalitis virus (JEV). The disease appears in the form of frequent outbreaks in most south- and southeast Asian countries and the virus has become endemic in several areas. There is no licensed therapy available and disease control by vaccination is considered to be most effective. Mouse brain-derived inactivated JE vaccines, although immunogenic, have several limitations in terms of safety, availability and requirement for multiple doses. Owing to these drawbacks, the WHO called for the development of novel, safe and more efficacious JE vaccines. Several candidate vaccines have been developed and at least three of them that demonstrated strong immunogenicity after one or two doses of the vaccine in animal models were subsequently tested in various clinical trials. One of these vaccines, IMOJEV(®) (JE-CV and previously known as ChimeriVax™-JE), is a novel recombinant chimeric virus vaccine, developed using the Yellow fever virus (YFV) vaccine vector YFV17D, by replacing the cDNA encoding the envelope proteins of YFV with that of an attenuated JEV strain SA14-14-2. IMOJEV was found to be safe, highly immunogenic and capable of inducing long-lasting immunity in both preclinical and clinical trials. Moreover, a single dose of IMOJEV was sufficient to induce protective immunity, which was similar to that induced in adults by three doses of JE-VAX(®), a mouse brain-derived inactivated JE vaccine. Recently, Phase III trials evaluating the immunogenicity and safety of the chimeric virus vaccine have been successfully completed in some JE-endemic countries and the vaccine manufacturers have filed an application for vaccine registration. IMOJEV may thus be licensed for use in humans as an improved alternative to the currently licensed JE vaccines.

  17. Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate

    PubMed Central

    2014-01-01

    Background Japanese encephalitis virus (JEV) is classified into the genus Flavivirus in the family Flaviviridae. JEV can cause febrile illness and encephalitis mainly in humans and horses, and occasionally in cattle. Case presentation In late September 2010, a 114-month-old cow showed neurological symptoms similar to the symptoms observed in previous bovine cases of Japanese encephalitis (JE); therefore, we conducted virological and pathological tests on the cow. As a result, JEV was isolated from the cerebrum of the affected cow. We determined the complete genome sequence of the JEV isolate, which we named JEV/Bo/Aichi/1/2010, including the envelope (E) gene region and 3’ untranslated region (3’UTR). Our phylogenetic analyses of the E region and complete genome showed that the isolate belongs to JEV genotype 1 (G1). The isolate, JEV/Bo/Aichi/1/2010, was most closely related to several JEV G1 isolates in Toyama Prefecture, Japan in 2007–2009 by the phylogenetic analysis of the E region. In addition, the nucleotide alignment revealed that the deletion in the 3’UTR was the same between JEV/Bo/Aichi/1/2010 and several other JEV G1 isolates identified in Toyama Prefecture in 2008–2009. A hemagglutination inhibition (HI) test was conducted for the detection of anti-JEV antibodies in the affected cow, and the test detected 2-mercaptoethanol (2-ME)-sensitive HI antibodies against JEV in the serum of the affected cow. The histopathological investigation revealed nonsuppurative encephalomyelitis in the affected cow, and the immunohistochemical assay detected JEV antigen in the cerebrum. Conclusion We diagnosed the case as JE of a cow based on the findings of nonsuppurative encephalomyelitis observed in the central nervous system, JEV antigen detected in the cerebrum, JEV isolated from the cerebrum, and 2-ME-sensitive HI antibodies against JEV detected in the serum. This is the first reported case of JE in a cow over 24 months old. PMID:24618225

  18. Japanese encephalitis in a 114-month-old cow: pathological investigation of the affected cow and genetic characterization of Japanese encephalitis virus isolate.

    PubMed

    Kako, Naomi; Suzuki, Seiji; Sugie, Norie; Kato, Tomoko; Yanase, Tohru; Yamakawa, Makoto; Shirafuji, Hiroaki

    2014-03-11

    Japanese encephalitis virus (JEV) is classified into the genus Flavivirus in the family Flaviviridae. JEV can cause febrile illness and encephalitis mainly in humans and horses, and occasionally in cattle. In late September 2010, a 114-month-old cow showed neurological symptoms similar to the symptoms observed in previous bovine cases of Japanese encephalitis (JE); therefore, we conducted virological and pathological tests on the cow. As a result, JEV was isolated from the cerebrum of the affected cow. We determined the complete genome sequence of the JEV isolate, which we named JEV/Bo/Aichi/1/2010, including the envelope (E) gene region and 3' untranslated region (3'UTR). Our phylogenetic analyses of the E region and complete genome showed that the isolate belongs to JEV genotype 1 (G1). The isolate, JEV/Bo/Aichi/1/2010, was most closely related to several JEV G1 isolates in Toyama Prefecture, Japan in 2007-2009 by the phylogenetic analysis of the E region. In addition, the nucleotide alignment revealed that the deletion in the 3'UTR was the same between JEV/Bo/Aichi/1/2010 and several other JEV G1 isolates identified in Toyama Prefecture in 2008-2009. A hemagglutination inhibition (HI) test was conducted for the detection of anti-JEV antibodies in the affected cow, and the test detected 2-mercaptoethanol (2-ME)-sensitive HI antibodies against JEV in the serum of the affected cow. The histopathological investigation revealed nonsuppurative encephalomyelitis in the affected cow, and the immunohistochemical assay detected JEV antigen in the cerebrum. We diagnosed the case as JE of a cow based on the findings of nonsuppurative encephalomyelitis observed in the central nervous system, JEV antigen detected in the cerebrum, JEV isolated from the cerebrum, and 2-ME-sensitive HI antibodies against JEV detected in the serum. This is the first reported case of JE in a cow over 24 months old.

  19. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells.

    PubMed

    Li, Wenjuan; Cheng, Peng; Nie, Shangdan; Cui, Wen

    2016-01-01

    Japanese encephalitis (JE) is one of the most severe viral infections of the central nervous system. No effective treatment for JE currently exists, because its pathogenesis remains largely unknown. The present study was designed to screen the potential microRNAs (miRNAs) involved in JE. Glioblastoma cells were collected, after being infected with the Japanese encephalitis virus (JEV). Total miRNAs were extracted and analyzed using an miRNA chip. One of the most severely affected miRNAs was selected, and the role of miR-370 in JEV infection was investigated. Cell viability and apoptosis of the host cells were evaluated. JEV replication was detected via analysis of gene E expression. Real-time polymerase chain reaction was used to determine the levels of endogenous miR-370 and expression of innate immunity-related genes. Following JEV infection, 114 miRNAs were affected, as evidenced by the miRNA chip. Among them, 30 miRNAs were upregulated and 84 were downregulated. The changes observed in five miRNAs were confirmed by real-time polymerase chain reaction. One of the significantly downregulated miRNAs was miR-370. Therefore, miR-370 mimic was transfected into the cells, following which the levels of endogenous miR-370 were significantly elevated. Concurrently, JEV replication was significantly reduced 24 hours after transfection of miR-370 mimic. Functionally, miR-370 mimic mitigated both JEV-induced apoptosis and the inhibition of host cell proliferation. Following JEV infection, interferon-β and nuclear factor-kappa B were upregulated, whereas miR-370 mimic prevented the upregulation of the genes induced by JEV infection. The present study demonstrated that miR-370 expression in host cells is downregulated following JEV infection, which further mediates innate immunity-related gene expression. Taken together, miR-370 mimic might be useful to prevent viral replication and infection-induced host cell injury.

  20. Molecular evidence for the occurrence of Japanese encephalitis virus genotype I and III infection associated with acute Encephalitis in Patients of West Bengal, India, 2010

    PubMed Central

    2012-01-01

    Background Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is the sole etiologic agent of Japanese Encephalitis (JE); a neurotropic killer disease which is one of the major causes of viral encephalitis worldwide with prime public health concern. JE was first reported in the state of West Bengal, India in 1973. Since then it is being reported every year from different districts of the state, though the vaccination has already been done. Therefore, it indicates that there might be either partial coverage of the vaccine or the emergence of mutated/new strain of JEV. Considering this fact, to understand the JEV genotype distribution, we conducted a molecular epidemiological study on a total of 135 serum/cerebrospinal fluid (CSF) samples referred and/or collected from the clinically suspected patients with Acute encephalitis syndrome (AES), admitted in different district hospitals of West Bengal, India, 2010. Findings JEV etiology was confirmed in 36/135 (26.6%) and 13/61 (21.3%) 2–15 days’ febrile illness samples from AES cases by analyzing Mac-ELISA followed by RT-PCR test respectively. Phylogenetic analysis based on complete envelope gene sequences of 13 isolates showed the emergence of JEV genotype I (GI), co-circulating with genotype III (GIII). Conclusion This study represents the first report of JEV GI with GIII, co-circulating in West Bengal. The efficacy of the vaccine (derived from JEV GIII strain SA-14-14-2) to protect against emerging JEV GI needs careful evaluation. In future, JE outbreak is quite likely in the state, if this vaccine fails to protect sufficiently against GI of JEV. PMID:23153306

  1. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea.

    PubMed

    Kim, Hyunwoo; Cha, Go-Woon; Jeong, Young Eui; Lee, Wook-Gyo; Chang, Kyu Sik; Roh, Jong Yul; Yang, Sung Chan; Park, Mi Yeoun; Park, Chan; Shin, E-Hyun

    2015-01-01

    Japanese encephalitis virus (JEV) causes significant viral encephalitis and is distributed throughout the Asian countries. The virus is known to be transmitted by Culex tritaeniorhynchus, which mainly breeds in rice paddies in Korea. In this study, we investigated the presence of other mosquito species that can transmit JEV as a second or regional vector. We selected five cities where patients have experienced JE in the last 5 years as mosquito-collecting locations and subdivided them into four collection sites according to the mosquito habitats (cowshed, downtown area, forest, and swamp). Mosquitoes were caught using the BG-Sentinel trap, CDC black-light trap, Fay-Prince trap, and Gravid trap. A total of 993 pools from 22,774 mosquitoes were prepared according to their species, collection date, and site. We performed a SYBR Green 1-based real-time RT-PCR assay to detect JEV from the mosquito pools. A total of six JEV-positive pools were detected from Culex orientalis and Culex pipiens caught in the Gangwon-do and Gyeonngi-do provinces. All the detected JEVs were revealed as genotype V by phylogenetic analysis of the envelope gene. Our findings confirm that a new genotype of JEV was introduced in Korea and suggest that two mosquito species may play a role in JEV transmission.

  2. Prevalence of Neutralizing Antibodies to Japanese Encephalitis Virus among High-Risk Age Groups in South Korea, 2010

    PubMed Central

    Ju, Young Ran; Han, Myung Guk; Lee, Won-Ja; Jeong, Young Eui

    2016-01-01

    After an extensive vaccination policy, Japanese encephalitis (JE) was nearly eliminated since the mid-1980s in South Korea. Vaccination in children shifted the affected age of JE patients from children to adults. However, an abrupt increase in JE cases occurred in 2010, and this trend has continued. The present study aimed to investigate the prevalence of neutralizing antibodies to the JE virus (JEV) among high-risk age groups (≥40 years) in South Korea. A plaque reduction neutralization test was conducted to evaluate the prevalence of neutralizing antibodies to JEV in 945 subjects within four age groups (30–39, 40–49, 50–59, and 60–69 years) in 10 provinces. Of the 945 enrolled subjects, 927 (98.1%) exhibited antibodies against JEV. No significant differences were found in the prevalence of neutralizing antibodies according to sex, age, or occupation. However, there were significant differences in the plaque reduction rate according to age and occupation; oldest age group had a higher reduction rate, and subjects who were employed in agriculture or forestry also had a higher value than the other occupations. We also found that three provinces (Gangwon, Jeonnam, and Gyeongnam) had a relatively lower plaque reduction rate than the other locations. In addition, enzyme-linked immunosorbent assays were conducted to determine recent viral infections and 12 (2.2%) subjects were found to have been recently infected by the virus. In conclusion, the present study clearly indicated that the prevalence of neutralizing antibodies has been maintained at very high levels among adult age groups owing to vaccination or natural infections, or both. In the future, serosurveillance should be conducted periodically using more representative samples to better understand the population-level immunity to JE in South Korea. PMID:26807709

  3. CCL2, but not its receptor, is essential to restrict immune privileged central nervous system-invasion of Japanese encephalitis virus via regulating accumulation of CD11b(+) Ly-6C(hi) monocytes.

    PubMed

    Kim, Jin Hyoung; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebileg; Hossain, Ferdaus Mohd Altaf; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis virus (JEV) is a re-emerging zoonotic flavivirus that poses an increasing threat to global health and welfare due to rapid changes in climate and demography. Although the CCR2-CCL2 axis plays an important role in trafficking CD11b(+) Ly-6C(hi) monocytes to regulate immunopathological diseases, little is known about their role in monocyte trafficking during viral encephalitis caused by JEV infection. Here, we explored the role of CCR2 and its ligand CCL2 in JE caused by JEV infection using CCR2- and CCL2-ablated murine models. Somewhat surprisingly, the ablation of CCR2 and CCL2 resulted in starkly contrasting susceptibility to JE. CCR2 ablation induced enhanced resistance to JE, whereas CCL2 ablation highly increased susceptibility to JE. This contrasting regulation of JE progression by CCR2 and CCL2 was coupled to central nervous system (CNS) infiltration of Ly-6C(hi) monocytes and Ly-6G(hi) granulocytes. There was also enhanced expression of CC and CXC chemokines in the CNS of CCL2-ablated mice, which appeared to induce CNS infiltration of these cell populations. However, our data revealed that contrasting regulation of JE in CCR2- and CCL2-ablated mice was unlikely to be mediated by innate natural killer and adaptive T-cell responses. Furthermore, CCL2 produced by haematopoietic stem cell-derived leucocytes played a dominant role in CNS accumulation of Ly-6C(hi) monocytes in infected bone marrow chimeric models, thereby exacerbating JE progression. Collectively, our data indicate that CCL2 plays an essential role in conferring protection against JE caused by JEV infection. In addition, blockage of CCR2, but not CCL2, will aid in the development of strategies for prophylactics and therapeutics of JE. © 2016 John Wiley & Sons Ltd.

  4. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  5. Comparing the immunogenicity and safety of 3 Japanese encephalitis vaccines in Asia-Pacific area: A systematic review and meta-analysis.

    PubMed

    Wang, Shi-Yuan; Cheng, Xiao-Hua; Li, Jing-Xin; Li, Xi-Yan; Zhu, Feng-Cai; Liu, Pei

    2015-01-01

    Japanese encephalitis virus (JEV), a leading cause of Japanese encephalitis (JE) in children and adults, is a major public health problem in Asian countries. This study reports a meta-analysis of the immunogenicity and safety of vaccines used to protect infants or children from JE. Three types of JE vaccine were examined, namely, Japanese encephalitis live-attenuated vaccine (JEV-L), Japanese encephalitis inactivated vaccine (Vero cell) (JEV-I(Vero)), and Japanese encephalitis inactivated vaccine (primary hamster kidney cell) (JEV-I(PHK)). These vaccines are used to induce fundamental immunity against JE; however, few studies have compared their immunogenicity and safety in infants and young children less than 2 years of age. Data were obtained by searching 5 databases: Web of Science, PubMed, China National Knowledge Infrastructure, the China Wanfang database, and the Cochrane database. Fifteen articles were identified and scored using the Jadad score for inclusion in the meta-analysis. Random effect models were used to calculate the pooled seroconversion rate and adverse reaction rate when tests for heterogeneity were significant. The results showed that the pooled seroconversion rate for JEV-I(PHK) (62.23%) was lower than that for JEV-I(Vero) (86.49%) and JEV-L (83.52%), and that the pooled adverse reaction rate for JEV-L (18.09%) was higher than that for JEV-I(PHK) (10.08%) and JEV-I(Vero) (12.49%). The pooled relative risk was then calculated to compare the seroconversion and adverse reaction rates. The results showed that JEV-I(Vero) and JEV-L were more suitable than JEV-I(PHK) for inducing fundamental immunity to JE in infants and children less than 2 years of age.

  6. Japanese Encephalitis—A Pathological and Clinical Perspective

    PubMed Central

    Ghosh, Debapriya; Basu, Anirban

    2009-01-01

    Japanese encephalitis (JE) is the leading form of viral encephalitis in Asia. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. JEV is endemic to many parts of Asia, where periodic outbreaks take hundreds of lives. Despite the catastrophes it causes, JE has remained a tropical disease uncommon in the West. With rapid globalization and climatic shift, JEV has started to emerge in areas where the threat was previously unknown. Scientific evidence predicts that JEV will soon become a global pathogen and cause of worldwide pandemics. Although some research documents JEV pathogenesis and drug discovery, worldwide awareness of the need for extensive research to deal with JE is still lacking. This review focuses on the exigency of developing a worldwide effort to acknowledge the prime importance of performing an extensive study of this thus far neglected tropical viral disease. This review also outlines the pathogenesis, the scientific efforts channeled into develop a therapy, and the outlook for a possible future breakthrough addressing this killer disease. PMID:19787040

  7. Detection of Japanese Encephalitis Virus RNA in Human Throat Samples in Laos - A Pilot study.

    PubMed

    Bharucha, Tehmina; Sengvilaipaseuth, Onanong; Seephonelee, Malee; Vongsouvath, Malavanh; Vongsouvath, Manivanh; Rattanavong, Sayaphet; Piorkowski, Géraldine; Lecuit, Marc; Gorman, Christopher; Pommier, Jean-David; Newton, Paul N; de Lamballerie, Xavier; Dubot-Pérès, Audrey

    2018-05-22

    Japanese encephalitis virus (JEV) is the most commonly identified cause of acute encephalitis syndrome (AES) in Asia. The WHO recommended test is anti-JEV IgM-antibody-capture-enzyme-linked-immunosorbent-assay (JEV MAC-ELISA). However, data suggest this has low positive predictive value, with false positives related to other Flavivirus infections and vaccination. JEV RT-PCR in cerebrospinal fluid (CSF) and/or serum is highly specific, but is rarely positive; 0-25% of patients that fulfil the WHO definition of JE (clinical Acute Encephalitis Syndrome (AES) and JEV MAC-ELISA positive). Testing other body fluids by JEV RT-qPCR may improve the diagnosis. As a pilot study thirty patients admitted to Mahosot Hospital 2014-2017, recruited to the South-East-Asia-Encephalitis study, were tested by JEV MAC-ELISA and two JEV real-time RT-PCR (RT-qPCR) assays (NS2A and NS3). Eleven (36.7%) were JEV MAC-ELISA positive. Available CSF and serum samples of these patients were JEV RT-qPCR negative but 2 (7%) had JEV RNA detected in their throat swabs. JEV RNA was confirmed by re-testing, and sequencing of RT-qPCR products. As the first apparent report of JEV RNA detection in human throat samples, the provides new perspectives on human JEV infection, potentially informing improving JEV detection. We suggest that testing patients' throat swabs for JEV RNA is performed, in combination with molecular and serological CSF and serum investigations, on a larger scale to investigate the epidemiology of the presence of JEV in human throats. Throat swabs are an easy and non-invasive tool that could be rolled out to a wider population to improve knowledge of JEV molecular epidemiology.

  8. Production of Japanese encephalitis virus-like particles in insect cells.

    PubMed

    Yamaji, Hideki; Konishi, Eiji

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several recombinant viral surface proteins that spontaneously assemble into particulate structures without the incorporation of virus DNA or RNA. The baculovirus-insect cell system has been used extensively for the production of recombinant virus proteins including VLPs. While the baculovirus-insect cell system directs the transient expression of recombinant proteins in a batch culture, stably transformed insect cells allow constitutive production. In our recent study, a secretory form of Japanese encephalitis (JE) VLPs was successfully produced by Trichoplusia ni BTI-TN-5B1-4 (High Five) cells engineered to coexpress the JE virus (JEV) premembrane (prM) and envelope (E) proteins. A higher yield of E protein was attained with recombinant High Five cells than with the baculovirus-insect cell system. This study demonstrated that recombinant insect cells offer a promising approach to the high-level production of VLPs for use as vaccines and diagnostic antigens.

  9. A Japanese Encephalitis Virus Peptide Present on Johnson Grass Mosaic Virus-Like Particles Induces Virus-Neutralizing Antibodies and Protects Mice against Lethal Challenge

    PubMed Central

    Saini, Manisha; Vrati, Sudhanshu

    2003-01-01

    Protection against Japanese encephalitis virus (JEV) is antibody dependent, and neutralizing antibodies alone are sufficient to impart protection. Thus, we are aiming to develop a peptide-based vaccine against JEV by identifying JEV peptide sequences that could induce virus-neutralizing antibodies. Previously, we have synthesized large amounts of Johnson grass mosaic virus (JGMV) coat protein (CP) in Escherichia coli and have shown that it autoassembled to form virus-like particles (VLPs). The envelope (E) protein of JEV contains the virus-neutralization epitopes. Four peptides from different locations within JEV E protein were chosen, and these were fused to JGMV CP by recombinant DNA methods. The fusion protein autoassembled to form VLPs that could be purified by sucrose gradient centrifugation. Immunization of mice with the recombinant VLPs containing JEV peptide sequences induced anti-peptide and anti-JEV antibodies. A 27-amino-acid peptide containing amino acids 373 to 399 from JEV E protein, present on JGMV VLPs, induced virus-neutralizing antibodies. Importantly, these antibodies were obtained without the use of an adjuvant. The immunized mice showed significant protection against a lethal JEV challenge. PMID:12610124

  10. The dominant roles of ICAM-1-encoding gene in DNA vaccination against Japanese encephalitis virus are the activation of dendritic cells and enhancement of cellular immunity.

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2013-01-01

    We investigated the cellular immune responses elicited by a plasmid DNA vaccine encoding prM-E protein from the Japanese encephalitis (JE) virus (JEV) with or without various forms of intercellular adhesion molecule (ICAM)-1 gene to maximize the immune responses evoked by the JE DNA vaccine. We observed that co-immunization with the construct containing murine ICAM-1 gene (pICAM-1) resulted in a significant increase in the percentage of CD4(+)T cells, high level of JEV-specific cytotoxic T lymphocyte response, and high production of T helper 1 (Th1)-type cytokines in splenic T cells. Furthermore, the co-expression of ICAM-1 and DNA immunogens was found to be more effective in generating T cell-mediated immune responses than those induced by immunization with pJME in combination with pICAM-1. Our results suggested that ICAM-1 enhanced T cell receptor signaling and activated Th1 immune responses in the JEV model system by increasing the induction of CD4(+)Th1 cell subset and activating dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A Molecularly Cloned, Live-Attenuated Japanese Encephalitis Vaccine SA14-14-2 Virus: A Conserved Single Amino Acid in the ij Hairpin of the Viral E Glycoprotein Determines Neurovirulence in Mice

    PubMed Central

    Kim, Jin-Kyoung; Yun, Gil-Nam; Lee, Eun-Young; Li, Long; Kuhn, Richard J.; Rossmann, Michael G.; Morrey, John D.; Lee, Young-Min

    2014-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other

  12. Estimating the Burden of Japanese Encephalitis Virus and Other Encephalitides in Countries of the Mekong Region

    PubMed Central

    Tarantola, Arnaud; Goutard, Flavie; Newton, Paul; de Lamballerie, Xavier; Lortholary, Olivier; Cappelle, Julien; Buchy, Philippe

    2014-01-01

    Diverse aetiologies of viral and bacterial encephalitis are widely recognized as significant yet neglected public health issues in the Mekong region. A robust analysis of the corresponding health burden is lacking. We retrieved 75 articles on encephalitis in the region published in English or in French from 1965 through 2011. Review of available data demonstrated that they are sparse and often derived from hospital-based studies with significant recruitment bias. Almost half (35 of 75) of articles were on Japanese encephalitis virus (JEV) alone or associated with dengue. In the Western Pacific region the WHO reported 30,000–50,000 annual JEV cases (15,000 deaths) between 1966 and 1996 and 4,633 cases (200 deaths) in 2008, a decline likely related to the introduction of JEV vaccination in China, Vietnam, or Thailand since the 1980s. Data on dengue, scrub typhus and rabies encephalitis, among other aetiologies, are also reviewed and discussed. Countries of the Mekong region are undergoing profound demographic, economic and ecological change. As the epidemiological aspects of Japanese encephalitis (JE) are transformed by vaccination in some countries, highly integrated expert collaborative research and objective data are needed to identify and prioritize the human health, animal health and economic burden due to JE and other pathogens associated with encephalitides. PMID:24498443

  13. Proposal for Japanese encephalitis surveillance using captured invasive mongooses under an eradication project on Okinawa Island, Japan.

    PubMed

    Saito, Mika; Nakata, Katsushi; Nishijima, Taku; Yamashita, Katsuhiro; Saito, Anna; Ogura, Go

    2009-06-01

    A project to eradicate invasive small Asian mongooses (Herpestes javanicus) is underway to conserve the unique ecosystem of Okinawa Island, Japan. In the present study, we tried to elucidate whether the mongoose is a host of Japanese encephalitis virus (JEV) and to evaluate the reliability of surveillance of Japanese encephalitis (JE) using this species. Culex tritaeniorhynchus, the main vector mosquito of JEV, feeds on the mongoose. Eighty-five (35.4%) of 240 wild small Asian mongooses captured between 2001 and 2005 had neutralizing antibodies against more than one of four JEV strains. Prevalence rates of JEV antibodies tended to increase with body weight and length of the animals. One of three sentinel mongooses showed a temporal change in antibody titer. These results indicate that the small Asian mongooses on Okinawa Island are sensitive to JEV. From the antibody titers and the locations of capture, the JEV active area was clarified. We propose that surveillance of JE using mongooses captured under the eradication program is reliable.

  14. Immunogenicity of live attenuated Japanese encephalitis SA 14-14-2 vaccine among Sri Lankan children with previous receipt of inactivated JE vaccine.

    PubMed

    Wijesinghe, Pushpa Ranjan; Abeysinghe, M R Nihal; Yoksan, Sutee; Yao, Yafu; Zhou, Benli; Zhang, Lei; Fleming, Jessica A; Marfin, Anthony A; Victor, John C

    2016-11-21

    The performance of live attenuated Japanese Encephalitis SA 14-14-2 vaccine (CD-JEV) among children previously given inactivated mouse brain-derived JE vaccine (IMBV) is unknown. We evaluated the safety and immunogenicity of CD-JEV administered to 2- and 5-year-old children in Sri Lanka. In this open-label, single arm trial in the Colombo District of Sri Lanka, generally healthy children 2 and 5years of age who had previously received two and three doses of IMBV, respectively, were administered one dose of CD-JEV subcutaneously. Participants were monitored for adverse events for one year post-vaccination. Serum neutralizing antibody responses were evaluated pre and 28 and 365days post-vaccination using JE plaque reduction neutralization test and characterized as the proportion of participants seroconverting. Seroconversion was defined as either reaching a titer considered seroprotective (⩾1:10) among participants with a baseline titer <1:10 or achieving at least a 4-fold rise in titer among participants with a baseline titer ⩾1:10. Of 305 children given CD-JEV, 294 were included in the primary analysis of immunogenicity. Prior to vaccination, 144/147 (98.0%) 2-year-olds and 146/147 (99.3%) 5-year-olds had seroprotective levels. 28days post-vaccination, 79/147 [53.7% (95% CI, 45.3-62.0)] 2-year olds and of 60/147 [40.8% (95% CI, 32.8-49.2)] 5-year olds achieved seroconversion. Among 2-year-olds, geometric mean titers (GMTs) rose from 697 to 3175 28days post-vaccination. Among 5-year-olds, GMTs rose from 926 to 2776. Most adverse reactions were mild, and no serious adverse events were related to study vaccination. Administration of CD-JEV to these children with pre-existing neutralizing JE antibody titers was safe and resulted in substantial boosting of antibody levels. These results may inform other countries in Asia considering switching from IMBV to now WHO-prequalified CD-JEV vaccine to combat this disease of public health importance. Copyright © 2016 The

  15. Molecular phylogenetic and evolutionary analyses of Muar strain of Japanese encephalitis virus reveal it is the missing fifth genotype.

    PubMed

    Mohammed, Manal A F; Galbraith, Sareen E; Radford, Alan D; Dove, Winifred; Takasaki, Tomohiko; Kurane, Ichiro; Solomon, Tom

    2011-07-01

    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Memory immune response and safety of a booster dose of Japanese encephalitis chimeric virus vaccine (JE-CV) in JE-CV-primed children

    PubMed Central

    Feroldi, Emmanuel; Capeding, Maria Rosario; Boaz, Mark; Gailhardou, Sophia; Meric, Claude; Bouckenooghe, Alain

    2013-01-01

    Japanese encephalitis chimeric virus vaccine (JE-CV) is a licensed vaccine indicated in a single dose administration for primary immunization. This controlled phase III comparative trial enrolled children aged 36–42 mo in the Philippines. 345 children who had received one dose of JE-CV in a study two years earlier, received a JE-CV booster dose. 105 JE-vaccine-naïve children in general good health were randomized to receive JE-CV (JE-vaccine naïve group; 46 children) or varicella vaccine (safety control group; 59 children). JE neutralizing antibody titers were assessed using PRNT50. Immunological memory was observed in children who had received the primary dose of JE-CV before. Seven days after the JE-CV booster dose administration, 96.2% and 66.8% of children were seroprotected and had seroconverted, respectively, and the geometric mean titer (GMT) was 231 1/dil. Twenty-eight days after the JE-CV booster dose seroprotection and seroconversion were achieved in 100% and 95.3% of children, respectively, and the GMT was 2,242 1/dil. In contrast, only 15.4% of JE-CV-vaccine naïve children who had not received any prior JE vaccine were seroprotected seven days after they received JE-CV. One year after receiving the JE-CV booster dose, 99.4% of children remained seroprotected. We conclude that JE-CV is effective and safe, both as a single dose and when administrated as a booster dose. A booster dose increases the peak GMT above the peak level reached after primary immunization and the antibody persistence is maintained at least one year after the JE-CV booster dose administration. Five year follow up is ongoing. PMID:23442823

  17. Memory immune response and safety of a booster dose of Japanese encephalitis chimeric virus vaccine (JE-CV) in JE-CV-primed children.

    PubMed

    Feroldi, Emmanuel; Capeding, Maria Rosario; Boaz, Mark; Gailhardou, Sophia; Meric, Claude; Bouckenooghe, Alain

    2013-04-01

    Japanese encephalitis chimeric virus vaccine (JE-CV) is a licensed vaccine indicated in a single dose administration for primary immunization. This controlled phase III comparative trial enrolled children aged 36-42 mo in the Philippines. 345 children who had received one dose of JE-CV in a study two years earlier, received a JE-CV booster dose. 105 JE-vaccine-naïve children in general good health were randomized to receive JE-CV (JE-vaccine naïve group; 46 children) or varicella vaccine (safety control group; 59 children). JE neutralizing antibody titers were assessed using PRNT50. Immunological memory was observed in children who had received the primary dose of JE-CV before. Seven days after the JE-CV booster dose administration, 96.2% and 66.8% of children were seroprotected and had seroconverted, respectively, and the geometric mean titer (GMT) was 231 1/dil. Twenty-eight days after the JE-CV booster dose seroprotection and seroconversion were achieved in 100% and 95.3% of children, respectively, and the GMT was 2,242 1/dil. In contrast, only 15.4% of JE-CV-vaccine naïve children who had not received any prior JE vaccine were seroprotected seven days after they received JE-CV. One year after receiving the JE-CV booster dose, 99.4% of children remained seroprotected. We conclude that JE-CV is effective and safe, both as a single dose and when administrated as a booster dose. A booster dose increases the peak GMT above the peak level reached after primary immunization and the antibody persistence is maintained at least one year after the JE-CV booster dose administration. Five year follow up is ongoing.

  18. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease

    PubMed Central

    Gore, Milind M.

    2017-01-01

    ABSTRACT Japanese encephalitis (JE) is a serious public health concern in most of Asia. The disease is caused by JE virus (JEV), a flavivirus transmitted by Culex mosquitoes. Several vaccines have been developed to control JE in endemic areas as well as to protect travelers and military personnel who visit or are commissioned from non-endemic to endemic areas. The vaccines include inactivated vaccines produced in mouse brain or cell cultures, live attenuated vaccines, and a chimeric vaccine based on the live attenuated yellow fever virus 17D vaccine strain. All the marketed vaccines belong to the JEV genotype III, but have been shown to be efficacious against other genotypes and strains, with varying degrees of cross-neutralization, albeit at levels deemed to be protective. The protective responses have been shown to last three or more years, depending on the type of vaccine and the number of doses. This review presents a brief account of the different JE vaccines, their immunogenicity and protective ability, and the impact of JE vaccines in reducing the burden of disease in endemic countries. PMID:28301270

  19. Japanese Encephalitis in Malaysia: An Overview and Timeline.

    PubMed

    Kumar, Kiven; Arshad, Siti Suri; Selvarajah, Gayathri Thevi; Abu, Jalila; Toung, Ooi Peck; Abba, Yusuf; Yasmin, A R; Bande, Faruku; Sharma, Reuben; Ong, Bee Lee

    2018-05-29

    Japanese encephalitis (JE) is a vector-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). It causes encephalitis in human and horses, and may lead to reproductive failure in sows. The first human encephalitis case in Malaya (now Malaysia) was reported during World War II in a British prison in 1942. Later, encephalitis was observed among race horses in Singapore. In 1951, the first JEV was isolated from the brain of an encephalitis patient. The true storyline of JE exposure among humans and animals has not been documented in Malaysia. In some places such as Sarawak, JEV has been isolated from mosquitoes before an outbreak in 1992. JE is an epidemic in Malaysia except Sarawak. There are four major outbreaks reported in Pulau Langkawi (1974), Penang (1988), Perak and Negeri Sembilan (1998-1999), and Sarawak (1992). JE is considered endemic only in Sarawak. Initially, both adults and children were victims of JE in Malaysia, however, according to the current reports; JE infection is only lethal to children in Malaysia. This paper describes a timeline of JE cases (background of each case) from first detection to current status, vaccination programs against JE, diagnostic methods used in hospitals and factors which may contribute to the transmission of JE among humans and animals in Malaysia. Copyright © 2018. Published by Elsevier B.V.

  20. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection.

    PubMed

    Li, Fang; Wang, Yueyun; Yu, Lan; Cao, Shengbo; Wang, Ke; Yuan, Jiaolong; Wang, Chong; Wang, Kunlun; Cui, Min; Fu, Zhen F

    2015-05-01

    Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate

  1. Overview of Japanese encephalitis disease and its prevention. Focus on IC51 vaccine (IXIARO®)

    PubMed Central

    AMICIZIA, D.; ZANGRILLO, F.; LAI, P.L.; IOVINE, M.; PANATTO, D.

    2018-01-01

    Summary Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV). JEV is transmitted by mosquitoes to a wide range of vertebrate hosts, including birds and mammals. Domestic animals, especially pigs, are generally implicated as reservoirs of the virus, while humans are not part of the natural transmission cycle and cannot pass the virus to other hosts. Although JEV infection is very common in endemic areas (many countries in Asia), less than 1% of people affected develop clinical disease, and severe disease affects about 1 case per 250 JEV infections. Although rare, severe disease can be devastating; among the 30,000-50,000 global cases per year, approximately 20-30% of patients die and 30-50% of survivors develop significant neurological sequelae. JE is a significant public health problem for residents in endemic areas and may constitute a substantial risk for travelers to these areas. The epidemiology of JE and its risk to travelers have changed, and continue to evolve. The rapid economic growth of Asian countries has led to a surge in both inbound and outbound travel, making Asia the second most-visited region in the world after Europe, with 279 million international travelers in 2015. The top destination is China, followed by Thailand, Hong Kong, Malaysia and Japan, and the number of travelers is forecast to reach 535 million by 2030 (+ 4.9% per year). Because of the lack of treatment and the infeasibility of eliminating the vector, vaccination is recognized as the most efficacious means of preventing JE. The IC51 vaccine (IXIARO®) is a purified, inactivated, whole virus vaccine against JE. It is safe, well tolerated, efficacious and can be administered to children, adults and the elderly. The vaccination schedule involves administering 2 doses four weeks apart. For adults, a rapid schedule (0-7 days) is available, which could greatly enhance the feasibility of its use. Healthcare workers should inform both short

  2. A decade of Japanese encephalitis surveillance in Sarawak, Malaysia: 1997-2006.

    PubMed

    Wong, See C; Ooi, Mong H; Abdullah, Abdul R; Wong, See Y; Krishnan, Shekhar; Tio, Phaik H; Pek, Peng C; Lai, Boon F; Mohan, Anand; Muhi, Jamail; Kiyu, Andrew; Arif, Mohamad T; Cardosa, Mary J

    2008-01-01

    Japanese encephalitis virus (JEV) is an important encephalitis virus in Asia, but there are few data on Malaysia. A hospital-based surveillance system for Japanese encephalitis (JE) has been in operation in Sarawak, Malaysia, for the last 10 years. JEV is endemic in Sarawak, with cases occurring throughout the year and a seasonal peak in the last quarter (one-way anova, P < 0.0001). Ninety-two per cent of 133 cases were children aged 12 years or younger; the introduction of JE vaccination in July 2001 reduced the number of JE cases (84 in the four seasons prior to vs. 49 in the six seasons after, McNemar's test, P = 0.0001). After implementation of the programme, the mean age of infected children increased from 6.3 to 8.0 years (Student's t-test, P = 0.0037), suggesting the need for a catch-up programme.

  3. Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts.

    PubMed

    Oliveira, Ana R S; Cohnstaedt, Lee W; Strathe, Erin; Hernández, Luciana Etcheverry; McVey, D Scott; Piaggio, José; Cernicchiaro, Natalia

    2017-09-07

    Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool. Mosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome. Our findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this

  4. Medical Surveillance Monthly Report (MSMR). Volume 17, Number 06, June 2010

    DTIC Science & Technology

    2010-06-01

    of vaccine safety and effi cacy trials, and advocacy for U.S. licensure of JE vaccines .9 During World War II, LTC Albert Sabin conducted pioneering...the improved safety profi le of second-generation vaccines , and the geographic spread of JE virus over the past 50 years warrant continued...control of JE, including characterization of the ecology of JEV, development of fi rst and second generation vaccines and diagnostic assays, conduct

  5. Nonstructural protein 1 antibody-based epitope-blocking enzyme-linked immunosorbent assay to differentiate Japanese encephalitis virus from dengue virus infections in humans.

    PubMed

    Konishi, Eiji; Konishi, Mayu

    2011-01-01

    Japanese encephalitis virus (JEV) and the four dengue viruses (DENV1-4) are co-distributed in Southeast and South Asia. Since JEV is antigenically cross-reactive with DENV1-4, the differentiation between these viruses using antibody assays may be difficult. Herein, we describe the development of an epitope-blocking enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody specific for the nonstructural protein 1 (NS1) of JEV (JEV-NS1) to differentiate antibodies against JEV from those against DENV1-4. Hyperimmune mouse sera against JEV-NS1 showed >60% inhibition, whereas those against NS1 of DENV1-4 showed <30% inhibition. The present assay could therefore detect antibodies specific for JEV. For testing of human sera, a temporary cutoff value (30.8%) was calculated the average and standard deviation obtained for sera of control humans negative for JEV antibodies. Human sera positive for antibodies to any of DENV1-4 NS1 but negative for antibodies to JEV-NS1 showed a lower percentage inhibition than the cutoff value. On the other hand, sera with JEV-NS1 antibody levels of ≥0.400, as determined by the conventional ELISA (medially/strongly positive for JEV-NS1 antibodies), showed percentage inhibition greater than the cutoff. Although this blocking ELISA afforded false-negative results for most sera that were weakly positive for JEV-NS1 antibodies, it may be useful for investigating the seroepidemiology of JEV antibodies in dengue-endemic areas.

  6. A hospital-based surveillance for Japanese encephalitis in Bali, Indonesia.

    PubMed

    Kari, Komang; Liu, Wei; Gautama, Kompiang; Mammen, Mammen P; Clemens, John D; Nisalak, Ananda; Subrata, Ketut; Kim, Hyei Kyung; Xu, Zhi-Yi

    2006-04-07

    Japanese encephalitis (JE) is presumed to be endemic throughout Asia, yet only a few cases have been reported in tropical Asian countries such as Indonesia, Malaysia and the Philippines. To estimate the true disease burden due to JE in this region, we conducted a prospective, hospital-based surveillance with a catchment population of 599,120 children less than 12 years of age in Bali, Indonesia, from July 2001 through December 2003. Balinese children presenting to any health care facility with acute viral encephalitis or aseptic meningitis were enrolled. A "confirmed" diagnosis of JE required the detection of JE virus (JEV)-specific IgM in cerebrospinal fluid, whereas a diagnosis of "probable JE" was assigned to those cases in which JEV-specific IgM was detected only in serum. In all, 86 confirmed and 4 probable JE cases were identified. The annualized JE incidence rate was 7.1 and adjusted to 8.2 per 100,000 for children less than 10 years of age over the 2.5 consecutive years of study. Only one JE case was found among 96,920 children 10-11 years old (0.4 per 100,000). Nine children (10%) died and 33 (37%) of the survivors had neurological sequelae at discharge. JEV was transmitted in Bali year-round with 70% of cases in the rainy season. JE incidence and case-fatality rates in Bali were comparable to those of other JE-endemic countries of Asia. Our findings contradict the common wisdom that JE is rare in tropical Asia. Hence, the geographical range of endemic JE is broader than previously described. The results of the study support the need to introduce JE vaccination into Bali.

  7. Involvement of cyclophilin B in the replication of Japanese encephalitis virus.

    PubMed

    Kambara, Hiroto; Tani, Hideki; Mori, Yoshio; Abe, Takayuki; Katoh, Hiroshi; Fukuhara, Takasuke; Taguwa, Shuhei; Moriishi, Kohji; Matsuura, Yoshiharu

    2011-03-30

    Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. In this study, we have examined the effect of cyclosporin A (CsA) on the propagation of JEV. CsA exhibited potent anti-JEV activity in various mammalian cell lines through the inhibition of CypB. The propagation of JEV was impaired in the CypB-knockdown cells and this reduction was cancelled by the expression of wild-type but not of peptidylprolyl cis-trans isomerase (PPIase)-deficient CypB, indicating that PPIase activity of CypB is critical for JEV propagation. Infection of pseudotype viruses bearing JEV envelope proteins was not impaired by the knockdown of CypB, suggesting that CypB participates in the replication but not in the entry of JEV. CypB was colocalized and immunoprecipitated with JEV NS4A in infected cells. These results suggest that CypB plays a crucial role in the replication of JEV through an interaction with NS4A. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Japanese encephalitis: the vectors, ecology and potential for expansion.

    PubMed

    Pearce, James C; Learoyd, Tristan P; Langendorf, Benjamin J; Logan, James G

    2018-05-01

    Japanese encephalitis (JE) is a viral disease predominantly located in South East Asia and commonly associated with transmission between amplifying hosts, such as pigs, and the mosquito Culex tritaeniorhynchus, where human infection represents a dead end in the life cycle of the virus. The expansion of JE beyond an Asiatic confine is dependent on a multitude of complex factors that stem back to genetic subtype variation. A complex interplay of the genetic variation and vector competencies combine with variables such as geography, climate change and urbanization. Our understanding of JE is still at an early stage with long-term longitudinal vector surveillance necessary to better understand the dynamics of JE transmission and to characterize the role of potential secondary vectors such as Cx. pipiens and Cx. bitaeniorhynchus. The authors review the vectors indicated in transmission and the ecological, genetic and anthropological factors that affect the disease's range and epidemiology. Monitoring for the presence of JE virus in mosquitoes in general can be used to estimate levels of potential JE exposure, intensity of viral activity and genetic variation of JEV throughout surveyed areas. Increased surveillance and diagnosis of viral encephalitis caused by genotype 5 JE virus is required in particular, with the expansion in epidemiology and disease prevalence in new geographic areas an issue of great concern. Additional studies that measure the impact of vectors (e.g. bionomics and vector competence) in the transmission of JEV and that incorporate environmental factors (e.g. weekly rainfall) are needed to define the roles of Culex species in the viral pathogenesis during outbreak and non-outbreak years.

  9. North American Birds as Potential Amplifying Hosts of Japanese Encephalitis Virus

    PubMed Central

    Nemeth, Nicole; Bosco-Lauth, Angela; Oesterle, Paul; Kohler, Dennis; Bowen, Richard

    2012-01-01

    Japanese encephalitis virus (JEV) is an emerging arbovirus, and inter-continental spread is an impending threat. The virus is maintained in a transmission cycle between mosquito vectors and vertebrate hosts, including birds. We detected variation in interspecies responses among North American birds to infection with strains of two different JEV genotypes (I and III). Several native North American passerine species and ring-billed gulls had the highest average peak viremia titers after inoculation with a Vietnamese (genotype I) JEV strain. Oral JEV shedding was minimal and cloacal shedding was rarely detected. The majority of birds, both viremic (72 of 74; 97.3%) and non-viremic (31 of 37; 83.8%), seroconverted by 14 days post-inoculation and West Nile virus-immune individuals had cross-protection against JEV viremia. Reservoir competence and serologic data for a variety of avian taxa are important for development of JEV surveillance and control strategies and will aid in understanding transmission ecology in the event of JEV expansion to North America. PMID:22927494

  10. A hospital-based surveillance for Japanese encephalitis in Bali, Indonesia

    PubMed Central

    Kari, Komang; Liu, Wei; Gautama, Kompiang; Mammen, Mammen P; Clemens, John D; Nisalak, Ananda; Subrata, Ketut; Kim, Hyei Kyung; Xu, Zhi-Yi

    2006-01-01

    Background Japanese encephalitis (JE) is presumed to be endemic throughout Asia, yet only a few cases have been reported in tropical Asian countries such as Indonesia, Malaysia and the Philippines. To estimate the true disease burden due to JE in this region, we conducted a prospective, hospital-based surveillance with a catchment population of 599,120 children less than 12 years of age in Bali, Indonesia, from July 2001 through December 2003. Methods Balinese children presenting to any health care facility with acute viral encephalitis or aseptic meningitis were enrolled. A "confirmed" diagnosis of JE required the detection of JE virus (JEV)-specific IgM in cerebrospinal fluid, whereas a diagnosis of "probable JE" was assigned to those cases in which JEV-specific IgM was detected only in serum. Results In all, 86 confirmed and 4 probable JE cases were identified. The annualized JE incidence rate was 7.1 and adjusted to 8.2 per 100,000 for children less than 10 years of age over the 2.5 consecutive years of study. Only one JE case was found among 96,920 children 10–11 years old (0.4 per 100,000). Nine children (10%) died and 33 (37%) of the survivors had neurological sequelae at discharge. JEV was transmitted in Bali year-round with 70% of cases in the rainy season. Conclusion JE incidence and case-fatality rates in Bali were comparable to those of other JE-endemic countries of Asia. Our findings contradict the common wisdom that JE is rare in tropical Asia. Hence, the geographical range of endemic JE is broader than previously described. The results of the study support the need to introduce JE vaccination into Bali. PMID:16603053

  11. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  12. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    PubMed

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  13. Japanese encephalitis

    PubMed Central

    Yun, Sang-Im; Lee, Young-Min

    2014-01-01

    Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development. PMID:24161909

  14. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV

    PubMed Central

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-01-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time. PMID:23838466

  15. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus.

    PubMed

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development.

  16. Virulence of Japanese Encephalitis Virus Genotypes I and III, Taiwan

    PubMed Central

    Fan, Yi-Chin; Lin, Jen-Wei; Liao, Shu-Ying; Chen, Jo-Mei; Chen, Yi-Ying; Chiu, Hsien-Chung; Shih, Chen-Chang; Chen, Chi-Ming; Chang, Ruey-Yi; King, Chwan-Chuen; Chen, Wei-June; Ko, Yi-Ting; Chang, Chao-Chin

    2017-01-01

    The virulence of genotype I (GI) Japanese encephalitis virus (JEV) is under debate. We investigated differences in the virulence of GI and GIII JEV by calculating asymptomatic ratios based on serologic studies during GI- and GIII-JEV endemic periods. The results suggested equal virulence of GI and GIII JEV among humans. PMID:29048288

  17. Shedding of Japanese Encephalitis Virus in Oral Fluid of Infected Swine.

    PubMed

    Lyons, Amy C; Huang, Yan-Jang S; Park, So Lee; Ayers, Victoria B; Hettenbach, Susan M; Higgs, Stephen; McVey, D Scott; Noronha, Leela; Hsu, Wei-Wen; Vanlandingham, Dana L

    2018-05-09

    Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus endemic in the Asia-Pacific region. Maintenance of JEV in nature involves enzootic transmission by competent Culex mosquitoes among susceptible avian and swine species. Historically, JEV has been regarded as one of the most important arthropod-borne viruses in Southeast Asia. Oronasal shedding of JEV from infected amplification hosts was not recognized until the recent discovery of vector-free transmission of JEV among domestic pigs. In this study, oral shedding of JEV was characterized in domestic pigs and miniature swine representing the feral phenotype. A rope-based sampling method followed by the detection of viral RNA using RT-qPCR allowed the collection and detection of JEV in oral fluid samples collected from intradermally challenged animals. The results suggest that the shedding of JEV in oral fluid can be readily detected by molecular diagnostic assays at the acute phase of infection. It also demonstrates the feasibility of this technique for the diagnosis and surveillance of JEV in swine species.

  18. Ablation of CD11c(hi) dendritic cells exacerbates Japanese encephalitis by regulating blood-brain barrier permeability and altering tight junction/adhesion molecules.

    PubMed

    Kim, Jin Hyoung; Hossain, Ferdaus Mohd Altaf; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Park, Sang-Youel; Lee, John-Hwa; Kim, Bumseok; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis (JE), characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV), is becoming a leading cause of viral encephalitis due to rapid changes in climate and demography. The blood-brain barrier (BBB) plays an important role in restricting neuroinvasion of peripheral leukocytes and virus, thereby regulating the progression of viral encephalitis. In this study, we explored the role of CD11c(hi) dendritic cells (DCs) in regulating BBB integrity and JE progression using a conditional depletion model of CD11c(hi) DCs. Transient ablation of CD11c(hi) DCs resulted in markedly increased susceptibility to JE progression along with highly increased neuro-invasion of JEV. In addition, exacerbated JE progression in CD11c(hi) DC-ablated hosts was closely associated with increased expression of proinflammatory cytokines (IFN-β, IL-6, and TNF-α) and CC chemokines (CCL2, CCL3, CXCL2) in the brain. Moreover, our results revealed that the exacerbation of JE progression in CD11c(hi) DC-ablated hosts was correlated with enhanced BBB permeability and reduced expression of tight junction and adhesion molecules (claudin-5, ZO-1, occluding, JAMs). Ultimately, our data conclude that the ablation of CD11c(hi) DCs provided a subsidiary impact on BBB integrity and the expression of tight junction/adhesion molecules, thereby leading to exacerbated JE progression. These findings provide insight into the secondary role of CD11c(hi) DCs in JE progression through regulation of BBB integrity and the expression of tight junction/adhesion molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K

    2016-08-02

    Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. CLEC5A Regulates Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality

    PubMed Central

    Chen, Szu-Ting; Liu, Ren-Shyan; Wu, Ming-Fang; Lin, Yi-Ling; Chen, Se-Yi; Tan, David Tat-Wei; Chou, Teh-Ying; Tsai, I-Shuen; Li, Lei; Hsieh, Shie-Liang

    2012-01-01

    CLEC5A/MDL-1, a member of the myeloid C-type lectin family expressed on macrophages and neutrophils, is critical for dengue virus (DV)-induced hemorrhagic fever and shock syndrome in Stat1 −/− mice and ConA-treated wild type mice. However, whether CLEC5A is involved in the pathogenesis of viral encephalitis has not yet been investigated. To investigate the role of CLEC5A to regulate JEV-induced neuroinflammation, antagonistic anti-CLEC5A mAb and CLEC5A-deficient mice were generated. We find that Japanese encephalitis virus (JEV) directly interacts with CLEC5A and induces DAP12 phosphorylation in macrophages. In addition, JEV activates macrophages to secrete proinflammatory cytokines and chemokines, which are dramatically reduced in JEV-infected Clec5a−/− macrophages. Although blockade of CLEC5A cannot inhibit JEV infection of neurons and astrocytes, anti-CLEC5A mAb inhibits JEV-induced proinflammatory cytokine release from microglia and prevents bystander damage to neuronal cells. Moreover, JEV causes blood-brain barrier (BBB) disintegrity and lethality in STAT1-deficient (Stat1 −/−) mice, whereas peripheral administration of anti-CLEC5A mAb reduces infiltration of virus-harboring leukocytes into the central nervous system (CNS), restores BBB integrity, attenuates neuroinflammation, and protects mice from JEV-induced lethality. Moreover, all surviving mice develop protective humoral and cellular immunity against JEV infection. These observations demonstrate the critical role of CLEC5A in the pathogenesis of Japanese encephalitis, and identify CLEC5A as a target for the development of new treatments to reduce virus-induced brain damage. PMID:22536153

  1. Epidemiology of Japanese encephalitis in the Philippines: a systematic review.

    PubMed

    Lopez, Anna Lena; Aldaba, Josephine G; Roque, Vito G; Tandoc, Amado O; Sy, Ava Kristy; Espino, Fe Esperanza; DeQuiroz-Castro, Maricel; Jee, Youngmee; Ducusin, Maria Joyce; Fox, Kimberley K

    2015-03-01

    Japanese encephalitis virus (JEV) is an important cause of encephalitis in most of Asia, with high case fatality rates and often significant neurologic sequelae among survivors. The epidemiology of JE in the Philippines is not well defined. To support consideration of JE vaccine for introduction into the national schedule in the Philippines, we conducted a systematic literature review and summarized JE surveillance data from 2011 to 2014. We conducted searches on Japanese encephalitis and the Philippines in four databases and one library. Data from acute encephalitis syndrome (AES) and JE surveillance and from the national reference laboratory from January 2011 to March 2014 were tabulated and mapped. We identified 29 published reports and presentations on JE in the Philippines, including 5 serologic surveys, 18 reports of clinical cases, and 8 animal studies (including two with both clinical cases and animal data). The 18 clinical studies reported 257 cases of laboratory-confirmed JE from 1972 to 2013. JE virus (JEV) was the causative agent in 7% to 18% of cases of clinical meningitis and encephalitis combined, and 16% to 40% of clinical encephalitis cases. JE predominantly affected children under 15 years of age and 6% to 7% of cases resulted in death. Surveillance data from January 2011 to March 2014 identified 73 (15%) laboratory-confirmed JE cases out of 497 cases tested. This comprehensive review demonstrates the endemicity and extensive geographic range of JE in the Philippines, and supports the use of JE vaccine in the country. Continued and improved surveillance with laboratory confirmation is needed to systematically quantify the burden of JE, to provide information that can guide prioritization of high risk areas in the country and determination of appropriate age and schedule of vaccine introduction, and to measure the impact of preventive measures including immunization against this important public health threat.

  2. Epidemiology of Japanese Encephalitis in the Philippines: A Systematic Review

    PubMed Central

    Lopez, Anna Lena; Aldaba, Josephine G.; Roque, Vito G.; Tandoc, Amado O.; Sy, Ava Kristy; Espino, Fe Esperanza; DeQuiroz-Castro, Maricel; Jee, Youngmee; Ducusin, Maria Joyce; Fox, Kimberley K.

    2015-01-01

    Background Japanese encephalitis virus (JEV) is an important cause of encephalitis in most of Asia, with high case fatality rates and often significant neurologic sequelae among survivors. The epidemiology of JE in the Philippines is not well defined. To support consideration of JE vaccine for introduction into the national schedule in the Philippines, we conducted a systematic literature review and summarized JE surveillance data from 2011 to 2014. Methods We conducted searches on Japanese encephalitis and the Philippines in four databases and one library. Data from acute encephalitis syndrome (AES) and JE surveillance and from the national reference laboratory from January 2011 to March 2014 were tabulated and mapped. Results We identified 29 published reports and presentations on JE in the Philippines, including 5 serologic surveys, 18 reports of clinical cases, and 8 animal studies (including two with both clinical cases and animal data). The 18 clinical studies reported 257 cases of laboratory-confirmed JE from 1972 to 2013. JE virus (JEV) was the causative agent in 7% to 18% of cases of clinical meningitis and encephalitis combined, and 16% to 40% of clinical encephalitis cases. JE predominantly affected children under 15 years of age and 6% to 7% of cases resulted in death. Surveillance data from January 2011 to March 2014 identified 73 (15%) laboratory-confirmed JE cases out of 497 cases tested. Summary This comprehensive review demonstrates the endemicity and extensive geographic range of JE in the Philippines, and supports the use of JE vaccine in the country. Continued and improved surveillance with laboratory confirmation is needed to systematically quantify the burden of JE, to provide information that can guide prioritization of high risk areas in the country and determination of appropriate age and schedule of vaccine introduction, and to measure the impact of preventive measures including immunization against this important public health threat

  3. Japanese encephalitis virus invasion of cell: allies and alleys.

    PubMed

    Nain, Minu; Abdin, Malik Z; Kalia, Manjula; Vrati, Sudhanshu

    2016-03-01

    The mosquito-borne flavivirus, Japanese encephalitis virus (JEV), is the leading cause of virus-induced encephalitis globally and a major public health concern of several countries in Southeast Asia, with the potential to become a global pathogen. The virus is neurotropic, and the disease ranges from mild fever to severe hemorrhagic and encephalitic manifestations and death. The early steps of the virus life cycle, binding, and entry into the cell are crucial determinants of infection and are potential targets for the development of antiviral therapies. JEV can infect multiple cell types; however, the key receptor molecule(s) still remains elusive. JEV also has the capacity to utilize multiple endocytic pathways for entry into cells of different lineages. This review not only gives a comprehensive update on what is known about the virus attachment and receptor system (allies) and the endocytic pathways (alleys) exploited by the virus to gain entry into the cell and establish infection but also discusses crucial unresolved issues. We also highlight common themes and key differences between JEV and other flaviviruses in these contexts. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Serosurveillance for Japanese encephalitis and West Nile viruses in resident birds in Hawai'i.

    PubMed

    Nemeth, Nicole M; Bosco-Lauth, Angela M; Sciulli, Rebecca H; Gose, Remedios B; Nagata, Mark T; Bowen, Richard A

    2010-04-01

    Japanese encephalitis virus (JEV) and West Nile virus (WNV) are emerging zoonotic arboviruses that have recently undergone intercontinental expansion. Both JEV and WNV are naturally transmitted between mosquito vectors and vertebrate reservoir hosts, including birds. A potential route of JEV introduction from Asia to western North America is via the Hawaiian archipelago, while the spread of WNV from mainland North America to Hawai'i is also considered an impending threat. We surveyed resident, non-native bird sera for antibodies to JEV and WNV on two Hawaiian Islands from 2004-2005. Three of 1,835 birds (0.16%) had evidence of antiflavivirus antibodies, demonstrating neutralizing activity to JEV and St. Louis encephalitis virus (SLEV). These detections could represent a limited transmission focus of either, or both, JEV and SLEV, or cross-reactive antibodies due to primary infection with an alternate flavivirus. Frequent air traffic from both Asia and North America to Hawai'i, along with the presence of probable competent vectors and amplifying vertebrate hosts in Hawai'i, increases the likelihood of introduction and maintenance of novel flaviviruses. Therefore, it is important to monitor for the presence of these viruses.

  5. Phylogeography of Japanese Encephalitis Virus: Genotype Is Associated with Climate

    PubMed Central

    Schuh, Amy J.; Ward, Melissa J.; Leigh Brown, Andrew J.; Barrett, Alan D. T.

    2013-01-01

    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate. PMID:24009790

  6. Phylogeography of Japanese encephalitis virus: genotype is associated with climate.

    PubMed

    Schuh, Amy J; Ward, Melissa J; Brown, Andrew J Leigh; Barrett, Alan D T

    2013-01-01

    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate.

  7. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus.

    PubMed

    Du, Ruikun; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2015-10-01

    Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus-host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

  8. Antibodies generated by immunization with the NS1 protein of West Nile virus confer partial protection against lethal Japanese encephalitis virus challenge.

    PubMed

    Sun, EnCheng; Zhao, Jing; TaoYang; Xu, QingYuan; Qin, YongLi; Wang, WenShi; Wei, Peng; Wu, DongLai

    2013-09-27

    Japanese encephalitis virus (JEV) and West Nile virus (WNV) are two medically important flaviviruses that can cause severe hemorrhagic and encephalitic diseases in humans. Immune responses directed against the NS1 protein of flaviviruses can confer protection against lethal viral challenge. Previous studies have shown that the WNV NS1 protein harbors epitopes that elicit antibodies that cross react with JEV. Here we demonstrate that the WNV NS1 protein not only contains cross-reactive epitopes, but that the antibodies elicited by these cross-reactive epitopes provide partial protection against lethal JEV challenge in a mouse model. Mice immunized with WNV NS1 protein showed reduced morbidity and mortality following both intracerebral and intraperitoneal JEV challenge. WNV NS1 immunization attenuated the extent of lung pathology generated following JEV challenge, and delayed the appearance of other pathological findings including vascular cuffing. By screening and identifying the specific WNV NS1 protein-derived peptides recognized by serum antibodies elicited by immunization with WNV NS1 protein and by JEV challenge, we found after JEV challenge will induce several new epitopes, but which epitope primarily contribute to antibody-mediated cross protection need further evaluation. The knowledge and reagents generated in this study have potential applications in vaccine and subunit vaccine development for WNV and JEV. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection.

    PubMed

    Sengupta, Nabonita; Ghosh, Sourish; Vasaikar, Suhas V; Gomes, James; Basu, Anirban

    2014-01-01

    In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥ 1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.

  10. Sampling Design Influences the Observed Dominance of Culex tritaeniorhynchus: Considerations for Future Studies of Japanese Encephalitis Virus Transmission

    PubMed Central

    Lord, Jennifer S.; Al-Amin, Hasan Mohammad; Chakma, Sumit; Alam, Mohammad Shafiul; Gurley, Emily S.; Pulliam, Juliet R. C.

    2016-01-01

    Mosquito sampling during Japanese encephalitis virus (JEV)-associated studies, particularly in India, has usually been conducted via aspirators or light traps to catch mosquitoes around cattle, which are dead-end hosts for JEV. High numbers of Culex tritaeniorhynchus, relative to other species, have often been caught during these studies. Less frequently, studies have involved sampling outdoor resting mosquitoes. We aimed to compare the relative abundance of mosquito species between these two previously used mosquito sampling methods. From September to December 2013 entomological surveys were undertaken in eight villages in a Japanese encephalitis (JE) endemic area of Bangladesh. Light traps were used to collect active mosquitoes in households, and resting boxes and a Bina Pani Das hop cage were used near oviposition sites to collect resting mosquitoes. Numbers of humans and domestic animals present in households where light traps were set were recorded. In five villages Cx. tritaeniorhynchus was more likely to be selected from light trap samples near hosts than resting collection samples near oviposition sites, according to log odds ratio tests. The opposite was true for Cx. pseudovishnui and Armigeres subalbatus, which can also transmit JEV. Culex tritaeniorhynchus constituted 59% of the mosquitoes sampled from households with cattle, 28% from households without cattle and 17% in resting collections. In contrast Cx. pseudovishnui constituted 5.4% of the sample from households with cattle, 16% from households with no cattle and 27% from resting collections, while Ar. subalbatus constituted 0.15%, 0.38%, and 8.4% of these samples respectively. These observations may be due to differences in timing of biting activity, host preference and host-seeking strategy rather than differences in population density. We suggest that future studies aiming to implicate vector species in transmission of JEV should consider focusing catches around hosts able to transmit JEV. PMID

  11. Sampling Design Influences the Observed Dominance of Culex tritaeniorhynchus: Considerations for Future Studies of Japanese Encephalitis Virus Transmission.

    PubMed

    Lord, Jennifer S; Al-Amin, Hasan Mohammad; Chakma, Sumit; Alam, Mohammad Shafiul; Gurley, Emily S; Pulliam, Juliet R C

    2016-01-01

    Mosquito sampling during Japanese encephalitis virus (JEV)-associated studies, particularly in India, has usually been conducted via aspirators or light traps to catch mosquitoes around cattle, which are dead-end hosts for JEV. High numbers of Culex tritaeniorhynchus, relative to other species, have often been caught during these studies. Less frequently, studies have involved sampling outdoor resting mosquitoes. We aimed to compare the relative abundance of mosquito species between these two previously used mosquito sampling methods. From September to December 2013 entomological surveys were undertaken in eight villages in a Japanese encephalitis (JE) endemic area of Bangladesh. Light traps were used to collect active mosquitoes in households, and resting boxes and a Bina Pani Das hop cage were used near oviposition sites to collect resting mosquitoes. Numbers of humans and domestic animals present in households where light traps were set were recorded. In five villages Cx. tritaeniorhynchus was more likely to be selected from light trap samples near hosts than resting collection samples near oviposition sites, according to log odds ratio tests. The opposite was true for Cx. pseudovishnui and Armigeres subalbatus, which can also transmit JEV. Culex tritaeniorhynchus constituted 59% of the mosquitoes sampled from households with cattle, 28% from households without cattle and 17% in resting collections. In contrast Cx. pseudovishnui constituted 5.4% of the sample from households with cattle, 16% from households with no cattle and 27% from resting collections, while Ar. subalbatus constituted 0.15%, 0.38%, and 8.4% of these samples respectively. These observations may be due to differences in timing of biting activity, host preference and host-seeking strategy rather than differences in population density. We suggest that future studies aiming to implicate vector species in transmission of JEV should consider focusing catches around hosts able to transmit JEV.

  12. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus.

    PubMed

    Wang, Shaobo; Liu, Haibin; Zu, Xiangyang; Liu, Yang; Chen, Liman; Zhu, Xueqin; Zhang, Leike; Zhou, Zheng; Xiao, Gengfu; Wang, Wei

    2016-11-01

    The host-virus interaction during the cellular entry of Japanese encephalitis virus (JEV) is poorly characterized. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. Here, we showed that the proteasome inhibitors, MG132 and lactacystin, impaired the productive entry of JEV by effectively interfering with viral intracellular trafficking at the stage between crossing cell membrane and the initial translation of the viral genome after uncoating. Using confocal microscopy, it was demonstrated that a proportion of the internalized virions were misdirected to lysosomes following treatment with MG132, resulting in non-productive entry. In addition, using specific siRNAs targeting ubiquitin, we verified that protein ubiquitination was involved in the entry of JEV. Overall, our study demonstrated the UPS is essential for the productive entry of JEV and might represent a potential antiviral target for JEV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Epidemiologic Survey of Japanese Encephalitis Virus Infection, Tibet, China, 2015

    PubMed Central

    Zhang, Hui; Rehman, Mujeeb Ur; Li, Kun; Luo, Houqiang; Lan, Yanfang; Nabi, Fazul; Zhang, Lihong; Iqbal, Muhammad Kashif; Zhu, Suolangsi; Javed, Muhammad Tariq; Chamba, Yangzom

    2017-01-01

    We investigated Japanese encephalitis virus (JEV) prevalence in high-altitude regions of Tibet, China, by using standard assays to test mosquitoes, pigs, and humans. Results confirmed that JEV has spread to these areas. Disease prevention and control strategies should be used along with surveillance to limit spread of JEV in high-altitude regions of Tibet. PMID:28518046

  14. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  15. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system

    PubMed Central

    Huang, Lihong; Liu, Shukai; Zang, Fuyu; Xing, Jinchao; Zhang, Youyue; Liang, Jiaqi; Zhang, Guihong

    2017-01-01

    In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS. PMID:28740748

  16. GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells.

    PubMed

    Nain, Minu; Mukherjee, Sriparna; Karmakar, Sonali Porey; Paton, Adrienne W; Paton, James C; Abdin, M Z; Basu, Anirban; Kalia, Manjula; Vrati, Sudhanshu

    2017-03-15

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the leading cause of viral encephalitis in Southeast Asia with potential to become a global pathogen. Here, we identify glucose-regulated protein 78 (GRP78) as an important host protein for virus entry and replication. Using the plasma membrane fractions from mouse neuronal (Neuro2a) cells, mass spectroscopy analysis identified GRP78 as a protein interacting with recombinant JEV envelope protein domain III. GRP78 was found to be expressed on the plasma membranes of Neuro2a cells, mouse primary neurons, and human epithelial Huh-7 cells. Antibodies against GRP78 significantly inhibited JEV entry in all three cell types, suggesting an important role of the protein in virus entry. Depletion of GRP78 by small interfering RNA (siRNA) significantly blocked JEV entry into Neuro2a cells, further supporting its role in virus uptake. Immunofluorescence studies showed extensive colocalization of GRP78 with JEV envelope protein in virus-infected cells. This interaction was also confirmed by immunoprecipitation studies. Additionally, GRP78 was shown to have an important role in JEV replication, as treatment of cells post-virus entry with subtilase cytotoxin that specifically cleaved GRP78 led to a substantial reduction in viral RNA replication and protein synthesis, resulting in significantly reduced extracellular virus titers. Our results indicate that GRP78, an endoplasmic reticulum chaperon of the HSP70 family, is a novel host factor involved at multiple steps of the JEV life cycle and could be a potential therapeutic target. IMPORTANCE Recent years have seen a rapid spread of mosquito-borne diseases caused by flaviviruses. The flavivirus family includes West Nile, dengue, Japanese encephalitis, and Zika viruses, which are major threats to public health with potential to become global pathogens. JEV is the major cause of viral encephalitis in several parts of Southeast Asia, affecting a predominantly pediatric

  17. Rab5 and Rab11 Are Required for Clathrin-Dependent Endocytosis of Japanese Encephalitis Virus in BHK-21 Cells.

    PubMed

    Liu, Chun-Chun; Zhang, Yun-Na; Li, Zhao-Yao; Hou, Jin-Xiu; Zhou, Jing; Kan, Lin; Zhou, Bin; Chen, Pu-Yan

    2017-10-01

    During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses. IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that

  18. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs

    PubMed Central

    García-Nicolás, Obdulio; Ricklin, Meret E.; Liniger, Matthias; Vielle, Nathalie J.; Python, Sylvie; Souque, Philippe; Charneau, Pierre; Summerfield, Artur

    2017-01-01

    The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs. PMID:28531165

  19. Molecular epidemiology of Japanese encephalitis in northern Vietnam, 1964-2011: genotype replacement.

    PubMed

    Do, Loan Phuong; Bui, Trang Minh; Hasebe, Futoshi; Morita, Kouichi; Phan, Nga Thi

    2015-04-01

    Japanese encephalitis virus (JEV) is an arthropod-borne virus causing serious public health issues in Asia. JEV consists of five genotypes and recent studies have shown the emergence of JEV genotype I (GI) and its replacement of genotype III (GIII). Using an archival JEV collection, we investigated the molecular evolution of JEV in Vietnam over the last 48 years (1964-2012) in humans, mosquitoes, and pigs, within the global context. The nine JEV isolates from humans, pigs, and mosquitoes sequenced in this study and 29 sequences available in GenBank were used to analyze the envelope (E) protein of the Vietnamese JEVs. A collection of 225 cerebrospinal fluid specimens from patients with suspected Japanese encephalitis (JE) was also tested and genotyped with real-time RT-PCR. The 38 E genes identified with sequencing and nine Vietnamese JEV strains genotyped with real-time RT-PCR, belonging to two lineages, evolved in accordance with those in the rest of the world. The first GIII strain was detected in humans in Vietnam in 1964, and in mosquitoes in 1979, whereas GI strains were first detected in humans and mosquitoes in 1990 and 1994, respectively. After 2004, GI was the only genotype detected in Vietnam, demonstrating that the GIIII strains had been displaced by GI strains. Five haplotypes were identified in the Vietnamese JEVs, with SKSS predominant. The S123N and S123R substitutions in the E protein were already present in the Vietnamese JEVs. This study describes the long evolutionary history of JEV in Vietnam over 34 years, which correlates well with the global evolution of JEV. The Vietnamese GIII strains have been replaced by GI strains in mosquitoes, pigs, and humans. The predominant haplotypes of the Vietnamese strains support this genotype displacement in Vietnam. Further surveillance is required to confirm the disappearance of the GIII strains in nature and the emergence of new pathogens causing encephalitis in Vietnam, after the long-term use of JEV

  20. Safety and immunogenicity of a freeze-dried, Vero cell culture-derived, inactivated Japanese encephalitis vaccine (KD-287, ENCEVAC®) versus a mouse brain-derived inactivated Japanese encephalitis vaccine in children: a phase III, multicenter, double-blinded, randomized trial.

    PubMed

    Yun, Ki Wook; Lee, Hoan Jong; Kang, Jin Han; Eun, Byung Wook; Kim, Yae-Jean; Kim, Kyung-Hyo; Kim, Nam Hee; Hong, Young Jin; Kim, Dong Ho; Kim, Hwang Min; Cha, Sung-Ho

    2015-01-08

    Although mouse brain-derived, inactivated Japanese encephalitis vaccines (JE-MBs) have been successfully used for a long time, potential rare neurological complications have prompted the development of a Vero cell culture-derived inactivated vaccine (JE-VC). In a phase III clinical study, we aimed to compare the safety and immunogenicity of a JE-VC, KD-287 with a JE-MB, JEV-GCC, in children. In this multicenter, double-blinded, randomized controlled trial, the study population consisted of 205 healthy Korean children aged 12-23 months. Each subject was subcutaneously vaccinated with either KD-287 or JEV-GCC twice at an interval of 2 weeks and then vaccinated once 12 months after the second vaccination. Neutralizing antibodies were measured by the plaque reduction neutralization test using the homologous and heterologous, as a post hoc analysis, challenge virus strains. The three-dose regimen of KD-287 showed a comparable safety profile with JEV-GCC except higher incidence of fever after the first dose (30.4% and 14.7%, respectively). Most of the fever was mild degree (61.3% and 66.7%, respectively). KD-287 fulfilled the non-inferiority criteria for seroconversion rate (SCR) and geometric mean titer (GMT) of the neutralizing antibody, which were the primary endpoints, at 4 weeks after the third vaccination (95% CI: -1.00, 3.10 for the SCR difference and 10.8, 17.6 for the GMT ratio). The SCRs of KD-287 were all 100% and the GMTs were higher in the KD-287 group than in the JEV-GCC group after the second vaccination and before and after the third vaccination (GMT ratio: 5.59, 20.13, and 13.79, respectively, p < 0.001 in all). GMTs were higher in the KD-287 group in the heterologous analysis also (GMT ratio: 4.05, 5.15, and 4.19, respectively, p < 0.001 in all). This study suggests that the KD-287, a JE-VC is as safe as and may be more effective than the licensed MB-derived vaccine. KD-287 could thus be useful as a second-generation vaccine and substitute

  1. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006-2012.

    PubMed

    Chai, Chunxia; Wang, Qiao; Cao, Sanjie; Zhao, Qin; Wen, Yiping; Huang, Xiaobo; Wen, Xintian; Yan, Qiguai; Ma, Xiaoping; Wu, Rui

    2018-01-31

    Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing viral encephalitis in humans and reproductive disorder in swine. JEV is prevalent throughout China in human; however, spatiotemporal analysis of JEV in Chinese swine herds has not been reported previously. Herein, we present serological and molecular epidemiological results and estimates of prevalence of JEV infections among swine herds in various regions of China. The results suggest that JEV infections are widespread and genotype I and III strains co-exist in the same regions. Therefore, there is an urgent need to monitor JEV infection status among swine herds in China.

  2. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006–2012

    PubMed Central

    Chai, Chunxia; Wang, Qiao; Cao, Sanjie; Zhao, Qin; Wen, Yiping; Huang, Xiaobo; Wen, Xintian; Yan, Qiguai; Ma, Xiaoping

    2018-01-01

    Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing viral encephalitis in humans and reproductive disorder in swine. JEV is prevalent throughout China in human; however, spatiotemporal analysis of JEV in Chinese swine herds has not been reported previously. Herein, we present serological and molecular epidemiological results and estimates of prevalence of JEV infections among swine herds in various regions of China. The results suggest that JEV infections are widespread and genotype I and III strains co-exist in the same regions. Therefore, there is an urgent need to monitor JEV infection status among swine herds in China. PMID:28693301

  3. The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal.

    PubMed

    Impoinvil, Daniel E; Solomon, Tom; Schluter, W William; Rayamajhi, Ajit; Bichha, Ram Padarath; Shakya, Geeta; Caminade, Cyril; Baylis, Matthew

    2011-01-01

    To identify potential environmental drivers of Japanese Encephalitis virus (JE) transmission in Nepal, we conducted an ecological study to determine the spatial association between 2005 Nepal JE incidence, and climate, agricultural, and land-cover variables at district level. District-level data on JE cases were examined using Local Indicators of Spatial Association (LISA) analysis to identify spatial clusters from 2004 to 2008 and 2005 data was used to fit a spatial lag regression model with climate, agriculture and land-cover variables. Prior to 2006, there was a single large cluster of JE cases located in the Far-West and Mid-West terai regions of Nepal. After 2005, the distribution of JE cases in Nepal shifted with clusters found in the central hill areas. JE incidence during the 2005 epidemic had a stronger association with May mean monthly temperature and April mean monthly total precipitation compared to mean annual temperature and precipitation. A parsimonious spatial lag regression model revealed, 1) a significant negative relationship between JE incidence and April precipitation, 2) a significant positive relationship between JE incidence and percentage of irrigated land 3) a non-significant negative relationship between JE incidence and percentage of grassland cover, and 4) a unimodal non-significant relationship between JE Incidence and pig-to-human ratio. JE cases clustered in the terai prior to 2006 where it seemed to shift to the Kathmandu region in subsequent years. The spatial pattern of JE cases during the 2005 epidemic in Nepal was significantly associated with low precipitation and the percentage of irrigated land. Despite the availability of an effective vaccine, it is still important to understand environmental drivers of JEV transmission since the enzootic cycle of JEV transmission is not likely to be totally interrupted. Understanding the spatial dynamics of JE risk factors may be useful in providing important information to the Nepal

  4. Breeding patterns of the JE vector Culex gelidus and its insect predators in rice cultivation areas of northern peninsular Malaysia.

    PubMed

    Abu Hassan, A; Hamady, D; Tomomitsu, S; Michael, B; Jameel S L, A S

    2010-12-01

    Japanese encephalitis (JE) virus activity is an important cause of viral encephalitis in Southeast Asia. In Malaysia, JEV activity has been first detected in Culex gelidus in 1976. Since then, no study has fully addressed the seasonal dynamics of this mosquito. As irrigated rice production expands, the incidence of JEV vectors, particularly Cx. gelidus is expected to increase. We surveyed Penang Island to determine the breeding patterns of Cx. gelidus and their potential insect predators, in relation to habitat/niche and rice growing period. Six rice fields proper (RFP) and related drainage canals (DC) were visited through three cultivation cycles (CCs) over 17 months. Weekly visits were performed to each of the 36 sites and mosquito larvae and aquatic insects were sampled from RFP and DCs using dippers. Culex gelidus was abundant in RFP and almost absent in DCs. Its densities usually were high during the first and 3rd CC and when the RFs were in Fp, Pp and Gp. In DCs, the mosquito was abundant during Mp, e.g., 2nd CC. Predators, especially those belonging to the families Corixidae, Coenagrionidae and Dytiscidae, were more present in RFP. Predator numbers usually were high during the first CC; in some cases predator abundance peaked during other CCs, e.g., corixids and dysticids. In RFP, neither corixids nor coenagrionids showed any positive correlation with densities of Cx. gelidus. However, dytiscids' population peaked when the mosquito densities were on the rise. These observations suggest that Cx. gelidus is active during the period of rice cultivation. Operational vector control through bio-control or with insecticides near the end of the rice cultivation season in RFP may prove beneficial in reducing the density of Cx. gelidus, but also the amount of bio-agent or insecticide applied on riceland.

  5. Phylogeographic analysis of Japanese encephalitis virus in India (1956-2012).

    PubMed

    Cherian, Sarah S; Walimbe, A M

    2015-12-01

    Japanese encephalitis virus (JEV) isolates from India phylogenetically belong to two genotypes, III and I. We used envelope gene sequences from GenBank, representing different states of India and other countries, to study the spatiotemporal transmission histories of these two JEV genotypes separately. Genotype III was found to have been successively introduced in the 1930s, 1950s and 1960s, followed by genotype I twice around 2003-2006. Changes in JEV disease patterns in India over the last five decades could thus be attributed to multiple introductions of JEV strains from neighboring Asian countries along with increased transmission potential due to altered ecological settings.

  6. Integrin αvβ3 promotes infection by Japanese encephalitis virus.

    PubMed

    Fan, Wenchun; Qian, Ping; Wang, Dandan; Zhi, Xianwei; Wei, Yanming; Chen, Huanchun; Li, Xiangmin

    2017-04-01

    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is one of the major causes of viral encephalitis diseases worldwide. The JEV envelope protein facilitates viral entry, and its domain III contains an Arg-Gly-Asp (RGD) motif, that may modulate JEV entry through the RGD-binding integrin. In this study, the roles of integrin αv and β3 on the infection of JEV were evaluated. Reduced expression of integrin αv/β3 by special shRNA confers 2 to 4-fold inhibition of JEV replication in BHK-21 cells. Meanwhile, antibodies specific for integrin αv/β3 displayed ~58% and ~33% inhibition of JEV infectivity and RGD-specific peptides produced ~36% of inhibition. Expression of E protein and JEV RNA loads were clearly increased in CHO cells transfected with cDNA encoding human integrin β3. Moreover, integrin αv mediates JEV infection in viral binding stage of life cycle. Therefore, our study suggested that integrin αv and β3 serve as a host factor associated with JEV entry into the target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Complete genome analysis and molecular characterization of Usutu virus that emerged in Austria in 2001: comparison with the South African strain SAAR-1776 and other flaviviruses.

    PubMed

    Bakonyi, Tamás; Gould, Ernest A; Kolodziejek, Jolanta; Weissenböck, Herbert; Nowotny, Norbert

    2004-10-25

    Here we describe the complete genome sequences of two strains of Usutu virus (USUV), a mosquito-borne member of the genus Flavivirus in the Japanese encephalitis virus (JEV) serogroup. USUV was detected in Austria in 2001 causing a high mortality rate in blackbirds; the reference strain (SAAR-1776) was isolated in 1958 from mosquitoes in South Africa and has never been associated with avian mortality. The Austrian and South African isolates exhibited 97% nucleotide and 99% amino acid identity. Phylogenetic trees were constructed displaying the genetic relationships of USUV with other members of the genus Flavivirus. When comparing USUV with other JEV serogroup viruses, the closest lineage was Murray Valley encephalitis virus (nt: 73%, aa: 82%) followed by JEV (nt: 71%, aa: 81%) and West Nile virus (nt: 68%, aa: 75%). Comparison of the genomes showed that the conserved structural elements and putative enzyme motifs were homologous in the two USUV strains and the JEV serogroup. The factors that determine the severe clinical symptoms caused by the Austrian USUV strain in Eurasian blackbirds are discussed. We also offer a possible explanation for the origins and dispersal of USUV, JEV, and MVEV out of Africa.

  8. Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon.

    PubMed

    Suzuki, Ryosuke; Ishikawa, Tomohiro; Konishi, Eiji; Matsuda, Mami; Watashi, Koichi; Aizaki, Hideki; Takasaki, Tomohiko; Wakita, Takaji

    2014-01-01

    A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid-pre-membrane-envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful trans-complementation with JEV structural proteins. Equivalent production levels were observed when C and prM-E proteins were provided separately. Furthermore, dengue types 1-4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.

  9. Effect of cytokine-encoding plasmid delivery on immune response to Japanese encephalitis virus DNA vaccine in mice.

    PubMed

    Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2005-01-01

    We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.

  10. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes.

    PubMed

    Sharma, Manish; Bhattacharyya, Sankar; Nain, Minu; Kaur, Manpreet; Sood, Vikas; Gupta, Vishal; Khasa, Renu; Abdin, Malik Z; Vrati, Sudhanshu; Kalia, Manjula

    2014-09-01

    Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.

  11. Brain microvascular endothelial-astrocyte cell responses following Japanese encephalitis virus infection in an in vitro human blood-brain barrier model.

    PubMed

    Patabendige, Adjanie; Michael, Benedict D; Craig, Alister G; Solomon, Tom

    2018-06-01

    Japanese encephalitis virus (JEV) remains a leading cause of encephalitis, globally, which continues to grow in importance despite the availability of vaccines. Viral entry into the brain can occur via the blood-brain barrier (BBB), and inflammation at the BBB is a common final pathway in many brain infections. However, the role of the BBB during JEV infection and the contribution of the endothelial and astrocytic cell inflammation in facilitating virus entry into the brain are incompletely understood. We established a BBB model using human brain endothelial cells (HBECs) and human astrocytes. HBECs are polarised, and therefore the model was inoculated by JEV from the apical side to simulate the in vivo situation. The effects of JEV on the BBB permeability and release of inflammatory mediators from both apical and basolateral sides, representing the blood and the brain side respectively were investigated. JEV infected HBECs with limited active virus production, before crossing the BBB and infecting astrocytes. Control of JEV production by HBECs was associated with a significant increase in permeability, and with elevation of many host mediators, including cytokines, chemokines, cellular adhesion molecules, and matrix metalloproteases. When compared to the controls, significantly higher amounts of mediators were released from the apical side as opposed to the basolateral side. The increased release of mediators over time also correlated with increased BBB permeability. Treatment with dexamethasone led to a significant reduction in the release of interleukin 6 (IL6), C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) from the apical side with a reduction in BBB disruption and no change in JEV production. The results are consistent with the hypothesis that JEV infection of the BBB triggers the production of a range of host mediators from both endothelial cells and astrocytes, which control JEV production but disrupt BBB integrity thus

  12. Entomological investigations into an epidemic of Japanese encephalitis (JE) in northern districts of West Bengal, India (2011-2012).

    PubMed

    Mariappan, T; Samuel, P Philip; Thenmozhi, V; Paramasivan, R; Sharma, Puran Kumar; Biswas, Asit Kumar; Tyagi, B K

    2014-05-01

    Japanese encephalitis (JE) is one of the most important arboviral diseases of human beings with outbreaks in many parts of Southeast Asia including India. We present the entomological findings of an outbreak occurred in northern part of West Bengal during 2011-2012 with special emphasis on the role of JE vectors in different seasons. Adult mosquito collections were made with the help of mouth aspirators, aided by flash lights during day time resting inside human and animal habitations as indoor, and resting outside field grasses, bushes, underneath of culverts and bridges as outdoor, and in and around the pig enclosures and cattle sheds during dusk period in JE affected villages from Cooch Behar, Dakshin Dinajpur, Darjeeling and Jalpaiguri districts in North West Bengal. In all study villages, a long handled with enamel bowl dipper was used to obtain immature stages of mosquitoes from various breeding habitats. A total of 19 different types of mosquito breeding habitats were examined for vectors of JE. From these habitats, 23.7 per cent were positive for breeding during the study period. Overall, nine different species were recorded through emergence, but none was positive for JE virus when subjected for detection of virus. Adult mosquitoes of more than 50 per cent of the potential JE vector species obtained through dusk and the rest through indoor and outdoor collections in all seasons. Altogether, 27 different species were recorded. Most of these were JE vectors. Our results showed that in addition to Cx. vishnui subgroup, detection of JE virus antigen in Cx. quinquefasciatus indicated the possible maintenance of JE virus in nature through poor vector mosquitoes throughout the year. Since, all potential vector species reported elsewhere in India were also found in this region and fluctuated in density in different seasons, a proper integrated vector control programme needs to be implemented to control JE transmission.

  13. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USDA-ARS?s Scientific Manuscript database

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) to assess possible involvement of this species in the transmission and spread of economically impor...

  14. Serological evidence of widespread West Nile virus and Japanese encephalitis virus infection in native domestic ducks (Anas platyrhynchos var domesticus) in Kuttanad region, Kerala, India.

    PubMed

    Kalaiyarasu, Semmannan; Mishra, Niranjan; Khetan, Rohit Kumar; Singh, Vijendra Pal

    2016-10-01

    Birds can act as reservoirs of West Nile virus (WNV) with a key role in its epidemiology. WNV lineage 1 associated fatal cases of human encephalitis in 2011 and acute flaccid paralysis in 2013 were reported in Alappuzha district, Kerala, India. But no information is available on WNV circulation in domestic ducks, which are abundant, cohabit with humans and occupy wetlands and water bodies in the region. To determine the extent of WNV infection, we investigated 209 sera, 250 oral and 350 cloacal swab samples from local Chara and Chemballi domestic ducks (Anas platyrhynchos var domesticus) in the districts of Alappuzha, Kottayam, Kollam and Pathanamthitta collected during January and March 2015. The serum samples were tested for WNV antibodies first by a competition ELISA and then by a micro virus neutralization test (micro-VNT), while oral and cloacal swabs were subjected to WNV real-time RT-PCR. Ninety five ducks showed evidence of flavivirus antibodies by ELISA. End point neutralizing antibody titre against WNV and Japanese encephalitis virus (JEV) revealed WNV specific antibodies in 24 (11.5%) ducks in 3 districts, JEV specific antibodies in 21 (10%) ducks in 2 districts and flavivirus specific antibodies in 19 (9%) ducks. However, no WNV genomic RNA could be detected. The results of this study demonstrate evidence of widespread WNV and JEV infection in domestic ducks in Kuttanad region, Kerala with a higher seroprevalence to WNV than JEV. Additionally, it highlights the utility of domestic ducks as a surveillance tool to detect WNV/JEV circulation in a region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges.

    PubMed

    Huang, Yi-Ting; Liao, Jia-Teh; Yen, Li-Chen; Chang, Yung-Kun; Lin, Yi-Ling; Liao, Ching-Len

    2015-09-11

    To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.

  16. Mutation of I176R in the E coding region weakens Japanese encephalitis virus neurovirulence, but not its growth rate in BHK-21 cells.

    PubMed

    Zhou, Yuyong; Wu, Rui; Zhao, Qin; Chang, Yung-Fu; Wen, Xintian; Feng, Yao; Huang, Xiaobo; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Han, Xinfeng; Cao, Sanjie

    2018-05-01

    Previously, we isolated the Japanese encephalitis virus (JEV) strain SCYA201201. In this study, we passed the SCYA201201 strain in Syrian baby hamster kidney (BHK-21) cells 120 times to obtain the SCYA201201-0901 strain, which exhibited an attenuated phenotype in mice. Comparison of SCYA201201-0901 amino acid sequences with those of other JEV strains revealed a single mutation, I176R, in the E coding region. Using reverse genetic technology, we provide evidence that this single E-I176R mutation does not affect virus growth in BHK-21 cells but significantly decreases JEV neurovirulence in mice. This study provides critical information for understanding the molecular mechanism of JEV attenuation.

  17. Structural Study of the C-Terminal Domain of Nonstructural Protein 1 from Japanese Encephalitis Virus.

    PubMed

    Poonsiri, Thanalai; Wright, Gareth S A; Diamond, Michael S; Turtle, Lance; Solomon, Tom; Antonyuk, Svetlana V

    2018-04-01

    Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal β-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships. IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in

  18. The Spatial Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal

    PubMed Central

    Impoinvil, Daniel E.; Solomon, Tom; Schluter, W. William; Rayamajhi, Ajit; Bichha, Ram Padarath; Shakya, Geeta; Caminade, Cyril; Baylis, Matthew

    2011-01-01

    Background To identify potential environmental drivers of Japanese Encephalitis virus (JE) transmission in Nepal, we conducted an ecological study to determine the spatial association between 2005 Nepal JE incidence, and climate, agricultural, and land-cover variables at district level. Methods District-level data on JE cases were examined using Local Indicators of Spatial Association (LISA) analysis to identify spatial clusters from 2004 to 2008 and 2005 data was used to fit a spatial lag regression model with climate, agriculture and land-cover variables. Results Prior to 2006, there was a single large cluster of JE cases located in the Far-West and Mid-West terai regions of Nepal. After 2005, the distribution of JE cases in Nepal shifted with clusters found in the central hill areas. JE incidence during the 2005 epidemic had a stronger association with May mean monthly temperature and April mean monthly total precipitation compared to mean annual temperature and precipitation. A parsimonious spatial lag regression model revealed, 1) a significant negative relationship between JE incidence and April precipitation, 2) a significant positive relationship between JE incidence and percentage of irrigated land 3) a non-significant negative relationship between JE incidence and percentage of grassland cover, and 4) a unimodal non-significant relationship between JE Incidence and pig-to-human ratio. Conclusion JE cases clustered in the terai prior to 2006 where it seemed to shift to the Kathmandu region in subsequent years. The spatial pattern of JE cases during the 2005 epidemic in Nepal was significantly associated with low precipitation and the percentage of irrigated land. Despite the availability of an effective vaccine, it is still important to understand environmental drivers of JEV transmission since the enzootic cycle of JEV transmission is not likely to be totally interrupted. Understanding the spatial dynamics of JE risk factors may be useful in providing

  19. Entomological investigations into an epidemic of Japanese encephalitis (JE) in northern districts of West Bengal, India (2011-2012)

    PubMed Central

    Mariappan, T.; Samuel, P. Philip; Thenmozhi, V.; Paramasivan, R.; Sharma, Puran Kumar; Biswas, Asit Kumar; Tyagi, B.K.

    2014-01-01

    Background & objectives: Japanese encephalitis (JE) is one of the most important arboviral diseases of human beings with outbreaks in many parts of Southeast Asia including India. We present the entomological findings of an outbreak occurred in northern part of West Bengal during 2011-2012 with special emphasis on the role of JE vectors in different seasons. Methods: Adult mosquito collections were made with the help of mouth aspirators, aided by flash lights during day time resting inside human and animal habitations as indoor, and resting outside field grasses, bushes, underneath of culverts and bridges as outdoor, and in and around the pig enclosures and cattle sheds during dusk period in JE affected villages from Cooch Behar, Dakshin Dinajpur, Darjeeling and Jalpaiguri districts in North West Bengal. In all study villages, a long handled with enamel bowl dipper was used to obtain immature stages of mosquitoes from various breeding habitats. Results: A total of 19 different types of mosquito breeding habitats were examined for vectors of JE. From these habitats, 23.7 per cent were positive for breeding during the study period. Overall, nine different species were recorded through emergence, but none was positive for JE virus when subjected for detection of virus. Adult mosquitoes of more than 50 per cent of the potential JE vector species obtained through dusk and the rest through indoor and outdoor collections in all seasons. Altogether, 27 different species were recorded. Most of these were JE vectors. Interpretation & conclusions: Our results showed that in addition to Cx. vishnui subgroup, detection of JE virus antigen in Cx. quinquefasciatus indicated the possible maintenance of JE virus in nature through poor vector mosquitoes throughout the year. Since, all potential vector species reported elsewhere in India were also found in this region and fluctuated in density in different seasons, a proper integrated vector control programme needs to be implemented

  20. Inhibition of aldolase A blocks biogenesis of ATP and attenuates Japanese encephalitis virus production.

    PubMed

    Tien, Chih-Feng; Cheng, Shih-Ching; Ho, Yen-Peng; Chen, Yi-Shiuan; Hsu, Jung-Hsin; Chang, Ruey-Yi

    2014-01-10

    Viral replication depends on host proteins to supply energy and replication accessories for the sufficient production of viral progeny. In this study, we identified fructose-bisphosphate aldolase A as a binding partner of Japanese encephalitis virus (JEV) untranslated regions (UTRs) on the antigenome via RNA affinity capture and mass spectrometry. Direct interaction of aldolase A with JEV RNAs was confirmed by gel mobility shift assay and colocalization with active replication of double-stranded RNA in JEV-infected cells. Infection of JEV caused an increase in aldolase A expression of up to 33%. Knocking down aldolase A reduced viral translation, genome replication, and viral production significantly. Furthermore, JEV infection consumed 50% of cellular ATP, and the ATP level decreased by 70% in the aldolase A-knockdown cells. Overexpression of aldolase A in aldolase A-knockdown cells increased ATP levels significantly. Taken together, these results indicate that JEV replication requires aldolase A and consumes ATP. This is the first report of direct involvement of a host metabolic enzyme, aldolase A protein, in JEV replication. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Analysis of ChimeriVax Japanese Encephalitis Virus envelope for T-cell epitopes and comparison to circulating strain sequences.

    PubMed

    De Groot, Anne S; Martin, William; Moise, Leonard; Guirakhoo, Farshad; Monath, Thomas

    2007-11-19

    T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.

  2. Surveillance of Japanese Encephalitis Virus Infection in Mosquitoes in Vietnam from 2006 to 2008

    PubMed Central

    Kuwata, Ryusei; Nga, Phan Thi; Yen, Nguyen Thi; Hoshino, Keita; Isawa, Haruhiko; Higa, Yukiko; Hoang, Nguyen Vet; Trang, Bui Minh; Loan, Do Phuong; Phong, Tran Vu; Sasaki, Toshinori; Tsuda, Yoshio; Kobayashi, Mutsuo; Sawabe, Kyoko; Takagi, Masahiro

    2013-01-01

    Japanese encephalitis virus (JEV) infection in mosquitoes was monitored in Vietnam from 2006 to 2008. A total of 15,225 mosquitoes, identified as 26 species in five genera were collected and 12,621 were grouped into 447 pools for examination of JEV infection by assays for cytopathic effects in C6/36 cells and by RT-PCR to detect flavivirus RNA. Three JEV strains were isolated from Culex tritaeniorhynchus Giles collected in northern and southern Vietnam and two JEV strains were isolated from Culex vishnui Theobald collected in the highlands of Vietnam. Genetic and phylogenetic analyses, based on complete E gene nucleotide sequences, revealed that the five JEV strains were classified into the genotype I group and six amino acid differences were found in these five strains. These results indicated that multiple JEV genotype I populations are circulating countrywide in Vietnam, transmitted by bites of their Cx. tritaeniorhynchus and Cx. vishnui. PMID:23358634

  3. Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    PubMed Central

    Chen, Hui; Gao, Na; Fan, Dongying; Wu, Jiangman; Zhu, Junping; Li, Jieqiong; Wang, Juan; Chen, Yanlei; An, Jing

    2012-01-01

    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF. PMID:22493704

  4. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    PubMed

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  5. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  6. Detection and isolation of Japanese encephalitis virus from blood clots collected during the acute phase of infection.

    PubMed

    Sapkal, Gajanan N; Wairagkar, Nitin S; Ayachit, Vijay M; Bondre, Vijay P; Gore, Milind M

    2007-12-01

    Clinical specimens from an encephalitis outbreak in the Lakhimpur area of Uttar Pradesh, India, were investigated for identification and characterization of the etiologic agent. IgM capture ELISA showed recent Japanese encephalitis virus (JEV) infection. JEV isolation was attempted from white blood cells (WBCs) separated from blood clots of 12 patients (9 IgM positive and 3 negative) by serial co-culturing with phytohemagglutinin P-stimulated peripheral blood mononuclear leukocytes (PBMCs) obtained from pre-screened JEV sero-negative healthy individuals. JEV was isolated from two IgM-positive blood clots. Isolate 014178 was detected in WBCs and in the first passage of PBMCs by ELISA and reverse transcriptase-polymerase chain reaction. Isolate 014173 was detectable only after a second passage in PBMC co-culture. Sequence analysis of 346 nt of the C-prM region showed homology with JEV strain GP78. This is the first report on isolation of JEV from patient blood clots. Our study shows that the co-cultures of PBMCs separated from patient blood clots provide an additional source for JEV isolation.

  7. Japanese encephalitis virus NS1' protein depends on pseudoknot secondary structure and is cleaved by caspase during virus infection and cell apoptosis.

    PubMed

    Sun, Jin; Yu, Yongxin; Deubel, Vincent

    2012-09-01

    Japanese encephalitis virus (JEV) is a flavivirus with a complex life cycle involving mosquito vectors that mainly target birds and pigs, and causes severe encephalitis in children in Asia. Neurotropic flaviviruses of the JEV serogroup have a particular characteristic of expressing a unique nonstructural NS1' protein, which is a prolongation of NS1 at the C terminus by 52 amino acids derived from a pseudoknot-driven-1 translation frameshift. Protein NS1' is associated with virus neuro-invasiveness. In this study, the need of the pseudoknot structure for NS1' synthesis was confirmed. By using a specific antibody against the prolonged peptide, NS1' was found to be absent from the JEV SA14-14-2 vaccine strain, resulting from a single nucleotide silent mutation in the pseudoknot. A partial cleavage of NS1' at a specific site of its C-terminal appendix recognized by caspases and inhibited by caspase inhibitors suggests a unique feature of intracellular NS1'. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Epitope-blocking enzyme-linked immunosorbent assay to differentiate west nile virus from Japanese encephalitis virus infections in equine sera.

    PubMed

    Kitai, Yoko; Shoda, Mizue; Kondo, Takashi; Konishi, Eiji

    2007-08-01

    West Nile virus (WNV) is now widely distributed worldwide, except in most areas of Asia where Japanese encephalitis virus (JEV) is distributed. Considering the movement and migration of reservoir birds, there is concern that WNV may be introduced in Asian countries. Although manuals and guidelines for serological tests have been created in Japan in preparedness for the introduction of WNV, differential diagnosis between WNV and JEV may be complicated by antigenic cross-reactivities between these flaviviruses. Here, we generated a monoclonal antibody specific for the nonstructural protein 1 (NS1) of WNV and established an epitope-blocking enzyme-linked immunosorbent assay that can differentiate WNV from JEV infections in horse sera. Under conditions well suited for our assay system, samples collected from 95 horses in Japan (regarded as negative for WNV antibodies), including those collected from horses naturally infected with JEV, showed a mean inhibition value of 8.2% and a standard deviation (SD) of 6.5%. However, inhibition values obtained with serum used as a positive control (obtained after 28 days from a horse experimentally infected with WNV) in nine separate experiments showed a mean of 54.4% and an SD of 7.1%. We tentatively determined 27.6% (mean + 3 x SD obtained with 95 negative samples) as the cutoff value to differentiate positive from negative samples. Under this criterion, two horses experimentally infected with WNV were diagnosed as positive at 12 and 14 days, respectively, after infection.

  9. Replication of Japanese Encephalitis Virus.

    DTIC Science & Technology

    1980-12-10

    persistently infected with JEV were studied. Over 200 cells were cloned from these cultures and all but four were nonproducers of infectious virus and viral...obtained for release of interfering particles by persis- tently infected cultures and clones , no new size classes of virus RNA could be demonstrated. iI...denaturing or non-dena- turing conditions. Both virus producer and non-producer cell clones were examined, and whether superinfected or not, they

  10. Crystal structure of the Japanese encephalitis virus envelope protein.

    PubMed

    Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H

    2012-02-01

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  11. Co-administration of a meningococcal glycoconjugate ACWY vaccine with travel vaccines: a randomized, open-label, multi-center study.

    PubMed

    Alberer, Martin; Burchard, Gerd; Jelinek, Tomas; Reisinger, Emil; Beran, Jiri; Meyer, Seetha; Forleo-Neto, Eduardo; Gniel, Dieter; Dagnew, Alemnew F; Arora, Ashwani Kumar

    2014-01-01

    Potential interactions between vaccines may compromise the immunogenicity and/or safety of individual vaccines so must be assessed before concomitant administration is recommended. In this study, the immunogenicity and safety of travel vaccines against Japanese encephalitis (JEV) and rabies (PCECV) administered together with or without a quadrivalent meningococcal glycoconjugate ACWY-CRM vaccine were evaluated (NCT01466387). Healthy adults aged 18 to ≤60 years were randomized to one of four vaccine regimens: JEV + PCECV + MenACWY-CRM, JEV + PCECV, PCECV or MenACWY-CRM. Immunogenicity at baseline and 28 days post-complete vaccination was assessed by serum bactericidal assay using human complement or neutralization tests. Adverse events (AEs) were collected throughout the study period. JEV + PCECV + MenACWY-CRM was non-inferior to JEV + PCECV. Post-vaccination seroprotective neutralizing titers or concentrations were achieved in 98-99% (JE) and 100% (rabies) of subjects across the vaccine groups. Antibody responses to vaccine meningococcal serogroups were in the same range for MenACWY-CRM and JEV + PCECV + MenACWY-CRM. Rates of reporting of AEs were similar for JEV + PCECV and JEV + PCECV + MenACWY-CRM. MenACWY-CRM was administered with an inactivated adjuvanted JE and a purified chick embryo cell-culture rabies vaccine without compromising immunogenicity or safety of the individual vaccines. These data provide evidence that MenACWY-CRM could be effectively incorporated into travel vaccination programs. NCT01466387. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Seasonal abundance and potential of Japanese encephalitis virus infection in mosquitoes at the nesting colony of ardeid birds, Thailand.

    PubMed

    Changbunjong, Tanasak; Weluwanarak, Thekhawet; Taowan, Namaoy; Suksai, Parut; Chamsai, Tatiyanuch; Sedwisai, Poonyapat

    2013-03-01

    To investigate the abundance and seasonal dynamics of mosquitoes, and to detect Japanese encephalitis virus (JEV) in these mosquitoes at the nesting colony of ardeid birds. Mosquitoes were collected bimonthly from July 2009 to May 2010 by Centers for Disease Control. Light traps and dry ice, as a source of CO2, were employed to attract mosquitoes. Mosquitoes were first identified, pooled into groups of upto 50 mosquitoes by species, and tested for JEV infection by viral isolation and reverse transcriptase polymerase chain reaction. A total of 20 370 mosquitoes comprising 14 species in five genera were collected. The five most abundant mosquito species collected were Culex tritaeniorhynchus (95.46%), Culex vishnui (2.68%), Culex gelidus (0.72%), Anopheles peditaeniatus (0.58%) and Culex quinquefasciatus (0.22%). Mosquito peak densities were observed in July. All of 416 mosquito pools were negative for JEV. This study provides new information about mosquito species and status of JEV infection in mosquitoes in Thailand. Further study should be done to continue a close survey for the presence of this virus in the ardeid birds.

  13. Crystal Structure of the Japanese Encephalitis Virus Envelope Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.

    2012-03-13

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimermore » in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.« less

  14. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands?

    PubMed Central

    Baylis, Matthew; Barker, Christopher M.; Caminade, Cyril; Joshi, Bhoj R.; Pant, Ganesh R.; Rayamajhi, Ajit; Reisen, William K.; Impoinvil, Daniel E.

    2016-01-01

    The emergence of Japanese encephalitis virus (JEV) in the Himalayan highlands is of significant veterinary and public health concern and may be related to climate warming and anthropogenic landscape change, or simply improved surveillance. To investigate this phenomenon, a One Health approach focusing on the phylogeography of JEV, the distribution and abundance of the mosquito vectors, and seroprevalence in humans and animal reservoirs would be useful to understand the epidemiology of Japanese encephalitis in highland areas. PMID:26956778

  15. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea.

    PubMed

    Kim, Dong Soo; Houillon, Guy; Jang, Gwang Cheon; Cha, Sung-Ho; Choi, Soo-Han; Lee, Jin; Kim, Hwang Min; Kim, Ji Hong; Kang, Jin Han; Kim, Jong-Hyun; Kim, Ki Hwan; Kim, Hee Soo; Bang, Joon; Naimi, Zulaikha; Bosch-Castells, Valérie; Boaz, Mark; Bouckenooghe, Alain

    2014-01-01

    A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12-24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14-14-2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14-14-2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14-14-2 was 0.9 percentage points (95% confidence interval [CI]: -2.35; 4.68), which was above the required -10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14-14-2; all children except one (Group SA14-14-2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14-14-2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14-14-2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12-24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers.

  16. Seasonal Patterns of Japanese Encephalitis and Associated Meteorological Factors in Taiwan.

    PubMed

    Lin, Che-Liang; Chang, Hsiao-Ling; Lin, Chuan-Yao; Chen, Kow-Tong

    2017-10-29

    The persistent transmission of Japanese encephalitis virus (JEV) in Taiwan necessitates exploring the risk factors of occurrence of Japanese encephalitis (JE). The purpose of this study was to assess the relationship between meteorological factors and the incidence of JE in Taiwan. We collected data for cases of JE reported to the Taiwan Centers for Disease Control (Taiwan CDC) from 2000 to 2014. Meteorological data were obtained from the Taiwan Central Weather Bureau. The relationships between weather variability and the incidence of JE in Taiwan were determined via Poisson regression analysis and a case-crossover methodology. During the 15-year study period, a total of 379 cases of JE were reported. The incidence of JE showed significant seasonality, with the majority of cases occurring in summertime (for oscillation, p < 0.001). The number of JE cases started to increase at temperatures of 22 °C (r² = 0.88, p < 0.001). Similarly, the number of JE cases began to increase at a relative humidity of 70-74% (r² = 0.75, p < 0.005). The number of JE cases was positively associated with mean temperature and relative humidity in the period preceding the infection. In conclusion, the occurrence of JE is significantly associated with increasing temperature and relative humidity in Taiwan. Therefore, these factors could be regarded as warning signals indicating the need to implement preventive measures.

  17. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral particles as a non-transmissible bivalent marker vaccine candidate against CSF and JE infections

    USDA-ARS?s Scientific Manuscript database

    A trans-complemented CSF- JE chimeric viral replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The E2 gene of CSFV Alfort/187 strain was deleted and the resultant plasmid pA187delE2 was inserted by a fragment containing the region coding for a truncate...

  18. Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Tran, Quang Huy; Hanh Nguyen, Thi Hong; Mai, Anh Tuan; Thuy Nguyen, Thi; Khue Vu, Quang; Nga Phan, Thi

    2012-03-01

    This paper describes the development of electrochemical immunosensors based on human serum antibodies with different immobilization methods for detection of Japanese encephalitis virus (JEV). Human serum containing anti-JEV antibodies was used to immobilize onto the surface of silanized interdigitated electrodes by four methods: direct adsorption (APTES-serum), covalent binding with a cross linker of glutaraldehyde (APTES-GA-serum), covalent binding with a cross linker of glutaraldehyde combined with anti-human IgG (APTES-GA-anti-HIgG-serum) and covalent binding with a cross linker of glutaraldehyde combined with a bioaffinity of protein A (APTES-GA-PrA-serum). Atomic force microscopy was used to verify surface characteristics of the interdigitated electrodes before and after treatment with serum antibodies. The output signal of the immunosensors was measured by the change of conductivity resulting from the specific binding of JEV antigens and serum antibodies immobilized on the electrodes, with the help of horseradish peroxidase (HRP)-labeled secondary antibody against JEV. The results showed that the APTES-GA-PrA-serum method provided the highest signal of the electrochemical immunosensor for detection of JEV antigens, with the linear range from 25 ng ml-1 to 1 μg ml-1, and the limit of detection was about 10 ng ml-1. This study shows a potential development of novel electrochemical immunosensors applied for virus detection in clinical samples in case of possible outbreaks.

  19. Prevalence of antibodies to Japanese encephalitis virus among pigs in Bali and East Java, Indonesia, 2008.

    PubMed

    Yamanaka, Atsushi; Mulyatno, Kris Cahyo; Susilowati, Helen; Hendrianto, Eryk; Utsumi, Takako; Amin, Mochamad; Lusida, Maria Inge; Soegijanto, Soegeng; Konishi, Eiji

    2010-01-01

    Japanese encephalitis virus (JEV) is a fatal disease in Asia. Pigs are considered to be the effective amplifying host for JEV in the peridomestic environment. Bali Island and Java Island in Indonesia provide a model to assess the effect of pigs on JEV transmission, since the pig density is nearly 100-fold higher in Bali than Java, while the geographic and climatologic environments are equivalent in these areas. We surveyed antibodies to JEV among 123 pigs in Mengwi (Bali) and 96 pigs in Tulungagung (East Java) in 2008 by the hemagglutination-inhibition (HAI) test. Overall prevalences were 49% in Bali and 6% in Java, with a significant difference between them (P < 0.001). Monthly infection rates estimated from age-dependent antibody prevalences were 11% in Bali and 2% in Java. In addition, 2-mercaptoethanol-sensitive antibodies were found only from Bali samples. Further, the average HAI antibody titer obtained from positive samples was significantly higher in Bali (1:52) than Java (1:10; P < 0.001). These results indicated that JEV transmission in nature is more active in Bali than East Java.

  20. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5.

    PubMed

    Huang, Han-Ning; Rajanbabu, Venugopal; Pan, Chieh-Yu; Chan, Yi-Lin; Hui, Cho-Fat; Chen, Jyh-Yih; Wu, Chang-Jer

    2011-10-01

    Japanese encephalitis virus (JEV), a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans. After infection, it is commonly associated with inflammatory reactions and neurological disease. There is still no effective antiviral drug available against Japanese encephalitis virus infection. Recently, a number of investigators found that antimicrobial peptide (AMPs) present a broad range of biological activities including antimicrobial and immunomodulatory activities. In this study, we found that an AMP, tilapia hepcidin (TH)1-5, caused no harm to either cells or test animals during the test course and could control JEV viral infection in BHK-21 cells. Mice co-injected with TH1-5/JEV and subsequently subjected to JEV re-challenge survived and behaved normally. The neuroprotective effects were associated with marked decreases in: (i) the viral load and viral replication within the brain, (ii) neuronal death, and (iii) secondary inflammation resulting from microglial activation. TH1-5 was also determined to enhance adaptive immunity by elevating levels of anti-JEV-neutralizing antibodies in the serum. The microarray data also showed that TH1-5 modulated Socs-6, interleukin (IL)-6, Toll-like receptor (TLR)-1, TLR-7, caspase-4, interferon (IFN)-β1, ATF-3, and several immune-responsive genes to protect mice against JEV infection. In addition, TH1-5 was confirmed to modulate the expressions of several proinflammatory and immune-responsive genes, such as IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α, IFN-γ and monocyte chemoattractant protein (MCP)-1 at both the transcriptional and translational levels in JEV-infected mice. In conclusion, our findings provide mechanistic insights into the actions of TH1-5 against JEV. Results from our in vivo and in vitro experiments clearly indicate that TH1-5 has antiviral, neuroprotective, anti-inflammatory, and immunomodulatory activities. Furthermore, TH1-5 successfully reduced the

  1. Japanese encephalitis virus infection, diagnosis and control in domestic animals.

    PubMed

    Mansfield, Karen L; Hernández-Triana, Luis M; Banyard, Ashley C; Fooks, Anthony R; Johnson, Nicholas

    2017-03-01

    Japanese encephalitis virus (JEV) is a significant cause of neurological disease in humans throughout Asia causing an estimated 70,000 human cases each year with approximately 10,000 fatalities. The virus contains a positive sense RNA genome within a host-derived membrane and is classified within the family Flaviviridae. Like many flaviviruses, it is transmitted by mosquitoes, particularly those of the genus Culex in a natural cycle involving birds and some livestock species. Spill-over into domestic animals results in a spectrum of disease ranging from asymptomatic infection in some species to acute neurological signs in others. The impact of JEV infection is particularly apparent in pigs. Although infection in adult swine does not result in symptomatic disease, it is considered a significant reproductive problem causing abortion, still-birth and birth defects. Infected piglets can display fatal neurological disease. Equines are also infected, resulting in non-specific signs including pyrexia, but occasionally leading to overt neurological disease that in extreme cases can lead to death. Veterinary vaccination is available for both pigs and horses. This review of JEV disease in livestock considers the current diagnostic techniques available for detection of the virus. Options for disease control and prevention within the veterinary sector are discussed. Such measures are critical in breaking the link to zoonotic transmission into the human population where humans are dead-end hosts. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands?

    PubMed

    Baylis, Matthew; Barker, Christopher M; Caminade, Cyril; Joshi, Bhoj R; Pant, Ganesh R; Rayamajhi, Ajit; Reisen, William K; Impoinvil, Daniel E

    2016-04-01

    The emergence of Japanese encephalitis virus (JEV) in the Himalayan highlands is of significant veterinary and public health concern and may be related to climate warming and anthropogenic landscape change, or simply improved surveillance. To investigate this phenomenon, a One Health approach focusing on the phylogeography of JEV, the distribution and abundance of the mosquito vectors, and seroprevalence in humans and animal reservoirs would be useful to understand the epidemiology of Japanese encephalitis in highland areas. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  3. Quantification of vector and host competence for Japanese encephalitis virus: a systematic review of the literature

    USDA-ARS?s Scientific Manuscript database

    Japanese encephalitis virus (JEV) is a virus of the Flavivirus genus that may result in encephalitis in human hosts. This vector-borne zoonosis occurs in Eastern and Southeastern Asia and an intentional or inadvertent introduction into the United States (US) will have major public health and economi...

  4. Susceptibility of a North American Culex quinquefasciatus to Japanese encephalitis virus

    USDA-ARS?s Scientific Manuscript database

    Japanese encephalitis virus (JEV) is a flavivirus that is transmitted by Culex (Cx.) tritaeniorhynchus in tropical and subtropical regions of Asia. The endemic transmission cycle involves domestic pigs and avian species that serve as amplification hosts; humans are incidental hosts that cannot devel...

  5. Diagnosis and genetic analysis of Japanese encephalitis virus infected in horses.

    PubMed

    Lian, W C; Liau, M Y; Mao, C L

    2002-10-01

    Nervous disorders were found in two horses and verified as aseptic encephalitis by necropsy in the summer of 2000. To investigate agents that affected the horses, diagnostic procedures involving virus isolation, neutralization test and reverse transcription-polymerase chain reaction (RT-PCR) were performed. We intracranially inoculated litters of suckling mice with tissues suspected of containing aseptic encephalitis, including cerebrum, cerebellum, brain stem, thalamus, and cerebrospinal fluids; the mice were then observed for 14 days. Neutralizing antibodies against Japanese encephalitis (JE) viruses were present in the cerebrospinal fluid of the horses in titers of 10. Sequences of 500 nucleotides of the premembrane gene of JE virus, synthesized by RT-PCR, from both the cerebrum and cerebellum were determined. The phylogenetic analysis based on sequences of the premembrane gene revealed a relationship with the JE virus. The divergences at the nucleotide level of 1.2-5.7% and at the amino acid level of 0-4.3% were conserved with other JE strains. The results demonstrated that the pathogens causing equine encephalitis were JE viruses. The strains were closely related to Taiwanese isolates.

  6. A systematic review of the literature to identify and quantify host and vector competence and abundance of Japanese Encephalitis Virus

    USDA-ARS?s Scientific Manuscript database

    Japanese Encephalitis virus (JEV) is a mosquito-borne arbovirus that causes endemic and epidemic encephalitis in Eastern and Southeastern Asia. Swine and wading birds serve as reservoirs for the virus, which can be transmitted to humans via mosquitos. Currently, there is no specific treatment availa...

  7. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  8. Recent progress in West Nile virus diagnosis and vaccination

    PubMed Central

    2012-01-01

    West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections. PMID:22380523

  9. Long-term immunogenicity of an initial booster dose of an inactivated, Vero cell culture-derived Japanese encephalitis vaccine (JE-VC) and the safety and immunogenicity of a second JE-VC booster dose in children previously vaccinated with an inactivated, mouse brain-derived Japanese encephalitis vaccine.

    PubMed

    Yun, Ki Wook; Lee, Hoan Jong; Park, Ji Young; Cho, Hye-Kyung; Kim, Yae-Jean; Kim, Kyung-Hyo; Kim, Nam Hee; Hong, Young Jin; Kim, Dong Ho; Kim, Hwang Min; Cha, Sung-Ho

    2018-03-07

    This study was performed with the aim of determining the long-term immunogenicity of an inactivated, Vero cell culture-derived Japanese encephalitis (JE) vaccine (JE-VC) and an inactivated, mouse brain-derived JE vaccine (JE-MB) after the 1st booster dose at 2 years of age, as well as the safety and immunogenicity of the 2nd booster dose of JE-VC at 6 years of age, in children primed and given a 1st booster dose of either JE-VC or JE-MB. In this multicenter, open-label clinical trial, the study population consisted of healthy Korean children (aged 6 years) who participated in the previous JE vaccine trial. All subjects were subcutaneously vaccinated once for the booster immunization with Boryung Cell Culture Japanese Encephalitis Vaccine® (JE-VC). Approximately 4 years after the 1st booster dose of JE-VC, the seroprotection rate (SPR) and geometric mean titer (GMT) of the neutralizing antibody were 100% and 1113.8, respectively. In children primed and given a 1st booster dose of JE-MB, the SPR and GMT were 88.5% and 56.3, respectively. After the 2nd booster dose of JE-VC, all participants primed and given a 1st booster dose of either JE-MB or JE-VC were seroprotective against JE virus. The GMT of the neutralizing antibody was higher in children primed and given a 1st booster dose of JE-VC (8144.1) than in those primed and given a 1st booster dose of JE-MB (942.5) after the vaccination (p < 0.001). In addition, the 2nd booster dose of JE-VC showed a good safety profile with no serious vaccine-related adverse events. The 1st booster dose of JE-VC and JE-MB showed long-term immunogenicity of at least 4 years, and the 2nd booster dose of JE-VC showed a good safety and immunogenicity profile in children primed and given a 1st booster dose of either JE-VC or JE-MB. ClinicalTtrials.gov Identifier: NCT02532569. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Respiratory syncytial virus (RSV)

    MedlinePlus

    RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  11. Transcriptional regulation of miR-15b by c-Rel and CREB in Japanese encephalitis virus infection

    PubMed Central

    Zhu, Bibo; Ye, Jing; Ashraf, Usama; Li, Yunchuan; Chen, Huanchun; Song, Yunfeng; Cao, Shengbo

    2016-01-01

    MicroRNAs (miRNAs) have been well known to play diverse roles in viral infection at the level of posttranscriptional repression. However, much less is understood about the mechanism by which miRNAs are regulated during viral infection. It is likely that both host and virus contain factors to modulate miRNA expression. Here we report the up-regulation of microRNA-15b (miR-15b) in vitro upon infection with Japanese encephalitis virus (JEV). Analysis of miR-15b precursor, pri-miR-15b and pre-miR-15b, suggest that the regulation occurs transcriptionally. Further, we identified the transcriptional regulatory region of miR-15b that contains consensus binding motif for NF-κB subunit c-Rel and cAMP-response element binding protein (CREB), which are known as transcription factor to regulate gene expression. By promoter fusion and mutational analyses, we demonstrated that c-Rel and CREB bind directly to the promoter elements of miR-15b, which are responsible for miR-15b transcription in response to JEV infection. Finally, we showed that pharmacological inhibition of ERK and NF-κB signaling pathway blocked induction of miR-15b in JEV infection, suggesting important roles of ERK and NF-κB pathway in the regulation of miR-15b gene. Therefore, our observations indicate that induced expression of miR-15b is modulated by c-Rel and CREB in response to JEV infection. PMID:26931521

  12. Japanese encephalitis.

    PubMed

    Morita, K; Nabeshima, T; Buerano, C C

    2015-08-01

    Japanese encephalitis (JE) is an inflammation of the central nervous system in humans and animals, specifically horses and cattle. The disease, which can sometimes be fatal, is caused by the flavivirus Japanese encephalitis virus (JEV), of which there are five genotypes (genotypes 1, 2, 3, 4 and 5). The transmission cycle of the virus involves pigs and wild birds as virus amplifiers and mosquitoes as vectors for transferring the virus between amplifying hosts and to dead- end hosts, i.e. humans, horses and cattle. In horses and cattle the disease is usually asymptomatic, but when clinical signs do occur they include fever, decreased appetite, frothing at the mouth, rigidity of the legs and recumbency, and neurological signs, such as convulsive fits, circling, marked depression and disordered consciousness. In pigs, it can cause abortion and stillbirths. At present, the virus is detected in a wide area covering eastern and southern Asia, Indonesia, northern Australia, Papua New Guinea and Pakistan. JEV RNA has also been detected in Italy, first in dead birds in 1997 and 2000 and then in mosquitoes in 2010. Genotype shift, i.e. a change of genotype from genotype 3 to genotype 1, has occurred in some countries, namely Japan, South Korea, Chinese Taipei and Vietnam. Laboratory methods are available for confirming the causative agent of the disease. There are control measures to prevent or minimise infection and, among them, vaccination is one of the most important and one which should be adopted in endemic and epidemic areas.

  13. Human West Nile Virus Disease Outbreak in Pakistan, 2015-2016.

    PubMed

    Khan, Erum; Barr, Kelli L; Farooqi, Joveria Qais; Prakoso, Dhani; Abbas, Alizae; Khan, Zain Y; Ashi, Shanze; Imtiaz, Kehkashan; Aziz, Z; Malik, Faisal; Lednicky, John A; Long, Maureen T

    2018-01-01

    Like most of the world, Pakistan has seen an increase in mosquito-transmitted diseases in recent years. The magnitude and distribution of these diseases are poorly understood as Pakistan does not have a nation-wide system for reporting disease. A cross-sectional study to determine which flaviviruses were causing of arboviral disease in Pakistan was instituted. West Nile virus (WNV) is a cause of seasonal fever with neurotropic findings in countries that share borders with Pakistan. Here, we describe the active and persistent circulation of WNV in humans in the southern region of Pakistan. This is the first report of WNV causing neurological disease in human patients in this country. Of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 105 were positive for WNV IgM antibodies, and 71 of these patients possessed WNV-specific neutralizing antibodies. Cross-reactivity of WNV IgM antibodies with Japanese encephalitis virus (JEV) occurred in 75 of these 105 patients. WNV co-infections with Dengue viruses were not a contributing factor for the severity of disease. Nor did prior exposure to dengue virus contribute to incidence of neurological involvement in WNV-infected patients. Patients with WNV infections were more likely to present with altered mental status, seizures, and reduced Glasgow Coma scores when compared with JEV-infected patients. Human WNV cases and vector numbers exhibited a temporal correlation with climate.

  14. Human West Nile Virus Disease Outbreak in Pakistan, 2015–2016

    PubMed Central

    Khan, Erum; Barr, Kelli L.; Farooqi, Joveria Qais; Prakoso, Dhani; Abbas, Alizae; Khan, Zain Y.; Ashi, Shanze; Imtiaz, Kehkashan; Aziz, Z.; Malik, Faisal; Lednicky, John A.; Long, Maureen T.

    2018-01-01

    Like most of the world, Pakistan has seen an increase in mosquito-transmitted diseases in recent years. The magnitude and distribution of these diseases are poorly understood as Pakistan does not have a nation-wide system for reporting disease. A cross-sectional study to determine which flaviviruses were causing of arboviral disease in Pakistan was instituted. West Nile virus (WNV) is a cause of seasonal fever with neurotropic findings in countries that share borders with Pakistan. Here, we describe the active and persistent circulation of WNV in humans in the southern region of Pakistan. This is the first report of WNV causing neurological disease in human patients in this country. Of 997 enrolled patients presenting with clinical features suggestive of arboviral disease, 105 were positive for WNV IgM antibodies, and 71 of these patients possessed WNV-specific neutralizing antibodies. Cross-reactivity of WNV IgM antibodies with Japanese encephalitis virus (JEV) occurred in 75 of these 105 patients. WNV co-infections with Dengue viruses were not a contributing factor for the severity of disease. Nor did prior exposure to dengue virus contribute to incidence of neurological involvement in WNV-infected patients. Patients with WNV infections were more likely to present with altered mental status, seizures, and reduced Glasgow Coma scores when compared with JEV-infected patients. Human WNV cases and vector numbers exhibited a temporal correlation with climate. PMID:29535994

  15. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3.

    PubMed

    Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin

    2013-09-27

    Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells

    PubMed Central

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-01-01

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068

  17. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells.

    PubMed

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-02-03

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.

  18. Pre-cut Filter Paper for Detecting Anti-Japanese Encephalitis Virus IgM from Dried Cerebrospinal Fluid Spots

    PubMed Central

    Bharucha, Tehmina; Chanthongthip, Anisone; Phuangpanom, Soumphou; Phonemixay, Ooyanong; Sengvilaipaseuth, Onanong; Vongsouvath, Manivanh; Lee, Sue; Newton, Paul N.; Dubot-Pérès, Audrey

    2016-01-01

    Background The use of filter paper as a simple, inexpensive tool for storage and transportation of blood, ‘Dried Blood Spots’ or Guthrie cards, for diagnostic assays is well-established. In contrast, there are a paucity of diagnostic evaluations of dried cerebrospinal fluid (CSF) spots. These have potential applications in low-resource settings, such as Laos, where laboratory facilities for central nervous system (CNS) diagnostics are only available in Vientiane. In Laos, a major cause of CNS infection is Japanese encephalitis virus (JEV). We aimed to develop a dried CSF spot protocol and to evaluate its diagnostic performance using the World Health Organisation recommended anti-JEV IgM antibody capture enzyme-linked immunosorbent assay (JEV MAC-ELISA). Methodology and Principal Findings Sample volumes, spotting techniques and filter paper type were evaluated using a CSF-substitute of anti-JEV IgM positive serum diluted in Phosphate Buffer Solution (PBS) to end-limits of detection by JEV MAC-ELISA. A conventional protocol, involving eluting one paper punch in 200μl PBS, did not detect the end-dilution, nor did multiple punches utilising diverse spotting techniques. However, pre-cut filter paper enabled saturation with five times the volume of CSF-substitute, sufficiently improving sensitivity to detect the end-dilution. The diagnostic accuracy of this optimised protocol was compared with routine, neat CSF in a pilot, retrospective study of JEV MAC-ELISA on consecutive CSF samples, collected 2009–15, from three Lao hospitals. In comparison to neat CSF, 132 CSF samples stored as dried CSF spots for one month at 25–30°C showed 81.6% (65.7–92.3 95%CI) positive agreement, 96.8% (91.0–99.3 95%CI) negative agreement, with a kappa coefficient of 0.81 (0.70–0.92 95%CI). Conclusions/Significance The novel design of pre-cut filter paper saturated with CSF could provide a useful tool for JEV diagnostics in settings with limited laboratory access. It has the

  19. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation

  20. Molecular detection and genotyping of Japanese Encephalitis Virus in mosquitoes during a 2010 outbreak in the Republic of Korea

    USGS Publications Warehouse

    Seo, Hyun-Ji; Kim, Heung Chul; Klein, Terry A.; Ramey, Andrew M.; Lee, Ji-Hyee; Kyung, Soon-Goo; Park, Jee-Yong; Cho, In-Soo; Yeh, Jung-Yong

    2013-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is one of the major causes of viral encephalitis. To reduce the impact of Japanese encephalitis among children in the Republic of Korea (ROK), the government established a mandatory vaccination program in 1967. Through the efforts of this program only 0-7 (mean 2.1) cases of Japanese encephalitis were reported annually in the ROK during the period of 1984-2009. However, in 2010 there was an outbreak of 26 confirmed cases of Japanese encephalitis, including 7 deaths. This represented a >12-fold increase in the number of confirmed cases of Japanese encephalitis in the ROK as compared to the mean number reported over the last 26 years and a 3.7-fold increase over the highest annual number of cases during this same period (7 cases). Surveillance of adult mosquitoes was conducted during the 2010 outbreak of Japanese encephalitis in the ROK. A total of 6,328 culicine mosquitoes belonging to 12 species from 5 genera were collected at 6 survey sites from June through October 2010 and assayed by reverse-transcription polymerase chain reaction (RT-PCR) for the presence of JEV. A total of 34/371 pooled samples tested positive for JEV (29/121 Culex tritaeniorhynchus, 4/64 Cx. pipiens, and 1/26 Cx. bitaeniorhynchus) as confirmed by sequencing of the pre-membrane and envelope protein coding genes. The maximum likelihood estimates of JEV positive individuals per 1,000 culicine vectors for Cx. tritaeniorhynchus, Cx. pipiens, and Cx. bitaeniorhynchus were 11.8, 5.6, and 2.8, respectively. Sequences of the JEV pre-membrane and envelope protein coding genes amplified from the culicine mosquitoes by RT-PCR were compared with those of JEV genotypes I-V. Phylogenetic analyses support the detection of a single genotype (I) among samples collected from the ROK in 2010.

  1. Seroprevalence of West Nile Virus in Wild Birds in Far Eastern Russia Using a Focus Reduction Neutralization Test

    PubMed Central

    Murata, Ryo; Hashiguchi, Kazuaki; Yoshii, Kentaro; Kariwa, Hiroaki; Nakajima, Kensuke; Ivanov, Leonid I.; Leonova, Galina N.; Takashima, Ikuo

    2011-01-01

    West Nile (WN) virus has been spreading geographically to non-endemic areas in various parts of the world. However, little is known about the extent of WN virus infection in Russia. Japanese encephalitis (JE) virus, which is closely related to WN virus, is prevalent throughout East Asia. We evaluated the effectiveness of a focus reduction neutralization test in young chicks inoculated with JE and WN viruses, and conducted a survey of WN infection among wild birds in Far Eastern Russia. Following single virus infection, only neutralizing antibodies specific to the homologous virus were detected in chicks. The neutralization test was then applied to serum samples from 145 wild birds for WN and JE virus. Twenty-one samples were positive for neutralizing antibodies to WN. These results suggest that WN virus is prevalent among wild birds in the Far Eastern region of Russia. PMID:21363987

  2. The blood-brain barrier in the cerebrum is the initial site for the Japanese encephalitis virus entering the central nervous system.

    PubMed

    Liu, Tsan-Hsiun; Liang, Li-Ching; Wang, Chien-Chih; Liu, Huei-Chung; Chen, Wei-June

    2008-11-01

    Japanese encephalitis (JE) virus is a member of the encephalitic flaviviruses and frequently causes neurological sequelae in a proportion of patients who survive the acute phase of the infection. In the present study, we molecularly identified viral infection in the brain of mice with rigidity of hindlimbs and/or abnormal gait, in which JE virus particles appeared within membrane-bound vacuoles of neurons throughout the central nervous system. Deformation of tight junctions (TJs) shown as dissociation of endothelial cells in capillaries, implying that the integrity of the blood-brain barrier (BBB) has been compromised by JE virus infection. BBB permeability evidently increased in the cerebrum, but not in the cerebellum, of JE virus-infected mice intravenously injected with the tracer of Evans blue dye. This suggests that the permeability of the BBB differentially changed in response to viral infection, leading to the entry of JE virions and/or putatively infected leukocytes from the periphery to the cerebrum as the initial site of infection in the central nervous system (CNS). Theoretically, the virus spread to the cerebellum soon after the cerebrum became infected.

  3. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    PubMed

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  4. Cost-effectiveness of Japanese encephalitis (JE) immunization in Bali, Indonesia.

    PubMed

    Liu, Wei; Clemens, John D; Kari, Komang; Xu, Zhi-Yi

    2008-08-18

    Two hypothetical birth cohorts in Bali, each consisting of 100,000 newborns, one immunized with live, attenuated JE vaccine and the other un-immunized, were modeled for JE risk over 11 years. Cumulative JE incidence before JE vaccine introduction was used to represent JE risk in the unvaccinated cohort. Data on vaccine efficacy, vaccination and treatment costs were taken from published papers and surveys. The potential immunization program averted 54 cases, 5 deaths and saved 1,224 disability adjusted life years (DALYs) at a net cost of USD 700 per JE case averted and USD 31 per DALY saved and thus was highly cost-effective.

  5. Immunogenicity of a Japanese encephalitis chimeric virus vaccine as a booster dose after primary vaccination with SA14-14-2 vaccine in Thai children.

    PubMed

    Janewongwirot, Pakpoom; Puthanakit, Thanyawee; Anugulruengkitt, Suvaporn; Jantarabenjakul, Watsamon; Phasomsap, Chayapa; Chumket, Sompong; Yoksan, Sutee; Pancharoen, Chitsanu

    2016-10-17

    Japanese Encephalitis chimeric virus vaccine (JE-CV) and SA14-14-2 vaccine are live-attenuated JE vaccines produced from the same virus strain. Data on interchangeability is limited. To evaluate the immunogenicity and safety of JE-CV booster after primary vaccination with SA14-14-2 vaccine. This study was an open-label clinical trial in Thai children who had received a primary SA14-14-2 vaccination at 12-24monthsbefore enrollment (ClinicalTrials.gov NCT02602652). JE-CV was administered. A 50% plaque reduction neutralization test (PRNT 50 ) against three virus strains; JE-CV, SA-14-14-2andwild-type JE virus was measured before and 28-days post vaccination. The laboratory was performed at PRNT 50 titers ⩾10 (1/dil) were considered seroprotective against JE. Geometric mean titer (GMT) of PRNT 50 was calculated. Adverse events were observed for 28days. From March 2014 to June 2015, 50 children (64% male) were enrolled. Mean age and duration after primary vaccination was 26.9 (SD 4.6) and 12.8 (SD 2.7) months, respectively. The proportion of participants who had PRNT 50 pre and post-booster vaccination were 92% and 96% against JE-CV virus, 56% and 98% against SA-14-14-2 strain and 70% and 98% against wild-type JE virus, respectively. Solicited injection site reactions including erythema, pain and swelling occurred in 18%, 10% and 4% of subjects, respectively. Four children (8%) had fever (⩾37.7Celsius). Eight children (16%) had adverse events, which were not related to the vaccine. AJE-CV booster dose is highly immunogenic and safe among children who previously received SA14-14-2 vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, C.-K.; Chen, W.-J., E-mail: wjchen@mail.cgu.edu.t; Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan

    2009-11-25

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay onmore » the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.« less

  7. Comparison of PanBio Dengue Duo Enzyme-Linked Immunosorbent Assay (ELISA) and MRL Dengue Fever Virus Immunoglobulin M Capture ELISA for Diagnosis of Dengue Virus Infections in Southeast Asia

    PubMed Central

    Cuzzubbo, Andrea J.; Vaughn, David W.; Nisalak, Ananda; Solomon, Tom; Kalayanarooj, Siripen; Aaskov, John; Dung, Nguyen Minh; Devine, Peter L.

    1999-01-01

    The performances of the MRL dengue fever virus immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) and the PanBio Dengue Duo IgM capture and IgG capture ELISA were compared. Eighty sera from patients with dengue virus infections, 24 sera from patients with Japanese encephalitis (JE), and 78 sera from patients with nonflavivirus infections, such as malaria, typhoid, leptospirosis, and scrub typhus, were used. The MRL test showed superior sensitivity for dengue virus infections (94 versus 89%), while the PanBio test showed superior specificity for JE (79 versus 25%) and other infections (100 versus 91%). The PanBio ELISA showed better overall performance, as assessed by the sum of sensitivity and specificity (F value). When dengue virus and nonflavivirus infections were compared, F values of 189 and 185 were obtained for the PanBio and MRL tests, respectively, while when dengue virus infections and JE were compared, F values of 168 and 119 were obtained. The results obtained with individual sera in the PanBio and MRL IgM ELISAs showed good correlation, but this analysis revealed that the cutoff value of the MRL test was set well below that of the PanBio test. Comparing the sensitivity and specificity of the tests at different cutoff values (receiver-operator analysis) revealed that the MRL and PanBio IgM ELISAs performed similarly in distinguishing dengue virus from nonflavivirus infections, although the PanBio IgM ELISA showed significantly better distinction between dengue virus infections and JE. The implications of these findings for the laboratory diagnosis of dengue are discussed. PMID:10473522

  8. A Serological Protein Microarray for Detection of Multiple Cross-Reactive Flavivirus Infections in Horses for Veterinary and Public Health Surveillance.

    PubMed

    Cleton, N B; van Maanen, K; Bergervoet, S A; Bon, N; Beck, C; Godeke, G-J; Lecollinet, S; Bowen, R; Lelli, D; Nowotny, N; Koopmans, M P G; Reusken, C B E M

    2017-12-01

    The genus Flavivirus in the family Flaviviridae includes some of the most important examples of emerging zoonotic arboviruses that are rapidly spreading across the globe. Japanese encephalitis virus (JEV), West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Usutu virus (USUV) are mosquito-borne members of the JEV serological group. Although most infections in humans are asymptomatic or present with mild flu-like symptoms, clinical manifestations of JEV, WNV, SLEV, USUV and tick-borne encephalitis virus (TBEV) can include severe neurological disease and death. In horses, infection with WNV and JEV can lead to severe neurological disease and death, while USUV, SLEV and TBEV infections are mainly asymptomatic, however, and induce antibody responses. Horses often serve as sentinels to monitor active virus circulation in serological surveillance programmes specifically for WNV, USUV and JEV. Here, we developed and validated a NS1-antigen protein microarray for the serological differential diagnosis of flavivirus infections in horses using sera of experimentally and naturally infected symptomatic as well as asymptomatic horses. Using samples from experimentally infected horses, an IgG and IgM specificity of 100% and a sensitivity of 95% for WNV and 100% for JEV was achieved with a cut-off titre of 1 : 20 based on ROC calculation. In field settings, the microarray identified 93-100% of IgG-positive horses with recent WNV infections and 87% of TBEV IgG-positive horses. WNV IgM sensitivity was 80%. Differentiation between closely related flaviviruses by the NS1-antigen protein microarray is possible, even though we identified some instances of cross-reactivity among antibodies. However, the assay is not able to differentiate between naturally infected horses and animals vaccinated with an inactivated WNV whole-virus vaccine. We showed that the NS1-microarray can potentially be used for diagnosing and distinguishing flavivirus infections in horses and for public

  9. Aetiology of acute encephalitis syndrome in Uttar Pradesh, India from 2014 to 2016.

    PubMed

    Jain, Parul; Prakash, Shantanu; Khan, Danish N; Garg, Ravindra Kumar; Kumar, Rashmi; Bhagat, Amit; Ramakrishna, V; Jain, Amita

    2017-01-01

    It is imperative to know the aetiology of acute encephalitis syndrome (AES) for patient management and policy making. The present study was carried out to determine the prevalence of common aetiological agents of AES in Uttar Pradesh (UP) state of India. Serum and/or CSF samples were collected from AES patients admitted at Gandhi Memorial and Associated Hospital, King George's Medical University, Lucknow, a tertiary care centre, UP during 2014-16. Cerebrospinal fluid (CSF) and serum samples from cases were tested for IgM antibodies against Japanese encephalitis virus (anti-JEV), and dengue virus (anti-DENV) by ELISA; and for enterovirus, herpes simplex virus (HSV) and varicella zoster virus (VZV) by real-time PCR. Serum samples of cases having sufficient CSF volume, were also tested for anti-scrub typhus IgM antibodies and for Neisseria meningitides, Streptococcus pneumoniae and Haemophilus influenzae. JEV and DENV (8% each) were the most common identified aetiology from the 4092 enrolled patients. Enterovirus, HSV and VZV, each were detected in <1% AES cases. Co-positivity occurred in 48 cases. Scrub typhus (31.8%) was the most common aetiology detected. Haemophilus influenzae and S. pneumoniae were detected in 0.97 and 0.94% cases, respectively, however, N. meningitides was not detected in any of the cases. About 40% of the JEV/DENV positive AES cases were adults. The gap between the total number of AES cases and those with JEV/ DENV infection increased during monsoon and post-monsoon seasons. Scrub typhus, JEV and DENV are the main aetiological agents of AES in UP. DENV and JEV can no longer be considered paediatric diseases. The prevalence of non-JEV/DENV aetiology of AES increases in the monsoon and post-monsoon seasons.

  10. [Antibody responses in Japanese volunteers after immunization with yellow fever vaccine].

    PubMed

    Taga, Kenichiro; Imura, Shunro; Hayashi, Akihiro; Kamakura, Kazumasa; Hashimoto, Satoru; Takasaki, Tomohiko; Kurane, Ichiro; Uchida, Yukinori

    2002-09-01

    To monitor the development of specific and cross-reactive antibody response in twenty Japanese volunteers after vaccination with live yellow fever vaccine. Serum samples were collected on various days after vaccination and examined for hemagglutination inhibition (HI) antibodies against yellow fever virus (YFV), Japanese encephalitis virus (JEV) and dengue virus (DV), neutralizing antibodies against YFV and JEV, and IgM antibodies against YFV. None of the volunteers had been previously immunized with this vaccine. Fifteen of 20 had pre-vaccinated with JEV 7 to 40 years before. Ten of the 20 had neutralizing antibodies against JEV before immunization. None of the 20 had detectable antibodies against YFV or DV before vaccination. On day 10th after the vaccination, neutralizing antibodies to YFV were detected in 6 of 19 volunteers and IgM antibodies against YFV were detected in 7 of 19. On day 14th, HI, neutralizing, and IgM antibodies against YFV were detected in all the tested sera. Neutralizing antibodies against JEV were developed in 2 volunteers and HI antibodies against JEV were increased in 3 of 6 volunteers respectively. On day 29th, cross-reactive HI antibodies for JEV and DV were detected in all the tested sera. The results indicate that YF vaccine induces YFV-specific antibodies in all the tested volunteers and that it also induces HI antibodies cross-reactive for JEV and DV. The YF vaccine has a strong immunogenicity because it is a live vaccine, and induces antibody against YFV predominantly. The international certificate of yellow fever vaccination becomes valid 10 days after vaccination. On day 14th after vaccination, we detected neutralizing antibodies against YFV from all tested volunteers, however, only 6 of 19 volunteers had detectable neutralizing antibody on the 10th day after vaccination. Therefore, the vaccine may not be perfectly effective on day 10th after the vaccination.

  11. Biomarkers in Japanese Encephalitis: A Review

    PubMed Central

    Kant Upadhyay, Ravi

    2013-01-01

    JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future. PMID:24455705

  12. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    PubMed

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  13. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine

    PubMed Central

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine. PMID:26435066

  14. The relationship between mosquito abundance and rice field density in the Republic of Korea

    PubMed Central

    2010-01-01

    Background Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is endemic to the Republic of Korea (ROK) where unvaccinated United States (U.S.) military Service members, civilians and family members are stationed. The primary vector of the JEV in the ROK is Culex tritaeniorhynchus. The ecological relationship between Culex spp. and rice fields has been studied extensively; rice fields have been shown to increase the prevalence of Cx. tritaeniorhynchus. This research was conducted to determine if the quantification of rice field land cover surrounding U.S. military installations in the ROK should be used as a parameter in a larger risk model that predicts the abundance of Cx. tritaeniorhynchus populations. Mosquito data from the U.S. Forces Korea (USFK) mosquito surveillance program were used in this project. The average number of female Cx. tritaeniorhynchus collected per trap night for the months of August and September, 2002-2008, was calculated. Rice fields were manually digitized inside 1.5 km buffer zones surrounding U.S. military installations on high-resolution satellite images, and the proportion of rice fields was calculated for each buffer zone. Results Mosquito data collected from seventeen sample sites were analyzed for an association with the proportion of rice field land cover. Results demonstrated that the linear relationship between the proportion of rice fields and mosquito abundance was statistically significant (R2 = 0.62, r = .79, F = 22.72, p < 0.001). Conclusions The analysis presented shows a statistically significant linear relationship between the two parameters, proportion of rice field land cover and log10 of the average number of Cx. tritaeniorhynchus collected per trap night. The findings confirm that agricultural land cover should be included in future studies to develop JE risk prediction models for non-indigenous personnel living at military installations in the ROK. PMID:20573242

  15. Flavivirus-induced antibody cross-reactivity

    PubMed Central

    Mansfield, Karen L.; Horton, Daniel L.; Johnson, Nicholas; Li, Li; Barrett, Alan D. T.; Smith, Derek J.; Galbraith, Sareen E.; Solomon, Tom

    2011-01-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae. PMID:21900425

  16. Flavivirus-induced antibody cross-reactivity.

    PubMed

    Mansfield, Karen L; Horton, Daniel L; Johnson, Nicholas; Li, Li; Barrett, Alan D T; Smith, Derek J; Galbraith, Sareen E; Solomon, Tom; Fooks, Anthony R

    2011-12-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.

  17. Concomitant or sequential administration of live attenuated japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine

    PubMed Central

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-thasan, Niranjan; Feroldi, Emmanuel

    2010-01-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered sequentially. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test (PRNT50). Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82–100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart. PMID:20864814

  18. 87. Credit JE. West and south elevations. Notice draft tube ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. Credit JE. West and south elevations. Notice draft tube openings, relief valve outlets above them, and exciter water discharge opening (with scaffolding in front). (JE, v. 27 1911 p. 417). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  19. Cholesterol effectively blocks entry of flavivirus.

    PubMed

    Lee, Chyan-Jang; Lin, Hui-Ru; Liao, Ching-Len; Lin, Yi-Ling

    2008-07-01

    Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2) are enveloped flaviviruses that enter cells through receptor-mediated endocytosis and low pH-triggered membrane fusion and then replicate in intracellular membrane structures. Lipid rafts, cholesterol-enriched lipid-ordered membrane domains, are platforms for a variety of cellular functions. In this study, we found that disruption of lipid raft formation by cholesterol depletion with methyl-beta-cyclodextrin or cholesterol chelation with filipin III reduces JEV and DEN-2 infection, mainly at the intracellular replication steps and, to a lesser extent, at viral entry. Using a membrane flotation assay, we found that several flaviviral nonstructural proteins are associated with detergent-resistant membrane structures, indicating that the replication complex of JEV and DEN-2 localizes to the membranes that possess the lipid raft property. Interestingly, we also found that addition of cholesterol readily blocks flaviviral infection, a result that contrasts with previous reports of other viruses, such as Sindbis virus, whose infectivity is enhanced by cholesterol. Cholesterol mainly affected the early step of the flavivirus life cycle, because the presence of cholesterol during viral adsorption greatly blocked JEV and DEN-2 infectivity. Flavirial entry, probably at fusion and RNA uncoating steps, was hindered by cholesterol. Our results thus suggest a stringent requirement for membrane components, especially with respect to the amount of cholesterol, in various steps of the flavivirus life cycle.

  20. Genomic changes in an attenuated genotype I Japanese encephalitis virus and comparison with virulent parental strain.

    PubMed

    Zhou, Yuyong; Wu, Rui; Feng, Yao; Zhao, Qin; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Han, Xinfeng; Cao, Sanjie

    2018-06-01

    Genotype I Japanese encephalitis virus (JEV) strain SCYA201201 was previously isolated from brain tissues of aborted piglets. In this study, we obtained an attenuated SCYA201201-0901 strain by serial passage of strain SCYA201201-1 in Syrian baby hamster kidney cells, combined with multiple plaque purifications and selection for virulence in mice. We investigated the genetic changes associated with attenuation by comparing the entire genomes of SCYA201201-0901 and SCYA201201-1. Sequence comparisons identified 14 common amino acid substitutions in the coding region, with two nucleotide point mutations in the 5'-untranslated region (UTR) and another three in the 3'-UTR, which differed between the attenuated and virulent strains. In addition, a total of 13 silent nucleotide mutations were found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the SCYA201201-0901 strain in mice. This information will contribute to our understanding of attenuation and of the molecular basis of virulence in genotype I strains such as SCYA201201-0901, as well as aiding the development of safer JEV vaccines.

  1. [The medical theory of Lee Je-ma and its character].

    PubMed

    Lee, Kyung-Lock

    2005-12-01

    Lee Je-ma 1837-1900) was a prominent scholar as well as an Korean physician. classified every people into four distinctive types: greater yang [tai yang] person, lesser yin [shao yin] person, greater yin [tai yin] person, lesser yin [shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features. Using these four types he created The Medical Science of Four Types. This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy. According to Lee Je-Ma's theory of human being, human is an equal individual in a modern way of thinking, not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body. The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.

  2. Phase III Clinical Trials Comparing the Immunogenicity and Safety of the Vero Cell-Derived Japanese Encephalitis Vaccine Encevac with Those of Mouse Brain-Derived Vaccine by Using the Beijing-1 Strain

    PubMed Central

    Miyazaki, Chiaki; Okada, Kenji; Ozaki, Takao; Hirose, Mizuo; Iribe, Kaneshige; Ishikawa, Yuji; Togashi, Takehiro; Ueda, Kohji

    2014-01-01

    The immunogenicity and safety of an inactivated cell culture Japanese encephalitis vaccine (CC-JEV) were compared with those of an inactivated mouse brain-derived Japanese encephalitis vaccine (MB-JEV) in phase III clinical multicenter trials conducted in children. The vaccines contain the same Japanese encephalitis virus strain, the Beijing-1 strain. Two independent clinical trials (trials 1 and 2) were conducted. Trial 1 was conducted in 468 healthy children. Each subject was injected with 17 μg per dose of either CC-JEV or MB-JEV, and the immunogenicity and safety of the vaccines were investigated. Trial 1 showed that CC-JEV was more immunogenic and reactive than MB-JEV at the same dose. Therefore, to adjust the immunogenicity of CC-JEV to that of MB-JEV, a vaccine that has had a good track record regarding its efficacy for a long time, trial 2 was conducted in 484 healthy children. To improve the stability, CC-JEV was converted from a liquid type to a freeze-dried type of vaccine. Each subject was injected subcutaneously with either 4 μg per dose of CC-JEV, 8 μg per dose of CC-JEV, or 17 μg per dose of MB-JEV twice, at an interval of 2 to 4 weeks, followed by an additional booster immunization 1 to 15 months after the primary immunization. Based on the results of trial 2, 4 μg per dose of the freeze-dried CC-JEV (under the label Encevac) was selected as a substitute for the MB-JEV. Encevac was approved and launched in 2011 and has since been in use as a 2nd-generation Japanese encephalitis vaccine in Japan. (These studies have been registered at the JapicCTI under registration no. JapicCTI-132063 and JapicCTI-080586 for trials 1 and 2, respectively.) PMID:24334689

  3. Job evaluation for clinical nursing jobs by implementing the NHS JE system.

    PubMed

    Kahya, Emin; Oral, Nurten

    2007-10-01

    The purpose of this paper was to evaluate locally all the clinical nursing jobs implementing the NHS JE system in four hospitals. The NHS JE was developed by the Department of Health in the UK in 2003-2004. A job analysis questionnaire was designed to gather current job descriptions. It was distributed to each of 158 clinical nurses and supervisor nurses in 31 variety clinics at four hospitals in one city. The questionnaires were analysed to evaluate locally all the identified 94 nursing jobs. Fourteen of 19 nursing jobs in the medical and surgical clinics can be matched to the nurse national job in the NHS JE system. The results indicated that two new nursing jobs titled nurse B and nurse advanced B should be added to the list of national nursing jobs in the NHS JE system.

  4. Expectoration of Flaviviruses during sugar feeding by mosquitoes (Diptera: Culicidae).

    PubMed

    van den Hurk, Andrew F; Johnson, Petrina H; Hall-Mendelin, Sonja; Northill, Judy A; Simmons, Russell J; Jansen, Cassie C; Frances, Stephen P; Smith, Greg A; Ritchie, Scott A

    2007-09-01

    Biological transmission of arboviruses to a vertebrate host occurs when virions are expelled along with saliva during blood feeding by a hematophagous arthropod. We undertook experiments to determine whether mosquitoes expectorate flaviviruses in their saliva while sugar feeding. Batches of Culex annulirostris Skuse and Culex gelidus Theobald (Diptera: Culicidae) were orally infected with Japanese encephalitis (family Flaviviridae, genus Flavivirus, JEV), Kunjin (family Flaviviridae, genus Flavivirus, KUNV; a subtype of West Nile virus), and Murray Valley encephalitis (family Flaviviridae, genus Flavivirus, MVEV) viruses. After a 7-d extrinsic incubation, these mosquitoes were offered sucrose meals via cotton pledgets, which were removed daily and processed for viral RNA by using real-time TaqMan reverse transcriptase-polymerase chain reaction (RT-PCR) assays. JEV, MVEV, and KUNV RNA was detected in all pledgets removed from batches of Cx. gelidus on days 7-14 postexposure. In contrast, detection rates were variable for Cx. annulirostris, with KUNV detected in 0.3 M sucrose pledgets on all days postexposure, and JEV and MVEV detected on 57 and 50% of days postexposure, respectively. Higher concentrations of sucrose in the pledget did not increase virus detection rates. When individual JEV-infected Cx. gelidus were exposed to the sucrose pledget, 73% of mosquitoes expectorated virus with titers that were detectable by TaqMan RT-PCR. These results clearly show that flaviviruses are expectorated by infected mosquitoes during the process of sugar feeding on artificial pledgets. Potential applications of the method for arboviral bioassays and field surveillance are discussed.

  5. A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses

    PubMed Central

    Beck, Cécile; Desprès, Philippe; Paulous, Sylvie; Vanhomwegen, Jessica; Lowenski, Steeve; Nowotny, Norbert; Durand, Benoit; Garnier, Annabelle; Blaise-Boisseau, Sandra; Guitton, Edouard; Yamanaka, Takashi; Zientara, Stéphan; Lecollinet, Sylvie

    2015-01-01

    West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members. Robust diagnosis therefore needs to be validated through virus neutralisation tests (VNTs) which are time-consuming and require BSL3 facilities. The flavivirus envelope (E) glycoprotein ectodomain is composed of three domains (D) named DI, DII, and DIII, with EDIII containing virus-specific epitopes. In order to improve the serological differentiation of flavivirus infections, the recombinant soluble ectodomain of WNV E (WNV.sE) and EDIIIs (rEDIIIs) of WNV, JEV, and TBEV were synthesised using the Drosophila S2 expression system. Purified antigens were covalently bonded to fluorescent beads. The microspheres coupled to WNV.sE or rEDIIIs were assayed with about 300 equine immune sera from natural and experimental flavivirus infections and 172 nonimmune equine sera as negative controls. rEDIII-coupled microspheres captured specific antibodies against WNV, TBEV, or JEV in positive horse sera. This innovative multiplex immunoassay is a powerful alternative to ELISAs and VNTs for veterinary diagnosis of flavivirus-related diseases. PMID:26457301

  6. Evaluation of single-round infectious, chimeric dengue type 1 virus as an antigen for dengue functional antibody assays.

    PubMed

    Yamanaka, Atsushi; Suzuki, Ryosuke; Konishi, Eiji

    2014-07-23

    Dengue fever and dengue hemorrhagic fever are endemic throughout tropical and subtropical countries. Four serotypes of dengue viruses (DENV-1 to DENV-4), each with several genotypes including various subclades, are co-distributed in most endemic areas. Infection-neutralizing and -enhancing antibodies are believed to play protective and pathogenic roles, respectively. Measurement of these functional antibodies against a variety of viral strains is thus important for evaluating coverage and safety of dengue vaccine candidates. Although transportation of live virus materials beyond national borders is increasingly limited, this difficulty may be overcome using biotechnology that enables generation of an antibody-assay antigen equivalent to authentic virus based on viral sequence information. A rapid system to produce flavivirus single-round infectious particles (SRIPs) was recently developed using a Japanese encephalitis virus (JEV) subgenomic replicon plasmid. This system allows production of chimeric SRIPs that have surface proteins of other flaviviruses. In the present study, SRIPs of DENV-1 (D1-SRIPs) were evaluated as an antigen for functional antibody assays. Inclusion of the whole mature capsid gene of JEV into the replicon plasmid provided higher D1-SRIP yields than did its exclusion in cases where a DENV-1 surface-protein-expressing plasmid was used for co-transfection of 293T cells with the replicon plasmid. In an assay to measure the balance between neutralizing and enhancing activities, dose (antibody dilution)-dependent activity curves in dengue-immune human sera or mouse monoclonal antibodies obtained using D1-SRIP antigen were equivalent to those obtained using DENV-1 antigen. Similar results were obtained using additional DENV-2 and DENV-3 systems. In a conventional Vero-cell neutralization test, a significant correlation was shown between antibody titers obtained using D1-SRIP and DENV-1 antigens. These results demonstrate the utility of D1-SRIPs as

  7. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    PubMed

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  8. Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses

    PubMed Central

    Roby, Justin A.; Pijlman, Gorben P.; Wilusz, Jeffrey; Khromykh, Alexander A.

    2014-01-01

    Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA) derived from the 3' untranslated region (UTR). sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated. PMID:24473339

  9. Outbreak of Japanese encephalitis on the island of Saipan, 1990.

    PubMed

    Paul, W S; Moore, P S; Karabatsos, N; Flood, S P; Yamada, S; Jackson, T; Tsai, T F

    1993-05-01

    During October 1990, an outbreak of encephalitis occurred on Saipan. Although no virus was isolated, patients seroconverted to Japanese encephalitis (JE) virus, indicating the first known occurrence of JE on US territory since 1947. Ten cases occurred among a population of 40,000. The prevalence of antibody to JE virus among 234 lifelong Saipan residents surveyed after the outbreak was 4.2%. Age, household crowding, and lack of air conditioning were risk factors for infection. The seroprevalence in pigs, which are important amplifying hosts of JE virus, was 96% (n = 52). None of 288 stored serum specimens from lifelong Saipan residents sampled in 1984 were seropositive. These data suggest that JE virus was recently introduced onto Saipan and that peridomestic factors affected the risk of human infection. Transmission of JE virus probably ended with exhaustion of the supply of susceptible amplifying hosts. Surveillance for human cases and seroconversions in pigs during 1991 revealed no evidence of ongoing JE virus transmission.

  10. [Isolation and identification of mosquito-borne arboviruses in Yuncheng city, Shanxi province, 2012].

    PubMed

    Zheng, Yayun; Cao, Yuxi; Fu, Shihong; Cheng, Jingxia; Zhao, Junying; Dai, Peifang; Kong, Xiangsheng; Liang, Guodong

    2015-04-01

    To investigate the species and distribution of mosquitoes and mosquito-borne arboviruses in Yuncheng city of Shanxi province, China. Mosquito samples were collected in 19 collection sites from Linyi county and Yongji city in Yuncheng city, in August, 2012. After identification and classification, all the specimens were homogenized and centrifuged to acquire supernatant before being inoculated to both C6/36 and BHK21 cells for viral isolation. Positive isolates were identified with arbovirus species-specific primers under RT-PCR, for further sequencing and phylogenetic analysis. A total of 10 455 mosquitoes of 7 species in 4 genuese were collected. The predominant mosquito species in Linyi county was Culex pipens pallens (91.96%, 3 911/4 253), but the one in Yongji city was Culex tritaeniorhynchus (72.85%, 4 518/6 202). A total of 23 strains of viruses were isolated from the mosquito pools. 15 strains from Culex tritaeniorhynchus and Culex pipens pallens were identified as genotype I Japanese encephalitis virus (JEV). Four strains from Culex pipens pallens were identified as Culex flavivirus (CxFV). Three strains from Culex pipens pallens were identified as Culex pipiens pallens densovirus (CppDNV). One strain from Armigeres subalbatus and Aedes albopictus was identified as Getah virus (GETV). Four kinds of arboviruses were isolated from the mosquito pools, including GETV and CxFV, which were isolated and documented in Shanxi province for the first time. In the city of Yuncheng, Culex tritaeniorhynchus had been the predominant species and major vector for transmitting JEV. Genotype I JEV remained the major JEV circulating in the local natural environment.

  11. Serological Investigations of Flavivirus Prevalence in Khammouane Province, Lao People's Democratic Republic, 2007–2008

    PubMed Central

    Hiscox, Alexandra; Winter, Christian H.; Vongphrachanh, Phengta; Sisouk, Thongchanh; Somoulay, Virasack; Phompida, Samlane; Kaul, Surinder; Sananikhom, Pany; Yen, Nguyen Thi; Paul, Richard E.; Brey, Paul; Bryant, Juliet E.

    2010-01-01

    A large-scale cross-sectional seroprevalence study of dengue (DEN) and Japanese encephalitis (JE) was conducted in Khammouane province, Lao PDR, as part of the initial baseline health impact assessment of the Nam Theun 2 hydroelectric dam construction project. Health surveys were performed between May 2007 and February 2008 with serum samples collected from healthy individuals involved in the resettlement program of 16 villages (total surveyed population 4,369). Hemagglutination inhibition assay using flavivirus antigens (DENV1, DENV3, and JEV) performed on 1,708 plasma specimens revealed 30.4% (519) cross-reactive positives, and 10% (172) and 1.3% (22) positives to JEV or DENV, respectively. Entomological surveys conducted during the rainy season of 2008 indicated the presence of competent flavivirus vectors (Culex vishnui group and Aedes albopictus), although Aedes aegypti was not found. Continued surveillance and investigation is warranted to assess the clinical disease burden of flaviviruses in this area that is undergoing rapid ecological and demographic change. PMID:21036856

  12. Long-term follow-up of Japanese encephalitis chimeric virus vaccine: Immune responses in children.

    PubMed

    Chokephaibulkit, Kulkanya; Sirivichayakul, Chukiat; Thisyakorn, Usa; Pancharoen, Chitsanu; Boaz, Mark; Bouckenooghe, Alain; Feroldi, Emmanuel

    2016-11-04

    A single dose of live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) was shown to be immunogenic and well tolerated when given either as a booster to formalin-inactivated Japanese encephalitis (JE)-vaccine (mouse brain-derived vaccine [MBDV])-primed 2-5-year-olds, or as a primary vaccination to JE-vaccine-naïve 12-24-month-old toddlers in Thailand. A 5-year follow-up assessment of immune response persistence over time was conducted. Four additional visits (at 2, 3, 4, and 5years) for immunologic assessments were added to the original 12-month open-label crossover study, in which 100 healthy children aged 2-5years with a history of two-dose primary vaccination with MBDV (according to the Thai Expanded Program for Immunization schedule), and 200 healthy JE-vaccine-naïve 12-24-month-old toddlers, were randomized 1:1 to receive JE-CV, containing ⩾4 log 10 plaque forming units, 1month before or after hepatitis A control vaccine. In MBDV-primed 2-5-year-olds (n=78), the immune response to the JE-CV vaccine persisted up to at least 5years after vaccination with a single dose of JE-CV, with all (n=78) children seroprotected at the year 5 visit (geometric mean titers [GMT]: 2521/dil). There was no decrease of seroprotection rate over time (100% at 6months post-vaccination and 96.8% (90.3-98.9) at 5yearspost-vaccination). In JE-vaccine-naïve toddlers, a protective immune response persisted up to at least 5years in 58.8% (50.9-66.4) after a single-dose administration of JE-CV (GMT 26.71/dil; sensitivity analysis). A single-dose of JE-CV as a booster following MBDV administration provided long-lasting immunity. In JE-vaccine-naïve toddlers, despite relatively high seroprotection rates persisting over time, a subsequent booster dose is recommended following a JE-CV primary vaccination for long-term protection. This study was registered on www.clinicaltrials.gov (NCT00621764). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A review of West Nile and Usutu virus co-circulation in Europe: how much do transmission cycles overlap?

    PubMed

    Nikolay, Birgit

    2015-10-01

    Due to the increasing global spread of arboviruses, the geographic extent of virus co-circulation is expanding. This complicates the diagnosis of febrile conditions and can have direct effects on the epidemiology. As previously demonstrated, subsequent infections by two closely related viruses, such as those belonging to the Japanese encephalitis virus (JEV) serocomplex, can lead to partial or complete cross-immunity, altering the risk of infections or the outcome of disease. Two flaviviruses that may interact at population level are West Nile virus (WNV) and Usutu virus (USUV). These pathogens have antigenic cross-reactivity and affect human and animal populations throughout Europe. This systematic review investigates the overlap of WNV and USUV transmission cycles, not only geographically but also in terms of host and vector ranges. Co-circulation of WNV and USUV was reported in 10 countries and the viruses were found to infect 34 common bird species belonging to 11 orders. Moreover, four mosquito species are potential vectors for both viruses. Taken together, these data suggest that WNV and USUV transmission overlaps substantially in Europe and highlight the importance of further studies investigating the interactions between the two viruses within host and vector populations. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The zoonotic flaviviruses of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent viruses.

    PubMed

    Mackenzie, J S; Williams, D T

    2009-08-01

    The genus Flaviviridae comprises about 70 members, of which about 30 are found in southern, south-eastern and eastern Asia and Australasia. These include major pathogens such as Japanese encephalitis (JE), West Nile (WN), Murray Valley encephalitis (MVE), tick-borne encephalitis, Kyasanur Forest disease virus, and the dengue viruses. Other members are known to be associated with mild febrile disease in humans, or with no known disease. In addition, novel flaviviruses continue to be discovered, as demonstrated recently by New Mapoon virus in Australia, Sitiawan virus in Malaysia, and ThCAr virus in Thailand. About 19 of these viruses are mosquito-borne, six are tick-borne, and four have no known vector and represent isolates from rodents or bats. Evidence from phylogenetic studies suggest that JE, MVE and Alfuy viruses probably emerged in the Malaya-Indonesian region from an African progenitor virus, possibly a virus related to Usutu virus. WN virus, however, is believed to have emerged in Africa, and then dispersed through avian migration. Evidence suggests that there are at least seven genetic lineages of WN virus, of which lineage 1b spread to Australasia as Kunjin virus, lineages 1a and 5 spread to India, and lineage 6 spread to Malaysia. Indeed, flaviviruses have a propensity to spread and emerge in new geographic areas, and they represent a potential source for new disease emergence. Many of the factors associated with disease emergence are present in the region, such as changes in land use and deforestation, increasing population movement, urbanization, and increasing trade. Furthermore, because of their ecology and dependence on climate, there is a strong likelihood that global warming may significantly increase the potential for disease emergence and/or spread.

  15. Long-term Immunogenicity of a Single Dose of Japanese Encephalitis Chimeric Virus Vaccine in Toddlers and Booster Response 5 Years After Primary Immunization.

    PubMed

    Kosalaraksa, Pope; Watanaveeradej, Veerachai; Pancharoen, Chitsanu; Capeding, Maria Rosario; Feroldi, Emmanuel; Bouckenooghe, Alain

    2017-04-01

    Japanese encephalitis (JE) is an important mosquito-borne viral disease that is endemic in Asia, Western Pacific countries and Northern Australia. Although there is no antiviral treatment, vaccination is effective in preventing this disease. We followed a cohort of 596 children for 5 years after primary vaccination at 12-18 months of age with JE chimeric virus vaccine (JE-CV; IMOJEV) in a multicenter, phase III trial in Thailand and the Philippines to assess antibody persistence and safety. At the end of the 5 years, a subgroup of 85 participants, at 1 site in Thailand, was followed after administration of a JE-CV booster vaccination. JE antibody titers were measured annually after primary vaccination and 28 days after booster vaccination using a 50% plaque reduction neutralization test. Seroprotection was defined as a JE-CV neutralizing antibody titer ≥10 (1/dil). Kaplan-Meier survival analysis was used to estimate the proportion of participants maintaining protective JE-CV neutralizing antibody titers. At 1, 2, 3, 4 and 5 years after vaccination with JE-CV, 88.5%, 82.9%, 78.2%, 74.0% and 68.6% of the participants followed remained seroprotected. Geometric mean titers in the subgroup assessed after receipt of a booster dose increased from 61.2 (95% confidence interval: 43.8-85.7) pre-booster to 4951 (95% confidence interval: 3928-6241) 28 days post-booster, with all participants seroprotected. There were no safety concerns identified. Protective immune responses persisted for at least 5 years after a JE-CV primary immunization in the majority of participants. JE-CV booster induced a robust immune response even after a 5-year interval.

  16. [Analysis of pathogen spectrum of Encephalitis/Meningitis in northwestern area of China].

    PubMed

    Zhang, Xiao-shu; Wang, Xu-xia; Yu, De-shan; Jiang, Jian-xiang; Zhang, Guang-ye; Wang, Fang; Li, Hui

    2013-10-01

    To learn the characteristics of pathogen spectrum of Encephalitis /Meningitis in northwestern area of China. Between January 1st 2009 and March 31st 2011, a total of 569 patients with clinical symptoms of Encephalitis/Meningitis were selected from the hospitals in Gansu, Qinghai,Inner Mongolia and Xinjiang province. 1514 samples of specimen were collected from the 515 patients, to detect the IgM of Japanese encephalitis virus (JEV), enterovirus (EV, including Coxsackie virus, ECHO virus and enterovirus 71), Mumps virus, Herpes simplex virus (HSV) in blood and cerebrospinal fluid. Meanwhile, Neisseria meningitis (Nm), Haemophilus influenzae Type B (Hib), Staphylococcus, Streptococcus pneumonia, Streptococcus Suis, E. Coli and Cryptococci were also identified. The detection results were analyzed by different region, time and age range. Pathogenic bacteria were identified in the specimen from 16 patients, with the rate at 3.65%, of which the dominant ones were Streptococcus pneumonia (7 patients, 43.75%). Virus were identified in the specimen from 132 patients, with the rate at 27.05%, of which the dominant types were EV and HSV, accounting for 33.33% (44 cases) and 31.82% (42 cases) respectively. The detection rate of virus showed a significant seasonal trend, with the peak appearing between June and November each year. The peak of EV detection was between July and September, with 24 cases detected out; the peak of HSV was between June and August (11 cases detected out); mumps virus was mainly found between July and December (25 cases). There was no significant time-distribution found in the detection of bacteria. The EV and HSV were mainly distributed in Gansu and Qinghai province (70 cases) ;most of mumps virus were found in Gansu province (24 cases);and JEV were only found in Gansu province (20 cases). The viral pathogen spectrum was identified in all ages, and the EV and mumps virus were mainly found in children aged 0-14 years old (42 and 17 cases respectively

  17. Cyclophilin B facilitates the replication of Orf virus.

    PubMed

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  18. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    PubMed Central

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  19. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    PubMed

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  20. Japanese Encephalitis Surveillance and Immunization - Asia and Western Pacific Regions, 2016.

    PubMed

    Heffelfinger, James D; Li, Xi; Batmunkh, Nyambat; Grabovac, Varja; Diorditsa, Sergey; Liyanage, Jayantha B; Pattamadilok, Sirima; Bahl, Sunil; Vannice, Kirsten S; Hyde, Terri B; Chu, Susan Y; Fox, Kimberley K; Hills, Susan L; Marfin, Anthony A

    2017-06-09

    Japanese encephalitis (JE) virus is the most important vaccine-preventable cause of encephalitis in the Asia-Pacific region. The World Health Organization (WHO) recommends integration of JE vaccination into national immunization schedules in all areas where the disease is a public health priority (1). This report updates a previous summary of JE surveillance and immunization programs in Asia and the Western Pacific in 2012 (2). Since 2012, funding for JE immunization has become available through the GAVI Alliance, three JE vaccines have been WHO-prequalified,* and an updated WHO JE vaccine position paper providing guidance on JE vaccines and vaccination strategies has been published (1). Data for this report were obtained from a survey of JE surveillance and immunization practices administered to health officials in countries with JE virus transmission risk, the 2015 WHO/United Nations Children's Fund Joint Reporting Form on Immunization, notes and reports from JE meetings held during 2014-2016, published literature, and websites. In 2016, 22 (92%) of 24 countries with JE virus transmission risk conducted JE surveillance, an increase from 18 (75%) countries in 2012, and 12 (50%) countries had a JE immunization program, compared with 11 (46%) countries in 2012. Strengthened JE surveillance, continued commitment, and adequate resources for JE vaccination should help maintain progress toward prevention and control of JE.

  1. Concomitant or sequential administration of live attenuated Japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine: randomized double-blind phase II evaluation of safety and immunogenicity.

    PubMed

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark

    2010-11-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

  2. Change in Dengue and Japanese Encephalitis Seroprevalence Rates in Sri Lanka

    PubMed Central

    Jeewandara, Chandima; Gomes, Laksiri; Paranavitane, S. A.; Tantirimudalige, Mihiri; Panapitiya, Sumedha Sandaruwan; Jayewardene, Amitha; Fernando, Samitha; Fernando, R. H.; Prathapan, Shamini

    2015-01-01

    Background Sri Lanka has been affected by epidemics of dengue infections for many decades and the incidence and severity of dengue infections have been rising each year. Therefore, we investigated the age stratified seroprevalence of dengue infections in order to facilitate future dengue vaccine strategies. In addition, since the symptomatic dengue infections have increased during the past few decades, we also investigated the possible association with Japanese Encephalitis Virus (JEV) antibody seropositivity with symptomatic dengue in a community cohort in Sri Lanka. Methods 1689 healthy individuals who were attending a primary health care facility were recruited. Dengue and JEV antibody status was determined in all individuals and JEV vaccination status was recorded. Results 1152/1689 (68.2%) individuals were seropositive for dengue and only 133/1152 (11.5%) of them had been hospitalized to due to dengue. A significant and positive correlation was observed for dengue antibody seropositivity and age in children (Spearmans R = 0.84, p = 0.002) and in adults (Spearmans R = 0.96, p = 0.004). We observed a significant rise in the age stratified seroprevalence rates in children over a period of 12 years. For instance, in year 2003 the annual seroconversion rate was 1.5% per annum, which had risen to 3.79% per annum by 2014. We also found that both adults (p<0.001) and in children (p = 0.03) who were hospitalized due to dengue were more likely to be seropositive for JEV antibodies. However, 244 (91.4%) of adults who were seropositive for JEV had not had the JEV vaccine. Conclusions Dengue seroprevalence rates have risen significantly over the last 12 years in Sri Lanka, possibly due to increased transmission. As individuals who were hospitalized due to dengue were more likely to be seropositive for JEV, the possibility of cross-reactive assays and/or of JEV infection on immunity to the DENV and clinical disease severity should be further investigated. PMID:26696417

  3. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses.

    PubMed

    Guy, Bruno; Guirakhoo, Farshad; Barban, Veronique; Higgs, Stephen; Monath, Thomas P; Lang, Jean

    2010-01-08

    Dengue viruses (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) are major global health and growing medical problems. While a live-attenuated vaccine exists since decades against the prototype flavivirus, yellow fever virus (YFV), there is an urgent need for vaccines against dengue or West Nile diseases, and for improved vaccines against Japanese encephalitis. Live-attenuated chimeric viruses were constructed by replacing the genes coding for Premembrane (prM) and Envelope (E) proteins from YFV 17D vaccine strain with those of heterologous flaviviruses (ChimeriVax technology). This technology has been used to produce vaccine candidates for humans, for construction of a horse vaccine for West Nile fever, and as diagnostic reagents for dengue, Japanese encephalitis, West Nile and St. Louis encephalitis infections. This review focuses on human vaccines and their characterization from the early stages of research through to clinical development. Phenotypic and genetic properties and stability were examined, preclinical evaluation through in vitro or animal models, and clinical testing were carried out. Theoretical environmental concerns linked to the live and genetically modified nature of these vaccines have been carefully addressed. Results of the extensive characterizations are in accordance with the immunogenicity and excellent safety profile of the ChimeriVax-based vaccine candidates, and support their development towards large-scale efficacy trials and registration.

  4. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop.

    PubMed

    Chabierski, Stefan; Barzon, Luisa; Papa, Anna; Niedrig, Matthias; Bramson, Jonathan L; Richner, Justin M; Palù, Giorgio; Diamond, Michael S; Ulbert, Sebastian

    2014-05-09

    West Nile Virus (WNV) is an emerging mosquito-transmitted flavivirus that continues to spread and cause disease throughout several parts of the world, including Europe and the Americas. Specific diagnosis of WNV infections using current serological testing is complicated by the high degree of cross-reactivity between antibodies against other clinically relevant flaviviruses, including dengue, tick-borne encephalitis (TBEV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses. Cross-reactivity is particularly problematic in areas where different flaviviruses co-circulate or in populations that have been immunized with vaccines against TBEV, JEV, or YFV. The majority of cross-reactive antibodies against the immunodominant flavivirus envelope (E) protein target a conserved epitope in the fusion loop at the distal end of domain II. We tested a loss-of-function bacterially expressed recombinant WNV E protein containing mutations in the fusion loop and an adjacent loop domain as a possible diagnostic reagent. By comparing the binding of sera from humans infected with WNV or other flaviviruses to the wild type and the mutant E proteins, we analyzed the potential of this technology to specifically detect WNV antibodies. Using this system, we could reliably determine WNV infections. Antibodies from WNV-infected individuals bound equally well to the wild type and the mutant protein. In contrast, sera from persons infected with other flaviviruses showed significantly decreased binding to the mutant protein. By calculating the mean differences between antibody signals detected using the wild type and the mutant proteins, a value could be assigned for each of the flaviviruses, which distinguished their pattern of reactivity. Recombinant mutant E proteins can be used to discriminate infections with WNV from those with other flaviviruses. The data have important implications for the development of improved, specific serological assays for the detection of WNV antibodies

  5. Perceptions, practices and health seeking behaviour constrain JE/AES interventions in high endemic district of North India.

    PubMed

    Chaturvedi, Sanjay; Sharma, Neha; Kakkar, Manish

    2017-08-08

    Acute Encephalitis Syndrome (AES) and Japanese Encephalitis (JE) stay as poorly understood phenomena in India. Multiple linkages to determinants such as poverty, socio-economic status, gender, environment, and population distribution, make it a greater developmental issue than just a zoonotic disease. A qualitative study was conducted to map knowledge, perceptions and practices of community and health systems level stakeholders. Seventeen interviews with utilizers of AES care, care givers from human and veterinary sectors, Non-governmental Organizations (NGOs), and pig owners and 4 Focused Group Discussions (FGDs) with farmers, community leaders, and students were conducted in an endemic north Indian district-Kushinagar. Core themes that emerged were: JE/AES been perceived as a deadly disease, but not a major health problem; filthy conditions, filthy water and mosquitoes seen to be associated with JE/AES; pigs not seen as a source of infection; minimal role of government health workers in the first-contact care of acute Illness; no social or cultural resistance to JE vaccination or mosquito control; no gender-based discrimination in the care of acute Illness; and non-utilization of funds available with local self govt. Serious challenges and systematic failures in delivery of care during acute illness, which can critically inform the health systems, were also identified. There is an urgent need for promotive interventions to address lack of awareness about the drivers of JE/AES. Delivery of care during acute illness suffers with formidable challenges and systematic failures. A large portion of mortality can be prevented by early institution of rational management at primary and secondary level, and by avoiding wastage of time and resources for investigations and medications that are not actually required.

  6. Immunogenicity of One Dose of Vero Cell Culture-Derived Japanese Encephalitis (JE) Vaccine in Adults Previously Vaccinated with Mouse Brain-Derived JE Vaccine

    DTIC Science & Technology

    2012-03-06

    redness, pain, and swelling) and five systemic symp- toms ( fever , headache, rash, vomiting or diarrhea, and muscle aches) on each of the 4 days following...counts between the two cohorts defined by previous JE vaccine status. b Other vaccines received included influenza (n = 5 subjects), typhoid (n = 2...subjects), typhoid (n = 3), hepatitis A, hepatitis B, and typhoid (n = 2), anthrax and typhoid (n = 1), and hepatitis A and hepatitis B (n = 1). d For dose

  7. Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence

    PubMed Central

    McAuley, Alexander J.; Torres, Maricela; Plante, Jessica A.; Huang, Claire Y.-H.; Bente, Dennis A.

    2016-01-01

    ABSTRACT Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, with in vivo pathogenesis often not being correlated with in vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. IMPORTANCE The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric

  8. Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence.

    PubMed

    McAuley, Alexander J; Torres, Maricela; Plante, Jessica A; Huang, Claire Y-H; Bente, Dennis A; Beasley, David W C

    2016-05-01

    Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, within vivo pathogenesis often not being correlated within vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a

  9. Japanese encephalitis surveillance and immunization--Asia and the Western Pacific, 2012.

    PubMed

    2013-08-23

    Japanese encephalitis (JE) virus is a leading cause of encephalitis in Asia, causing an estimated 67,900 JE cases annually. To control JE, the World Health Organization (WHO) recommends that JE vaccine be incorporated into immunization programs in all areas where JE is a public health problem. For many decades, progress mainly occurred in a small number of high-income Asian countries. Recently, prospects for control have improved with better disease burden awareness as a result of increased JE surveillance and wider availability of safe, effective vaccines. This report summarizes the status of JE surveillance and immunization programs in 2012 in Asia and the Western Pacific. Data were obtained from the WHO/United Nations Children's Fund (UNICEF) Joint Reporting Form (JRF), published literature, meeting reports, and websites. In 2012, 18 (75%) of the 24 countries with areas of JE virus transmission risk conducted at least some JE surveillance, and 11 (46%) had a JE immunization program. Further progress toward JE control requires increased awareness of disease burden at the national and regional levels, availability of WHO-prequalified pediatric JE vaccines, and international support for surveillance and vaccine introduction in countries with limited resources.

  10. Distinct Dictation of Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality via Triggering TLR3 and TLR4 Signal Pathways

    PubMed Central

    Uyangaa, Erdenebelig; Kim, Seong Bum; Kim, Jin Hyoung; Kim, Bum Seok; Kim, Koanhoi; Eo, Seong Kug

    2014-01-01

    Japanese encephalitis (JE) is major emerging neurologic disease caused by JE virus. To date, the impact of TLR molecules on JE progression has not been addressed. Here, we determined whether each TLR modulates JE, using several TLR-deficient mouse strains (TLR2, TLR3, TLR4, TLR7, TLR9). Surprisingly, among the tested TLR-deficient mice there were contrasting results in TLR3−/− and TLR4−/− mice, i.e. TLR3−/− mice were highly susceptible to JE, whereas TLR4−/− mice showed enhanced resistance to JE. TLR3 ablation induced severe CNS inflammation characterized by early infiltration of inflammatory CD11b+Ly-6Chigh monocytes along with profoundly increased viral burden, proinflammatory cytokine/chemokine expression as well as BBB permeability. In contrast, TLR4−/− mice showed mild CNS inflammation manifested by reduced viral burden, leukocyte infiltration and proinflammatory cytokine expression. Interestingly, TLR4 ablation provided potent in vivo systemic type I IFN innate response, as well as ex vivo type I IFN production associated with strong induction of antiviral PRRs (RIG-I, MDA5), transcription factors (IRF-3, IRF-7), and IFN-dependent (PKR, Oas1, Mx) and independent ISGs (ISG49, ISG54, ISG56) by alternative activation of IRF3 and NF-κB in myeloid-derived DCs and macrophages, as compared to TLR3−/− myeloid-derived cells which were more permissive to viral replication through impaired type I IFN innate response. TLR4 ablation also appeared to mount an enhanced type I IFN innate and humoral, CD4+ and CD8+ T cell responses, which were mediated by altered immune cell populations (increased number of plasmacytoid DCs and NK cells, reduced CD11b+Ly-6Chigh monocytes) and CD4+Foxp3+ Treg number in lymphoid tissue. Thus, potent type I IFN innate and adaptive immune responses in the absence of TLR4 were closely coupled with reduced JE lethality. Collectively, these results suggest that a balanced triggering of TLR signal array by viral components

  11. Prediction of Turbulence-Generated Noise in Unheated Jets. Part 2; JeNo Users' Manual (Version 1.0)

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Wolter, John D.; Koch, L. Danielle

    2009-01-01

    JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.

  12. Epidemiology of Japanese encephalitis: past, present, and future prospects

    PubMed Central

    Wang, Huanyu; Liang, Guodong

    2015-01-01

    Japanese encephalitis (JE) is one of severe viral encephalitis that affects individuals in Asia, western Pacific countries, and northern Australia. Although 67,900 JE cases have been estimated among 24 JE epidemic countries annually, only 10,426 have been reported in 2011. With the establishment of JE surveillance and vaccine use in some countries, the JE incidence rate has decreased; however, serious outbreaks still occur. Understanding JE epidemics and identifying the circulating JE virus genotypes will improve JE prevention and control. This review summarizes the current epidemiology data in these countries. PMID:25848290

  13. Blood-Brain Barrier Function and Biomarkers of Central Nervous System Injury in Rickettsial Versus Other Neurological Infections in Laos.

    PubMed

    Dittrich, Sabine; Sunyakumthorn, Piyanate; Rattanavong, Sayaphet; Phetsouvanh, Rattanaphone; Panyanivong, Phonepasith; Sengduangphachanh, Amphonsavanh; Phouminh, Phonelavanh; Anantatat, Tippawan; Chanthongthip, Anisone; Lee, Sue J; Dubot-Pérès, Audrey; Day, Nicholas P J; Paris, Daniel H; Newton, Paul N; Turner, Gareth D H

    2015-08-01

    Blood-brain barrier (BBB) function and cerebrospinal fluid (CSF) biomarkers were measured in patients admitted to hospital with severe neurological infections in the Lao People's Democratic Republic (N = 66), including bacterial meningitis (BM; N = 9) or tuberculosis meningitis (TBM; N = 11), Japanese encephalitis virus (JEV; N = 25), and rickettsial infections (N = 21) including murine and scrub typhus patients. The albumin index (AI) and glial fibrillary acidic protein (GFAP) levels were significantly higher in BM and TBM than other diseases but were also raised in individual rickettsial patients. Total tau protein was significantly raised in the CSF of JEV patients. No differences were found between clinical or neurological symptoms, AI, or biomarker levels that allowed distinction between severe neurological involvement by Orientia tsutsugamushi compared with Rickettsia species. © The American Society of Tropical Medicine and Hygiene.

  14. A Population-Based Acute Meningitis and Encephalitis Syndromes Surveillance in Guangxi, China, May 2007- June 2012

    PubMed Central

    Chongsuvivatwong, Virasakdi; Wu, Xinghua; Bi, Fuyin; Hadler, Stephen C.; Jiraphongsa, Chuleeporn; Sornsrivichai, Vorasith; Lin, Mei; Quan, Yi

    2015-01-01

    Objectives Acute meningitis and encephalitis (AME) are common diseases with the main pathogens being viruses and bacteria. As specific treatments are different, it is important to develop clinical prediction rules to distinguish aseptic from bacterial or fungal infection. In this study we evaluated the incidence rates, seasonal variety and the main etiologic agents of AME, and identified factors that could be used to predict the etiologic agents. Methods A population-based AME syndrome surveillance system was set up in Guigang City, Guangxi, involving 12 hospitals serving the study communities. All patients meeting the case definition were investigated. Blood and/or cerebrospinal fluid were tested for bacterial pathogens using culture or RT-PCR and serological tests for viruses using enzyme-linked immunosorbent assays. Laboratory testing variables were grouped using factor analysis. Multinomial logistic regression was used to predict the etiology of AME. Results From May 2007 to June 2012, the annual incidence rate of AME syndrome, and disease specifically caused by Japanese encephalitis (JE), other viruses, bacteria and fungi were 12.55, 0.58, 4.57, 0.45 and 0.14 per 100,000 population, respectively. The top three identified viral etiologic agents were enterovirus, mumps virus, and JE virus, and for bacteria/fungi were Streptococcus sp., Cryptococcus neoformans and Staphylococcus sp. The incidence of JE and other viruses affected younger populations and peaked from April to August. Alteration of consciousness and leukocytosis were more likely to be caused by JE, bacteria and fungi whereas CSF inflammation was associated with bacterial/fungal infection. Conclusions With limited predictive validity of symptoms and signs and routine laboratory tests, specific tests for JE virus, mumps virus and enteroviruses are required to evaluate the immunization impact and plan for further intervention. CSF bacterial culture cannot be omitted in guiding clinical decisions

  15. Ultra-sensitive chemiluminescence imaging DNA hybridization method in the detection of mosquito-borne viruses and parasites.

    PubMed

    Zhang, Yingjie; Liu, Qiqi; Zhou, Biao; Wang, Xiaobo; Chen, Suhong; Wang, Shengqi

    2017-01-25

    Mosquito-borne viruses (MBVs) and parasites (MBPs) are transmitted through hematophagous arthropods-mosquitoes to homoiothermous vertebrates. This study aims at developing a detection method to monitor the spread of mosquito-borne diseases to new areas and diagnose the infections caused by MBVs and MBPs. In this assay, an ultra-sensitive chemiluminescence (CL) detection method was developed and used to simultaneously detect 19 common MBVs and MBPs. In vitro transcript RNA, virus-like particles (VLPs), and plasmids were established as positive or limit of detection (LOD) reference materials. MBVs and MBPs could be genotyped with high sensitivity and specificity. The cut-off values of probes were calculated. The absolute LODs of this strategy to detect serially diluted in vitro transcribed RNAs of MBVs and serially diluted plasmids of MBPs were 10 2 -10 3 copies/μl and 10 1 -10 2 copies/μl, respectively. Further, the LOD of detecting a strain of pre-quantified JEV was 10 1.8 -10 0.8 PFU/ml, fitted well in a linear regression model (coefficient of determination = 0.9678). Ultra-sensitive CL imaging DNA hybridization was developed and could simultaneously detect various MBVs and MBPs. The method described here has the potential to provide considerable labor savings due to its ability to screen for 19 mosquito-borne pathogens simultaneously.

  16. West Nile encephalitis outbreak in Kerala, India, 2011.

    PubMed

    Anukumar, B; Sapkal, Gajanan N; Tandale, Babasheb V; Balasubramanian, R; Gangale, Daya

    2014-09-01

    An outbreak of acute encephalitis syndrome (AES) was reported in Kerala in India in May 2011. The outbreak features were unusual in terms of seasonality, geographical distribution, age group, and clinical manifestations in comparison to the epidemiological features of Japanese Encephalitis. To detect the etiology of the acute encephalitis syndrome outbreak. Investigation of outbreak was undertaken by collection of brief clinical history and epidemiological details along with the specimens for viral diagnosis. The serum/CSF samples (patients=208) received from the sentinel hospitals were subjected to IgM capture ELISA and RT-PCR specific for Japanese encephalitis (JE) virus and West Nile virus (WNV). The JE/WN IgM positive samples were further tested by serum neutralization assay for the presence of JE and WNV specific neutralizing antibody. Most of the affected patients were aged above 15 years. No spatial clustering of the disease was noticed. Cases were observed in premonsoon and early monsoon season and in JE non-endemic area of Kerala. A total of 47 patient samples were positive for in-house JE IgM capture ELISA and WNV IgM capture ELISA. Serum neutralization assay result revealed that 32 of 42 (76.19%) sera were positive for WNV neutralization antibodies. WNV was isolated from a clinical specimen. Phylogenetic analysis of WNV envelope gene revealed 99% homology with Russian Lineage 1 WNV. West Nile virus (WNV) etiology was confirmed by virus isolation and detection of virus specific antibody from clinical specimen. Phylogenetic analysis grouped the current strain in lineage I West Nile virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein

    PubMed Central

    Jiang, Tao; Wang, Hua-Jing; Yang, Hai-ou; Tan, Weng-Long; Liu, Ran; Yu, Man; Ge, Bao-Xue; Zhu, Qing-Yu; Qin, E-De; Guo, Ya-Jun; Qin, Cheng-Feng

    2011-01-01

    Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1–4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1–4, YFV, and WNV and confers protection from lethal challenge with DENV 1–4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans. PMID:21264311

  18. Spectroscopic classification of ASASSN-17je (=AT 2017ffq) as a Type II Supernova

    NASA Astrophysics Data System (ADS)

    Rodriguez, Osmar; Prieto, J. L.

    2017-07-01

    We obtained an optical spectrum (450-760nm) of ASASSN-17je/AT2017ffq (ATel #10571) on 2017 July 15.19 UT with GMOS, mounted on Gemini-South. Using the SNID code (Blondin & Tonry, 2007, ApJ, 666, 1024) we find a good match with a Type II supernova at z=0.014, consistent with the redshift of its host galaxy 2MASX J17401447-5825586.

  19. [J.E. GILIBERT'S DIDACTIC VIEWS].

    PubMed

    Grębecka, Wanda

    2015-01-01

    When J.E. Gilibert was nominated to head the Chair of Natural History in Vilnius, his task was to introduce education with European standards. He was aware of the potential of his students and the level of their secondary school education. At that time (1781), no textbooks were available in Poland presenting knowledge of botany; the first was written in 1785. Teachers were using assorted, sometimes hardly practical materials, such as excerpts from Roman authors. Gilibert was familiar with this situation from his experience in Grodno, where he had taught for 6 years. At best, learners, i.e. prospective students, were using guidebooks for farmers by Ch. Kluk. This state of affairs was essentially in accordance with original plans of the National Educational Committee, which intended a very practical course of Natural History. The Chair in Vilnius was founded to implement university level education; and Gilibert dedicated a lot of time to didactic recommendations which would help students to develop the competence of botanists capable of studying European literature and communicating with international scientists. This presentation focuses on two important documents. The first one, Prospectus praelectionum cursus Historiae Naturalis. Ad usum Alumnorum Alma uniwersitatis Vilnensis, containing the curriculum of Natural History in Vilnius, will be analyzed from the point of view of its philosophical, epistemic and practical significance. The other one, Exercitium botanicum in schola principe universitatis Vilnensis habendum die mensie Julii anno 1782 seu enumaratio metodica plantarum, will be of interest from the point of view of various methodical comments regarding other works by Gilibert.

  20. Present and Future Arboviral Threats

    PubMed Central

    Weaver, Scott C.; Reisen, William K.

    2009-01-01

    Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) viruses that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, it has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically-infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV

  1. Japanese encephalitis - the prospects for new treatments.

    PubMed

    Turtle, Lance; Solomon, Tom

    2018-04-26

    Japanese encephalitis is a mosquito-borne disease that occurs in Asia and is caused by Japanese encephalitis virus (JEV), a member of the genus Flavivirus. Although many flaviviruses can cause encephalitis, JEV causes particularly severe neurological manifestations. The virus causes loss of more disability-adjusted life years than any other arthropod-borne virus owing to the frequent neurological sequelae of the condition. Despite substantial advances in our understanding of Japanese encephalitis from in vitro studies and animal models, studies of pathogenesis and treatment in humans are lagging behind. Few mechanistic studies have been conducted in humans, and only four clinical trials of therapies for Japanese encephalitis have taken place in the past 10 years despite an estimated incidence of 69,000 cases per year. Previous trials for Japanese encephalitis might have been too small to detect important benefits of potential treatments. Many potential treatment targets exist for Japanese encephalitis, and pathogenesis and virological studies have uncovered mechanisms by which these drugs could work. In this Review, we summarize the epidemiology, clinical features, prevention and treatment of Japanese encephalitis and focus on potential new therapeutic strategies, based on repurposing existing compounds that are already suitable for human use and could be trialled without delay. We use our newly improved understanding of Japanese encephalitis pathogenesis to posit potential treatments and outline some of the many challenges that remain in tackling the disease in humans.

  2. A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes

    PubMed Central

    Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong

    2015-01-01

    Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054

  3. Present and future arboviral threats.

    PubMed

    Weaver, Scott C; Reisen, William K

    2010-02-01

    Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8

  4. RSV antibody test

    MedlinePlus

    Respiratory syncytial virus antibody test; RSV serology; Bronchiolitis - RSV test ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  5. pH regulation of recombinant glucoamylase production in Fusarium venenatum JeRS 325, a transformant with a Fusarium oxysporum alkaline (trypsin-like) protease promoter.

    PubMed

    Wiebe, M G; Robson, G D; Shuster, J R; Trinci, A P

    1999-08-05

    Fusarium venenatum (formerly Fusarium graminearum) JeRS 325 produces heterologous glucoamylase (GAM) under the regulation of a Fusarium oxysporum alkaline (trypsin-like) protease promoter. The glucoamylase gene was used as a reporter gene to study the effects of ammonium and pH on GAM production under the control of the alkaline protease promoter. Between pH 4.0 and 5.8, GAM production in glucose-limited chemostat cultures of JeRS 325 grown at a dilution rate of 0.10 h-1 (doubling time, 6.9 h) on (NH4)2SO4 medium increased in a linear manner with increase in pH. However, at pH 4.0 and below GAM production was almost completely repressed in glucose-limited chemostat cultures grown on (NH4)2SO4 or NaNO3 medium. Thus GAM production in JeRS 325 is regulated by culture pH, not by the nature of the nitrogen source in the medium. The difficulty of using unbuffered medium when investigating putative ammonium repression is also shown. The study demonstrates the potential for use of the alkaline protease promoter in F. graminearum for the production of recombinant proteins in a pH dependent man ner. Copyright 1999 John Wiley & Sons, Inc.

  6. Congenital rubella

    MedlinePlus

    ... mother is infected with the virus that causes German measles. Congenital means the condition is present at ... Gershon AA. Rubella virus (German measles). In: Bennett JE, Dolin R, ... Principles and Practice of Infectious Diseases, Updated ...

  7. Regulation of Apoptosis during Flavivirus Infection

    PubMed Central

    Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu

    2017-01-01

    Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses. PMID:28846635

  8. Regulation of Apoptosis during Flavivirus Infection.

    PubMed

    Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu

    2017-08-28

    Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.

  9. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis

  10. Japanese encephalitis vaccines: current vaccines and future prospects.

    PubMed

    Monath, T P

    2002-01-01

    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.

  11. Identifying Attenuating Mutations: Tools for a New Vaccine Design against Flaviviruses.

    PubMed

    Khou, Cécile; Pardigon, Nathalie

    2017-01-01

    Emerging Flaviviruses pose an increasing threat to global human health. To date, human vaccines against yellow fever virus (YFV), Japanese encephalitis virus (JEV), dengue virus (DV), and tick-borne encephalitis virus (TBEV) exist. However, there is no human vaccine against other Flaviviruses such as Zika virus (ZIKV) and West Nile virus (WNV). In order to restrict their spread and to protect populations against the diseases they induce, vaccines against these emerging viruses must be designed. Obtaining new live attenuated Flavivirus vaccines using molecular biology methods is now possible. Molecular infectious clones of the parental viruses are relatively easy to generate. Key mutations present in live attenuated vaccines or mutations known to have a key role in the Flavivirus life cycle and/or interactions with their hosts can be identified by sequencing, and are then inserted in infectious clones by site-directed mutagenesis. More recently, the use of chimeric viruses and large-scale reencoding and introduction of microRNA target sequences have also been tested. Indeed, a combination of these methods will help in designing new generations of vaccines against emerging and reemerging Flaviviruses. © 2017 S. Karger AG, Basel.

  12. Cross-protection elicited by primary and booster vaccinations against Japanese encephalitis: a two-year follow-up study.

    PubMed

    Erra, Elina O; Askling, Helena Hervius; Yoksan, Sutee; Rombo, Lars; Riutta, Jukka; Vene, Sirkka; Lindquist, Lars; Vapalahti, Olli; Kantele, Anu

    2013-12-17

    The inactivated Vero cell-derived vaccine (JE-VC, IXIARO) has replaced the traditional mouse brain-derived preparations (JE-MB) in travelers' vaccinations against Japanese encephalitis. We showed recently that a single JE-VC dose efficiently boosts immunity in JE-MB-primed vaccinees, and that JE-VC elicits cross-protective immunity against non-vaccine genotypes, including the emerging genotype I. While these studies only provided short-term data, the present investigation evaluates the longevity of seroprotection in the same volunteers. The study comprised 48 travelers who had received (1) JE-VC primary series, (2) JE-MB primary series followed by a single JE-VC booster dose, or (3) JE-MB primary series and a single JE-MB booster dose. Serum samples were collected two years after the last vaccine dose, and evaluated with the plaque-reduction neutralization test against seven Japanese encephalitis virus strains representing genotypes I-IV. PRNT50 titers ≥ 10 were considered protective. Two years after the primary series with JE-VC, 87-93% of the vaccinees proved to be cross-protected against test strains representing genotypes II-IV and 73% against those of genotype I. After a single homologous or heterologous booster dose to JE-MB-primed subjects, the two-year seroprotection rates against genotype I-IV strains were 89-100%. After JE-VC primary series, seroprotection appeared to wane first against genotype I. The first booster should not be delayed beyond two years. In JE-MB-primed subjects, a single JE-VC booster provided cross-protective immunity against genotype I-IV strains in almost all vaccinees, suggesting an interval of two years or even longer for the second booster. These data further support the use of a single JE-VC dose for boosting JE-MB immunity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Vaccine adverse events reported in post-marketing study of the Kitasato Institute from 1994 to 2004.

    PubMed

    Nakayama, Tetsuo; Onoda, Kazumasa

    2007-01-05

    General physicians, pediatricians and parents realize that serious adverse events occur with an extremely rare incidence, but have no information on the incidences of vaccine-associated adverse events. A proper understanding of vaccine adverse events would be helpful in promoting an immunization strategy. Causal association can rarely be determined in adverse events through laboratory examinations. We examined the cases reported in the post-marketing surveillance of the Kitasato Institute, categorizing them into two groups: allergic reactions and severe systemic illnesses. Anaphylactic patients with gelatin allergy after immunization with live measles, rubella and mumps monovalent vaccines have been reported since 1993, but the number of reported cases with anaphylaxis dramatically decreased after 1999 when gelatin was removed from all brands of DPT. The incidence of anaphylactic reaction was estimated to be 0.63 per million for Japanese encephalitis virus (JEV) vaccine, 0.95 for DPT and 0.68 for Influenza vaccine, but the causative component has not yet been specified. Among 67.2 million immunization practices, 6 cases with encephalitis or encephalopathy, 7 with acute disseminated encephalomyelitis (ADEM), 10 with Guillain-Barré syndrome and 12 with idiopathic thrombocytopenic purpura (ITP) were reported. The wild-type measles virus genome was detected in a patient with encephalitis and in two of four bone marrow aspirates obtained from ITP after measles vaccination. Enterovirus infection was identified in two patients after mumps vaccination (one each with encephalitis and ADEM), one patient with encephalitis after immunization with JEV vaccine, and one with aseptic meningitis after immunization with influenza vaccine. The total estimated incidence of serious neurological illness after vaccination was 0.1-0.2 per million immunization practices. We found that enterovirus or wild-type measles virus infection was coincidentally associated with vaccination in

  14. Cannibalism and virus production in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae fed with two leaf substrates inoculated with Baculovirus spodoptera.

    PubMed

    Valicente, F H; Tuelher, E S; Pena, R C; Andreazza, R; Guimarães, M R F

    2013-04-01

    Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.

  15. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes

    PubMed Central

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  16. Persistence of antibodies six years after booster vaccination with inactivated vaccine against Japanese encephalitis.

    PubMed

    Paulke-Korinek, Maria; Kollaritsch, Herwig; Kundi, Michael; Zwazl, Ines; Seidl-Friedrich, Claudia; Jelinek, Tomas

    2015-07-09

    Japanese Encephalitis (JE) virus occurs in wide regions of Asia with over 3 billion people living in areas at risk for JE. An estimated 68,000 clinical cases of JE occur every year, and vaccination is the most effective prophylactic measure. One internationally licensed vaccine containing the inactivated JE virus strain SA14-14-2 is Ixiaro (Valneva, Austria). According to recommendations, basic immunization consists of vaccinations on day 0, day 28, and a booster dose 12-24 months later. Protection in terms of neutralizing antibody titers has been assessed up to 12 months after the third dose of the vaccine. The current investigation was designed to evaluate antibody decline over time and to predict long-term duration of seroprotection after a booster dose. In a preceding trial, volunteers received basic immunization (day 0, day 28) and one booster dose against JE 15 months later. A follow up blood draw 6 years following their booster dose was carried out in 67 subjects. For antibody testing, a 50% plaque reduction neutralization test (PRNT50-test) was used. PRNT50 values of 10 and above are surrogate levels of protection according to WHO standards. Seventy-six months following the booster dose, 96% of the tested subjects had PRNT50 titers of 10 or higher. Geometric mean titer (GMT) was 148 (95% CI confidence interval: 107-207). Antibody titers were lower in volunteers 50 years of age and older. Vaccination history against other flaviviruses (yellow fever or tick borne encephalitis) did not significantly influence PRNT50 titers. A two-step log-linear decline model predicted protection against JE of approximately 14 years after the booster dose. Six years after a booster dose against JE, long-term protection could be demonstrated. According to our results, further booster doses should be scheduled 10 years following the first booster dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Effect of Vaccination Coverage and Climate on Japanese Encephalitis in Sarawak, Malaysia

    PubMed Central

    Impoinvil, Daniel E.; Ooi, Mong How; Diggle, Peter J.; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P.

    2013-01-01

    Background Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Methodology/principal findings Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. Conclusions/significance This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects

  18. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak, Malaysia.

    PubMed

    Impoinvil, Daniel E; Ooi, Mong How; Diggle, Peter J; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P; Baylis, Matthew; Solomon, Tom

    2013-01-01

    Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.

  19. Pharmacokinetics of the Antiviral Lectin Griffithsin Administered by Different Routes Indicates Multiple Potential Uses.

    PubMed

    Barton, Christopher; Kouokam, J Calvin; Hurst, Harrell; Palmer, Kenneth E

    2016-12-17

    Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad spectrum antiviral activity against enveloped viruses, including severe acute respiratory syndrome-Coronavirus (SARS-CoV), Japanese encephalitis virus (JEV), hepatitis C virus (HCV), and herpes simplex virus-2 (HSV-2). However, its pharmacokinetic profile remains largely undefined. Here, Sprague Dawley rats were administered a single dose of GRFT at 10 or 20 mg/kg by intravenous, oral, and subcutaneous routes, respectively, and serum GRFT levels were measured at select time points. In addition, the potential for systemic accumulation after oral dosing was assessed in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found that parenterally-administered GRFT in rats displayed a complex elimination profile, which varied according to administration routes. However, GRFT was not orally bioavailable, even after chronic treatment. Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses was detected in rat fecal extracts after chronic oral dosing. These findings support further evaluation of GRFT for pre-exposure prophylaxis against emerging epidemics for which specific therapeutics are not available, including systemic and enteric infections caused by susceptible enveloped viruses. In addition, GRFT should be considered for antiviral therapy and the prevention of rectal transmission of HIV-1 and other susceptible viruses.

  20. Shingles - aftercare

    MedlinePlus

    Herpes zoster - treatment ... Mays RM, Petersen ET, Gordon RA, Tyring SK. Herpes zoster. In: Lebwohl MG, Heymann WR, Berth-Jones ... Saunders; 2014:chap 101. Whitley RJ. Chickenpox and herpes zoster (varicella-zoster virus). In: Bennett JE, Dolin ...

  1. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  2. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  3. The Defense Department’s Enduring Contributions to Global Health. The Future of the U.S. Army and Navy Overseas Medical Laboratories

    DTIC Science & Technology

    2011-06-01

    the Army’s first two overseas laborato- ries in Cuba and the Philippines to investigate outbreaks of typhoid fever and yellow fever , which were...characteristic black scabbing at the bite locus; in extreme cases, symptoms can include hemorrhaging and intravascular coagulation. Typhoid fever A bacterial...laboratories’ research that resulted in the first vaccine for Japanese encepha- litis virus (JE); the first isolation of the Rift Valley Fever virus (RVF

  4. Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors

    NASA Astrophysics Data System (ADS)

    Huy, Tran Quang; Hanh, Nguyen Thi Hong; Van Chung, Pham; Anh, Dang Duc; Nga, Phan Thi; Tuan, Mai Anh

    2011-06-01

    In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.

  5. Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications.

    PubMed

    van Rijn, Patrick; Schirhagl, Romana

    2016-06-01

    Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Grapevine fleck virus-like viruses in Vitis.

    PubMed

    Sabanadzovic, S; Abou-Ghanem, N; Castellano, M A; Digiaro, M; Martelli, G P

    2000-01-01

    Two sets of degenerate primers for the specific amplification of 572-575 nt and 386 nt segments of the methyltransferase and RNA- dependent RNA polymerase cistrons of members of the genera Tymovirus and Marafivirus and of the unassigned virus Grapevine fleck virus (GFkV) were designed on the basis of available sequences. These primers were used for amplifying and subsequent cloning and sequencing part of the open reading frame 1 of the genome of GFkV, Grapevine asteroid mosaic-associated virus (GAMaV) and of another previously unreported virus, for which the name Grapevine red globe virus (GRGV) is proposed. Computer-assisted analysis of the amplified genome portions showed that the three grapevine viruses are phylogenetically related with one another and with sequenced tymoviruses and marafiviruses. The relationships with tymoviruses was confirmed by the type of ultrastructural modifications induced in the host cells. RdRp-specific degenerate primers were successfully used for the aspecific detection of the three viruses in crude grapevine sap extracts. Specific virus identification was obtained with RT-PCR using antisense virus-specific primers.

  7. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  8. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  9. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  10. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  11. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  12. Nairobi sheep disease virus/Ganjam virus.

    PubMed

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  13. Development of high-yield influenza B virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J. S.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-01-01

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six “internal” influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production. PMID:27930325

  14. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  15. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.

    PubMed

    Roush, David J; Myrold, Adam; Burnham, Michael S; And, Joseph V; Hughes, Joseph V

    2015-01-01

    Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 10(10) PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4-5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3-101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79-85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic-Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of

  16. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    PubMed

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  17. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  18. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    DTIC Science & Technology

    2013-01-01

    heparin was purchased from Innovative Research (Novi, MI). Goat and horse whole blood was provided by our Veterinary Medicine Division (USAMRIID, Fort...quinquefasciatus (10) BA House NA Human Culex Th9-0122 Ae. aegypti (1) BA House DENV-3 DNP Aedes Th9-0164 Cx. tritaeniorhynchus (24) LT Farm JEV NA...Culex Th9-0167 Ae. albopictus (1) LT Farm NA NA Aedes Th9-0175 Cx. tritaeniorhynchus (25) LT Farm JEV NA Culex Th9-0235 Cx. tritaeniorhynchus (25) BA

  19. Foodborne viruses

    USDA-ARS?s Scientific Manuscript database

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  20. Discrete virus infection model of hepatitis B virus.

    PubMed

    Zhang, Pengfei; Min, Lequan; Pian, Jianwei

    2015-01-01

    In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.

  1. Immunogenicity and safety of the inactivated Japanese encephalitis vaccine IXIARO® in elderly subjects: Open-label, uncontrolled, multi-center, phase 4 study.

    PubMed

    Cramer, Jakob P; Dubischar, Katrin; Eder, Susanne; Burchard, Gerd D; Jelinek, Tomas; Jilma, Bernd; Kollaritsch, Herwig; Reisinger, Emil; Westritschnig, Kerstin

    2016-08-31

    IXIARO® is a Vero cell-derived, inactivated Japanese encephalitis (JE) vaccine licensed mainly in western countries for children and adults traveling to JE endemic areas. Limited immunogenicity and safety data in elderly travelers have been available. To evaluate safety and immunogenicity of IXIARO in elderly subjects. Open-label, single arm, multi-centered study. Two-hundred subjects with good general health, including adequately controlled chronic conditions, received two doses of IXIARO®, 28days apart. Protective levels of antibodies were tested 42days after the second dose. Systemic and local adverse events (AEs) were solicited for 7days after each dose, unsolicited AEs were collected up to day 70 and in a phone call at month 7. Subjects were aged 64-83years (median 69.0years). Nineteen percent of subjects had serious or medically attended AEs up to Day 70 (primary endpoint), none of them causally linked to IXIARO. Solicited local AEs were reported by 33.5% (most common: local tenderness) and solicited systemic AEs by 27% (most common: headache) of subjects. The seroprotection rate was 65% with a geometric mean titre (GMT) of 37. Subjects with tick borne encephalitis (TBE) vaccinations in the past 5years (N=29) had a SCR of 90% and GMT of 65. IXIARO is generally well tolerated in the elderly, and the safety profile is largely comparable with younger adults. SCR and GMT are lower compared to younger adults, but SCR is in the range reported in elderly for other vaccines e.g. against TBE, hepatitis-A virus (HAV)/hepatitis-B virus (HBV), influenza. The differences in SCR and GMT from younger to elderly adults were in the range of other vaccines. Duration of protection is uncertain in older persons, therefore a booster dose (third dose) should be considered before any further exposure to JE virus. Copyright © 2016. Published by Elsevier Ltd.

  2. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  3. Hepatitis E virus coinfection with hepatotropic viruses in Egyptian children.

    PubMed

    Zaki, Maysaa El Sayed; Salama, Osama Saad; Mansour, Fathy Awaad; Hossein, Shaimaa

    2008-06-01

    Major hepatotropic viruses continue to be important causes of acute viral hepatitis in developing countries. This work was carried out to detect the seroprevalence of hepatitis E virus (HEV) markers in children with acute viral hepatitis due to hepatotropic viruses (A, B and C) and non-A, non-B, non-C acute hepatitis, and to ascertain the influence of HEV superinfection in individuals infected with hepatitis viruses (A, B and C). We studied prospectively 162 children with sporadic acute hepatitis who reported to our hospital. Thirteen healthy controls were also included in the study. Laboratory investigations were performed, including complete liver function tests. Complete serological profiles for hepatitis viruses A, B, C and E were evaluated. HEV immunoglobulin G was detected with highest percentage among patients with hepatitis B (56.7%), followed by patients with hepatitis C virus (52.0%), hepatitis A virus (34.1%) and combined hepatitis B and C viruses (30.0%). The detection rate among patients with non-A, non-B, non-C hepatitis was 7.1%. HEV immunoglobulin M was found in 4.5% of hepatitis A virus patients and in 3.3% of hepatitis B patients. The prevalence of HEV immunoglobulin G and immunoglobulin M correlated with the levels of hepatic aspartate aminotransferase and alanine aminotransferase in patients with dual markers of infection with hepatitis E and other viruses compared to patients with acute hepatitis due to A and C viruses. HEV serological markers are common among children with acute viral hepatitis, especially from hepatitis C and B viruses. There may be increased sensitivity to HEV coinfection in association with hepatitis B and C infections. Dual infection with HEV and other hepatotropic viruses was associated with greater elevation of aspartate and alanine aminotransferases.

  4. CHLORELLA VIRUSES

    PubMed Central

    Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.

    2007-01-01

    Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063

  5. Ross River virus and Barmah Forest virus infection. Commonly asked questions.

    PubMed

    Hills, S

    1996-12-01

    Ross River virus infection and Barmah Forest virus infection are two commonly reported arboviral diseases in Australia. Ross River virus has long been recognised as a cause of epidemic polyarthritis and polyarticular disease. Clinical disease as a result of Barmah Forest virus infection has only been identified since 1988 and Australia is the only country in which this virus has been detected. Severe and prolonged symptoms can occur as a result of infection with either virus and may result in significant distress to the patient. This article reviews some of the issues that patients raise in relation to both Ross River virus and Barmah Forest virus disease including the source of infection, the duration of symptoms and measures to prevent infection.

  6. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  7. Viruses infecting reptiles.

    PubMed

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  8. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    PubMed

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  9. Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    PubMed Central

    Bawa, Bhupinder; Wang, Wei; Shabman, Reed S.; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B.; Richt, Juergen A.; Wentworth, David E.; Ma, Wenjun

    2014-01-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses. PMID:25275541

  10. Structure and Expression of Genes for Flavivirus Immunogens.

    DTIC Science & Technology

    1985-09-01

    the same order in YFV i.e., C-M-E-NSI--- NS3---NS5 and an open reading frame extends at least through the C-M-E-NS1 coding region, consistent with...been determined (Castle et al., 1985). Comparison of these results shows that 1) the six major JEV genes mapped thus far occur in the same order in YFV ...pre-M proteins and 3) the predicted structures of the E, NSI and ns2a proteins of JEV and YFV exhibit a high degree of relatedness. The E proteins

  11. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  12. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    PubMed

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Computer Viruses. Technology Update.

    ERIC Educational Resources Information Center

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  15. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    PubMed

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  16. Blueberry (Vaccinium corymbosum)-Virus Diseases

    USDA-ARS?s Scientific Manuscript database

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  17. Vector-virus interactions and transmission dynamics of West Nile virus.

    PubMed

    Ciota, Alexander T; Kramer, Laura D

    2013-12-09

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission.

  18. Vector-Virus Interactions and Transmission Dynamics of West Nile Virus

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2013-01-01

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission. PMID:24351794

  19. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    PubMed Central

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  20. Understanding viruses: Philosophical investigations.

    PubMed

    Pradeu, Thomas; Kostyrka, Gladys; Dupré, John

    2016-10-01

    Viruses have been virtually absent from philosophy of biology. In this editorial introduction, we explain why we think viruses are philosophically important. We focus on six issues (the definition of viruses, the individuality and diachronic identity of a virus, the possibility to classify viruses into species, the question of whether viruses are living, the question of whether viruses are organisms, and finally the biological roles of viruses in ecology and evolution), and we show how they relate to classic questions of philosophy of biology and even general philosophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology?

    PubMed

    Smith, Donald B; Simmonds, Peter

    2015-04-01

    Fulminant hepatitis is a rare outcome of infection with hepatitis E virus. Several recent reports suggest that virus variation is an important determinant of disease progression. To critically examine the evidence that virus-specific factors underlie the development of fulminant hepatitis following hepatitis E virus infection. Published sequence information of hepatitis E virus isolates from patients with and without fulminant hepatitis was collected and analysed using statistical tests to identify associations between virus polymorphisms and disease outcome. Fulminant hepatitis has been reported following infection with all four hepatitis E virus genotypes that infect humans comprising multiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus sequences from individuals infected by a common source did not detect any common substitutions associated with progression to fulminant hepatitis. Re-analysis of previously reported associations between virus substitutions and fulminant hepatitis suggests that these were probably the result of sampling biases. Host-specific factors rather than virus genotype, variants or specific substitutions appear to be responsible for the development of fulminant hepatitis. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.

  2. Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Sarah A.; Lamb, Robert A.

    2006-11-25

    Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551)more » had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.« less

  3. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  4. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    PubMed Central

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  5. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    PubMed

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  6. [The Past and Future of Hepatitis B Virus, Hepatitis C Virus, and Human Immunodeficiency Virus Infection].

    PubMed

    Hayashi, Jun

    2015-06-01

    In Japan, hepatitis B virus (HBV) and hepatitis C virus (HCV) infections have decreased; however, human immunodeficiency virus (HIV) infection has increased. Antiviral treatment against these viruses has been established. With antiviral medicines, HBV DNA and HIV RNA levels decrease to under the detectable limits and HCV is completely eliminated from almost 90% of infected patients. Furthermore, the morbidities associated with hepatocellular carcinoma and acquired immunodeficiency syndrome (AIDS) have decreased. The: appearance of antiviral-resistant HBV and HCV is a concern because long-term treatment is needed against these viruses. Patients infected with HBV in the past have the potential to develop de novo hepatitis with immunosuppressive treatment, in spite of being HBsAg-negative and with HBV DNA under the detectable level.

  7. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus.

    PubMed

    Waggoner, Jesse J; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K James; Sahoo, Malaya K; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A

    2016-12-15

     Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses.  Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded.  A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log 10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001).  ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K. James; Sahoo, Malaya K.; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.

    2016-01-01

    Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. PMID:27578819

  9. Ganjam virus.

    PubMed

    Sudeep, A B; Jadi, R S; Mishra, A C

    2009-11-01

    Ganjam virus (GANV), a member of genus Nairovirus of family Bunyavirdae is of considerable veterinary importance in India. Though, predominantly tick borne, GANV was also isolated from mosquitoes, man and sheep. Neutralizing and complement fixing antibodies to GANV have been detected in animal and human sera collected from different parts of the country. Thirty three strains of GANV have been isolated from India, mainly from Haemaphysalis ticks. The virus replicated in certain vertebrate and mosquito cell lines and found pathogenic to laboratory animals. One natural infection and five laboratory-acquired infections in men were also reported. GANV is antigenically related to Nairobi sheep disease virus (NSDV) of Africa, which is highly pathogenic for sheep and goats causing 70-90 per cent mortality among the susceptible population. Recent molecular studies have demonstrated that GANV is an Asian variant of NSDV and both these viruses are related to the dreaded Crimean Congo haemorrhagic fever (CCHF) group viruses. The versatility of the virus to replicate in different arthropod species, its ability to infect sheep, goat and man makes it an important zoonotic agent.

  10. The Drosophila Nora virus is an enteric virus, transmitted via feces.

    PubMed

    Habayeb, Mazen S; Cantera, Rafael; Casanova, Gabriela; Ekström, Jens-Ola; Albright, Shannon; Hultmark, Dan

    2009-04-01

    The biology of the Drosophila viruses has not been intensely investigated. Here we have investigated the biology of the Nora virus, a persistent Drosophila virus. We find that injected Nora virus is able to replicate in the files, reaching a high titer that is maintained in the next generation. There is a remarkable variation in the viral loads of individual flies in persistently infected stocks; the titers can differ by three orders of magnitude. The Nora virus is mainly found in the intestine of infected flies, and the histology of these infected intestines show increased vacuolization. The virus is excreted in the feces and is horizontally transmitted. The Nora virus infection has a very mild effect on the longevity of the flies, and no significant effect on the number of eggs laid and the percent of eggs that develop to adults.

  11. Nitropelagi marinus gen. nov., sp. nov., Isolated From Seawater, Je-bu island, South Korea.

    PubMed

    Jeong, Sun Hwan; Lee, Sang Seob

    2016-09-01

    A Gram-stain-negative, non-spore forming, non-motile and aerobic strain, designated JB22(T), was isolated from seawater, Je-bu Island, South Korea. Strain JB22(T) was catalase and oxidase positive. Optimal growth of JB22(T) was observed at 30 °C and pH 7.0. NaCl tolerance range was 1-9 % (w/v) with an optimum of 2.0 % concentration. The phylogenetic analysis based on 16S rRNA gene sequence of strain JB22(T) showed the highest sequence similarity to those of Pelagicola litorisediminis D1-W8(T) (95.8 %), Roseovarius litoreus GSW-M15(T) (95.2 %), Roseovarius aestuarii SMK-122(T) (95.0 %), Donghicola eburmeus SW-277(T) (95.0 %), and Roseovarius halotolerans HJ50(T) (94.9 %). It contained ubiquine-10 as the major respiratory quinone and C18:1 ω7c (69.3 %), :0 (9.9 %), C18:1 ω7c 11-methyl (9.6 %) as the major fatty acid. The polar lipid profile included phosphatidylcholine, phosphatidylglycerol, and unidentified aminolipid. The DNA G+C content of the strain JB22(T) was 47 mol  %. Based on physiological and chemotaxonomic characteristics, strain JB22(T) should be regarded as a new genus of the family Rhodobacteraceae, for which the Nitropelagi marinus gen. nov., sp. nov. is proposed. The type strain is JB22(T) (= KEMB 3001-101(T) = JCM 30822(T)).

  12. Simultaneous detection of wheat dwarf virus, northern cereal mosaic virus, barley yellow striate mosaic virus and rice black-streaked dwarf virus in wheat by multiplex RT-PCR.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Massart, Sebastien; Wang, Xifeng

    2017-11-01

    Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg 2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10 -2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Targeted entry of enveloped viruses: measles and herpes simplex virus I.

    PubMed

    Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto

    2012-02-01

    We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection

    PubMed Central

    McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A.; Baric, Ralph S.; Lazear, Helen M.

    2017-01-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity. PMID:28418292

  15. Serodiagnosis for Tumor Viruses

    PubMed Central

    Morrison, Brian J.; Labo, Nazzarena; Miley, Wendell J.; Whitby, Denise

    2015-01-01

    The known human tumor viruses include the DNA viruses Epstein-Barr virus, Kaposi sarcoma herpesvirus, Merkel cell polyomavirus, human papillomavirus, and hepatitis B virus. RNA tumor viruses include Human T-cell lymphotrophic virus type-1 and hepatitis C virus. The serological identification of antigens/antibodies in plasma serum is a rapidly progressing field with utility for both scientists and clinicians. Serology is useful for conducting seroepidemiology studies and to inform on the pathogenesis and host immune response to a particular viral agent. Clinically, serology is useful for diagnosing current or past infection and for aiding in clinical management decisions. Serology is useful for screening blood donations for infectious agents and for monitoring the outcome of vaccination against these viruses. Serodiagnosis of human tumor viruses has improved in recent years with increased specificity and sensitivity of the assays, as well as reductions in cost and the ability to assess multiple antibody/antigens in single assays. Serodiagnosis of tumor viruses plays an important role in our understanding of the prevalence and transmission of these viruses and ultimately in the ability to develop treatments/preventions for these globally important diseases. PMID:25843726

  16. Hepatitis E Virus and Related Viruses in Animals.

    PubMed

    Thiry, D; Mauroy, A; Pavio, N; Purdy, M A; Rose, N; Thiry, E; de Oliveira-Filho, E F

    2017-02-01

    Hepatitis E is an acute human liver disease in healthy individuals which may eventually become chronic. It is caused by the hepatitis E virus (HEV) and can have a zoonotic origin. Nearly 57,000 people die yearly from hepatitis E-related conditions. The disease is endemic in both developing and developed countries with distinct epidemiologic profiles. In developing countries, the disease is associated with inadequate water treatment, while in developed countries, transmission is associated with animal contact and the ingestion of raw or uncooked meat, especially liver. All human HEV are grouped into at least four genotypes, while HEV or HEV-related viruses have been identified in an increasing number of domestic and wild animal species. Despite a high genetic diversity, only one single HEV serotype has been described to date for HEV genotypes 1-4. The discovery of new HEV or HEV-related viruses leads to a continuing increase in the number of genotypes. In addition, the genome organization of all these viruses is variable with overlapping open reading frames (ORF) and differences in the location of ORF3. In spite of the role of some domestic and wild animals as reservoir, the origin of HEV and HEV-related viruses in humans and animals is still unclear. This review discusses aspects of the detection, molecular virology, zoonotic transmission and origin of HEV and HEV-related viruses in the context of 'One Health' and establishes a link between the previous and the new taxonomy of this growing virus family. © 2015 Blackwell Verlag GmbH.

  17. Human Parainfluenza Viruses

    MedlinePlus

    ... HPIVs Are Not the Same as Influenza (Flu) Viruses There are many different types of viruses that cause respiratory infections. Two of those viruses are HPIVs and influenza (flu). People get HPIV ...

  18. Hanta virus (image)

    MedlinePlus

    Hanta virus is a distant cousin of Ebola virus, but is found worldwide. The virus is spread by human contact with rodent waste. Dangerous respiratory illness develops. Effective treatment is not yet ...

  19. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    PubMed

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. The ecological virus.

    PubMed

    O'Malley, Maureen A

    2016-10-01

    Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort. Viruses, especially phage, have been revealed as participants in the planet's most crucial food webs, even though viruses technically consume nothing (they do not metabolize by themselves). Even more impressively, viruses have been identified as regulators of planetary biogeochemistry, in which they control cycles such as carbon, nitrogen and phosphorus - cycles on which all life depends. Although much biogeochemical research black-boxes the entities filling functional roles, it is useful to focus a little more closely to understand how viruses can be held responsible for the global processes of life. This paper will give a brief overview of the history of virus ecology and tease out the implications of large-scale ecological modelling with viruses. This analysis suggests that viruses should be conceptualized as ecological actors that are at least comparable and possibly equal to organismal actors. Ecological agency can therefore be distinguished from standard interpretations of biological agency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Generation of influenza A viruses as live but replication-incompetent virus vaccines.

    PubMed

    Si, Longlong; Xu, Huan; Zhou, Xueying; Zhang, Ziwei; Tian, Zhenyu; Wang, Yan; Wu, Yiming; Zhang, Bo; Niu, Zhenlan; Zhang, Chuanling; Fu, Ge; Xiao, Sulong; Xia, Qing; Zhang, Lihe; Zhou, Demin

    2016-12-02

    The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus. Copyright © 2016, American Association for the Advancement of Science.

  2. Viruses in reptiles

    PubMed Central

    2011-01-01

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3.9.2. Togaviridae 3.10. Caliciviridae

  3. Animal Viruses Probe dataset (AVPDS) for microarray-based diagnosis and identification of viruses.

    PubMed

    Yadav, Brijesh S; Pokhriyal, Mayank; Vasishtha, Dinesh P; Sharma, Bhaskar

    2014-03-01

    AVPDS (Animal Viruses Probe dataset) is a dataset of virus-specific and conserve oligonucleotides for identification and diagnosis of viruses infecting animals. The current dataset contain 20,619 virus specific probes for 833 viruses and their subtypes and 3,988 conserved probes for 146 viral genera. Dataset of virus specific probe has been divided into two fields namely virus name and probe sequence. Similarly conserved probes for virus genera table have genus, and subgroup within genus name and probe sequence. The subgroup within genus is artificially divided subgroups with no taxonomic significance and contains probes which identifies viruses in that specific subgroup of the genus. Using this dataset we have successfully diagnosed the first case of Newcastle disease virus in sheep and reported a mixed infection of Bovine viral diarrhea and Bovine herpesvirus in cattle. These dataset also contains probes which cross reacts across species experimentally though computationally they meet specifications. These probes have been marked. We hope that this dataset will be useful in microarray-based detection of viruses. The dataset can be accessed through the link https://dl.dropboxusercontent.com/u/94060831/avpds/HOME.html.

  4. New Japanese encephalitis vaccines: alternatives to production in mouse brain.

    PubMed

    Halstead, Scott B; Thomas, Stephen J

    2011-03-01

    Japanese encephalitis virus (JEV), a flavivirus maintained in a zoonotic cycle and transmitted by the mosquito Culex tritaeniorhynchus, causes epidemics of encephalitis throughout much of Asia. Resident populations, including short- or long-term visitors to enzootic regions, are at risk of infection and disease. For the past several decades, killed viral vaccines prepared in tissue culture or mouse brain have been used effectively to immunize travelers and residents of enzootic countries. Cost, efficacy and safety concerns led to the development of a live-attenuated virus vaccine (SA14-14-2) and more recently, to the licensure in the USA, Europe, Canada, and Australia of a purified inactivated, tissue culture-based Japanese encephalitis vaccine (IXIARO(®), referred to as IC51; Intercell AG, Vienna, Austria). In addition, a live-attenuated yellow fever-Japanese encephalitis chimeric vaccine (IMOJEV™, referred to as Japanese encephalitis-CV; Sanofi Pasteur, Lyon, France) was recently licensed in Australia and is under review in Thailand. A broad portfolio of safe and effective Japanese encephalitis vaccines has become available to meet the needs of at-risk populations; when appropriately delivered, these new vaccines should greatly diminish the burden of disease.

  5. [The growth of attenuated strains of canine parvovirus, mink enteritis virus, feline panleukopenia virus, and rabies virus on various types of cell cultures].

    PubMed

    Zuffa, T

    1987-10-01

    The growth characteristics were studied in the attenuated strains of canine parvovirus CPVA-BN 80/82, mink enteritis virus MEVA-BN 63/82 and feline panleucopenia virus FPVA-BN 110/83 on the stable feline kidney cell line FE, and in the attenuated canine distemper virus CDV-F-BN 10/83 on chicken embryo cell cultures (KEB) and cultures of the stable cell line VERO. When the FE cultures were infected with different parvoviruses in cell suspension at MOI 2-4 TKID50 per cell, the first multiplication of the intracellular virus was recorded 20 hours p. i. In the canine parvovirus, the content of intracellular and extracellular virus continued increasing parallelly until the fourth day; then, from the fourth to the sixth day, the content of extracellular virus still increased whereas that of intracellular virus fell rapidly. In the case of the mink enteritis virus the release of the virus into the culture medium continued parallelly with the production of the cellular virus until the sixth day. In the case of the feline panleucopenia virus the values concerning free virus and virus bound to cells were lower, starting from the second day p. i. When KEB or VERO cultures were infected in cell suspension with the canine distemper virus at MOI about 0.004 per 1 cell, the replicated intracellular virus was first recorded in the KEB cultures five hours after infection but in the VERO cultures only 20 hours after infection, with a timely release of the virus into the culture medium in both kinds of tissue. In the KEB and VERO cultures the highest values of infection titres were recorded on the fourth day p. i., the course of virus multiplication on the cells being parallel with its release into the culture medium.

  6. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    PubMed Central

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-01-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people. The Ebola virus epidemic in West Africa, which was first recognized in early 2014, highlights the threat posed by these deadly viruses. Filovirus disease is characterized by uncontrolled virus replication and the activation of damaging host pathways. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon (IFN) response, which allows high levels of replication. Here we review the mechanisms deployed by filoviruses to block host innate immunity and discuss aspects of virus replication that promote disease. PMID:26439085

  7. Virus Assembly and Maturation

    NASA Astrophysics Data System (ADS)

    Johnson, John E.

    2004-03-01

    We use two techniques to look at three-dimensional virus structure: electron cryomicroscopy (cryoEM) and X-ray crystallography. Figure 1 is a gallery of virus particles whose structures Timothy Baker, one of my former colleagues at Purdue University, used cryoEM to determine. It illustrates the variety of sizes of icosahedral virus particles. The largest virus particle on this slide is the Herpes simplex virus, around 1200Å in diameter; the smallest we examined was around 250Å in diameter. Viruses bear their genomic information either as positive-sense DNA and RNA, double-strand DNA, double-strand RNA, or negative-strand RNA. Viruses utilize the various structure and function "tactics" seen throughout cell biology to replicate at high levels. Many of the biological principles that we consider general were in fact discovered in the context of viruses ...

  8. Viruses and Breast Cancer

    PubMed Central

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  9. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    PubMed

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  10. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    PubMed

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.

    PubMed

    Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.

  12. The chestnut blight fungus for studies on virus/host and virus/virus interactions: from a natural to a model host.

    PubMed

    Eusebio-Cope, Ana; Sun, Liying; Tanaka, Toru; Chiba, Sotaro; Kasahara, Shin; Suzuki, Nobuhiro

    2015-03-01

    The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for studying virus/host and virus/virus interactions. This is based on the development of methods for artificial virus introduction and elimination, host genome manipulability, available host genome sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub-cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few recent studies on RNA silencing vs. viruses in this fungus are introduced. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Tobacco Mosaic Virus.

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.

    1992-01-01

    Explains how the tobacco mosaic virus can be used to study virology. Presents facts about the virus, procedures to handle the virus in the laboratory, and four laboratory exercises involving the viruses' survival under inactivating conditions, dilution end point, filterability, and microscopy. (MDH)

  14. [The great virus comeback].

    PubMed

    Forterre, Patrick

    2013-01-01

    Viruses have been considered for a long time as by-products of biological evolution. This view is changing now as a result of several recent discoveries. Viral ecologists have shown that viral particles are the most abundant biological entities on our planet, whereas metagenomic analyses have revealed an unexpected abundance and diversity of viral genes in the biosphere. Comparative genomics have highlighted the uniqueness of viral sequences, in contradiction with the traditional view of viruses as pickpockets of cellular genes. On the contrary, cellular genomes, especially eukaryotic ones, turned out to be full of genes derived from viruses or related elements (plasmids, transposons, retroelements and so on). The discovery of unusual viruses infecting archaea has shown that the viral world is much more diverse than previously thought, ruining the traditional dichotomy between bacteriophages and viruses. Finally, the discovery of giant viruses has blurred the traditional image of viruses as small entities. Furthermore, essential clues on virus history have been obtained in the last ten years. In particular, structural analyses of capsid proteins have uncovered deeply rooted homologies between viruses infecting different cellular domains, suggesting that viruses originated before the last universal common ancestor (LUCA). These studies have shown that several lineages of viruses originated independently, i.e., viruses are polyphyletic. From the time of LUCA, viruses have coevolved with their hosts, and viral lineages can be viewed as lianas wrapping around the trunk, branches and leaves of the tree of life. Although viruses are very diverse, with genomes encoding from one to more than one thousand proteins, they can all be simply defined as organisms producing virions. Virions themselves can be defined as infectious particles made of at least one protein associated with the viral nucleic acid, endowed with the capability to protect the viral genome and ensure its

  15. Detection of sweet potato viruses in Yunnan and genetic diversity analysis of the common viruses

    USDA-ARS?s Scientific Manuscript database

    Two hundred seventy-nine samples with virus-like symptoms collected from 16 regions in Yunnan Province were tested by RT-PCR/PCR using virus-specific primers for 8 sweet potato viruses. Six viruses, Sweet potato chlorotic fleck virus (SPCFV), Sweet Potato feathery mottle virus (SPFMV), Sweet potato ...

  16. Hepatitis A Virus and Hepatitis E Virus: Emerging and Re-Emerging Enterically Transmitted Hepatitis Viruses.

    PubMed

    Lemon, Stanley M; Walker, Christopher M

    2018-05-07

    Over the past two decades, progress in understanding human infections with hepatitis A virus (HAV) and hepatitis E virus (HEV) has been eclipsed by the priority of combating persistent hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. During that time, the global burden of liver disease caused by enteric hepatitis viruses has not abated. Because of vaccines, hepatitis A has become increasingly a disease of adults instead of early childhood in many regions of the world, resulting in an age-related shift toward more severe disease. HEV has remained endemic in many developing countries, and in well-developed, economically advanced countries it is now recognized as a cause of chronic, progressive liver disease in individuals with compromised immunity. The goal of this collection of articles is to review recent progress and to shine a bright light on gaps in our understanding of how these viruses replicate, cause disease, interact with the liver and host immune system, and are transmitted, along with prospects for improved control in human populations. Renewed efforts to study and compare HAV and HEV biology in humans and animal models have high potential to enhance our understanding of host-pathogen balance in the liver, and may contribute ultimately to the control of other infectious diseases of the liver. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Evolutionary ecology of virus emergence.

    PubMed

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  18. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  19. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus.

    PubMed

    Spik, Kristin; Shurtleff, Amy; McElroy, Anita K; Guttieri, Mary C; Hooper, Jay W; SchmalJohn, Connie

    2006-05-22

    DNA vaccines for Rift Valley fever virus (RVFV), Crimean Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), and Hantaan virus (HTNV), were tested in mice alone or in various combinations. The bunyavirus vaccines (RVFV, CCHFV, and HTNV) expressed Gn and Gc genes, and the flavivirus vaccine (TBEV) expressed the preM and E genes. All vaccines were delivered by gene gun. The TBEV DNA vaccine and the RVFV DNA vaccine elicited similar levels of antibodies and protected mice from challenge when delivered alone or in combination with other DNAs. Although in general, the HTNV and CCHFV DNA vaccines were not very immunogenic in mice, there were no major differences in performance when given alone or in combination with the other vaccines.

  20. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.

    PubMed

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-03-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.

  1. Japanese encephalitis on Saipan: a survey of suspected mosquito vectors.

    PubMed

    Mitchell, C J; Savage, H M; Smith, G C; Flood, S P; Castro, L T; Roppul, M

    1993-04-01

    An outbreak of Japanese encephalitis (JE) occurred on Saipan, Commonwealth of Northern Mariana Islands, in October 1990. Adult and larval mosquitoes were collected during September-October 1991 to retrospectively determine the probable mosquito vector(s). Virus was not isolated from 119 mosquito pools composed of 7,250 adult specimens as follows: Aedes vexans nocturnis (14%), Culex tritaeniorhynchus (39%), Cx. sitiens group (11%), Culex (Culex) species (35%), and < 1% each of Ae. albopictus, Ae. oakleyi, Aedes saipanensis, Cx. annulirostris marianae, and Cx. fuscanus. Three additional species were collected only as larvae: Anopheles indefinitus, Ae. neopandani, and Cx. quinquefasciatus. Among the vectors of JE incriminated in other areas, Cx. tritaeniorhynchus was the predominant species in our collections and the principal species feeding on swine. This is the first published record of the occurrence of this species on Saipan. Culex tritaeniorhynchus is abundant and widely distributed on the southern half of Saipan where human JE cases occurred in 1990, and where swine seroconversions were detected. Although the identity of the mosquito vector(s) responsible for the 1990 outbreak cannot be established with certainty, our results suggest that Cx. tritaeniorhychus was probably involved.

  2. Trafficking of Hepatitis C Virus Core Protein during Virus Particle Assembly

    PubMed Central

    Counihan, Natalie A.; Rawlinson, Stephen M.; Lindenbach, Brett D.

    2011-01-01

    Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly. PMID:22028650

  3. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays

    PubMed Central

    Yeh, Yin-Ting; Tang, Yi; Sebastian, Aswathy; Dasgupta, Archi; Perea-Lopez, Nestor; Albert, Istvan; Lu, Huaguang; Terrones, Mauricio; Zheng, Si-Yang

    2016-01-01

    Viral infectious diseases can erupt unpredictably, spread rapidly, and ravage mass populations. Although established methods, such as polymerase chain reaction, virus isolation, and next-generation sequencing have been used to detect viruses, field samples with low virus count pose major challenges in virus surveillance and discovery. We report a unique carbon nanotube size-tunable enrichment microdevice (CNT-STEM) that efficiently enriches and concentrates viruses collected from field samples. The channel sidewall in the microdevice was made by growing arrays of vertically aligned nitrogen-doped multiwalled CNTs, where the intertubular distance between CNTs could be engineered in the range of 17 to 325 nm to accurately match the size of different viruses. The CNT-STEM significantly improves detection limits and virus isolation rates by at least 100 times. Using this device, we successfully identified an emerging avian influenza virus strain [A/duck/PA/02099/2012(H11N9)] and a novel virus strain (IBDV/turkey/PA/00924/14). Our unique method demonstrates the early detection of emerging viruses and the discovery of new viruses directly from field samples, thus creating a universal platform for effectively remediating viral infectious diseases. PMID:27730213

  4. Nonhuman Primate Models of Hepatitis A Virus and Hepatitis E Virus Infections.

    PubMed

    Lanford, Robert E; Walker, Christopher M; Lemon, Stanley M

    2018-04-23

    Although phylogenetically unrelated, human hepatitis viruses share an exclusive or near exclusive tropism for replication in differentiated hepatocytes. This narrow tissue tropism may contribute to the restriction of the host ranges of these viruses to relatively few host species, mostly nonhuman primates. Nonhuman primate models thus figure prominently in our current understanding of the replication and pathogenesis of these viruses, including the enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV), and have also played major roles in vaccine development. This review draws comparisons of HAV and HEV infection from studies conducted in nonhuman primates, and describes how such studies have contributed to our current understanding of the biology of these viruses. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV)

    PubMed Central

    Dempsey, Donald M; Hendrickson, Robert Curtis; Orton, Richard J; Siddell, Stuart G; Smith, Donald B

    2018-01-01

    Abstract The International Committee on Taxonomy of Viruses (ICTV) is charged with the task of developing, refining, and maintaining a universal virus taxonomy. This task encompasses the classification of virus species and higher-level taxa according to the genetic and biological properties of their members; naming virus taxa; maintaining a database detailing the currently approved taxonomy; and providing the database, supporting proposals, and other virus-related information from an open-access, public web site. The ICTV web site (http://ictv.global) provides access to the current taxonomy database in online and downloadable formats, and maintains a complete history of virus taxa back to the first release in 1971. The ICTV has also published the ICTV Report on Virus Taxonomy starting in 1971. This Report provides a comprehensive description of all virus taxa covering virus structure, genome structure, biology and phylogenetics. The ninth ICTV report, published in 2012, is available as an open-access online publication from the ICTV web site. The current, 10th report (http://ictv.global/report/), is being published online, and is replacing the previous hard-copy edition with a completely open access, continuously updated publication. No other database or resource exists that provides such a comprehensive, fully annotated compendium of information on virus taxa and taxonomy. PMID:29040670

  6. BS-virus-finder: virus integration calling using bisulfite sequencing data.

    PubMed

    Gao, Shengjie; Hu, Xuesong; Xu, Fengping; Gao, Changduo; Xiong, Kai; Zhao, Xiao; Chen, Haixiao; Zhao, Shancen; Wang, Mengyao; Fu, Dongke; Zhao, Xiaohui; Bai, Jie; Mao, Likai; Li, Bo; Wu, Song; Wang, Jian; Li, Shengbin; Yang, Huangming; Bolund, Lars; Pedersen, Christian N S

    2018-01-01

    DNA methylation plays a key role in the regulation of gene expression and carcinogenesis. Bisulfite sequencing studies mainly focus on calling single nucleotide polymorphism, different methylation region, and find allele-specific DNA methylation. Until now, only a few software tools have focused on virus integration using bisulfite sequencing data. We have developed a new and easy-to-use software tool, named BS-virus-finder (BSVF, RRID:SCR_015727), to detect viral integration breakpoints in whole human genomes. The tool is hosted at https://github.com/BGI-SZ/BSVF. BS-virus-finder demonstrates high sensitivity and specificity. It is useful in epigenetic studies and to reveal the relationship between viral integration and DNA methylation. BS-virus-finder is the first software tool to detect virus integration loci by using bisulfite sequencing data. © The Authors 2017. Published by Oxford University Press.

  7. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  8. Immunological responses against human papilloma virus and human papilloma virus induced laryngeal cancer.

    PubMed

    Chitose, Shun-ichi; Sakazaki, T; Ono, T; Kurita, T; Mihashi, H; Nakashima, T

    2010-06-01

    This study aimed to clarify the local immune status in the larynx in the presence of infection or carcinogenesis associated with human papilloma virus. Cytological samples (for human papilloma virus detection) and laryngeal secretions (for immunoglobulin assessment) were obtained from 31 patients with laryngeal disease, during microscopic laryngeal surgery. On histological examination, 12 patients had squamous cell carcinoma, four had laryngeal papilloma and 15 had other benign laryngeal disease. Cytological samples were tested for human papilloma virus DNA using the Hybrid Capture 2 assay. High risk human papilloma virus DNA was detected in 25 per cent of patients (three of 12) with laryngeal cancer. Low risk human papilloma virus DNA was detected only in three laryngeal papilloma patients. The mean laryngeal secretion concentrations of immunoglobulins M, G and A and secretory immunoglobulin A in human papilloma virus DNA positive patients were more than twice those in human papilloma virus DNA negative patients. A statistically significant difference was observed between the secretory immunoglobulin A concentrations in the two groups. Patients with laryngeal cancer had higher laryngeal secretion concentrations of each immunoglobulin type, compared with patients with benign laryngeal disease. The study assessed the mean laryngeal secretion concentrations of each immunoglobulin type in the 12 laryngeal cancer patients, comparing human papilloma virus DNA positive patients (n = 3) and human papilloma virus DNA negative patients (n = 9); the mean concentrations of immunoglobulins M, G and A and secretory immunoglobulin A tended to be greater in human papilloma virus DNA positive cancer patients, compared with human papilloma virus DNA negative cancer patients. These results suggest that the local laryngeal immune response is activated by infection or carcinogenesis due to human papilloma virus. The findings strongly suggest that secretory IgA has inhibitory activity

  9. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    PubMed Central

    2018-01-01

    Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. PMID:29445265

  10. [Viruses in water].

    PubMed

    Zvizdić, Sukrija; Rodinis-Pejić, Ines; Avdić-Kamberović, Fadila; Mujkić, Anesa; Hamzić, Sadeta; Puvacić, Sandra; Tandir, Salih; Kudumović, Mensura

    2005-01-01

    The article elaborates the significance of water, which is necessary for the maintenance of an organism and specifies its daily needs in human beings. Reference data on the early isolations of viruses from sewage water and modern understanding on the occurring virus species are listed. The article considers virus survival in sewage and flowing water and other fresh and marine water systems as well as marine silt or fruit. Finally, we give here an overview of basic features of individual virus kinds that are potential water contaminants.

  11. Genomic sequencing of deer tick virus and phylogeny of powassan-related viruses of North America.

    PubMed

    Kuno, G; Artsob, H; Karabatsos, N; Tsuchiya, K R; Chang, G J

    2001-11-01

    Powassan (POW) virus is responsible for central nervous system infection in humans in North America and the eastern parts of Russia. Recently, a new flavivirus, deer tick (DT) virus, related to POW virus was isolated in the United States, but neither its pathogenic potential in human nor the taxonomic relationship with POW virus has been elucidated. In this study, we obtained the near-full-length genomic sequence of the DT virus and complete sequences of 3 genomic regions of 15 strains of POW-related virus strains. The phylogeny revealed 2 lineages, one of which had the prototype POW virus and the other DT virus. Both lineages can cause central nervous system infection in humans. By use of the combination of molecular definition of virus species within the genus Flavivirus and serological distinction in a 2-way cross-neutralization test, the lineage of DT virus is classified as a distinct genotype of POW virus.

  12. "The evil virus cell": Students‘ knowledge and beliefs about viruses

    PubMed Central

    Enzinger, Sonja M.; Fink, Andreas

    2017-01-01

    Education about virus biology at school is of pivotal interest to raise public awareness concerning means of disease transmission and, thus, methods to prevent infection, and to reduce unnecessary antibiotic treatment due to patient pressure on physicians in case of viral diseases such as influenza. This study aimed at making visible the knowledge of Austrian high school and university students with respect to virus biology, virus structure and health-education issues. The data presented here stem from comprehensive questionnaire analyses, including the task to draw a virus, from a cross-sectional study with 133 grade 7 and 199 grade 10 high school students, and 133 first-year biology and 181 first-year non-biology university students. Analyses were performed both quantitatively and qualitatively. ANOVA revealed a highly significant group effect for total knowledge relating to virus biology and health issues (F(3, 642) = 44.17, p < 0.01, η2p = 0.17). Specific post-hoc tests by means of the Tukey test showed significant differences between all groups (p < .01) with the exception of 1st year non-biology students and grade 10 high school students. Students enrolled in university-level biology outperformed all other groups, even though they had not yet encountered this topic at their courses; part of this phenomenon might be due to their affinity for learning about biological topics. However, even many first-year biology students had a high number of severe misconceptions, e.g., defining a virus as a pro- or eukaryotic cell, or falsely naming malaria as a viral disease. Since there was no significant difference in virus-related knowledge between high schools, virus biology seems to have been taught similarly among the tested schools. However, the majority of participants stated that the virus-related knowledge they had acquired at school was not sufficient. Based on the results presented here we urgently suggest improving and intensifying teaching this topic at school

  13. "The evil virus cell": Students' knowledge and beliefs about viruses.

    PubMed

    Simon, Uwe K; Enzinger, Sonja M; Fink, Andreas

    2017-01-01

    Education about virus biology at school is of pivotal interest to raise public awareness concerning means of disease transmission and, thus, methods to prevent infection, and to reduce unnecessary antibiotic treatment due to patient pressure on physicians in case of viral diseases such as influenza. This study aimed at making visible the knowledge of Austrian high school and university students with respect to virus biology, virus structure and health-education issues. The data presented here stem from comprehensive questionnaire analyses, including the task to draw a virus, from a cross-sectional study with 133 grade 7 and 199 grade 10 high school students, and 133 first-year biology and 181 first-year non-biology university students. Analyses were performed both quantitatively and qualitatively. ANOVA revealed a highly significant group effect for total knowledge relating to virus biology and health issues (F(3, 642) = 44.17, p < 0.01, η2p = 0.17). Specific post-hoc tests by means of the Tukey test showed significant differences between all groups (p < .01) with the exception of 1st year non-biology students and grade 10 high school students. Students enrolled in university-level biology outperformed all other groups, even though they had not yet encountered this topic at their courses; part of this phenomenon might be due to their affinity for learning about biological topics. However, even many first-year biology students had a high number of severe misconceptions, e.g., defining a virus as a pro- or eukaryotic cell, or falsely naming malaria as a viral disease. Since there was no significant difference in virus-related knowledge between high schools, virus biology seems to have been taught similarly among the tested schools. However, the majority of participants stated that the virus-related knowledge they had acquired at school was not sufficient. Based on the results presented here we urgently suggest improving and intensifying teaching this topic at school

  14. Neuraminidase as an enzymatic marker for detecting airborne Influenza virus and other viruses.

    PubMed

    Turgeon, Nathalie; Toulouse, Marie-Josée; Ho, Jim; Li, Dongqing; Duchaine, Caroline

    2017-02-01

    Little information is available regarding the effectiveness of air samplers to collect viruses and regarding the effects of sampling processes on viral integrity. The neuraminidase enzyme is present on the surface of viruses that are of agricultural and medical importance. It has been demonstrated that viruses carrying this enzyme can be detected using commercial substrates without having to process the sample by methods such as RNA extraction. This project aims at evaluating the effects of 3 aerosol-sampling devices on the neuraminidase enzyme activity of airborne viruses. The purified neuraminidase enzymes from Clostridium perfringens, a strain of Influenza A (H1N1) virus, the FluMist influenza vaccine, and the Newcastle disease virus were used as models. The neuraminidase models were aerosolized in aerosol chambers and sampled with 3 different air samplers (SKC BioSampler, 3-piece cassettes with polycarbonate filters, and Coriolis μ) to assess the effect on neuraminidase enzyme activity. Our results demonstrated that Influenza virus and Newcastle disease virus neuraminidase enzymes are resistant to aerosolization and sampling with all air samplers tested. Moreover, we demonstrated that the enzymatic neuraminidase assay is as sensitive as RT-qPCR for detecting low concentrations of Influenza virus and Newcastle disease virus. Therefore, given the sensitivity of the assay and its compatibility with air sampling methods, viruses carrying the neuraminidase enzyme can be rapidly detected from air samples using neuraminidase activity assay without having to preprocess the samples.

  15. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    PubMed

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  16. Avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  17. Viruses in reptiles.

    PubMed

    Ariel, Ellen

    2011-09-21

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself.

  18. Understanding Ebola Virus Transmission

    PubMed Central

    Judson, Seth; Prescott, Joseph; Munster, Vincent

    2015-01-01

    An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus. PMID:25654239

  19. Zika Virus

    MedlinePlus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  20. Virus like particle-based vaccines against emerging infectious disease viruses.

    PubMed

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

  1. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    PubMed

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Viruses in Antarctic lakes

    NASA Technical Reports Server (NTRS)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Suttle, C. A.; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Water samples collected from four perennially ice-covered Antarctic lakes during the austral summer of 1996-1997 contained high densities of extracellular viruses. Many of these viruses were found to be morphologically similar to double-stranded DNA viruses that are known to infect algae and protozoa. These constitute the first observations of viruses in perennially ice-covered polar lakes. The abundance of planktonic viruses and data suggesting substantial production potential (relative to bacteria] secondary and photosynthetic primary production) indicate that viral lysis may be a major factor in the regulation of microbial populations in these extreme environments. Furthermore, we suggest that Antarctic lakes may be a reservoir of previously undescribed viruses that possess novel biological and biochemical characteristics.

  3. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV).

    PubMed

    Lefkowitz, Elliot J; Dempsey, Donald M; Hendrickson, Robert Curtis; Orton, Richard J; Siddell, Stuart G; Smith, Donald B

    2018-01-04

    The International Committee on Taxonomy of Viruses (ICTV) is charged with the task of developing, refining, and maintaining a universal virus taxonomy. This task encompasses the classification of virus species and higher-level taxa according to the genetic and biological properties of their members; naming virus taxa; maintaining a database detailing the currently approved taxonomy; and providing the database, supporting proposals, and other virus-related information from an open-access, public web site. The ICTV web site (http://ictv.global) provides access to the current taxonomy database in online and downloadable formats, and maintains a complete history of virus taxa back to the first release in 1971. The ICTV has also published the ICTV Report on Virus Taxonomy starting in 1971. This Report provides a comprehensive description of all virus taxa covering virus structure, genome structure, biology and phylogenetics. The ninth ICTV report, published in 2012, is available as an open-access online publication from the ICTV web site. The current, 10th report (http://ictv.global/report/), is being published online, and is replacing the previous hard-copy edition with a completely open access, continuously updated publication. No other database or resource exists that provides such a comprehensive, fully annotated compendium of information on virus taxa and taxonomy. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  5. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  6. Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life.

    PubMed

    Fragkoudis, Rennos; Dixon-Ballany, Catherine M; Zagrajek, Adrian K; Kedzierski, Lukasz; Fazakerley, John K

    2018-05-18

    Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain. Here we show that in MHC-II -/- mice, with no functional CD4 T-cells, infectious virus is also detectable in the brain for long periods. In contrast, in the brains of CD8 -/- mice, virus RNA persists but infectious virus is not detectable. In SCID mice infected with SFV, repeated intraperitoneal administration of anti-SFV immune serum rapidly reduced the titer of infectious virus in the brain to undetectable, however virus RNA persisted. Repeated intraperitoneal passive transfer of immune serum resulted in maintenance of brain virus RNA, with no detectable infectious virus, for several weeks. When passive antibody transfer was stopped, antibody levels declined and infectious virus was again detectable in the brain. In aged immunocompetent mice, previously infected with SFV, immunosuppression of antibody responses many months after initial infection also resulted in renewed ability to detect infectious virus in the brain. In summary, antiviral antibodies control and determine whether infectious virus is detectable in the brain but immune responses cannot clear this infection from the brain. Functional virus RNA capable of generating infectious virus persists and if antibody levels decline, infectious virus is again detectable.

  7. Recombinant measles viruses expressing respiratory syncytial virus proteins induced virus-specific CTL responses in cotton rats.

    PubMed

    Yamaji, Yoshiaki; Nakayama, Tetsuo

    2014-07-31

    Respiratory syncytial virus (RSV) is a common cause of serious lower respiratory tract illnesses in infants. Natural infections with RSV provide limited protection against reinfection because of inefficient immunological responses that do not induce long-term memory. RSV natural infection has been shown to induce unbalanced immune response. The effective clearance of RSV is known to require the induction of a balanced Th1/Th2 immune response, which involves the induction of cytotoxic T lymphocytes (CTL). In our previous study, recombinant AIK-C measles vaccine strains MVAIK/RSV/F and MVAIK/RSV/G were developed, which expressed the RSV fusion (F) protein or glycoprotein (G). These recombinant viruses elicited antibody responses against RSV in cotton rats, and no infectious virus was recovered, but small amounts of infiltration of inflammatory cells were observed in the lungs following RSV challenge. In the present study, recombinant AIK-C measles vaccine strains MVAIK/RSV/M2-1 and MVAIK/RSV/NP were developed, expressing RSV M2-1 or Nucleoprotein (NP), respectively. These viruses exhibited temperature-sensitivity (ts), which was derived from AIK-C, and expressed respective RSV antigens. The intramuscular inoculation of cotton rats with the recombinant measles virus led to the induction of CD8(+) IFN-γ(+) cells. No infectious virus was recovered from a lung homogenate following the challenge. A Histological examination of the lungs revealed a significant reduction in inflammatory reactions without alveolar damage. These results support the recombinant measles viruses being effective vaccine candidates against RSV that induce RSV-specific CTL responses with or without the development of an antibody response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep

    PubMed Central

    2012-01-01

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus. PMID:23083136

  9. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  10. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  11. Status of tobacco viruses in Serbia and molecular characterization of tomato spotted wilt virus isolates.

    PubMed

    Stanković, I; Bulajić, A; Vučurović, A; Ristić, D; Milojević, K; Berenji, J; Krstić, B

    2011-01-01

    In a four-year survey to determine the presence and distribution of viruses in tobacco crops at 17 localities of the Vojvodina Province and Central Serbia, 380 samples were collected and analyzed by DAS-ELISA. Out of the seven viruses tested, tomato spotted wilt virus (TSWV), potato virus Y (PVY), tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and alfalfa mosaic virus (AMV) were detected in 37.9, 33.4, 28.7, 23.9, and 15.5% of the total tested samples, respectively. TSWV was the most frequently found virus at the localities of Central Serbia, while PVY and CMV were the most frequent viruses in the Vojvodina Province. Single infections were prevalent in years 2005-2007 and the most frequent were those of PVY. A triple combination of those viruses was most frequent mixed infection type in 2008. The presence of all five detected viruses was confirmed in selected ELISA-positive samples by RT-PCR and sequencing. The comparisons of obtained virus isolate sequences with those available in NCBI, confirmed the authenticity of serologically detected viruses. Phylogenetic analysis based on partial nucleocapsid gene sequences revealed a joint clustering of Serbian, Bulgarian and Montenegrin TSWV isolates into one geographic subpopulation, which was distinct from the other subpopulation of TSWV isolates from the rest of the European countries. The high incidence of viruses in Serbian tobacco crops highlights the importance of enhancing farmers knowledge towards better implementation of control strategies for preventing serious losses.

  12. Comparison of internal process control viruses for detection of food and waterborne viruses.

    PubMed

    Blanco Fernández, María Dolores; Barrios, Melina Elizabeth; Cammarata, Robertina Viviana; Torres, Carolina; Taboga, Oscar Alberto; Mbayed, Viviana Andrea

    2017-05-01

    Enteric viruses are pathogens associated with food- and waterborne outbreaks. The recovery of viruses from food or water samples is affected by the procedures applied to detect and concentrate them. The incorporation of an internal process control virus to the analyses allows monitoring the performance of the methodology. The aim of this study was to produce a recombinant adenovirus (rAdV) and apply it together with bacteriophage PP7 as process controls. The rAdV carries a DNA construction in its genome to differentiate it from wild-type adenovirus by qPCR. The stability of both control viruses was evaluated at different pH conditions. The rAdV was stable at pH 3, 7, and 10 for 18 h. PP7 infectious particles were stable at pH 7 and showed a 2.14 log reduction at pH 10 and total decay at pH 3 after 18 h. Three virus concentration methods were evaluated: hollow-fiber tap water ultrafiltration, wastewater ultracentrifugation, and elution-PEG precipitation from lettuce. Total and infectious viruses were quantified and their recoveries were calculated. Virus recovery for rAdV and PP7 by ultrafiltration showed a wide range (2.10-84.42 and 13.54-84.62%, respectively), whereas that by ultracentrifugation was 5.05-13.71 and 6.98-13.27%, respectively. The performance of ultracentrifugation to concentrate norovirus and enteroviruses present in sewage was not significantly different to the recovery of control viruses. For detection of viruses from lettuce, genomic copies of PP7 were significantly more highly recovered than adenovirus (14.74-18.82 and 0.00-3.44%, respectively). The recovery of infectious virus particles was significantly affected during sewage ultracentrifugation and concentration from lettuce. The simultaneous use of virus controls with dissimilar characteristics and behaviors might resemble different enteric viruses.

  13. Postmortem stability of Ebola virus.

    PubMed

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  14. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    PubMed

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Characteristics of Viruses Derived from Nude Mice with Persistent Measles Virus Infection

    PubMed Central

    Hashimoto, Koichi; Watanabe, Masahiro; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Hashimoto, Yuko; Hosoya, Mitsuaki

    2013-01-01

    Measles virus (MV) isolates from patients with subacute sclerosing panencephalitis (SSPE) differ from wild-type MV virologically. However, few animal models have reported viruses with characteristics of the SSPE virus. The MV Edmonston strain was inoculated into the subarachnoid space of nude mice. All nude mice displayed weight loss and required euthanasia, with a mean survival duration of 73.2 days. The viral load in the brain was 4- to 400-fold higher than the inoculated load, and brain infection was confirmed by immunostaining. Gene sequencing of the viruses revealed that amino acid mutations occurred more frequently in matrix proteins. The most common mutation was a uridine-to-cytosine transition. The virus exhibited lower free virus particle formation ability than the Edmonston strain. When nude mice were challenged with 2 × 102 PFU of the brain-derived virus, the mean survival duration was 34.7 days, which was significantly shorter than that of the mice challenged with 4 × 104 PFU of the Edmonston strain (P < 0.01). This study indicated that MV in a nude mouse model of persistent infection exhibited characteristics of the SSPE virus. This model may prove useful in elucidating the pathogenic mechanism of SSPE and developing potential therapeutics. PMID:23345518

  16. Characteristics of viruses derived from nude mice with persistent measles virus infection.

    PubMed

    Abe, Yusaku; Hashimoto, Koichi; Watanabe, Masahiro; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Hashimoto, Yuko; Hosoya, Mitsuaki

    2013-04-01

    Measles virus (MV) isolates from patients with subacute sclerosing panencephalitis (SSPE) differ from wild-type MV virologically. However, few animal models have reported viruses with characteristics of the SSPE virus. The MV Edmonston strain was inoculated into the subarachnoid space of nude mice. All nude mice displayed weight loss and required euthanasia, with a mean survival duration of 73.2 days. The viral load in the brain was 4- to 400-fold higher than the inoculated load, and brain infection was confirmed by immunostaining. Gene sequencing of the viruses revealed that amino acid mutations occurred more frequently in matrix proteins. The most common mutation was a uridine-to-cytosine transition. The virus exhibited lower free virus particle formation ability than the Edmonston strain. When nude mice were challenged with 2 × 10(2) PFU of the brain-derived virus, the mean survival duration was 34.7 days, which was significantly shorter than that of the mice challenged with 4 × 10(4) PFU of the Edmonston strain (P < 0.01). This study indicated that MV in a nude mouse model of persistent infection exhibited characteristics of the SSPE virus. This model may prove useful in elucidating the pathogenic mechanism of SSPE and developing potential therapeutics.

  17. An infectious bat chimeric influenza virus harboring the entry machinery of a influenza A virus

    PubMed Central

    Juozapaitis, Mindaugas; Moreira, Étori Aguiar; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2017-01-01

    In 2012 the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the HA and NA proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event. PMID:25055345

  18. Computer Virus Protection

    ERIC Educational Resources Information Center

    Rajala, Judith B.

    2004-01-01

    A computer virus is a program--a piece of executable code--that has the unique ability to replicate. Like biological viruses, computer viruses can spread quickly and are often difficult to eradicate. They can attach themselves to just about any type of file, and are spread by replicating and being sent from one individual to another. Simply having…

  19. [Simultaneous detection of respiratory viruses and influenza A virus subtypes using multiplex PCR].

    PubMed

    Ciçek, Candan; Bayram, Nuri; Anıl, Murat; Gülen, Figen; Pullukçu, Hüsnü; Saz, Eylem Ulaş; Telli, Canan; Cok, Gürsel

    2014-10-01

    This study was conducted to investigate the respiratory viruses and subtyping of influenza A virus when positive by multiplex PCR in patients with flu-like symptoms, after the pandemic caused by influenza A (H1N1)pdm09. Nasopharyngeal swab samples collected from 700 patients (313 female, 387 male; age range: 24 days-94 yrs, median age: 1 yr) between December 2010 - January 2013 with flu-like symptoms including fever, headache, sore throat, rhinitis, cough, myalgia as defined by the World Health Organization were included in the study. Nucleic acid extractions (Viral DNA/RNA Extraction Kit, iNtRON, South Korea) and cDNA synthesis (RevertAid First Strand cDNA Synthesis Kits, Fermentas, USA) were performed according to the manufacturer's protocol. Multiplex amplification of nucleic acids was performed using DPO (dual priming oligonucleotide) primers and RV5 ACE Screening Kit (Seegene, South Korea) in terms of the presence of influenza A (INF-A) virus, influenza B (INF-B) virus, respiratory syncytial virus (RSV), and the other respiratory viruses. PCR products were detected by automated polyacrylamide gel electrophoresis using Screen Tape multiple detection system. Specimens which were positive for viral nucleic acids have been further studied by using specific DPO primers, FluA ACE Subtyping and RV15 Screening (Seegene, South Korea) kits. Four INF-A virus subtypes [human H1 (hH1), human H3 (hH3), swine H1 (sH1), avian H5 (aH5)] and 11 other respiratory viruses [Adenovirus, parainfluenza virus (PIV) types 1-4, human bocavirus (HBoV), human metapneumovirus (HMPV), rhinovirus types A and B, human coronaviruses (HCoV) OC43, 229E/NL63] were investigated with those tests. In the study, 53.6% (375/700) of the patients were found to be infected with at least one virus and multiple respiratory virus infections were detected in 15.7% (59/375) of the positive cases, which were mostly (49/59, 83%) in pediatric patients. RSV and rhinovirus coinfections were the most prevalent (18

  20. Post-licensure, phase IV, safety study of a live attenuated Japanese encephalitis recombinant vaccine in children in Thailand.

    PubMed

    Chotpitayasunondh, Tawee; Pruekprasert, Pornpimol; Puthanakit, Thanyawee; Pancharoen, Chitsanu; Tangsathapornpong, Auchara; Oberdorfer, Peninnah; Kosalaraksa, Pope; Prommalikit, Olarn; Tangkittithaworn, Suwimon; Kerdpanich, Phirangkul; Techasaensiri, Chonnamet; Korejwo, Joanna; Chuenkitmongkol, Sunate; Houillon, Guy

    2017-01-05

    Japanese encephalitis is a mosquito-borne viral disease endemic in most countries in Asia. A recombinant live, attenuated Japanese encephalitis virus vaccine, JE-CV, is licensed in 14 countries, including Thailand, for the prevention of Japanese encephalitis in adults and children. This was a prospective, phase IV, open-label, multicentre, safety study of JE-CV conducted from November 2013 to April 2015, to evaluate rare serious adverse events (AEs). JE-CV was administered to 10,000 healthy children aged 9months to <5years in Thailand as a primary (Group 1) or booster (Group 2) vaccination. Serious AEs (SAEs), including AEs of special interest, up to 60days after administration were evaluated. Immediate Grade 3 systemic AEs up to 30min after JE-CV administration were also described. The median age of participants was 1.1years in Group 1 and 3.8years in Group 2. SAEs were reported in 204 (3.0%) participants in Group 1 and 59 (1.9%) participants in Group 2. Among a total of 294 SAEs in 263 participants, only three events occurring in two participants were considered related to vaccination. All three cases were moderate urticaria, none of which met the definition of AEs of special interest for hypersensitivity. AEs of special interest were reported in 28 (0.4%) participants in Group 1 and 4 (0.1%) participants in Group 2; none were considered related to vaccination. Febrile convulsion was the most frequently reported AE of special interest: 25 (0.4%) participants in Group 1; and 2 (<0.1%) in Group 2. There were no cases of Japanese encephalitis reported. No Grade 3 immediate systemic AEs were reported after any JE-CV vaccination. Our study did not identify any new safety concerns with JE-CV and confirms its good safety profile. This study was registered on www.clinicaltrials.gov (NCT01981967; Universal Trial Number: U1111-1127-7052). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The Functional, Social and Economic Impact of Acute Encephalitis Syndrome in Nepal – a Longitudinal Follow-Up Study

    PubMed Central

    Rayamajhi, Ajit; Poudel, Prakash; Shrestha, Pramina; Srivastav, Vijay; Kneen, Rachel; Medina-Lara, Antonieta; Singh, Rupa R.; Solomon, Tom

    2013-01-01

    Background Over 133,000 children present to hospitals with Acute Encephalitis Syndrome (AES) annually in Asia. Japanese encephalitis (JE) accounts for approximately one-quarter of cases; in most cases no pathogen is identified and management is supportive. Although JE is known to result in neurological impairment, few studies have examined the wider impact of JE and AES on patients and their families. Methodology/Principal Findings Children (aged 1 month–14 years) with AES were assessed 5–12 months after discharge from two Nepali hospitals. Assessment included clinical examination, the Liverpool Outcome Score (LOS) - a validated assessment of function following encephalitis, questionnaires about the child's social participation since discharge, and out-of-pocket costs to the family. Children were classified as JE or ‘other AES’ based on anti-JE virus antibody titres during acute illness. Contact was made with the families of 76% (73/96) of AES children. Six children had died and one declined participation. 48% (32/66) reported functional impairment at follow-up, most frequently affecting behaviour, language or limb use. Impairment was more frequent in JE compared to ‘other AES’ cases (68% [13/19] versus 40% [19/47]; p = 0.06). 49% (26/53) had improvement in LOS between discharge and follow-up. The median out-of-pocket cost to families, including medical bills, medication and lost earnings was US$ 1151 (10 times their median monthly income) for children with severe/moderate impairment and $524 (4.6 times their income) for those with mild/no impairment (P = 0.007). Acute admission accounted for 74% of costs. Social participation was limited in 21% of children (n = 14). Conclusions/Significance Prolonged functional impairment was common following AES. Economic impact to families was substantial. Encouragingly, almost half the children improved after discharge and most reported sustained social participation. This study highlights a need for

  2. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions

    PubMed Central

    He, Tianliang; Li, Hongyun

    2017-01-01

    ABSTRACT Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. PMID:28698277

  3. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study.

    PubMed

    Ai, Junhong; Xie, Zhengde; Liu, Gang; Chen, Zongbo; Yang, Yong; Li, Yuning; Chen, Jing; Zheng, Guo; Shen, Kunling

    2017-07-14

    In China, there were few studies about the pathogens of acute viral encephalitis and meningitis in children in recent years. The aims of this study were to characterize the etiology and prognosis of acute viral encephalitis and meningitis in Chinese children. This was a multicentre prospective study. Two hundred and sixty one viral encephalitis patients and 285 viral meningitis patients were enrolled. The mean age of viral encephalitis and meningitis were 5.88 ± 3.60 years and 6.39 ± 3.57 years, respectively. Real-time reverse transcription PCR and multiplex PCR were used to detect human enteroviruses and herpes viruses in cerebrospinal fluid (CSF) of patients with encephalitis or meningitis. The enzyme-linked immune absorbent assay (ELISA) was used for detecting IgM antibody against Japanese encephalitis virus (JEV) in CSF and against mumps virus, tick-borne encephalitis virus (TBEV), dengue virus and rubella virus in acute serum. The clinical and outcome data were collected during patients' hospitalization. The etiology of viral encephalitis was confirmed in 52.5% patients. The primary pathogen was human enteroviruses (27.7%) in viral encephalitis. The incidence of sequelae and the fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The etiology of viral meningitis was identified in 42.8% cases. The leading pathogen was also human enteroviruses (37.7%) in viral meningitis. The prognosis of viral meningitis was favorable with only 0.7% patients had neurological sequelae. Human enteroviruses were the leading cause both in acute viral encephalitis and viral meningitis in children. The incidence of sequelae and fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The prognosis of viral meningitis was favorable compared to viral encephalitis.

  4. Monoclonal antibodies of African swine fever virus: antigenic differences among field virus isolates and viruses passaged in cell culture.

    PubMed Central

    García-Barreno, B; Sanz, A; Nogal, M L; Viñuela, E; Enjuanes, L

    1986-01-01

    An analysis of the binding properties of a collection of monoclonal antibodies to African swine fever virus particles showed that virus field isolates passaged in porcine macrophages changed antigenically more than a strain of a cell-adapted virus passaged in Vero cells. From seven clones isolated from the spleen of a field-infected pig, we found four clones that had the same antigenic properties, one clone that had large changes in proteins p150 and p27 and small changes in proteins p37 and p14, and two clones that had minor changes in proteins p150 and p27, respectively. An analysis of the binding properties of the monoclonal antibodies to 23 field isolates from Africa, Europe, and America showed that the African isolates differed among themselves more than the European and the American isolates; in this study we found changes in 8 of the 10 virus proteins tested. The most variable proteins in the African isolates were p150, p27, p14, and p12. In contrast to the African isolates, protein p12 from the non-African viruses did not change. The clustering of the field virus isolates in six antigenic homology groups indicated the existence of a complex variety of African swine fever virus serotypes. PMID:2422393

  5. TREATMENT OF VIRUSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, J.R.

    1963-04-01

    A vaccine preparation method was developed for destroying the infectivity of live viruses while retaining the antigenicity. The method comprises exposing the virus to 0.5 to 6 x 10/sup 6/ rad of ionizing radiation (preferably gamma) in the presence of a protective agent. The protective agent is antioxidant in nature and should be used in amounts from 0.05to 0.3% (wt/vol). Histidine and sodium p-aminohippurate are preferred for influenza and mumps viruses respectively. The protective effects of various chemicals on the antigenicity of irradiated influenza A virus are illustrated. (D.L.C.)

  6. Virulence Markers of Dengue Viruses

    DTIC Science & Technology

    1990-02-20

    of dengue viruses . We initially evaluated onocye-infectivity as a marker the for virulence of dengue-2 virus by testing 72 dengue-2 viral isolates...infectivity can be used as a virulence marker for dengue viruses . For this purpose, virulence is defined as the intrinsic ability of the virus to...but not dengue-1 and -3 viruses Table 5. Comparison of infectivity of dengue-2 virus in K-562 28 monocytes and viral monocyte infectivity index derived

  7. Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta).

    PubMed

    Johannessen, Torill Vik; Bratbak, Gunnar; Larsen, Aud; Ogata, Hiroyuki; Egge, Elianne S; Edvardsen, Bente; Eikrem, Wenche; Sandaa, Ruth-Anne

    2015-02-01

    We have isolated three novel lytic dsDNA-viruses from Raunefjorden (Norway) that are putative members of the Mimiviridae family, namely Haptolina ericina virus RF02 (HeV RF02), Prymnesium kappa virus RF01 (PkV RF01), and Prymnesium kappa virus RF02 (PkV RF02). Each of the novel haptophyte viruses challenges the common conceptions of algal viruses with respect to host range, phylogenetic affiliation and size. PkV RF01 has a capsid of ~310 nm and is the largest algal virus particle ever reported while PkV RF01 and HeV RF02 were able to infect different species, even belonging to different genera. Moreover, PkV RF01 and HeV RF02 infected the same hosts, but phylogenetic analysis placed them in different groups. Our results reveal large variation among viruses infecting closely related microalgae, and challenge the common conception that algal viruses have narrow host range, and phylogeny reflecting their host affiliation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Single-Vector, Single-Injection Recombinant Vesicular Stomatitis Virus Vaccines Against High-Containment Viruses.

    PubMed

    Whitt, Michael A; Geisbert, Thomas W; Mire, Chad E

    2016-01-01

    There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs.

  9. Lipids of Archaeal Viruses

    PubMed Central

    Roine, Elina; Bamford, Dennis H.

    2012-01-01

    Archaeal viruses represent one of the least known territory of the viral universe and even less is known about their lipids. Based on the current knowledge, however, it seems that, as in other viruses, archaeal viral lipids are mostly incorporated into membranes that reside either as outer envelopes or membranes inside an icosahedral capsid. Mechanisms for the membrane acquisition seem to be similar to those of viruses infecting other host organisms. There are indications that also some proteins of archaeal viruses are lipid modified. Further studies on the characterization of lipids in archaeal viruses as well as on their role in virion assembly and infectivity require not only highly purified viral material but also, for example, constant evaluation of the adaptability of emerging technologies for their analysis. Biological membranes contain proteins and membranes of archaeal viruses are not an exception. Archaeal viruses as relatively simple systems can be used as excellent tools for studying the lipid protein interactions in archaeal membranes. PMID:23049284

  10. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    PubMed

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  11. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  12. Viruses infecting marine molluscs.

    PubMed

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Salivary gland hypertrophy viruses (SGHVs): a novel group of insect pathogenic viruses

    USDA-ARS?s Scientific Manuscript database

    Salivary gland hypertrophy viruses (SGHVs) are a unique, unclassified group of entomopathogenic, double-stranded DNA viruses that have been reported from three genera of Diptera. These viruses replicate in nuclei of salivary gland cells in adult flies, inducing gland enlargement with little obvious ...

  14. Usutu virus persistence and West Nile virus inactivity in the Emilia-Romagna region (Italy) in 2011.

    PubMed

    Calzolari, Mattia; Bonilauri, Paolo; Bellini, Romeo; Albieri, Alessandro; Defilippo, Francesco; Tamba, Marco; Tassinari, Massimo; Gelati, Antonio; Cordioli, Paolo; Angelini, Paola; Dottori, Michele

    2013-01-01

    The circulation of West Nile virus and Usutu virus was detected in the Emilia-Romagna region in 2008 and 2009. To evaluate the extent of circulation of both viruses, environmental surveillance, based on bird and mosquito testing, was conducted in 2008 and gradually improved over the years. In February-March 2009-2011, 5,993 hibernating mosquitoes were manually sampled, out of which 80.1% were Culex pipiens; none tested positive for the viruses. From 2008 to 2011, 946,213 mosquitoes, sampled between May and October, were tested; 86.5% were Cx. pipiens. West Nile virus was detected in 32 Cx. pipiens pools, and Usutu virus was detected in 229 mosquito pools (217 Cx. pipiens, 10 Aedes albopictus, one Anopheles maculipennis s.l., and one Aedes caspius). From 2009 to 2011, of 4,546 birds collected, 42 tested positive for West Nile virus and 48 for Usutu virus. West Nile virus and Usutu virus showed different patterns of activity during the 2008-2011 surveillance period. West Nile virus was detected in 2008, 2009, and 2010, but not in 2011. Usutu virus, however, was continuously active throughout 2009, 2010, and 2011. The data strongly suggest that both viruses overwinter in the surveyed area rather than being continually reintroduced every season. The lack of hibernating mosquitoes testing positive for the viruses and the presence of positive birds sampled early in the season support the hypothesis that the viruses overwinter in birds rather than in mosquitoes. Herd immunity in key bird species could explain the decline of West Nile virus observed in 2011, while the persistence of Usutu virus may be explained by not yet identified reservoirs. Reported results are comparable with a peri-Mediterranean circulation of the West Nile virus lineage 1 related strain, which became undetectable in the environment after two to three years of obvious circulation.

  15. Evolutionary history of Ebola virus.

    PubMed

    Li, Y H; Chen, S P

    2014-06-01

    Since Ebola virus was discovered in 1970s, the virus has persisted in Africa and sporadic fatal outbreaks in humans and non-human primates have been reported. However, the evolutionary history of Ebola virus remains unclear. In this study, 27 Ebola virus strains with complete glycoprotein genes, including five species (Zaire, Sudan, Reston, Tai Forest, Bundibugyo), were analysed. Here, we propose a hypothesis of the evolutionary history of Ebola virus which will be helpful to investigate the molecular evolution of these viruses.

  16. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer.

    PubMed

    Lawson, James S; Glenn, Wendy K

    2017-01-01

    Multiple oncogenic viruses including, mouse mammary tumor virus, bovine leukemia virus, human papilloma virus, and Epstein Barr virus, have been identified as separate infectious pathogens in human breast cancer. Here we demonstrate that these four viruses may be present in normal and benign breast tissues 1 to 11 years before the development of same virus breast cancer in the same patients. We combined the data we developed during investigations of the individual four oncogenic viruses and breast cancer. Patients who had benign breast biopsies 1-11 years prior to developing breast cancer were identified by pathology reports from a large Australian pathology service (Douglas Hanly Moir Pathology). Archival formalin fixed specimens from these patients were collected. The same archival specimens were used for (i) investigations of mouse mammary tumour virus (also known as human mammary tumour virus) conducted at the Icahn School of Medicine at Mount Sinai, New York and at the University of Pisa, Italy, (ii) bovine leukemia virus conducted at the University of California at Berkeley,(iii) human papilloma virus and Epstein Barr virus conducted at the University of New South Wales, Sydney, Australia. Seventeen normal breast tissues from cosmetic breast surgery conducted on Australian patients were used as controls. These patients were younger than those with benign and later breast cancer. Standard and in situ polymerase chain reaction (PCR) methods were used to identify the four viruses. The detailed methods are outlined in the separate publications.: mouse mammary tumor virus, human papilloma virus and Epstein Barr virus (Infect Agent Cancer 12:1, 2017, PLoS One 12:e0179367, 2017, Front Oncol 5:277, 2015, PLoS One 7:e48788, 2012). Epstein Barr virus and human papilloma virus were identified in the same breast cancer cells by in situ PCR. Mouse mammary tumour virus was identified in 6 (24%) of 25 benign breast specimens and in 9 (36%) of 25 breast cancer specimens

  17. No molecular or serological evidence of Zikavirus infection among healthy blood donors living in or travelling to regions where Aedes albopictus circulates.

    PubMed

    Borena, Wegene; Hofer, Tamara; Stiasny, Karin; Aberle, Stephan W; Gaber, Manfred; von Laer, Dorothee; Schennach, Harald

    2017-01-01

    Previous studies have shown that Zika virus can infect and be transmitted by A. albopictus. The World Health organization (WHO) has raised concerns of autochthonous transmission of the virus in regions where the vector is endemic. The aim of this pilot study was to assess the occurrence of Zika virus (ZIKV) in western Austria (Tyrol) especially after a history of travel to A. albopictus endemic regions. The study participants were healthy blood donors at randomly selected donation sites in the west Austrian region Tyrol. Rest blood (plasma) samples were tested for the presence of ZIKV nucleic acid and antibodies against the virus. Mean age of the study participants was 44.6 (SD = 12.9) and 58.8% were men. Eighty percent reported to have received vaccine against TBEV, whereas only 4.9 and 0.9% had received YFV and JEV vaccines. Three out of 1001 (0.03%) participants tested positive solely for ZIKV IgM antibody but not for other flaviviruses. Only one individual had ZIKV IgG antibody. All four donors were negative in the neutralization (confirmation) assay. No viral RNA was detected in any of the samples. The null finding of our study refutes WHO's initial fear of global expansion of ZIKV infection including its occurrence in Europe. There appears to be no urgent need to introduce universal screening of donated blood for ZIKV in central Europe at least until the next warm season. Further, Euroimmun anti-Zika ELISA proved to be a highly suitable and reliable test system in populations with high prevalence of TBEV infection and/or immunization.

  18. Genome of Horsepox Virus

    PubMed Central

    Tulman, E. R.; Delhon, G.; Afonso, C. L.; Lu, Z.; Zsak, L.; Sandybaev, N. T.; Kerembekova, U. Z.; Zaitsev, V. L.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses. PMID:16940536

  19. Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus.

    PubMed Central

    Nayak, D P; Tobita, K; Janda, J M; Davis, A R; De, B K

    1978-01-01

    A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both

  20. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    PubMed

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  1. SAMPLING VIRUSES FROM SOIL

    EPA Science Inventory

    This chapter describes in detail methods for detecting viruses of bacteria and humans in soil. Methods also are presented for the assay of these viruses. Reference sources are provided for information on viruses of plants.

  2. A Combination in-ovo Vaccine for Avian Influenza Virus and Newcastle Disease Virus

    PubMed Central

    Steel, John; Burmakina, Svetlana V.; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E.; Palese, Peter

    2008-01-01

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing; (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin – neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park, M.S., et al., 2006. Proc Natl Acad Sci U S A, 103 (21), 8203–8208). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine. PMID:18093698

  3. A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus.

    PubMed

    Steel, John; Burmakina, Svetlana V; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E; Palese, Peter

    2008-01-24

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing, (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park MS, et al. Proc Natl Acad Sci USA 2006;103(21):8203-8). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus, respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine.

  4. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R

    2018-02-01

    Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An inactivated whole-virus porcine parvovirus vaccine protects pigs against disease but does not prevent virus shedding even after homologous virus challenge.

    PubMed

    Foerster, Tessa; Streck, André Felipe; Speck, Stephanie; Selbitz, Hans-Joachim; Lindner, Thomas; Truyen, Uwe

    2016-06-01

    Inactivated whole-virus vaccines against porcine parvovirus (PPV) can prevent disease but not infection and virus shedding after heterologous virus challenge. Here, we showed that the same is true for a homologous challenge. Pregnant sows were vaccinated with an experimental inactivated vaccine based on PPV strain 27a. They were challenged on day 40 of gestation with the virulent porcine parvovirus PPV-27a from which the vaccine was prepared (homologous challenge). On day 90 of gestation, the fetuses from vaccinated sows were protected against disease, while the fetuses of the non-vaccinated sows (control group) exhibited signs of parvovirus disease. All gilts, whether vaccinated or not vaccinated, showed a boost of PPV-specific antibodies indicative of virus infection and replication. Low DNA copy numbers, but not infectious virus, could be demonstrated in nasal or rectal swabs of immunized sows, but high copy numbers of challenge virus DNA as well as infectious virus could both be demonstrated in non-vaccinated sows.

  6. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species

    PubMed Central

    Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang

    2017-01-01

    ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide

  7. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  8. Tick-Borne Viruses.

    PubMed

    Shi, Junming; Hu, Zhihong; Deng, Fei; Shen, Shu

    2018-02-01

    Ticks are important vectors for the transmission of pathogens including viruses. The viruses carried by ticks also known as tick-borne viruses (TBVs), contain a large group of viruses with diverse genetic properties and are concluded in two orders, nine families, and at least 12 genera. Some members of the TBVs are notorious agents causing severe diseases with high mortality rates in humans and livestock, while some others may pose risks to public health that are still unclear to us. Herein, we review the current knowledge of TBVs with emphases on the history of virus isolation and identification, tick vectors, and potential pathogenicity to humans and animals, including assigned species as well as the recently discovered and unassigned species. All these will promote our understanding of the diversity of TBVs, and will facilitate the further investigation of TBVs in association with both ticks and vertebrate hosts.

  9. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  10. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus.

    PubMed

    Tumpey, Terrence M; García-Sastre, Adolfo; Mikulasova, Andrea; Taubenberger, Jeffery K; Swayne, David E; Palese, Peter; Basler, Christopher F

    2002-10-15

    The 1918 influenza pandemic caused more than 20 million deaths worldwide. Thus, the potential impact of a re-emergent 1918 or 1918-like influenza virus, whether through natural means or as a result of bioterrorism, is of significant concern. The genetic determinants of the virulence of the 1918 virus have not been defined yet, nor have specific clinical prophylaxis and/or treatment interventions that would be effective against a re-emergent 1918 or 1918-like virus been identified. Based on the reported nucleotide sequences, we have reconstructed the hemagglutinin (HA), neuraminidase (NA), and matrix (M) genes of the 1918 virus. Under biosafety level 3 (agricultural) conditions, we have generated recombinant influenza viruses bearing the 1918 HA, NA, or M segments. Strikingly, recombinant viruses possessing both the 1918 HA and 1918 NA were virulent in mice. In contrast, a control virus with the HA and NA from a more recent human isolate was unable to kill mice at any dose tested. The recombinant viruses were also tested for their sensitivity to U.S. Food and Drug Administration-approved antiinfluenza virus drugs in vitro and in vivo. Recombinant viruses possessing the 1918 NA or both the 1918 HA and 1918 NA were inhibited effectively in both tissue culture and mice by the NA inhibitors, zanamivir and oseltamivir. A recombinant virus possessing the 1918 M segment was inhibited effectively both in tissue culture and in vivo by the M2 ion-channel inhibitors amantadine and rimantadine. These data suggest that current antiviral strategies would be effective in curbing the dangers of a re-emergent 1918 or 1918-like virus.

  11. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straus, S.E.

    1989-12-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle themore » neurons.« less

  12. Computer viruses

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  13. What's West Nile Virus?

    MedlinePlus

    ... for Educators Search English Español What's West Nile Virus? KidsHealth / For Kids / What's West Nile Virus? Print en español ¿Qué es el Virus del Nilo Occidental? What exactly is the West ...

  14. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)

    1978-01-01

    The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.

  15. Respiratory Syncytial Virus (RSV)

    MedlinePlus

    ... It's been added to your dashboard . Respiratory syncytial virus (RSV) is a common virus that infects the lungs and breathing passages. Almost ... antiviral is medicine that kills infections caused by viruses. How can you help protect your baby from ...

  16. Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements

    PubMed Central

    Dolja, Valerian V.

    2014-01-01

    SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023

  17. Virus world as an evolutionary network of viruses and capsidless selfish elements.

    PubMed

    Koonin, Eugene V; Dolja, Valerian V

    2014-06-01

    Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Replacement of Murine Leukemia Virus Readthrough Mechanism by Human Immunodeficiency Virus Frameshift Allows Synthesis of Viral Proteins and Virus Replication

    PubMed Central

    Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy

    2003-01-01

    Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361

  19. [Mumps vaccine virus transmission].

    PubMed

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  20. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    USDA-ARS?s Scientific Manuscript database

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  1. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    PubMed

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  2. Zika virus infection.

    PubMed

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  3. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles.

    PubMed

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P; Castón, José R; Blanco, Esther; Alejo, Alí

    2015-09-24

    In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particles (VLPs). Our results further confirmed the differential antigenic properties exhibited by RHDV and RHDV2, highlighting the need of using RHDV2-specific diagnostic assays to monitor the spread of this new virus.

  4. A recombinant pseudorabies virus expressing rabies virus glycoprotein: safety and immunogenicity in dogs.

    PubMed

    Yuan, Ziguo; Zhang, Shoufeng; Liu, Ye; Zhang, Fei; Fooks, Anthony R; Li, Qianxue; Hu, Rongliang

    2008-03-04

    Several recombinant vaccines expressing the rabies virus glycoprotein have been developed, particularly for the oral vaccination of wildlife. While these vaccines induce protective immunity in some animal species such as foxes, they are less effective in others. Pseudorabies virus (PRV) has been licensed for use as a live vaccine in pigs and possesses an excellent safety and efficacy record. We have used it to construct a recombinant virus, rPRV/eGFP/rgp, expressing the rabies virus glycoprotein. This recombinant virus has been shown to be safe for dogs by oral and intramuscular routes of inoculation and was demonstrated to induce immune responses against both pseudorabies and rabies in dogs after a single oral dose of 2 x 10(7.0) plaque forming units (PFU). Neutralizing antibody titers against rabies reached > 0.5 IU/ml and 1:64-1:128 against pseudorabies by 5 weeks post-vaccination in all dogs, indicating that the pseudorabies virus vector infected dogs and replicated in vivo, and that the rabies virus glycoprotein had been expressed and an effective immune response elicited. Antibody titers were maintained for over 6 months. This suggests that pseudorabies virus could be an effective live vector for recombinant rabies oral vaccination.

  5. STUDIES OF MOUSE POLYOMA VIRUS INFECTION

    PubMed Central

    Hartley, Janet W.; Rowe, Wallace P.; Chanock, Robert M.; Andrews, Basil E.

    1959-01-01

    Treatment of guinea pig erythrocytes with types A and B influenza viruses rendered them inagglutinable by polyoma virus; also, the inhibitory effect of ovomucin on polyoma virus hemagglutination was destroyed by pretreatment of the ovomucin with various myxoviruses. These results indicate that polyoma virus and myxovirus erythrocyte receptor sites are identical. However, no destruction by polyoma virus of its own or of myxovirus receptors or inhibitors was detected. No serologic relationship was detected between polyoma virus and members of the myxovirus group; differences in size and stability further indicate their distinctness. No evidence was found of biologic or serologic relationship of polyoma virus with encephalomyocarditis virus or mouse encephalomyelitis virus. PMID:13664870

  6. ICTV virus taxonomy profile: dicistroviridae

    USDA-ARS?s Scientific Manuscript database

    Dicistroviridae is a family of small non-enveloped viruses with RNA genomes of approximately 8-10 kilobases in length. All members infect arthropod hosts with some having devastating economic consequences, such as Acute bee paralysis virus, Kashmir bee virus, and Israeli acute paralysis virus towar...

  7. Blueberry latent spherical virus

    USDA-ARS?s Scientific Manuscript database

    ‘Blueray’ tissue was mechanically inoculated onto Chenopodium quinoa indicator plants as part of a study to determine virus presence in blueberries at Iwate University, Japan. Plants developed chlorosis indicative of virus presence and after virus purification and genome characterization it was dete...

  8. Computer Viruses: Pathology and Detection.

    ERIC Educational Resources Information Center

    Maxwell, John R.; Lamon, William E.

    1992-01-01

    Explains how computer viruses were originally created, how a computer can become infected by a virus, how viruses operate, symptoms that indicate a computer is infected, how to detect and remove viruses, and how to prevent a reinfection. A sidebar lists eight antivirus resources. (four references) (LRW)

  9. Mixing of M Segment DNA Vaccines to Hantaan Virus and Puumala Virus Reduces Their Immunogenicity in Hamsters

    DTIC Science & Technology

    2008-01-01

    vaccines for Rift Valley fever virus, tick- borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 2006;24(May 22 (21)):4657–66. ...Valley fever virus, tick-borne encephalitis virus, TNV, and Crimean Congo hemorrhagic fever virus [19]. Thus, it s clearly possible to develop certain...online 25 April 2008 eywords: a b s t r a c t To determine if DNA vaccines for two hantaviruses causing hemorrhagic

  10. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  11. Annual Progress Report - Fiscal Year 1978.

    DTIC Science & Technology

    1978-10-01

    outbreak of Rift Valley fever (RVF) which occurred for the first time in history throughout Egypt. Because there were thousands of cases, with hemorrhagic...lobar pneumonias, and the study of viruses, such as JE, which appear capable of entering the central nervous system from the nasal mu- cosa via...professional staff, each with a high degree of competence in virology, received the vaccine. Each volunteer underwent a com- plete history and physical

  12. Probing effects of pressure release on virus capture during virus filtration using confocal microscopy.

    PubMed

    Dishari, Shudipto K; Venkiteshwaran, Adith; Zydney, Andrew L

    2015-10-01

    Virus filtration is used to ensure drug safety in the production of biotherapeutics. Several recent studies have shown a dramatic decrease in virus retention as a result of a process disruption, e.g., a transient pressure release. In this work, a novel two-label fluorescence technique was developed to probe virus capture within virus filtration membranes using confocal microscopy. Experiments were performed with Ultipor® DV20, Viresolve® Pro, and Viresolve® NFP membranes using bacteriophage φx174 as a model virus. The filters were challenged with two batches of fluorescently labeled phage: one labeled with red dye (Cy5) and one with green dye (SYBR Gold) to visualize captured phage from before and after the pressure release. The capture patterns seen in the confocal images were a strong function of the underlying membrane morphology and pore structure. The DV20 and Viresolve® NFP showed migration of previously captured phage further into the filter, consistent with the observed loss of virus retention after the pressure release. In contrast, there was no migration of captured virus in the Viresolve® Pro membranes, and these filters were also the only ones to show stable virus retention after a pressure release. The direct visualization of virus capture using the two-label fluorescence technique provides unique insights into the factors controlling the retention characteristics of virus filters with different pore structure. © 2015 Wiley Periodicals, Inc.

  13. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  14. Emerging Issues in Virus Taxonomy

    PubMed Central

    Mahy, Brian W.J.

    2004-01-01

    Viruses occupy a unique position in biology. Although they possess some of the properties of living systems such as having a genome, they are actually nonliving infectious entities and should not be considered microorganisms. A clear distinction should be drawn between the terms virus, virion, and virus species. Species is the most fundamental taxonomic category used in all biological classification. In 1991, the International Committee on Taxonomy of Viruses (ICTV) decided that the category of virus species should be used in virus classification together with the categories of genus and family. More than 50 ICTV study groups were given the task of demarcating the 1,550 viral species that were recognized in the 7th ICTV report, which was published in 2000. We briefly describe the changes in virus classification that were introduced in that report. We also discuss recent proposals to introduce a nonlatinized binomial nomenclature for virus species. PMID:15078590

  15. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  16. Nematode-borne plant viruses

    USDA-ARS?s Scientific Manuscript database

    There are 30 plant-parasitic nematode species that are known to transmit 14 plant viruses. Nematode-transmitted viruses affect a range of agriculturally important crops including grape, cherry, potato, and tomato. The nematodes that transmit viruses are found in two families, Longidoridae and Tric...

  17. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice

    PubMed Central

    Lennemann, Nicholas J.; Herbert, Andrew S.; Brouillette, Rachel; Rhein, Bethany; Bakken, Russell A.; Perschbacher, Katherine J.; Cooney, Ashley L.; Miller-Hunt, Catherine L.; Ten Eyck, Patrick; Biggins, Julia; Olinger, Gene; Dye, John M.

    2017-01-01

    ABSTRACT The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success. IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant

  18. Physicochemical studies of equine infectious anemia virus: V. Effect of ultraviolet irradiation on virus infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, H.; Mizuno, Y.; Yasuda, K.

    1973-03-01

    The effect of ultraviolet radiation on the infectivity of equine infectious anemia (EIA) virus is described using influenza virus and Rous sarcoma (RSV) virus as controls. Virus preparations were placed in Petri dishes and uv- irradiated by a 15 watt germicidal lamp. At intervals up to 30 min samples were taken to determine the infectivity in surviving fractions. The infectivity of the influenza virus was reduced by four orders about 2 min after irradiation; the EIA virus infectivity was reduced to the same extent in 20 min, and the RSV infectivity was reduced to the same extent in 30 min.

  19. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  20. Co-infection with Influenza Viruses and Influenza-Like Virus During the 2015/2016 Epidemic Season.

    PubMed

    Szymański, K; Cieślak, K; Kowalczyk, D; Brydak, L B

    2017-01-01

    Concerning viral infection of the respiratory system, a single virus can cause a variety of clinical symptoms and the same set of symptoms can be caused by different viruses. Moreover, infection is often caused by a combination of viruses acting at the same time. The present study demonstrates, using multiplex RT-PCR and real-time qRT-PCR, that in the 2015/2016 influenza season, co-infections were confirmed in patients aged 1 month to 90 years. We found 73 co-infections involving influenza viruses, 17 involving influenza viruses and influenza-like viruses, and six involving influenza-like viruses. The first type of co-infections above mentioned was the most common, amounting to 51 cases, with type A and B viruses occurring simultaneously. There also were four cases of co-infections with influenza virus A/H1N1/pdm09 and A/H1N1/ subtypes and two cases with A/H1N1/pdm09 and A/H3N2/ subtypes. The 2015/2016 epidemic season was characterized by a higher number of confirmed co-infections compared with the previous seasons. Infections by more than one respiratory virus were most often found in children and in individuals aged over 65.

  1. Immunotherapy against cancer-related viruses

    PubMed Central

    Tashiro, Haruko; Brenner, Malcolm K

    2017-01-01

    Approximately 12% of all cancers worldwide are associated with viral infections. To date, eight viruses have been shown to contribute to the development of human cancers, including Epstein-Barr virus (EBV), Hepatitis B and C viruses, and Human papilloma virus, among others. These DNA and RNA viruses produce oncogenic effects through distinct mechanisms. First, viruses may induce sustained disorders of host cell growth and survival through the genes they express, or may induce DNA damage response in host cells, which in turn increases host genome instability. Second, they may induce chronic inflammation and secondary tissue damage favoring the development of oncogenic processes in host cells. Viruses like HIV can create a more permissive environment for cancer development through immune inhibition, but we will focus on the previous two mechanisms in this review. Unlike traditional cancer therapies that cannot distinguish infected cells from non-infected cells, immunotherapies are uniquely equipped to target virus-associated malignancies. The targeting and functioning mechanisms associated with the immune response can be exploited to prevent viral infections by vaccination, and can also be used to treat infection before cancer establishment. Successes in using the immune system to eradicate established malignancy by selective recognition of virus-associated tumor cells are currently being reported. For example, numerous clinical trials of adoptive transfer of ex vivo generated virus-specific T cells have shown benefit even for established tumors in patients with EBV-associated malignancies. Additional studies in other virus-associated tumors have also been initiated and in this review we describe the current status of immunotherapy for virus-associated malignancies and discuss future prospects. PMID:28008927

  2. Upolu virus and Aransas Bay virus, Two Presumptive Bunyaviruses, Are Novel Members of the Family Orthomyxoviridae

    PubMed Central

    Chowdhary, Rashmi; Travassos da Rosa, Amelia; Hutchison, Stephen K.; Popov, Vsevolod; Street, Craig; Tesh, Robert B.; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Emerging and zoonotic pathogens pose continuing threats to human health and ongoing challenges to diagnostics. As nucleic acid tests are playing increasingly prominent roles in diagnostics, the genetic characterization of molecularly uncharacterized agents is expected to significantly enhance detection and surveillance capabilities. We report the identification of two previously unrecognized members of the family Orthomyxoviridae, which includes the influenza viruses and the tick-transmitted Thogoto and Dhori viruses. We provide morphological, serologic, and genetic evidence that Upolu virus (UPOV) from Australia and Aransas Bay virus (ABV) from North America, both previously considered potential bunyaviruses based on electron microscopy and physicochemical features, are orthomyxoviruses instead. Their genomes show up to 68% nucleotide sequence identity to Thogoto virus (segment 2; ∼74% at the amino acid level) and a more distant relationship to Dhori virus, the two prototype viruses of the recognized species of the genus Thogotovirus. Despite sequence similarity, the coding potentials of UPOV and ABV differed from that of Thogoto virus, instead being like that of Dhori virus. Our findings suggest that the tick-transmitted viruses UPOV and ABV represent geographically distinct viruses in the genus Thogotovirus of the family Orthomyxoviridae that do not fit in the two currently recognized species of this genus. IMPORTANCE Upolu virus (UPOV) and Aransas Bay virus (ABV) are shown to be orthomyxoviruses instead of bunyaviruses, as previously thought. Genetic characterization and adequate classification of agents are paramount in this molecular age to devise appropriate surveillance and diagnostics. Although more closely related to Thogoto virus by sequence, UPOV and ABV differ in their coding potentials by lacking a proposed pathogenicity factor. In this respect, they are similar to Dhori virus, which, despite the lack of a pathogenicity factor, can cause

  3. Coinfection of hepatitis E virus and other hepatitis virus in Colombia and its genotypic characterization.

    PubMed

    Peláez, Dioselina; Martínez-Vargas, Daniel; Escalante-Mora, Martha; Palacios-Vivero, Mariel; Contreras-Gómez, Lady

    2015-12-04

    Hepatitis E virus has emerged as a public health problem, particularly in developing countries. The four genotypes identified in mammals include the G3 found in indigenous hepatitis in countries and regions with high porcine population, and the G1, associated with maternal deaths.  To determine coinfection by hepatitis E virus and the circulating genotypes in Colombia in 1,097 samples using serological markers for hepatitis A, B and C.  Serum samples of 1,097 patients from different regions of Colombia stored at the Laboratorio de Virología of the Instituto Nacional de Salud were selected to detect IgG and IgM anti-hepatitis E virus antibodies. The viral genomes of positive samples were amplified by RT-PCR, and the products were sequenced and phylogenetically analyzed by comparing ORF2 sequences deposited in the GenBank.  IgG anti-hepatitis E virus antibodies were found in 278 samples, IgM in 62, and both markers in 64. Hepatitis E virus and hepatitis A virus coinfection determined by IgG anti-hepatitis E virus was 33.6% and 16.1% by IgM; hepatitis E virus and hepatitis B virus coinfection was 23.4% and 8.1%, and hepatitis E virus and hepatitis C virus coinfection was 35.4% and 5.83%, respectively. Among the 52 positive samples by PCR nine were sequenced and grouped within genotype 3A of the American porcine strain.  The highest seropositivity was observed for hepatitis A and E. The incidence of hepatitis E virus coinfection with other hepatotropic viruses indicated that this pathogen is more frequent than expected. The circulation of genotype 3A implies that this disease may occur in outbreaks and as zoonosis in Colombia.

  4. Virus movement within grafted watermelon plants

    USDA-ARS?s Scientific Manuscript database

    Watermelon production in Florida is impacted by several viruses including whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit yellow stunting disorder virus and Cucurbit leaf crumple virus, and aphid-transmitted Papaya ringspot virus type W (PRSV-W). While germplasm resistant to some...

  5. Comparative Pathology of Hepatitis A Virus and Hepatitis E Virus Infection.

    PubMed

    Cullen, John M; Lemon, Stanley M

    2018-04-30

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) cause acute, self-limiting hepatic infections that are usually spread by the fecal-oral route in humans. Naturally occurring and experimental infections are possible in a variety of nonhuman primates and, in the case of HEV, a number of other species. Many advances in understanding the pathogenesis of these viruses have come from studies in experimental animals. In general, animals infected with these viruses recapitulate the histologic lesions seen in infected humans, but typically with less severe clinical and histopathological manifestations. This review describes the histopathologic changes associated with HAV and HEV infection in humans and experimental animals. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. [Zika virus infection during pregnancy].

    PubMed

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Realms of the Viruses Online

    ERIC Educational Resources Information Center

    Liu, Dennis

    2007-01-01

    Viruses have evolved strategies for infecting all taxa, but most viruses are highly specific about their cellular host. In humans, viruses cause diverse diseases, from chronic but benign warts, to acute and deadly hemorrhagic fever. Viruses have entertaining names like Zucchini Yellow Mosaic, Semliki Forest, Coxsackie, and the original terminator,…

  8. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge

    PubMed Central

    Mooney, Alaina J.; Gabbard, Jon D.; Li, Zhuo; Dlugolenski, Daniel A.; Johnson, Scott K.

    2017-01-01

    ABSTRACT Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  9. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    PubMed

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  10. Isoelectric points of viruses.

    PubMed

    Michen, B; Graule, T

    2010-08-01

    Viruses as well as other (bio-)colloids possess a pH-dependent surface charge in polar media such as water. This electrostatic charge determines the mobility of the soft particle in an electric field and thus governs its colloidal behaviour which plays a major role in virus sorption processes. The pH value at which the net surface charge switches its sign is referred to as the isoelectric point (abbreviations: pI or IEP) and is a characteristic parameter of the virion in equilibrium with its environmental water chemistry. Here, we review the IEP measurements of viruses that replicate in hosts of kingdom plantae, bacteria and animalia. IEPs of viruses are found in pH range from 1.9 to 8.4; most frequently, they are measured in a band of 3.5 < IEP < 7. However, the data appear to be scattered widely within single virus species. This discrepancy is discussed and should be considered when IEP values are used to account for virus sorption processes.

  11. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    PubMed

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  12. Cowpea viruses: Effect of single and mixed infections on symptomatology and virus concentration

    PubMed Central

    Taiwo, Moni A; Kareem, Kehinde T; Nsa, Imade Y; D'A Hughes, Jackies

    2007-01-01

    Natural multiple viral infections of cultivated cowpeas have been reported in Nigeria. In this study, three Nigerian commercial cowpea cultivars ("Olo 11", "Oloyin" and "White") and two lines from the IITA (IT86D- 719 and TVU 76) were mechanically inoculated with Cowpea aphid-borne mosaic virus (CABMV), Bean southern mosaic virus (SBMV) and Cowpea mottle virus (CMeV) singly, as well as in all possible combinations at 10, 20 and 30 days after planting (DAP). Samples of leaves or stems were collected at 10, 20 and 30 days after inoculation (DAI) and analyzed for relative virus concentration by Enzyme-Linked Immunosrbent Assay. All the cultivars and lines {CVS/L} were susceptible to the viruses but the commercial CVS showed more severe symptoms and had relatively higher viral concentration. In single virus infections, CABMV which induced the most severe symptoms had absorbance values (at 405 nm) of 0.11 to 0.46 while SBMV and CMeV which induced moderate symptoms had virus titre of 0.74 to 1.99 and 0.11 to 0.90 respectively. Plants inoculated 10 DAP had significantly higher virus concentration than those inoculated 30 DAP. In mixed infections involving CABMV (10 DAP) apical necrosis and death were observed in commercial cultivars "Olo 11" and "White". Enhancement of CMeV titers were observed in plants infected with CMeV + CABMV. Multiple viral infections of cowpeas may result in complete yield loss, hence, the availability of seeds of cultivars with a high level of multiple virus resistance is recommended as a means of control. PMID:17900355

  13. DNA in Uninfected and Virus-Infected Cells Complementary to Avian Tumor Virus RNA

    PubMed Central

    Rosenthal, Peter N.; Robinson, Harriet L.; Robinson, William S.; Hanafusa, Teruko; Hanafusa, Hidesaburo

    1971-01-01

    The 70S RNA component of several avian tumor viruses was hybridized with DNA extracted from avian tumor virus-infected and uninfected chicken and Japanese quail cells. Tritium-labeled 70S RNAs from Rous sarcoma virus (RSV), Rous associated virus-1 (RAV-1), RAV-60, and Schmidt-Ruppin-RSV (SR-RSV) hybridize from 3 to 10 times more with DNA from uninfected chicken cells than with DNA from Escherichia coli, calfthymus, or baby hamster kidney cells. After infection of chicken cells with RSV(RAV-1), SR-RSV, or RAV-2, the amount of 70S avian tumor virus [3H]RNA hybridized increases by 1.6 times. The specificity of the hybridization reaction was shown by the specific competition of 70S SR-RSV [3H]RNA with 70S RNA from RSV(RAV-1), and not with RNA from Sendai virus or chicken cells. There was no difference in the hybridization of 70S RNA from RSV (RAV-1), RAV-1, or RAV-60 with DNA either from chicken cells that contain RAV-60 in a nonreplicating form or from chicken cells that do not appear to contain RAV-60. These results indicate that both types of uninfected chicken cells contain DNA that is complementary to RNA from several avian tumor viruses and that the amount of complementary DNA increases in such cells after infection with an avian tumor virus. The RNAs of genetically different avian tumor viruses appear to have indistinguishable base sequences by this technique. PMID:4332808

  14. Development of a genetic system for the archaeal virus Sulfolobus turreted icosahedral virus (STIV).

    PubMed

    Wirth, Jennifer Fulton; Snyder, Jamie C; Hochstein, Rebecca A; Ortmann, Alice C; Willits, Deborah A; Douglas, Trevor; Young, Mark J

    2011-06-20

    Our understanding of archaeal viruses has been limited by the lack of genetic systems for examining viral function. We describe the construction of an infectious clone for the archaeal virus Sulfolobus turreted icosahedral virus (STIV). STIV was isolated from a high temperature (82°C) acidic (pH 2.2) hot spring in Yellowstone National Park and replicates in the archaeal model organism Sulfolobus solfataricus (Rice et al., 2004). While STIV is one of most studied archaeal viruses, little is known about its replication cycle. The development of an STIV infectious clone allows for directed gene disruptions and detailed genetic analysis of the virus. The utility of the STIV infectious clone was demonstrated by gene disruption of STIV open reading frame (ORF) B116 which resulted in crippled virus replication, while disruption of ORFs A197, C381 and B345 was lethal for virus replication. Copyright © 2011. Published by Elsevier Inc.

  15. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations

    PubMed Central

    Kuhn, Jens H.; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W.; Johnson, Karl M.; Kawaoka, Yoshihiro; Lipkin, W. Ian; Negredo, Ana I.; Netesov, Sergey V.; Nichol, Stuart T.; Palacios, Gustavo; Peters, Clarence J.; Tenorio, Antonio; Volchkov, Viktor E.; Jahrling, Peter B.

    2011-01-01

    The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently

  16. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations.

    PubMed

    Kuhn, Jens H; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W; Johnson, Karl M; Kawaoka, Yoshihiro; Lipkin, W Ian; Negredo, Ana I; Netesov, Sergey V; Nichol, Stuart T; Palacios, Gustavo; Peters, Clarence J; Tenorio, Antonio; Volchkov, Viktor E; Jahrling, Peter B

    2010-12-01

    The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently

  17. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats.

    PubMed

    Kading, Rebekah C; Kityo, Robert M; Mossel, Eric C; Borland, Erin M; Nakayiki, Teddie; Nalikka, Betty; Nyakarahuka, Luke; Ledermann, Jeremy P; Panella, Nicholas A; Gilbert, Amy T; Crabtree, Mary B; Peterhans, Julian Kerbis; Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Nichol, Stuart T; Powers, Ann M; Lutwama, Julius J; Miller, Barry R

    2018-01-01

    Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion:  Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats ( Epomophorus labiatus ) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.

  18. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship.

    PubMed

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D; Sandaa, Ruth-Anne

    2017-04-20

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae , showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.

  19. A Theoretical Approach to Analyze the Parametric Influence on Spatial Patterns of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) Populations.

    PubMed

    Garcia, A G; Godoy, W A C

    2017-06-01

    Studies of the influence of biological parameters on the spatial distribution of lepidopteran insects can provide useful information for managing agricultural pests, since the larvae of many species cause serious impacts on crops. Computational models to simulate the spatial dynamics of insect populations are increasingly used, because of their efficiency in representing insect movement. In this study, we used a cellular automata model to explore different patterns of population distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the values of two biological parameters that are able to influence the spatial pattern (larval viability and adult longevity) are varied. We mapped the spatial patterns observed as the parameters varied. Additionally, by using population data for S. frugiperda obtained in different hosts under laboratory conditions, we were able to describe the expected spatial patterns occurring in corn, cotton, millet, and soybean crops based on the parameters varied. The results are discussed from the perspective of insect ecology and pest management. We concluded that computational approaches can be important tools to study the relationship between the biological parameters and spatial distributions of lepidopteran insect pests.

  20. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus.

    PubMed

    Messaoudi, Ilhem; Amarasinghe, Gaya K; Basler, Christopher F

    2015-11-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  1. PREFACE The physics of virus assembly The physics of virus assembly

    NASA Astrophysics Data System (ADS)

    Stockley, Peter G.; Twarock, Reidun

    2010-12-01

    Viruses are pathogens in every kingdom of life and are major causes of human disease and suffering. They are known to encompass a size range that overlaps with that of the smallest bacterial cells, and the largest viruses now seem to be hosts of their own viral pathogens. Recent genomic sequencing efforts show that many organisms have genes that are likely to be descended in evolution from viral progenitors. Even more astonishingly, analysis of the world's oceans has shown that some of the simplest viruses, the tailed dsDNA phages, are the most common biological entities on the planet, with estimates of their numbers ranging up to 1031, with ~ 1021 infection events every second, leading to a turnover of around 20% of the biomass in the sea every few days. These cycles of infection and lysis of oceanic bacteria and algae provide the nutrients for the smallest organisms lying at the bottom of the food chain. Without viruses, therefore, life on Earth would probably not be sustainable. These are remarkable facts for systems that are non-living in the strict sense, and are composed of simple materials—nucleic acids, proteins and lipids. Many viruses consist of little more than a protective protein coat surrounding their genomic nucleic acids, which can be either DNA or RNA. Their simplicity leads to highly symmetrical structures with protein containers based on helical or icosahedral lattices. Many simple viruses self-assemble rapidly and with great fidelity, and many groups are busy trying to exploit these properties to make virus-like particles for a wide range of applications, including targeted drug-delivery, medical imaging and even novel materials. This issue of Physical Biology contains a series of papers describing some of the latest experimental and theoretical research on viruses, their structures and assembly, as well as their regulated disassembly during infection. These range from a dissection of the in vivo assembly mechanism of a filamentous virus

  2. Coping with Computer Viruses: General Discussion and Review of Symantec Anti-Virus for the Macintosh.

    ERIC Educational Resources Information Center

    Primich, Tracy

    1992-01-01

    Discusses computer viruses that attack the Macintosh and describes Symantec AntiVirus for Macintosh (SAM), a commercial program designed to detect and eliminate viruses; sample screen displays are included. SAM is recommended for use in library settings as well as two public domain virus protection programs. (four references) (MES)

  3. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses

    PubMed Central

    Caprari, Silvia; Metzler, Saskia; Lengauer, Thomas; Kalinina, Olga V.

    2015-01-01

    The origin and evolution of viruses is a subject of ongoing debate. In this study, we provide a full account of the evolutionary relationships between proteins of significant sequence and structural similarity found in viruses that belong to different classes according to the Baltimore classification. We show that such proteins can be found in viruses from all Baltimore classes. For protein families that include these proteins, we observe two patterns of the taxonomic spread. In the first pattern, they can be found in a large number of viruses from all implicated Baltimore classes. In the other pattern, the instances of the corresponding protein in species from each Baltimore class are restricted to a few compact clades. Proteins with the first pattern of distribution are products of so-called viral hallmark genes reported previously. Additionally, this pattern is displayed by the envelope glycoproteins from Flaviviridae and Bunyaviridae and helicases of superfamilies 1 and 2 that have homologs in cellular organisms. The second pattern can often be explained by horizontal gene transfer from the host or between viruses, an example being Orthomyxoviridae and Coronaviridae hemagglutinin esterases. Another facet of horizontal gene transfer comprises multiple independent introduction events of genes from cellular organisms into otherwise unrelated viruses. PMID:26492264

  4. Tomato ring spot virus

    USDA-ARS?s Scientific Manuscript database

    Tomato ringspot disease, caused by Tomato ringspot virus (TmRSV), is associated with the presence of dagger nematodes, the major vectors of Tomato ringspot virus (TmRSV). This virus is endemic and widely distributed in North America, as well as many parts of the world. Infected plants develop yello...

  5. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer.

    PubMed

    Glenn, Wendy K; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J; Lawson, James S

    2012-01-01

    The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.

  6. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  7. S2 expressed from recombinant virus confers broad protection against infectious bronchitis virus

    USDA-ARS?s Scientific Manuscript database

    We previously demonstrated that overexposing the IBV (infectious bronchitis virus) S2 to the chicken immune system by means of a vectored vaccine, followed by boost with whole virus, protects chickens against IBV showing dissimilar S1. We developed recombinant Newcastle disease virus (NDV) LaSota (...

  8. [Viruses and civilization].

    PubMed

    Chastel, C

    1999-01-01

    A few million years ago, when primates moved from the east African forest to the savannah, they were already infected with endogenous viruses and occultly transmitted them to the prime Homo species. However it was much later with the building of the first large cities in Mesopotamia that interhuman viral transmission began in earnest. Spreading was further enhanced with the organization of the Egyptian, Greek, Roman, and Arab empires around the Mediterranean. Discovery of the New World in 1492 led to an unprecedented clash of civilizations and the destruction of pre-Columbian Indian civilizations. It also led to a rapid spread of viruses across the Atlantic Ocean with the emergence of yellow fever and appearance of smallpox and measles throughout the world. However the greatest opportunities for worldwide viral development have been created by our present, modern civilization. This fact is illustrated by epidemic outbreaks of human immunodeficiency virus, Venezuela hemorrhagic fever, Rift valley fever virus, and monkey pox virus. Close analysis underscores the major role of human intervention in producing these events.

  9. Malsoor Virus, a Novel Bat Phlebovirus, Is Closely Related to Severe Fever with Thrombocytopenia Syndrome Virus and Heartland Virus

    PubMed Central

    Yadav, P. D.; Basu, A.; Shete, A.; Patil, D. Y.; Zawar, D.; Majumdar, T. D.; Kokate, P.; Sarkale, P.; Raut, C. G.; Jadhav, S. M.

    2014-01-01

    During a survey in the year 2010, a novel phlebovirus was isolated from the Rousettus leschenaultii species of bats in western India. The virus was identified by electron microscopy from infected Vero E6 cells. Phylogenic analysis of the complete genome showed its close relation to severe fever with thrombocytopenia syndrome (SFTS) and Heartland viruses, which makes it imperative to further study its natural ecology and potential as a novel emerging zoonotic virus. PMID:24390329

  10. Computer virus information update CIAC-2301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orvis, W.J.

    1994-01-15

    While CIAC periodically issues bulletins about specific computer viruses, these bulletins do not cover all the computer viruses that affect desktop computers. The purpose of this document is to identify most of the known viruses for the MS-DOS and Macintosh platforms and give an overview of the effects of each virus. The authors also include information on some windows, Atari, and Amiga viruses. This document is revised periodically as new virus information becomes available. This document replaces all earlier versions of the CIAC Computer virus Information Update. The date on the front cover indicates date on which the information inmore » this document was extracted from CIAC`s Virus database.« less

  11. Interferon production by cells infected with subacute sclerosing panencephalitis (SSPE) virus or measles virus.

    PubMed

    Hasegawa, Shunji; Mori, Natsumi; Satomi, Mika; Jiang, Da-Peng; Hotta, Hak; Matsushige, Takeshi; Ichiyama, Takashi

    2011-12-01

    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative encephalitis caused by some variants of measles virus (MV). The structure of SSPE virus in the brains of SSPE patients is different from that of MV. The difference in interferon (IFN) production between cells infected with SSPE virus and those infected with MV remains unclear. We measured the concentrations of IFN-α, β, γ, and λ1 (interleukin (IL)-29) from MV- or SSPE virus-infected B95a cells (a marmoset B-lymphoblastoid cell line). SSPE virus-infected B95a cells produced significantly higher levels of IFN-α and λ1 than did MV-infected or mock-infected cells. Our results suggest that SSPE virus and MV induce different IFN production profiles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. PROFLAVINE INHIBITION OF VACCINIA VIRUS SYNTHESIS.

    PubMed

    BUBEL, H C; WOLFF, D A

    1965-04-01

    Bubel, H. Curt (University of Cincinnati College of Medicine, Cincinnati, Ohio), and David A. Wolff. Proflavine inhibition of vaccinia virus synthesis. J. Bacteriol. 89:977-983. 1965.-The synthesis of vaccinia virus, hemagglutinin, and blocking antigen, as well as the development of cytopathic effects, were inhibited by low concentrations of proflavine. This inhibitor did not exert a selective effect on any particular portion of the virus synthetic cycle. Proflavine added to infected KB cells during the eclipse period or later stages of virus maturation rapidly arrested further production of infectious virus and virus-related products. Suppression of virus synthesis was completely reversible, indicating that permanent damage to the virus synthetic mechanism did not result from a transient exposure to proflavine. Photosensitization of maturating vaccinia virus by subinhibiting concentrations of proflavine suggested an interaction of the inhibitor with viral nucleic acid.

  13. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA.

    PubMed

    Wong, K T; Ng, K Y; Ong, K C; Ng, W F; Shankar, S K; Mahadevan, A; Radotra, B; Su, I J; Lau, G; Ling, A E; Chan, K P; Macorelles, P; Vallet, S; Cardosa, M J; Desai, A; Ravi, V; Nagata, N; Shimizu, H; Takasaki, T

    2012-08-01

    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  14. RECOVIR Software for Identifying Viruses

    NASA Technical Reports Server (NTRS)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  15. VIRUS-SPECIFIC POLYSOMES IN CELLS INFECTED WITH THE VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS,

    DTIC Science & Technology

    VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS, *RIBOSOMES, *TISSUE CULTURE CELLS, RIBOSOMES, GROWTH(PHYSIOLOGY), INFECTIOUS DISEASES, ARBOVIRUSES, VIRUSES, NUCLEIC ACIDS, BIOSYNTHESIS, USSR, MOLECULAR STRUCTURE.

  16. [Oviposition, development, and reproduction of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) fed on different hosts of economic importance].

    PubMed

    Barros, Eduardo M; Torres, Jorge B; Bueno, Adeney F

    2010-01-01

    The host selection for oviposition by Spodoptera frugiperda (J.E. Smith) among corn, millet, cotton and soybean, and its relationship with the biological characteristics were investigated. Free and non-choice tests for oviposition using plots containing five plants each, from each host in plastic greenhouse, resulted in similar oviposition preference among the host plants. In addition, selected biological characteristics of S. frugiperda were determined in the laboratory with larvae feeding on host leaves, and the combination of leaf and cotton boll. Neonate larvae exhibited low success of colonization on cotton boll compared to the leaves of all other hosts. Spodoptera frugiperda fed only on cotton bolls exhibited longer larval and pupal development, and longer adult life span; however with similar egg production. Larvae fed cotton leaves during six days and then transferred to cotton bolls, however, exhibited development and reproduction similar to those reared on corn or only on cotton leaves. Therefore, the variations on immature stages of S. frugiperda were not related with host selection for oviposition which was similar among the studied hosts. Based on our data, the millet as a winter, rotational, and cover crop is a potential host for S. frugiperda, while leaves and cotton bolls were diets of intermediate suitability as compared to corn and soybean leaves.

  17. Analysis of Proteins of Mouse Sarcoma Pseudotype Viruses: Type-Specific Radioimmunoassays for Ecotropic Virus p30's

    PubMed Central

    Kennel, Stephen J.; Tennant, Raymond W.

    1979-01-01

    Murine sarcoma virus pseudotypes were prepared by infection of nonproducer cells (A1-2), which were transformed by the Gazdar strain of mouse sarcoma virus, with Gross (N-tropic), WN1802B (B-tropic), or Moloney (NB-tropic) viruses. The respective host range pseudotype sarcoma viruses were defined by the titration characteristics on cells with the appropriate Fv-1 genotype. Proteins from virus progeny were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bands present in both the 65,000- and the 10,000- to 20,000- molecular-weight regions of the gel distinguished the pseudotype viruses from their respective helpers. Furthermore, two protein bands were noted in the p30 region of murine sarcoma virus (Gross), one corresponding to Gross virus p30, and another of slightly slower mobility. However, since the mobility of the putative sarcoma p30 is nearly indentical to that of WN1802B, its presence could not be established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Type-specific radioimmunoassays for Gross virus p30 and for WN1802B p30 were applied for analysis of pseudotype preparations, and among several ecotropic viruses tested, only the homologous virus scored in the respective assay. By use of these assays, pseudotype viruses were found to contain only 8 to 48% helper-specific p30's; the remainder is presumably derived from the sarcoma virus. Images PMID:90164

  18. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  19. The IFITMs Inhibit Zika Virus Replication.

    PubMed

    Savidis, George; Perreira, Jill M; Portmann, Jocelyn M; Meraner, Paul; Guo, Zhiru; Green, Sharone; Brass, Abraham L

    2016-06-14

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses. Copyright © 2016. Published by Elsevier Inc.

  20. Avian influenza viruses in humans.

    PubMed

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  1. Prediction of Turbulence-Generated Noise in Unheated Jets. Part 1; JeNo Technical Manual (Version 1.0)

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James; Georgiadis, Nicholas

    2005-01-01

    The model-based approach, used by the JeNo code to predict jet noise spectral directivity, is described. A linearized form of Lilley's equation governs the non-causal Green s function of interest, with the non-linear terms on the right hand side identified as the source. A Reynolds-averaged Navier-Stokes (RANS) solution yields the required mean flow for the solution of the propagation Green s function in a locally parallel flow. The RANS solution also produces time- and length-scales needed to model the non-compact source, the turbulent velocity correlation tensor, with exponential temporal and spatial functions. It is shown that while an exact non-causal Green s function accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound at low to moderate Mach numbers, the polar directivity of radiated sound is not entirely captured by this Green s function at high subsonic and supersonic acoustic Mach numbers. Results presented for unheated jets in the Mach number range of 0.51 to 1.8 suggest that near the peak radiation angle of high-speed jets, a different source/Green s function convolution integral may be required in order to capture the peak observed directivity of jet noise. A sample Mach 0.90 heated jet is also discussed that highlights the requirements for a comprehensive jet noise prediction model.

  2. Pneumonia Virus of Mice Severe Respiratory Virus Infection in a Natural Host

    PubMed Central

    Rosenberg, Helene F.; Domachowske, Joseph B.

    2008-01-01

    Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a natural mouse pathogen that is closely related to the human and bovine respiratory syncytial viruses. Among the prominent features of this infection, robust replication of PVM takes place in bronchial epithelial cells in response to a minimal virus inoculum. Virus replication in situ results in local production of proinflammatory cytokines (MIP-1α, MIP-2, MCP-1 and IFNγ) and granulocyte recruitment to the lung. If left unchecked, PVM infection and the ensuing inflammatory response ultimately lead to pulmonary edema, respiratory compromise and death. In this review, we consider the recent studies using the PVM model that have provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. We also highlight several works that have elucidated acquired immune responses to this pathogen, including T cell responses and the development of humoral immunity. Finally, we consider several immunomodulatory strategies that have been used successfully to reduce morbidity and mortality when administered to PVM infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe respiratory virus infections in human subjects. PMID:18471897

  3. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirusmore » pathogenesis.« less

  4. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    PubMed Central

    Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.

    2013-01-01

    For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485

  5. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  6. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens

    PubMed Central

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping

    2017-01-01

    ABSTRACT The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that

  7. Archaeal Viruses from High-Temperature Environments.

    PubMed

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  8. Proflavine Inhibition of Vaccinia Virus Synthesis

    PubMed Central

    Bubel, H. Curt; Wolff, David A.

    1965-01-01

    Bubel, H. Curt (University of Cincinnati College of Medicine, Cincinnati, Ohio), and David A. Wolff. Proflavine inhibition of vaccinia virus synthesis. J. Bacteriol. 89:977–983. 1965.—The synthesis of vaccinia virus, hemagglutinin, and blocking antigen, as well as the development of cytopathic effects, were inhibited by low concentrations of proflavine. This inhibitor did not exert a selective effect on any particular portion of the virus synthetic cycle. Proflavine added to infected KB cells during the eclipse period or later stages of virus maturation rapidly arrested further production of infectious virus and virus-related products. Suppression of virus synthesis was completely reversible, indicating that permanent damage to the virus synthetic mechanism did not result from a transient exposure to proflavine. Photosensitization of maturating vaccinia virus by subinhibiting concentrations of proflavine suggested an interaction of the inhibitor with viral nucleic acid. PMID:14276124

  9. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    PubMed Central

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  10. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship

    PubMed Central

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D.; Sandaa, Ruth-Anne

    2017-01-01

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host–virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species. PMID:28425942

  11. Avian influenza virus transmission to mammals.

    PubMed

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  12. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    PubMed

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  13. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.

    PubMed

    Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J

    2009-12-24

    Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vafai, A.; Wellish, M.; Devlin, M.

    1988-04-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteinsmore » in human sensory ganglia.« less

  15. Epstein-Barr Virus, Human Papillomavirus and Mouse Mammary Tumour Virus as Multiple Viruses in Breast Cancer

    PubMed Central

    Glenn, Wendy K.; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J.; Lawson, James S.

    2012-01-01

    Background The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. Materials and Methods All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). Results EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk – EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. Conclusions We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer. PMID:23183846

  16. Prevalence of hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus and hepatitis E virus as causes of acute viral hepatitis in North India: a hospital based study.

    PubMed

    Jain, P; Prakash, S; Gupta, S; Singh, K P; Shrivastava, S; Singh, D D; Singh, J; Jain, A

    2013-01-01

    Acute viral hepatitis (AVH) is a major public health problem and is an important cause of morbidity and mortality. The aim of the present study is to determine the prevalence of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and hepatitis E virus (HEV) as causes of AVH in a tertiary care hospital of North India. Blood samples and clinical information was collected from cases of AVH referred to the Grade I viral diagnostic laboratory over a 1-year period. Samples were tested for hepatitis B surface antigen, anti-HCV total antibodies, anti-HAV immunoglobulin M (IgM) and anti-HEV IgM by the enzyme-linked immunosorbent assay. PCR for nucleic acid detection of HBV and HCV was also carried out. Those positive for HBV infection were tested for anti-HDV antibodies. Fisher's exact test was used and a P < 0.05 was considered to be statistically significant. Of the 267 viral hepatitis cases, 62 (23.22%) patients presented as acute hepatic failure. HAV (26.96%) was identified as the most common cause of acute hepatitis followed by HEV (17.97%), HBV (16.10%) and HCV (11.98%). Co-infections with more than one virus were present in 34 cases; HAV-HEV co-infection being the most common. HEV was the most important cause of acute hepatic failure followed by co-infection with HAV and HEV. An indication towards epidemiological shift of HAV infection from children to adults with a rise in HAV prevalence was seen. To the best of our knowledge, this is the first report indicating epidemiological shift of HAV in Uttar Pradesh.

  17. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family

    PubMed Central

    Bigot, Diane; Atyame, Célestine M; Weill, Mylène; Justy, Fabienne

    2018-01-01

    Abstract In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family. PMID:29340209

  18. Animal Models of Zika Virus.

    PubMed

    Bradley, Michael P; Nagamine, Claude M

    2017-06-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  19. Animal Models of Zika Virus

    PubMed Central

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  20. Research on computer virus database management system

    NASA Astrophysics Data System (ADS)

    Qi, Guoquan

    2011-12-01

    The growing proliferation of computer viruses becomes the lethal threat and research focus of the security of network information. While new virus is emerging, the number of viruses is growing, virus classification increasing complex. Virus naming because of agencies' capture time differences can not be unified. Although each agency has its own virus database, the communication between each other lacks, or virus information is incomplete, or a small number of sample information. This paper introduces the current construction status of the virus database at home and abroad, analyzes how to standardize and complete description of virus characteristics, and then gives the information integrity, storage security and manageable computer virus database design scheme.

  1. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses

    PubMed Central

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-01-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. PMID:25727355

  2. Assessment of the efficacy of membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages and a plant virus as surrogates for those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Murai, K

    2017-05-15

    Here, we evaluated the efficacy of direct microfiltration (MF) and ultrafiltration (UF) to remove three representative human enteric viruses (i.e., adenovirus [AdV] type 40, coxsackievirus [CV] B5, and hepatitis A virus [HAV] IB), and one surrogate of human caliciviruses (i.e., murine norovirus [MNV] type 1). Eight different MF membranes and three different UF membranes were used. We also examined the ability of coagulation pretreatment with high-basicity polyaluminum chloride (PACl) to enhance virus removal by MF. The removal ratios of two bacteriophages (MS2 and φX174) and a plant virus (pepper mild mottle virus; PMMoV) were compared with the removal ratios of the human enteric viruses to assess the suitability of these viruses to be used as surrogates for human enteric viruses. The virus removal ratios obtained with direct MF with membranes with nominal pore sizes of 0.1-0.22 μm differed, depending on the membrane used; adsorptive interactions, particularly hydrophobic interactions between virus particles and the membrane surface, were dominant factors for virus removal. In contrast, direct UF with membranes with nominal molecular weight cutoffs of 1-100 kDa effectively removed viruses through size exclusion, and >4-log 10 removal was achieved when a membrane with a nominal molecular weight cutoff of 1 kDa was used. At pH 7 and 8, in-line coagulation-MF with nonsulfated high-basicity PACls containing Al 30 species had generally a better virus removal (i.e., >4-log 10 virus removal) than the other aluminum-based coagulants, except for φX174. For all of the filtration processes, the removal ratios of AdV, CV, HAV, and MNV were comparable and strongly correlated with each other. The removal ratios of MS2 and PMMoV were comparable or smaller than those of the three human enteric viruses and MNV, and were strongly correlated with those of the three human enteric viruses and MNV. The removal ratios obtained with coagulation-MF for φX174 were markedly smaller

  3. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis.

    PubMed

    Sheng, Zi-Yang; Gao, Na; Wang, Zhao-Yang; Cui, Xiao-Yun; Zhou, De-Shan; Fan, Dong-Ying; Chen, Hui; Wang, Pei-Gang; An, Jing

    2017-01-01

    Flaviviruses including Dengue virus (DENV), Yellow fever virus (YFV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) are global health problems that caused several serious diseases such as fever, hemorrhagic fever, and encephalitis in the past century. Recently, Zika virus (ZIKV) which spreads from Asia to American and causes millions of infections emerges as a new dangerous member of the genus of Flavivirus . Unlike other well-known flaviviruses, ZIKV can be transmitted sexually and infect testes in murine models. Its impacts on sperm functions, and the exact susceptible cells, however, are not entirely clear. To investigate these issues, we infected interferon α/β and γ receptors deficient AG6 mice with ZIKV and examined the outcomes of infection using an assortment of physiological, histopathological, immunological, and virological techniques. We found that infected mice displayed signs of reproductive system disorder, altered androgen levels in serum, and high viral load in semen and testes. Additionally, histopathological examinations revealed marked atrophy of seminiferous tubules and significant reduction in lumen size. Notably, these were accompanied by positive staining of ZIKV antigens on sertoli cells, detection of viral particles and vacuole changes within cytoplasm of sertoli cells. The susceptibility of sertoli cells to ZIKV was further validated in vitro study using cell lines. Importantly, the disruption of tight junctions within testis and altered sperm morphology were also observed in ZIKV infected mice. It is well-known that tight junctions formed by adjacent sertoli cells are major component of blood testis barrier, which plays important roles in maintenance of microenvironment for spermagenesis in testis. Taken together, these results demonstrate that sertoli cells are susceptible to ZIKV infection, which results in the disruption of tight junctions in testis and causes abnormal spermatogenesis in mice. These results also imply

  4. Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro

    PubMed Central

    van de Water, Sandra G. P.; Potgieter, Christiaan A.; van Rijn, Piet A.

    2016-01-01

    ABSTRACT The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro. In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro. Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has

  5. New perspectives on virus detection in shellfish: hemocytes as a source of concentrated virus

    USDA-ARS?s Scientific Manuscript database

    USDA ARS research indicates that circulating phagocytic cells (hemocytes) within oysters retain virus particles. We find that persistence of hepatitis A virus (HAV) within oyster hemocytes correlates with the presence of virus within whole oysters. Since bivalve shellfish have no self-nonself immun...

  6. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike

    2009-01-20

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface,more » the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.« less

  7. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface

    PubMed Central

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A.

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against

  8. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface.

    PubMed

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against

  9. Survey of six rose viruses in a rose virus collection

    USDA-ARS?s Scientific Manuscript database

    More than 25 viruses have been reported to infect roses. As part of the routine diagnostic testing at Foundation Plant Services, roses are tested for viruses by biological, serological, and molecular assays. Over the past 18 years, we identified approximately 600 roses that were worth maintaining as...

  10. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  11. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand.

    PubMed

    Blouin, Arnaud G; Chooi, Kar Mun; Warren, Ben; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-05-01

    A novel virus, with characteristics of viruses classified within the genus Vitivirus, was identified from a sample of Vitis vinifera cv. Chardonnay in New Zealand. The virus was detected with high throughput sequencing (small RNA and total RNA) and its sequence was confirmed by Sanger sequencing. Its genome is 7507 nt long (excluding the polyA tail) with an organisation similar to that described for other classifiable members of the genus Vitivirus. The closest relative of the virus is grapevine virus E (GVE) with 65% aa identity in ORF1 (65% nt identity) and 63% aa identity in the coat protein (66% nt identity). The relationship with GVE was confirmed with phylogenetic analysis, showing the new virus branching with GVE, Agave tequilina leaf virus and grapevine virus G (GVG). A limited survey revealed the presence of this virus in multiple plants from the same location where the newly described GVG was discovered, and in most cases both viruses were detected as co-infections. The genetic characteristics of this virus suggest it represents an isolate of a new species within the genus Vitivirus and following the current nomenclature, we propose the name "Grapevine virus I".

  12. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  13. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.

    PubMed

    Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C

    2014-11-01

    Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses

  14. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  15. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    NASA Astrophysics Data System (ADS)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  16. Interventions against West Nile virus, Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus: where are we?

    PubMed

    Kortekaas, Jeroen; Ergönül, Onder; Moormann, Rob J M

    2010-10-01

    ARBO-ZOONET is an international network financed by the European Commission's seventh framework program. The major goal of this initiative is capacity building for the control of emerging viral vector-borne zoonotic diseases, with a clear focus on West Nile virus, Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus. To evaluate the status quo of control measures against these viruses, an ARBO-ZOONET meeting was held in Istanbul, Turkey, from 19 to 20 November 2009. The symposium consisted of three themes: (1) vaccines: new and existing ones; (2) antivirals: existing and new developments; and (3) antivector vaccines. In addition, a satellite workshop was held on epidemiology and diagnosis. The meeting brought together foremost international experts on the subjects from both within and without the ARBO-ZOONET consortium. This report highlights selected results from these presentations and major conclusions that emanated from the discussions held.

  17. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  18. [Stimulation of mouse encephalomyocarditis virus reproduction by non-multiplying poliomyelitis virus in several transplantable tissue culture lines].

    PubMed

    Maslova, S V; Shirman, G A; Gavrilovskaia, I N

    1977-01-01

    Reproduction of mouse encephalomyocarditis virus (EMC) was studied in 5 continuous primate cell lines: HeLa, Fl, Detroit-6, P/7, and MIO inoculated with guanidine-dependent variant of poliomyelitis virus in the absence of guanidine. Poliomyelitis virus stimulated EMC virus reproduction in all cell lines under study. This stimulation effect was studied at length in HeLa and MIO cells. In HeLa cells, stimulation was observed at a low and moderate multiplicity of infection of EMC virus but not at a high (100 PEU/cell) multiplicity. Also, when EMC virus reproduction was stimulated, a shortening of the latent period of its multiplication cycle, an increase in the number of antigen-containing cells and the number of infectious centers were observed. In MIO cells, stimulation was found to occur both with low and high doses of EMC virus but not to be accompanied by a shortening in the latent period of EMC reproduction cycle, or any increase in the antigen-containing cells or number of infectious centers. In both cell types upon mixed infection the synthesis of virus-specific RNA's of EMC virus was enhanced. It is suggested that the stimulating effect of poliomyelitis virus is realized in HeLa and MIO cells at different stages of EMC virus reproduction.

  19. Tomato ringspot virus and Tobacco ringspot virus in Highbush Blueberry in New York State

    USDA-ARS?s Scientific Manuscript database

    A survey of highbush blueberry (Vaccinium corymbosum L.) cultivars Patriot and Bluecrop showing virus-like symptoms and decline in vigor in New York was conducted to assess the occurrence of viruses. Leaf samples from symptomatic and asymptomatic bushes reacted positively to Tobacco ringspot virus ...

  20. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments.

    PubMed

    Rachel, R; Bettstetter, M; Hedlund, B P; Häring, M; Kessler, A; Stetter, K O; Prangishvili, D

    2002-12-01

    Electron microscopic studies of the viruses in two hot springs (85 degrees C, pH 1.5-2.0, and 75-93 degrees C, pH 6.5) in Yellowstone National Park revealed particles with twelve different morphotypes. This diversity encompassed known viruses of hyperthermophilic archaea, filamentous Lipothrixviridae, rod-shaped Rudiviridae, and spindle-shaped Fuselloviridae, and novel morphotypes previously not observed in nature. Two virus types resembled head-and-tail bacteriophages from the families Siphoviridae and Podoviridae, and constituted the first observation of these viruses in a hydrothermal environment. Viral hosts in the acidic spring were members of the hyperthermophilic archaeal genus Acidianus.

  1. Lipids and RNA virus replication.

    PubMed

    Konan, Kouacou V; Sanchez-Felipe, Lorena

    2014-12-01

    Most viruses rely heavily on their host machinery to successfully replicate their genome and produce new virus particles. Recently, the interaction of positive-strand RNA viruses with the lipid biosynthetic and transport machinery has been the subject of intense investigation. In this review, we will discuss the contribution of various host lipids and related proteins in RNA virus replication and maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors.

    PubMed

    Anantpadma, Manu; Kouznetsova, Jennifer; Wang, Hang; Huang, Ruili; Kolokoltsov, Andrey; Guha, Rajarshi; Lindstrom, Aaron R; Shtanko, Olena; Simeonov, Anton; Maloney, David J; Maury, Wendy; LaCount, Douglas J; Jadhav, Ajit; Davey, Robert A

    2016-08-01

    Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Method for detecting viruses in aerosols.

    PubMed Central

    Wallis, C; Melnick, J L; Rao, V C; Sox, T E

    1985-01-01

    A simple method with poliovirus as the model was developed for recovering human enteric viruses from aerosols. Filterite filters (pore size, 0.45 micron; Filterite Corp., Timonium, Md.) moistened with glycine buffer (pH 3.5) were used for adsorbing the aerosolized virus. No virus passed the filter, even with air flow rates of 100 liters/min. Virus recovery from the filter was achieved by rapid elution with 800 ml of glycine buffer, pH 10. The virus in the primary eluate was reconcentrated by adjusting the pH to 3.5, adding AlCl3 to 0.0005 M, collecting the virus on a 0.25-micron-pore Filerite disk (diameter, 25 mm) and and eluting with 6 ml of buffer, pH 10. With this method, virus could be detected regularly in aerosols produced by flushing when 3 X 10(8) PFU of poliovirus were present in the toilet bowl. Poliovirus-containing fecal material from two of four infants who had recently received oral polio vaccine also yielded virus in the aerosols when feces containing 2.4 X 10(7) to 4.5 X 10(7) PFU of virus had been added to the toilet bowl. Persons infected with a variety of natural enteric viruses are known to excrete this amount of virus in their daily stools. Images PMID:3004329

  4. Autophagic machinery activated by dengue virus enhances virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.-R.; Lei, H.-Y.; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that ismore » favorable for viral replication.« less

  5. Western flower thrips can transmit Tomato spotted wilt virus from virus-infected tomato fruits

    USDA-ARS?s Scientific Manuscript database

    Acquisition and transmission of Tomato spotted wilt virus from symptomatic tomato fruits by western flower thrips was demonstrated for the first time. This suggests that infected tomato fruits may be a source of virus and also provide an additional means of virus movement between geographic areas....

  6. Potential for North American Mosquitoes to Transmit Rift Valley Fever Virus

    DTIC Science & Technology

    2008-01-01

    ELEMENT NUMBER 6. AUTHOR( S ) Turell MJ Dohm DJ Mores CN Terracina L Wallette DL Jr Hribar LJ Pecor JE Blow JA 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) United States Army Medical Research Institute of Infectious Diseases, Fort...Detrick, MD 8. PERFORMING ORGANIZATION REPORT NUMBER TR-08-044 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S

  7. Emerging intracellular receptors for hemorrhagic fever viruses.

    PubMed

    Jae, Lucas T; Brummelkamp, Thijn R

    2015-07-01

    Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease.

    PubMed

    Prescott, Joseph; DeBuysscher, Blair L; Feldmann, Friederike; Gardner, Donald J; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz

    2015-06-04

    Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. Published by Elsevier Ltd.

  9. Single-dose Live-attenuated Vesicular Stomatitis Virus-based Vaccine Protects African Green Monkeys from Nipah Virus Disease

    PubMed Central

    Prescott, Joseph; DeBuysscher, Blair L.; Feldmann, Friederike; Gardner, Donald J.; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz

    2015-01-01

    Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. PMID:25865472

  10. Recombinant Marburg Virus Expressing EGFP Allows Rapid Screening of Virus Growth and Real-time Visualization of Virus Spread

    PubMed Central

    Schmidt, Kristina Maria; Schümann, Michael; Olejnik, Judith; Krähling, Verena

    2011-01-01

    The generation of recombinant enhanced green fluorescent protein (EGFP)--expressing viruses has significantly improved the study of their life cycle and opened up the possibility for the rapid screening of antiviral drugs. Here we report rescue of a recombinant Marburg virus (MARV) expressing EGFP from an additional transcription unit (ATU). The ATU was inserted between the second and third genes, encoding VP35 and VP40, respectively. Live-cell imaging was used to follow virus spread in real time. EGFP expression was detected at 32 hours postinfection (hpi), and infection of neighboring cells was monitored at 55 hpi. Compared to the parental virus, production of progeny rMARV-EGFP was reduced 4-fold and lower protein levels of VP40, but not nucleoprotein, were observed, indicating a decrease in downstream protein expression due to the insertion of an ATU. Interestingly, EGFP concentrated in viral inclusions in infected cells. This was reproduced by transient expression of both EGFP and other fluorescent proteins along with filovirus nucleocapsid proteins, and may suggest that a general increase in protein synthesis occurs at viral inclusion sites. In conclusion, the EGFP-expressing MARV will be a useful tool not only to monitor virus spread and screen for antiviral compounds, but also to investigate the biology of inclusion body formation. PMID:21987762

  11. Control of cucurbit viruses.

    PubMed

    Lecoq, Hervé; Katis, Nikolaos

    2014-01-01

    More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems.

  12. Autophagy in Measles Virus Infection.

    PubMed

    Rozières, Aurore; Viret, Christophe; Faure, Mathias

    2017-11-24

    Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  13. Human viruses: discovery and emergence

    PubMed Central

    Woolhouse, Mark; Scott, Fiona; Hudson, Zoe; Howey, Richard; Chase-Topping, Margo

    2012-01-01

    There are 219 virus species that are known to be able to infect humans. The first of these to be discovered was yellow fever virus in 1901, and three to four new species are still being found every year. Extrapolation of the discovery curve suggests that there is still a substantial pool of undiscovered human virus species, although an apparent slow-down in the rate of discovery of species from different families may indicate bounds to the potential range of diversity. More than two-thirds of human viruses can also infect non-human hosts, mainly mammals, and sometimes birds. Many specialist human viruses also have mammalian or avian origins. Indeed, a substantial proportion of mammalian viruses may be capable of crossing the species barrier into humans, although only around half of these are capable of being transmitted by humans and around half again of transmitting well enough to cause major outbreaks. A few possible predictors of species jumps can be identified, including the use of phylogenetically conserved cell receptors. It seems almost inevitable that new human viruses will continue to emerge, mainly from other mammals and birds, for the foreseeable future. For this reason, an effective global surveillance system for novel viruses is needed. PMID:22966141

  14. Venezuelan encephalitis virus infection in neotropical bats. III. Experimental studies on virus excretion and non-arthropod transmission.

    PubMed

    Seymour, C; Dickerman, R W

    1978-03-01

    A total of 80 Neotropical bats of five species was inoculated with one of four strains of Venezuelan encephalitis (VE) virus. Virus was detected in the oropharynges of 56% of bats, and most regularly in Artibeus jamaicensis (75%). Titers of virus in oropharyngeal secretions were occasionally very high (8.5 log10 SMicLD50/ml in one A. jamaicensis). Only 2 of 123 urine samples from 50 bats and 2 of 86 fecal samples from 46 bats yielded VE virus. No contact or aerosol virus transmission from bat to bat was detected. VE virus passed transplacentally from two infected mothers to their fetuses, which were aborted. Virus did not pass from one infected mother to her nursing young.

  15. [Immune system and influenza virus].

    PubMed

    Wierzbicka-Woś, Anna; Tokarz-Deptuła, Beata; Deptuła, Wiesław

    2015-02-15

    Influenza viruses are a significant cause of respiratory infections, causing 3-5 million clinical infections and 250-500 thousand deaths per year. Infections caused by the influenza virus induce a host immune response at the non-specific and specific level (defined as natural and acquired), which leads to limitation of virus replication. Moreover the elements of immunological memory are induced so that they can protect against subsequent infection by the influenza virus. However, there is still no effective way for the total elimination of this virus, and the only effective method to combat this pathogen appears to be vaccination, which through immune system activation greatly limits its spread. The present paper presents the immune reaction at different levels in response to the influenza virus after entering the body and the mechanisms of the influenza virus for avoiding reactions of the immune system, which correspond to its high variability at the molecular level. Moreover, in this paper we describe various methods of stimulating the organism's immune systems with different generations of vaccines and their effectiveness in the fight against this pathogen.

  16. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  17. A Literature Review of Zika Virus.

    PubMed

    Plourde, Anna R; Bloch, Evan M

    2016-07-01

    Zika virus is a mosquitoborne flavivirus that is the focus of an ongoing pandemic and public health emergency. Previously limited to sporadic cases in Africa and Asia, the emergence of Zika virus in Brazil in 2015 heralded rapid spread throughout the Americas. Although most Zika virus infections are characterized by subclinical or mild influenza-like illness, severe manifestations have been described, including Guillain-Barre syndrome in adults and microcephaly in babies born to infected mothers. Neither an effective treatment nor a vaccine is available for Zika virus; therefore, the public health response primarily focuses on preventing infection, particularly in pregnant women. Despite growing knowledge about this virus, questions remain regarding the virus's vectors and reservoirs, pathogenesis, genetic diversity, and potential synergistic effects of co-infection with other circulating viruses. These questions highlight the need for research to optimize surveillance, patient management, and public health intervention in the current Zika virus epidemic.

  18. Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice.

    PubMed

    Yang, Huiqiang; Yang, Huan; Li, Zhushi; Liu, Lina; Wang, Wei; He, Ting; Fan, Fengming; Sun, Yan; Liu, Jie; Li, Yuhua; Zeng, Xianwu

    2018-04-25

    Yellow fever (YF) is an acute viral haemorrhagic disease caused by the yellow fever virus (YFV), which remains a potential threat to public health. The live-attenuated YF vaccine (17D strain) is a safe and highly effective measure against YF. However, increasing adverse events have been associated with YF vaccinations in recent years; thus, safer, alternative vaccines are needed. In this study, using the Japanese encephalitis live vaccine strain SA14-14-2 as a backbone, a novel chimeric virus was constructed by replacing the pre-membrane (prM) and envelope (E) genes with their YFV 17D counterparts.The chimeric virus exhibited a reduced growth rate and a much smaller plaque morphology than did either parental virus. Furthermore, the chimera was much less neurovirulent than was YF17D and protected mice that were challenged with a lethal dose of the YF virus. These results suggest that this chimera has potential as a novel attenuated YF vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection

    PubMed Central

    Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.

    2011-01-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742

  20. Tobacco ringspot virus

    USDA-ARS?s Scientific Manuscript database

    Tobacco ringspot virus (TRSV), and its vector, the dagger nematodes (Xiphinema americanum and related species) are widely distributed throughout the world. Cucumber, melon, and watermelon are particularly affected by TRSV. Symptoms can vary with plant age, the strain of the virus, and environment...