Sample records for jejunal gut loops

  1. Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops

    PubMed Central

    Meurens, François; Berri, Mustapha; Auray, Gael; Melo, Sandrine; Levast, Benoît; Virlogeux-Payant, Isabelle; Chevaleyre, Claire; Gerdts, Volker; Salmon, Henri

    2009-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3×108 cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer’s patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer’s patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections. PMID:18922229

  2. [Study of the antireflux action of the Roux-en-Y jejunal loop in reconstruction after gastrectomy and nutritional status in the follow-up].

    PubMed

    Rea, Teresa; Bartolacci, Mauro; Leombruni, Edoardo; Brizzi, Felice; Picardi, Nicola

    2005-01-01

    The Roux-en-Y recostruction after total or subtotal gastrectomy for gastric cancer is frequently performed to prevent esophageal alkaline reflux. Also after total gastrectomy and end-to-side gastrojejunal anastomosis, as usual in former experience, the alkaline reflux can be efficaciously treated by conversion in an esophago-jejunal Roux-en-Y procedure. The main factor preventing reflux is the length of jejunal loop, at least of 35-40 cm. The recostruction with a Roux-en-Y jejunal loop offers the advantage to meet together two primary requirements: the restoration of digestive travel from esophagus to intestine, and the prevention of on alcaline reflux esophagitis, both with relevant simplicity and without a time-consuming surgical technique. Also as a consequence the postoperative morbidity is decreased. The obvious suitable requirement is a sufficient lenght of the jejunal loop for a reservoir of the ingested food and to oppose the antiperistaltic jejunal movements thanks to the effects of the new activated jejunal pace-maker.

  3. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut.

    PubMed

    Nerurkar, Nandan L; Mahadevan, L; Tabin, Clifford J

    2017-02-28

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth-driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution.

  4. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut

    PubMed Central

    Nerurkar, Nandan L.; Mahadevan, L.; Tabin, Clifford J.

    2017-01-01

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth–driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution. PMID:28193855

  5. Jejunal long noncoding RNAs are associated with glycemic control via gut-brain axis after bariatric surgery in diabetic mice.

    PubMed

    Liang, Yongjun; Yu, Bo; Wang, Yueqian; Qiao, Zhengdong; Cao, Ting; Zhang, Peng

    2018-06-01

    simultaneously target the Adcy8 mRNA both in cis and in trans and participate in neuromodulation and hormonal regulation. Alterations of jejunal Roux limb lncRNA and mRNA expression profiles trigger both neuromodulation and endocrine-related pathways, which play a critical role in type 2 diabetes remission after metabolic and bariatric surgery via the gut-brain axis. NONMMTU023781 and Adcy8 were identified as potential targets, which warrant further research. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  6. Symbolic dynamics of jejunal motility in the irritable bowel

    NASA Astrophysics Data System (ADS)

    Wackerbauer, Renate; Schmidt, Thomas

    1999-09-01

    Different studies of the irritable bowel syndrome (IBS) by conventional analysis of jejunal motility report conflicting results. Therefore, our aim is to quantify the jejunal contraction activity by symbolic dynamics in order to discriminate between IBS and control subjects. Contraction amplitudes during fasting motility (phase II) are analyzed for 30 IBS and 30 healthy subjects. On the basis of a particular scale-independent discretization of the contraction amplitudes with respect to the median, IBS patients are characterized by increased block entropy as well as increased mean contraction amplitude. In a further more elementary level of analysis these differences can be reduced to specific contraction patterns within the time series, namely the fact that successive large contraction amplitudes are less ordered in IBS than in controls. These significant differences in jejunal motility may point to an altered control of the gut in IBS, although further studies on a representative number of patients have to be done for a validation of these findings.

  7. Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues.

    PubMed

    Maroilley, T; Berri, M; Lemonnier, G; Esquerré, D; Chevaleyre, C; Mélo, S; Meurens, F; Coville, J L; Leplat, J J; Rau, A; Bed'hom, B; Vincent-Naulleau, S; Mercat, M J; Billon, Y; Lepage, P; Rogel-Gaillard, C; Estellé, J

    2018-06-13

    The epithelium of the intestinal mucosa and the gut-associated lymphoid tissues (GALT) constitute an essential physical and immunological barrier against pathogens. In order to study the specificities of the GALT transcriptome in pigs, we compared the transcriptome profiles of jejunal and ileal Peyer's patches (PPs), mesenteric lymph nodes (MLNs) and peripheral blood (PB) of four male piglets by RNA-Seq. We identified 1,103 differentially expressed (DE) genes between ileal PPs (IPPs) and jejunal PPs (JPPs), and six times more DE genes between PPs and MLNs. The master regulator genes FOXP3, GATA3, STAT4, TBX21 and RORC were less expressed in IPPs compared to JPPs, whereas the transcription factor BCL6 was found more expressed in IPPs. In comparison between IPPs and JPPs, our analyses revealed predominant differential expression related to the differentiation of T cells into Th1, Th2, Th17 and iTreg in JPPs. Our results were consistent with previous reports regarding a higher T/B cells ratio in JPPs compared to IPPs. We found antisense transcription for respectively 24%, 22% and 14% of the transcripts detected in MLNs, PPs and PB, and significant positive correlations between PB and GALT transcriptomes. Allele-specific expression analyses revealed both shared and tissue-specific cis-genetic control of gene expression.

  8. Meal-stimulated release of methionine-enkephalin into the canine jejunal lumen.

    PubMed Central

    Money, S R; Petroianu, A; Gintzler, A R; Jaffe, B M

    1988-01-01

    Application of enkephalins to the luminal surface of the bowel augments intestinal absorption. However, to date, endogenous enkephalins have not been demonstrated within intestinal luminal fluid. To determine whether enkephalins are present in the intestinal lumen, five adult dogs had 25-cm chronic jejunal Thiry-Vella loops constructed. Dogs were studied in the awake, fasted state. Jejunal loops were perfused with isoosmotic, neutral Krebs buffer containing protease inhibitors. After basal sampling, the dogs received a high fat meat meal. Collections were made during the meal and for 60 min postprandially. Luminal met-enkephalin levels were determined by radioimmunoassay and confirmed by HPLC. HPLC separation of luminal samples demonstrated two immunoreactive peaks which co-eluted with pure met-enkephalin and met-enkephalin-sulfoxide. Basal met-enkephalin outputs averaged 52 +/- 13 ng/min. The meal significantly increased mean luminal met-enkephalin output to 137 +/- 71 ng/min. During the initial 20-min postprandial period, output remained elevated (180 +/- 73 ng/min), after which it returned to basal levels. We conclude that met-enkephalin is present in the jejunal lumen, and that luminal release of this opioid is augmented by a meal. Images PMID:3343342

  9. Effects of sleeve gastrectomy with jejuno-jejunal or jejuno-ileal loop on glycolipid metabolism in diabetic rats

    PubMed Central

    Zhong, Ming-Wei; Liu, Shao-Zhuang; Zhang, Guang-Yong; Zhang, Xiang; Hu, San-Yuan

    2016-01-01

    AIM To explore the effect of sleeve gastrectomy (SG) with jejuno-jejunal or jejuno-ileal loop on glycolipid metabolism in diabetic rats. METHODS Diabetic rats, which were induced by high-fat diet (HFD), nicotinamide and low-dose streptozotocin, underwent sham operations, SG, SG with jejuno-ileal loop (SG-JI) and SG with jejuno-jejunal loop (SG-JJ) followed by postoperative HFD. Then, at the time points of baseline and 2, 12 and 24 wk postoperatively, we determined and compared several variables, including the area under the curve for the results of oral glucose tolerance test (AUCOGTT), serum levels of triglyceride, cholesterol and ghrelin in fasting state, homeostasis model assessment of insulin resistance (HOMA-IR), body weight, calorie intake, glucagon-like peptide (GLP)-1 and insulin secretions after glucose gavage at dose of 1 g/kg. RESULTS At 2 wk postoperatively, rats that underwent SG, SG-JJ and SG-JI, compared with sham-operated (SHAM) rats, demonstrated lower body weight, calorie intake and ghrelin (P < 0.05 vs SHAM), enhanced secretion of insulin and GLP-1 after glucose gavage (P < 0.05 vs SHAM), improved AUCOGTT, HOMA-IR, fasting serum triglyceride and cholesterol (AUCOGTT: 1616.9 ± 83.2, 837.4 ± 83.7, 874.9 ± 97.2 and 812.6 ± 81.9, P < 0.05 vs SHAM; HOMA-IR: 4.31 ± 0.54, 2.94 ± 0.22, 3.17 ± 0.37 and 3.41 ± 0.22, P < 0.05 vs SHAM; Triglyceride: 2.35 ± 0.17, 1.87 ± 0.23, 1.98 ± 0.30 and 2.04 ± 0.21 mmol/L, P < 0.05 vs SHAM; Cholesterol: 1.84 ± 0.21, 1.53 ± 0.20, 1.52 ± 0.20 and 1.46 ± 0.23 mmol/L). At 12 wk postoperatively, rats receiving SG-JJ and SG-JI had lower body weight, reduced levels of triglyceride and cholesterol and elevated level of GLP-1 compared to those receiving SG (P < 0.05 vs SG). At 24 wk after surgery, compared with SG, the advantage of SG-JJ and SG-JI for glucolipid metabolism was still evident (P < 0.05 vs SG). SG-JI had a better performance in lipid metabolism and GLP-1 secretion of rats than did SG-JJ. CONCLUSION

  10. Primarily Proximal Jejunal Stone Causing Enterolith Ileus in a Patient without Evidence of Cholecystoenteric Fistula or Jejunal Diverticulosis.

    PubMed

    Abtar, Houssam Khodor; Mneimneh, Mostapha; Hammoud, Mazen M; Zaaroura, Ahmed; Papas, Yasmina S

    2016-01-01

    Stone formation within the intestinal lumen is called enterolith. This stone can encroach into the lumen causing obstruction and surgical emergency. Jejunal obstruction by an enterolith is a very rare entity and often missed preoperatively. To our knowledge, most cases of jejunal obstruction, secondary to stone, were associated with biliary disease (cholecystoenteric fistula), bezoar, jejunal diverticulosis, or foreign body. Hereby we present a rare case report of small bowel obstruction in an elderly man who was diagnosed lately to have primary proximal jejunal obstruction by an enterolith without evidence of a cholecystoenteric fistula or jejunal diverticulosis. This patient underwent laparotomy, enterotomy with stone extraction, and subsequent primary repair of the bowel.

  11. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    PubMed

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  12. Food allergy alters jejunal circular muscle contractility and induces local inflammatory cytokine expression in a mouse model

    PubMed Central

    2009-01-01

    Background We hypothesized that food allergy causes a state of non-specific jejunal dysmotility. This was tested in a mouse model. Methods Balb/c mice were epicutaneously sensitized with ovalbumin and challenged with 10 intragastric ovalbumin administrations every second day. Smooth muscle contractility of isolated circular jejunal sections was studied in organ bath with increasing concentrations of carbamylcholine chloride (carbachol). Smooth muscle layer thickness and mast cell protease-1 (MMCP-1) positive cell density were assayed histologically. Serum MMCP-1 and immunoglobulins were quantified by ELISA, and mRNA expressions of IFN-γ, IL-4, IL-6 and TGFβ-1 from jejunal and ileal tissue segments were analyzed with quantitative real-time PCR. Results Ovalbumin-specific serum IgE correlated with jejunal MMCP-1+ cell density. In the allergic mice, higher concentrations of carbachol were required to reach submaximal muscular stimulation, particularly in preparations derived from mice with diarrhoea. Decreased sensitivity to carbachol was associated with increased expression of IL-4 and IL-6 mRNA in jejunum. Smooth muscle layer thickness, as well as mRNA of IFN-γ and TGF-β1 remained unchanged. Conclusion In this mouse model of food allergy, we demonstrated a decreased response to a muscarinic agonist, and increased levels of proinflammatory IL-6 and Th2-related IL-4, but not Th1-related IFN-γ mRNAs in jejunum. IgE levels in serum correlated with the number of jejunal MMCP-1+ cells, and predicted diarrhoea. Overall, these changes may reflect a protective mechanism of the gut in food allergy. PMID:19450258

  13. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.

    PubMed

    Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A

    2008-11-01

    Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.

  14. Positive Regulatory Control Loop between Gut Leptin and Intestinal GLUT2/GLUT5 Transporters Links to Hepatic Metabolic Functions in Rodents

    PubMed Central

    Sakar, Yassine; Nazaret, Corinne; Lettéron, Philippe; Ait Omar, Amal; Avenati, Mathilde; Viollet, Benoît; Ducroc, Robert; Bado, André

    2009-01-01

    Background and Aims The small intestine is the major site of absorption of dietary sugars. The rate at which they enter and exit the intestine has a major effect on blood glucose homeostasis. In this study, we determine the effects of luminal leptin on activity/expression of GLUT2 and GLUT5 transporters in response to sugars intake and analyse their physiological consequences. Methodology Wistar rats, wild type and AMPKα2 −/− mice were used. In vitro and in vivo isolated jejunal loops were used to quantify transport of fructose and galactose in the absence and the presence of leptin. The effects of fructose and galactose on gastric leptin release were determined. The effects of leptin given orally without or with fructose were determined on the expression of GLUT2/5, on some gluconeogenesis and lipogenic enzymes in the intestine and the liver. Principal Findings First, in vitro luminal leptin activating its receptors coupled to PKCβII and AMPKα, increased insertion of GLUT2/5 into the brush-border membrane leading to enhanced galactose and fructose transport. Second in vivo, oral fructose but not galactose induced in mice a rapid and potent release of gastric leptin in gastric juice without significant changes in plasma leptin levels. Moreover, leptin given orally at a dose reproducing comparable levels to those induced by fructose, stimulated GLUT5-fructose transport, and potentiated fructose-induced: i) increase in blood glucose and mRNA levels of key gluconeogenesis enzymes; ii) increase in blood triglycerides and reduction of mRNA levels of intestinal and hepatic Fasting-induced adipocyte factor (Fiaf) and iii) increase in SREBP-1c, ACC-1, FAS mRNA levels and dephosphorylation/activation of ACC-1 in liver. Conclusion/Significance These data identify for the first time a positive regulatory control loop between gut leptin and fructose in which fructose triggers release of gastric leptin which, in turn, up-regulates GLUT5 and concurrently modulates

  15. Thromboxane synthesis inhibitors and postprandial jejunal capillary exchange capacity.

    PubMed

    Mangino, M J; Chou, C C

    1988-05-01

    The effects of thromboxane synthesis inhibitors (imidazole and U 63557A; Upjohn) and the cyclooxygenase inhibitor, mefenamic acid, on jejunal capillary filtration coefficients (Kfc) were determined in dogs before and during the presence of predigested food in the jejunal lumen. The jejunal Kfc increased significantly soon after the placement of a predigested test food containing all major constituents of diet. The Kfc remained elevated as long as the food was present in the lumen (15 min). Mefenamic acid (10 mg/kg iv) did not significantly alter resting jejunal Kfc or alter the food-induced increase in Kfc. Imidazole (5.0 mg/min ia) or U 63557A (5.0 mg/kg iv) per se significantly increased jejunal Kfc. Placement of digested food further increased the Kfc to levels significantly higher than those observed before administration of the two thromboxane synthase inhibitors. Production of thromboxane B2 by jejunal tissue was significantly reduced and 6-ketoprostaglandin F1 alpha (the stable hydrolysis product of prostacyclin) production was significantly increased after administration of U 63557A. Our study indicates that the relative production of endogenous thromboxanes and other prostanoids modulates jejunal capillary exchange capacity in the absence or presence of digested food in the jejunal lumen.

  16. Stimulation of proteinase-activated receptor 2 excites jejunal afferent nerves in anaesthetised rats

    PubMed Central

    Kirkup, Anthony J; Jiang, Wen; Bunnett, Nigel W; Grundy, David

    2003-01-01

    Proteinase-activated receptor 2 (PAR2) is a receptor for mast cell tryptase and trypsins and might participate in brain-gut communication. However, evidence that PAR2 activation can lead to afferent impulse generation is lacking. To address this issue, we examined the sensitivity of jejunal afferent nerves to a hexapeptide agonist of PAR2, SLIGRL-NH2, and the modulation of the resulting response to treatment with drugs and vagotomy. Multiunit recordings of jejunal afferent activity were made using extracellular recording techniques in anaesthetised male rats. SLIGRL-NH2 (0.001–1 mg kg−1, I.V.) increased jejunal afferent firing and intrajejunal pressure. The reverse peptide sequence (1 mg kg−1, I.V.), which does not stimulate PAR2, was inactive. Naproxen (10 mg kg−1, I.V.), but not a cocktail of ω-conotoxins GVIA and SVIB (each at 25 μg kg−1, I.V.), curtailed both the afferent response and the intrajejunal pressure rise elicited by the PAR2 agonist. Although neither treatment modulated the peak magnitude of the afferent firing, they each altered the intestinal motor response, unmasking an initial inhibitory component. Nifedipine (1 mg kg−1, I.V.) reduced the peak magnitude of the afferent nerve discharge and abolished the initial rise in intrajejunal pressure produced by SLIGRL-NH2. Vagotomy did not significantly influence the magnitude of the afferent response to the PAR2 agonist, which involves a contribution from capsaicin-sensitive fibres. In conclusion, intravenous administration of SLIGRL-NH2 evokes complex activation of predominantly spinally projecting extrinsic intestinal afferent nerves, an effect that involves both direct and indirect mechanisms. PMID:14561839

  17. Effect of proinflammatory interleukins on jejunal nutrient transport

    PubMed Central

    Hardin, J; Kroeker, K; Chung, B; Gall, D

    2000-01-01

    AIM—We examined the effect of proinflammatory and anti-inflammatory interleukins on jejunal nutrient transport and expression of the sodium-glucose linked cotransporter (SGLT-1).
METHODS—3-O-methyl glucose and L-proline transport rates were examined in New Zealand White rabbit stripped, short circuited jejunal tissue. The effects of the proinflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8, IL-1α plus the specific IL-1 antagonist, IL-1ra, and the anti-inflammatory cytokine IL-10 were investigated. In separate experiments, passive tissue permeability was assessed and brush border SGLT-1 expression was measured by western blot in tissues exposed to proinflammatory interleukins.
RESULTS—The proinflammatory interleukins IL-6, IL-1α, and IL-8 significantly increased glucose absorption compared with control levels. This increase in glucose absorption was due to an increase in mucosal to serosal flux. IL-1α and IL-8 also significantly increased L-proline absorption due to an increase in absorptive flux. The anti-inflammatory IL-10 had no effect on glucose transport. The receptor antagonist IL-1ra blocked the ability of IL-1α to stimulate glucose transport. IL-8 had no effect on passive tissue permeability. SGLT-1 content did not differ in brush border membrane vesicles (BBMV) from control or interleukin treated tissue.
CONCLUSIONS—These findings suggest that intestinal inflammation and release of inflammatory mediators such as interleukins increase nutrient absorption in the gut. The increase in glucose transport does not appear to be due to changes in BBMV SGLT-1 content.


Keywords: glucose transport; small intestine; intestinal inflammation; inflammation PMID:10896908

  18. Lymphangioma of the jejunal mesentery and jejunal polyps presenting as an acute abdomen in a teenager.

    PubMed

    Jayasundara, Jasb; Perera, E; Chandu de Silva, M V; Pathirana, A A

    2017-03-01

    Cystic lymphangioma of the small bowel mesentery is a rare clinical entity, especially after childhood. Medical literature reveals a limited number of such cases presenting as acute abdomen due to bowel obstruction, small bowel volvulus and bleeding into the tumour. We present the management experience of an 18-year-old woman who presented with rapid onset diffuse peritonism and raised inflammatory markers. Computed tomography showed a mass in the small bowel mesentery with suspicion of segmental bowel ischaemia. Emergency laparotomy revealed a mass in the mid-jejunal mesentery close to the bowel wall with no bowel ischaemia. The patient made an uncomplicated recovery after segmental bowel resection and end-to-end anastomosis. Histology confirmed the mass as a cystic lymphangioma involving the jejunal mesentery and two small jejunal polyps. Lymphangioma could be considered in the differential diagnosis of an acute abdomen in a young adult when the presentation is atypical.

  19. Clostridial disease of the gut.

    PubMed

    Borriello, S P

    1995-06-01

    Clostridia are an important cause of morbidity and mortality in humans and animals. Some of the most common clostridial infections are those of the gut. The primary infections in humans are Clostridium perfringens food poisoning and Clostridium difficile-mediated antibiotic-associated diarrhea and colitis. Less common but important infections include non-food poisoning C. perfringens nosocomial diarrhea and C. perfringens type C necrotizing jejunitis (pig-bel). C. perfringens is also the dominant cause of gastrointestinal infections in animals, although Clostridium septicum causing braxy in sheep, Clostridium colinum causing ulcerative enteritis is avian species, and Clostridium spiroforme causing enterotoxemia in rabbits are important exceptions.

  20. Tracheal reconstruction with autogenous jejunal microsurgical transfer.

    PubMed

    Jones, R E; Morgan, R F; Marcella, K L; Mills, S E; Kron, I L

    1986-06-01

    Tracheal defects due to stricture formation, tracheomalacia, and neoplasms can present difficult reconstructive problems. Tracheal defects were surgically created in 6 dogs and primarily reconstructed with microsurgical free tissue transfer of autogenous jejunal segments. Primary healing was accomplished in all dogs without severe air leakage or infection. Bronchoscopy demonstrated no substantial secretions or tracheal narrowing. Gross pathological examination of the trachea revealed no evidence of tracheal disruption or infection. Direct measurements revealed no major tracheal narrowing. Microscopic examination demonstrated normal jejunal mucosa with a minimal amount of inflammatory change at the margins of the reconstruction at 6 weeks. Microvascular free tissue transfer of jejunal segments to correct cervical tracheal defects can readily be accomplished with excellent healing and maintenance of the tracheal lumen in dogs.

  1. Exogenous transforming growth factor-β1 enhances smooth muscle differentiation in embryonic mouse jejunal explants.

    PubMed

    Coletta, Riccardo; Roberts, Neil A; Randles, Michael J; Morabito, Antonino; Woolf, Adrian S

    2017-01-13

    An ex vivo experimental strategy that replicates in vivo intestinal development would in theory provide an accessible setting with which to study normal and dysmorphic gut biology. The current authors recently described a system in which mouse embryonic jejunal segments were explanted onto semipermeable platforms and fed with chemically defined serum-free media. Over 3 days in organ culture, explants formed villi and they began to undergo spontaneous peristalsis. As defined in the current study, the wall of the explanted gut failed to form a robust longitudinal smooth muscle (SM) layer as it would do in vivo over the same time period. Given the role of transforming growth factor β1 (TGFβ1) in SM differentiation in other organs, it was hypothesized that exogenous TGFβ1 would enhance SM differentiation in these explants. In vivo, TGFβ receptors I and II were both detected in embryonic longitudinal jejunal SM cells and, in organ culture, exogenous TGFβ1 induced robust differentiation of longitudinal SM. Microarray profiling showed that TGFβ1 increased SM specific transcripts in a dose dependent manner. TGFβ1 proteins were detected in amniotic fluid at a time when the intestine was physiologically herniated. By analogy with the requirement for exogenous TGFβ1 for SM differentiation in organ culture, the TGFβ1 protein that was demonstrated to be present in the amniotic fluid may enhance intestinal development when it is physiologically herniated in early gestation. Future studies of embryonic intestinal cultures should include TGFβ1 in the defined media to produce a more faithful model of in vivo muscle differentiation. Copyright © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd. Copyright © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd.

  2. Lactobacillus rhamnosus strain JB-1 reverses restraint stress-induced gut dysmotility.

    PubMed

    West, C; Wu, R Y; Wong, A; Stanisz, A M; Yan, R; Min, K K; Pasyk, M; McVey Neufeld, K-A; Karamat, M I; Foster, J A; Bienenstock, J; Forsythe, P; Kunze, W A

    2017-01-01

    Environmental stress affects the gut with dysmotility being a common consequence. Although a variety of microbes or molecules may prevent the dysmotility, none reverse the dysmotility. We have used a 1 hour restraint stress mouse model to test for treatment effects of the neuroactive microbe, L. rhamnosus JB-1 ™ . Motility of fluid-filled ex vivo gut segments in a perfusion organ bath was recorded by video and migrating motor complexes measured using spatiotemporal maps of diameter changes. Stress reduced jejunal and increased colonic propagating contractile cluster velocities and frequencies, while increasing contraction amplitudes for both. Luminal application of 10E8 cfu/mL JB-1 restored motor complex variables to unstressed levels within minutes of application. L. salivarius or Na.acetate had no treatment effects, while Na.butyrate partially reversed stress effects on colonic frequency and amplitude. Na.propionate reversed the stress effects for jejunum and colon except on jejunal amplitude. Our findings demonstrate, for the first time, a potential for certain beneficial microbes as treatment of stress-induced intestinal dysmotility and that the mechanism for restoration of function occurs within the intestine via a rapid drug-like action on the enteric nervous system. © 2016 John Wiley & Sons Ltd.

  3. Primary Jejunal Adenocarcinoma Presenting as Bilateral Ovarian Metastasis

    PubMed Central

    Ofori, Emmanuel; Ramai, Daryl; Papafragkakis, Charilaos; Changela, Kinesh; Krishnaiah, Mahesh

    2017-01-01

    Small intestinal tumors are rare with adenocarcinoma of the small intestine accounting for less than 2% of all gastrointestinal cancers. Primary jejunal adenocarcinoma constitutes a minute portion of small intestine adenocarcinomas. Clinically, this cancer presents at latter stages of its progression, mainly due to vague and non-specific symptoms, and the difficulty encountered in accessing the jejunum on upper endoscopy. Diagnosis of jejunal adenocarcinoma is usually inconclusive with the use of computed tomography (CT) scan, small bowel series, or upper endoscopy. Laparoscopy followed by frozen section biopsy provides a definitive diagnosis. In the past decade, balloon-assisted enteroscopy (BAE) and capsule endoscopy have become popular as useful modalities for diagnosing small bowel diseases. Wide excisional jejunectomy is the only treatment option with an estimated 5-year survival of 40-65%. Physicians are advised to suspect jejunal adenocarcinoma as a differential diagnosis in patients who present with non-specific symptoms of abdominal pain, nausea, vomiting, weight loss, anemia, gastrointestinal bleeding or signs of small bowel obstruction. We present a rare case of a 37-year-old woman with suspected bilateral ovarian masses, which was immunohistochemically confirmed as primary jejunal adenocarcinoma with bilateral ovarian metastasis. PMID:29317945

  4. Primary Jejunal Adenocarcinoma Presenting as Bilateral Ovarian Metastasis.

    PubMed

    Ofori, Emmanuel; Ramai, Daryl; Papafragkakis, Charilaos; Changela, Kinesh; Krishnaiah, Mahesh

    2017-12-01

    Small intestinal tumors are rare with adenocarcinoma of the small intestine accounting for less than 2% of all gastrointestinal cancers. Primary jejunal adenocarcinoma constitutes a minute portion of small intestine adenocarcinomas. Clinically, this cancer presents at latter stages of its progression, mainly due to vague and non-specific symptoms, and the difficulty encountered in accessing the jejunum on upper endoscopy. Diagnosis of jejunal adenocarcinoma is usually inconclusive with the use of computed tomography (CT) scan, small bowel series, or upper endoscopy. Laparoscopy followed by frozen section biopsy provides a definitive diagnosis. In the past decade, balloon-assisted enteroscopy (BAE) and capsule endoscopy have become popular as useful modalities for diagnosing small bowel diseases. Wide excisional jejunectomy is the only treatment option with an estimated 5-year survival of 40-65%. Physicians are advised to suspect jejunal adenocarcinoma as a differential diagnosis in patients who present with non-specific symptoms of abdominal pain, nausea, vomiting, weight loss, anemia, gastrointestinal bleeding or signs of small bowel obstruction. We present a rare case of a 37-year-old woman with suspected bilateral ovarian masses, which was immunohistochemically confirmed as primary jejunal adenocarcinoma with bilateral ovarian metastasis.

  5. Endoscopic peroral jejunal fecal microbiota transplantation.

    PubMed

    Link, Alexander; Lachmund, Tim; Schulz, Christian; Weigt, Jochen; Malfertheiner, Peter

    2016-11-01

    Fecal microbiota transplantation (FMT) is a valuable treatment modality for recurrent Clostridium difficile (C. difficile) colitis. Multiple questions including the best delivery route and volume remain unanswered. Here, we report a case series of high-volume FMT using endoscopic jejunal application route. In prospective observational study, FMT was performed using fresh specimen from healthy unrelated donors to the patients with recurrent or refractory C. difficile colitis. Selection of the route was based on the patient's preferences. Specimens of at least 50g were dissolved in 500ml of electrolyte solution and administered using endoscope directly in jejunum. All procedures led to cure of C. difficile colitis. With exception of one case the procedure was well tolerated. In two cases, we observed FMT-reflux into the stomach despite deep jejunal application and in single case the FMT-reflux led to tracheal aspiration and severe pneumonia. High-volume FMT via endoscopic jejunal route is an effective treatment option that is well tolerated and easy to perform. Nevertheless, aspiration is potential life-threatening event that needs to be kept in mind during the FMT-procedure. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  6. A rare cause of acute abdomen: jejunal diverticulosis with perforation.

    PubMed

    Aydin, Ibrahim; Pergel, Ahmet; Yucel, Ahmet Fikret; Sahin, Dursun Ali

    2013-01-01

    Jejunal diverticulosis is generally asymptomatic and is associated with high morbidity and mortality secondary to complications, especially in elderly patients. We present a case report of a 74-year-old female patient with jejunal diverticulosis and perforation due to diverticulitis.

  7. A Rare Cause of Acute Abdomen: Jejunal Diverticulosis with Perforation

    PubMed Central

    Aydin, Ibrahim; Pergel, Ahmet; Yucel, Ahmet Fikret; Sahin, Dursun Ali

    2013-01-01

    Jejunal diverticulosis is generally asymptomatic and is associated with high morbidity and mortality secondary to complications, especially in elderly patients. We present a case report of a 74-year-old female patient with jejunal diverticulosis and perforation due to diverticulitis. PMID:24083068

  8. Jejunal varices after choledochojejunostomy treated with laparotomic transcatheter variceal embolization.

    PubMed

    Waguri, Nobuo; Azumi, Rie; Sugimura, Kazuhito; Arao, Yoshihisa; Ikarashi, Shunzo; Sakai, Norihiro; Ogawa, Masahiro; Osaki, Akihiko; Sato, Munehiro; Aiba, Tsuneo; Yoneyama, Osamu; Furukawa, Koichi; Igarashi, Kentarou

    2016-01-01

    Portal hypertension induces collateral shunt formation between the portal and systemic circulation, decompressing the elevated portal pressure. Ectopic varices outside of the gastroesophageal region, such as jejunal varices, are rare conditions. This report describes the successful embolization of ruptured jejunal varices resulting from an extrahepatic portal obstruction. A 62-year-old man was admitted to our hospital with recurrent massive gastrointestinal bleeding. Fourteen months earlier, he had undergone a choledochojejunostomy and pancreatic cystojejunostomy for bile duct stenosis with an enlarged pancreatic pseudocyst due to severe chronic pancreatitis. Contrast-enhanced computed tomography showed jejunal intramural dilated vessels close to the choledochojejunal anastomosis, but extravasation was not observed. Due to the lack of a rapid definitive diagnosis, the patient required massive blood transfusions. Hemorrhagic scintigraphy using 99m Tc-HSAD finally identified the site of the hemorrhage. Angiography and double-balloon endoscopy revealed the anastomotic jejunal varices to be the result of an extrahepatic portal obstruction. Laparotomic transcatheter variceal embolization with microcoils was successful in halting the refractory gastrointestinal bleeding. This surgery preserved hepatopetal portal venous flow by another route, and no complications were observed. At present, 4 years post-surgery, there has been no recurrence of gastrointestinal hemorrhage. The development of jejunal varices is often associated with postoperative adhesions. Some patients with a history of hepatico- or choledochojejunostomy may experience portal hypertension resulting from extrahepatic portal obstruction, leading to the formation of jejunal varices as hepatopetal portal collaterals. The choice of therapy in each patient should be based on the individual hemodynamics of the ectopic varices.

  9. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock.

    PubMed

    Belmonte, Liliana; Coëffier, Moïse; Le Pessot, Florence; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre

    2007-05-28

    To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 +/- 1.05 vs 1.72 +/- 0.46 mumol/g tissue, P<0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal alpha1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model.

  10. Portal Vein Stenting for Delayed Jejunal Varix Bleeding Associated with Portal Venous Occlusion after Hepatobiliary and Pancreatic Surgery

    PubMed Central

    Hyun, Dongho; Cho, Sung Ki; Park, Hong Suk; Shin, Sung Wook; Choo, Sung Wook; Do, Young Soo; Choo, In Wook; Choi, Dong Wook

    2017-01-01

    Objective The study aimed to describe portal stenting for postoperative portal occlusion with delayed (≥ 3 months) variceal bleeding in the afferent jejunal loop. Materials and Methods Eleven consecutive patients (age range, 2–79 years; eight men and three women) who underwent portal stenting between April 2009 and December 2015 were included in the study. Preoperative medical history and the postoperative clinical course were reviewed. Characteristics of portal occlusion and details of procedures were also investigated. Technical success, treatment efficacy (defined as disappearance of jejunal varix on follow-up CT), and clinical success were analyzed. Primary stent patency rate was plotted using the Kaplan-Meier method. Results All patients underwent hepatobiliary-pancreatic cancer surgery except two children with liver transplantation for biliary atresia. Portal occlusion was caused by benign postoperative change (n = 6) and local tumor recurrence (n = 5). Variceal bleeding occurred at 27 months (4 to 72 months) and portal stenting was performed at 37 months (4 to 121 months), on average, postoperatively. Technical success, treatment efficacy, and clinical success rates were 90.9, 100, and 81.8%, respectively. The primary patency rate of portal stent was 88.9% during the mean follow-up period of 9 months. Neither procedure-related complication nor mortality occurred. Conclusion Interventional portal stenting is an effective treatment for delayed jejunal variceal bleeding due to portal occlusion after hepatobiliary-pancreatic surgery. PMID:28860900

  11. Lack of evidence in vivo for a remote effect of Escherichia coli heat stable enterotoxin on jejunal fluid absorption.

    PubMed

    Lucas, M L; Duncan, N W; o'reilly, N F; McIlvenny, T J; Nelson, Y B

    2008-05-01

    On contact with the mucosa, heat stable (STa) enterotoxin from Escherichia coli reduces fluid absorption in vivo in the perfused jejunum of the anaesthetized rat. The question of whether it also has a vagally mediated remote action on jejunal absorption, when instilled into the ileum, was re-examined, given contradictory findings in the literature. A standard perfused loop preparation was used to measure luminal uptake of fluid in vivo by means of volume recovery. STa in the ileum was found to have no effect on jejunal absorption, regardless of cervical or sub-diaphragmatic vagotomy and also regardless of the nature of the perfusate anion. The batches of toxin were shown in parallel experiments to reduce fluid absorption directly in the jejunum and also in the ileum. Similarly, vagal nerves prior to section had demonstrable in vivo physiological function. There was therefore no evidence for an indirect, vagally mediated ileal effect of STa on proximal fluid absorption.

  12. Rupture of a jejunal artery aneurysm.

    PubMed

    Asano, Migiwa; Nushida, Hideyuki; Nagasaki, Yasushi; Tatsuno, Yoshitsugu; Ueno, Yasuhiro

    2008-09-01

    Aneurysm of the superior mesenteric artery or its branches is rare. We herein present a case of a ruptured aneurysm of the jejunal artery, a branch of the superior mesenteric artery, and we also review 19 cases of jejunal artery aneurysm reported in the English literature. A 66-year-old male who had received a fist blow to the face presented in the emergency ward of his local hospital. His physical examination was unremarkable and he went back home after treatment of his facial wound. Two hours later he again visited the hospital, this time for severe abdominal pain, and he was hospitalized for suspicion of an intraperitoneal hemorrhage. Selective arteriography of the superior mesenteric artery revealed a ruptured aneurysm in the first branch of the jejunal artery. An emergency laparotomy was performed, but the patient died 29h after the injury. Because there was no evidence of any trauma to the abdomen, we concluded that the cause of death was exsanguination due to a ruptured aneurysm, and was not directly related to the earlier trauma. This case is considered to be of medico-legal interest regarding whether the rupture resulted from a natural disease or was due to an assault.

  13. Selection for growth does not affect apparent energetic efficiency of jejunal glucose uptake in mice.

    PubMed

    Fan, Y K; Croom, W J; Eisen, E J; Daniel, L R; Black, B L; McBride, B W

    1996-11-01

    Five-wk-old male mice from high growth (M16) and randomly bred control (ICR) lines, plus their reciprocal crosses, ICR x M16 and M16 x ICR, were used to investigate whether whole-body O2 consumption, jejunal respiration, jejunal glucose absorption and the apparent energetic efficiency of jejunal active glucose uptake in mice are altered by genetic selection for growth as well as by heterosis and maternal effects. Whole-body O2 consumption was measured in 12 mice from each line or cross. The mice were later killed for measurement of jejunal O2, using tissue respiration chambers and jejunal glucose transport determined by 3H-3-O-methylglucose accumulation. No heterosis or maternal effects were detected in jejunal glucose active transport and active glucose uptake. Selection for growth (M16 vs. ICR) increased daily gain (1.54 vs. 1.09 g, P < 0.001), small intestinal length and weight, but did not enhance jejunal glucose transport. The apparent energetic efficiency of jejunal active glucose uptake among lines was not different (54.0, 50.4, 51.6 and 47.1 nmol ATP expended/nmol glucose uptake for M16, ICR, M16 x ICR and ICR x M16, respectively, P > 0.63). Selection for growth in mice did not result in more energetically efficient jejunal glucose absorption.

  14. High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study.

    PubMed

    Wang, Chao; Huang, Zixin; Yu, Kequan; Ding, Ruiling; Ye, Keping; Dai, Chen; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-01-01

    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus ( P < 0.05), but decreased the abundance of Lactobacillus ( P < 0.05). LC-MS-MS revealed a dynamic change of proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion.

  15. High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study

    PubMed Central

    Wang, Chao; Huang, Zixin; Yu, Kequan; Ding, Ruiling; Ye, Keping; Dai, Chen; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-01-01

    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus (P < 0.05), but decreased the abundance of Lactobacillus (P < 0.05). LC-MS-MS revealed a dynamic change of proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion. PMID:29033907

  16. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock

    PubMed Central

    Belmonte, Liliana; Coëffier, Moïse; Pessot, Florence Le; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre

    2007-01-01

    AIM: To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. METHODS: Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. RESULTS: Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 ± 1.05 vs 1.72 ± 0.46 μmol/g tissue, P < 0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal α1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. CONCLUSION: Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model. PMID:17569119

  17. The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells.

    PubMed

    Schoenborn, Alexi A; von Furstenberg, Richard J; Valsaraj, Smrithi; Hussain, Farah S; Stein, Molly; Shanahan, Michael T; Henning, Susan J; Gulati, Ajay S

    2018-06-08

    Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally-raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.

  18. Thromboxane plays a role in postprandial jejunal oxygen uptake and capillary exchange.

    PubMed

    Alemayehu, A; Chou, C C

    1990-09-01

    The effects of a thromboxane A2 (TxA2)-endoperoxide receptor antagonist, SQ 29548, on jejunal blood flow, oxygen uptake, and capillary filtration coefficient (Kfc) were determined in anesthetized dogs under resting conditions and during the presence of predigested food in the jejunal lumen in three series of experiments. In series 1, 2.0 micrograms intra-arterial administration of SQ 29548 was found to abolish completely the vasoconstrictor action of graded doses (0.05-2.0 micrograms) of intra-arterial injection of a TxA2-endoperoxide analogue, U44069. SQ 29548 (2.0 micrograms ia) per se did not significantly alter resting jejunal blood flow, oxygen uptake, capillary pressure, or Kfc. Before SQ 29548, placement of food plus bile into the jejunal lumen increased blood flow +42 +/- 9%, oxygen uptake +28 +/- 7%, and Kfc +24 +/- 6%. After SQ 29548, the food placement increased blood flow +37 +/- 8%, oxygen uptake +52 +/- 11%, and Kfc +63 +/- 20%. The food-induced increases in oxygen uptake and Kfc after SQ 29548 were significantly greater than those induced before the blocking of TxA2-endoperoxide receptors by SQ 29548. Our study indicates that endogenous thromboxane does not play a role in regulating jejunal blood flow, capillary filtration, and oxygen uptake under resting conditions. However, it plays a role in limiting the food-induced increases in jejunal oxygen uptake and capillary exchange capacity without influencing the food-induced hyperemia.

  19. Electroacupuncture at LI11 promotes jejunal motility via the parasympathetic pathway.

    PubMed

    Hu, Xuanming; Yuan, Mengqian; Yin, Yin; Wang, Yidan; Li, Yuqin; Zhang, Na; Sun, Xueyi; Yu, Zhi; Xu, Bin

    2017-06-21

    Gastrointestinal motility disorder has been demonstrated to be regulated by acupuncture treatment. The mechanisms underlying the effects of acupuncture stimulation of abdominal and lower limb acupoints on gastrointestinal motility have been thoroughly studied; however, the physiology underlying the effects of acupuncture on the forelimbs to mediate gastrointestinal motility requires further exploration. The aim of this study was to determine whether electroacupuncture (EA) at LI11 promotes jejunal motility, whether the parasympathetic pathway participates in this effect, and if so, which somatic afferent nerve fibres are involved. A manometric balloon was used to observe jejunal motility. The effects and mechanisms of EA at LI11 were explored in male Sprague-Dawley rats with or without drug administration (propranolol, clenbuterol, acetylcholine, and atropine) and with or without vagotomy. Three types of male mice (β 1 β 2 receptor-knockout [β 1 β 2 -/- ] mice, M 2 M 3 receptor-knockout [M 2 M 3 -/- ] mice and wild-type [WT] mice) were also studied by using different EA intensities (1, 2, 4, 6, and 8 mA). A total of 72 rats and 56 mice were included in the study. EA at LI11 increased the contractile amplitude of jejunal motility in the majority of both rats and mice. However, EA at LI11 did not enhance jejunal motility in rats administered atropine, rats that underwent vagotomy, and M 2 M 3 -‍‍/- mice (at all intensities). In WT mice, EA at LI11 significantly increased jejunal motility at all intensities except 1 mA, and a plateau was reached at intensities greater than 4 mA. Our results suggest that EA at LI11 promotes jejunal motility primarily by exciting the parasympathetic pathway, and that Aδ-fibres and C-fibres may play important roles in the process.

  20. Gastro-jejunal digestion of soya-bean-milk protein in humans.

    PubMed

    Baglieri, A; Mahe, S; Zidi, S; Huneau, J F; Thuillier, F; Marteau, P; Tome, D

    1994-10-01

    In order to determine how soya-bean proteins are digested and metabolized in the human intestine before colonic bacterial fermentation and to estimate their true digestibility, the gastro-jejunal behaviour of soya-bean proteins in water and in two other forms (a concentrated soya-bean-protein solution (isolate) and a drink composed of crude soya-bean proteins (soymilk)) was studied in humans. Experiments were carried out in eight healthy volunteers using a double-lumen steady-state intestinal perfusion method with polyethyleneglycol (PEG) as a non-absorbable volume marker. Gastric emptying and N and electrolyte contents of the jejunal digesta were analysed. Gastric half-emptying time (min) of the liquid phase after water ingestion (12.59 (SE 0.12)) was shorter (P < 0.05) than those for soymilk (37.74 (SE 11.57)) and isolate (36.52 (SE 11.23)). Electrolytic balances showed that for all meals, Na+, Cl- and K+ were secreted when Ca2+ was efficiently absorbed from the jejunal lumen. Gastro-jejunal N absorption for isolate and soymilk were 63 and 49% respectively, and were not significantly different from one another; after water ingestion, endogenous N was estimated to be 21 mmol. An estimate of the exogenous:endogenous values for the effluents was obtained from the amino acid compositions of soymilk and effluents after water or soymilk ingestion, indicating that 70% of the total N was exogenous and 30% endogenous. Under these conditions the endogenous fraction represented 31 mmol after soymilk ingestion and the gastro-jejunal N balance indicated that 54% of the soymilk was absorbed. This finding indicates that the true gastrojejunal digestibility of soya-bean proteins is similar to that of milk proteins.

  1. Electrophysiological response of chicken's jejunal epithelium to increasing levels of T-2 toxin.

    PubMed

    Yunus, Agha Waqar; Kröger, Susan; Tichy, Alexander; Zentek, Jürgen; Böhm, Josef

    2013-02-01

    The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (I(sc)), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive I(sc) was negatively affected (P = 0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive I(sc) in a cubic (P = 0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.

  2. The visceromotor responses to colorectal distension and skin pinch are inhibited by simultaneous jejunal distension.

    PubMed

    Shafton, Anthony D; Furness, John B; Ferens, Dorota; Bogeski, Goce; Koh, Shir Lin; Lean, Nicholas P; Kitchener, Peter D

    2006-07-01

    Noxious stimuli that are applied to different somatic sites interact; often one stimulus diminishes the sensation elicited from another site. By contrast, inhibitory interactions between visceral stimuli are not well documented. We investigated the interaction between the effects of noxious distension of the colorectum and noxious stimuli applied to the jejunum, in the rat. Colorectal distension elicited a visceromotor reflex, which was quantified using electromyographic (EMG) recordings from the external oblique muscle of the upper abdomen. The same motor units were activated when a strong pinch was applied to the flank skin. Distension of the jejunum did not provoke an EMG response at this site, but when it was applied during colorectal distension it blocked the EMG response. Jejunal distension also inhibited the response to noxious skin pinch. The inhibition of the visceromotor response to colorectal distension was prevented by local application of tetrodotoxin to the jejunum, and was markedly reduced when nicardipine was infused into the local jejunal circulation. Chronic sub-diaphragmatic vagotomy had no effect on the colorectal distension-induced EMG activity or its inhibition by jejunal distension. The nicotinic antagonist hexamethonium suppressed phasic contractile activity in the jejunum, had only a small effect on the inhibition of visceromotor response by jejunal distension. It is concluded that signals that arise from skin pinch and colorectal distension converge in the central nervous system with pathways that are activated by jejunal spinal afferents; the jejunal signals strongly inhibit the abdominal motor activity evoked by noxious stimuli.

  3. Jejunal variceal bleeding after esophageal transection in a patient with idiopathic portal hypertension.

    PubMed

    Migou, S; Hashizume, M; Tsugawa, K; Kishihara, F; Kawanaka, H; Ohta, M; Tanoue, K; Kuroiwa, T; Kawamoto, K; Sugimachi, K

    1998-01-01

    This report describes a 38-year-old man with massive gastrointestinal bleeding from jejunal varices. He had been previously diagnosed to have idiopathic portal hypertension and esophageal varices, and had undergone an esophageal transection 8 years earlier. The pre-operative diagnosis was a suspected hemorrhage from the small intestine as visualized by 99mTc-HSAD scintigraphy (technetium 99m-labeled human serum albumin D-type) and was not considered to be repeated massive lower GI tract bleeding. An exploratory laparotomy was performed, and intra-operative endoscopy revealed active bleeding from the jejunal varices. A partial resection of the small intestine resulted in a complete resolution of the bleeding. A review of the literature thereafter disclosed twelve previously reported cases of jejunal variceal bleeding.

  4. Role of proximal gut exclusion from food on glucose homeostasis in patients with Type 2 diabetes.

    PubMed

    Cohen, R; le Roux, C W; Papamargaritis, D; Salles, J E; Petry, T; Correa, J L; Pournaras, D J; Galvao Neto, M; Martins, B; Sakai, P; Schiavon, C A; Sorli, C

    2013-12-01

    To report Type 2 diabetes-related outcomes after the implantation of a duodenal-jejunal bypass liner device and to investigate the role of proximal gut exclusion from food in glucose homeostasis using the model of this device. Sixteen patients with Type 2 diabetes and BMI <36 kg/m(2) were evaluated before and 1, 12 and 52 weeks after duodenal-jejunal bypass liner implantation and 26 weeks after explantation. Mixed-meal tolerance tests were conducted over a period of 120 min and glucose, insulin and C-peptide levels were measured. The Matsuda index and the homeostatic model of assessment of insulin resistance were used for the estimation of insulin sensitivity and insulin resistance. The insulin secretion rate was calculated using deconvolution of C-peptide levels. Body weight decreased by 1.3 kg after 1 week and by 2.4 kg after 52 weeks (P < 0.001). One year after duodenal-jejunal bypass liner implantation, the mean (sem) HbA(1c) level decreased from 71.3 (2.4) mmol/mol (8.6[0.2]%) to 58.1 (4.4) mmol/mol (7.5 [0.4]%) and mean (sem) fasting glucose levels decreased from 203.3 (13.5) mg/dl to 155.1 (13.1) mg/dl (both P < 0.001). Insulin sensitivity improved by >50% as early as 1 week after implantation as measured by the Matsuda index and the homeostatic model of assessment of insulin resistance (P < 0.001), but there was a trend towards deterioration in all the above-mentioned variables 26 weeks after explantation. Fasting insulin levels, insulin area under the curve, fasting C-peptide, C-peptide area under the curve, fasting insulin and total insulin secretion rates did not change during the duodenal-jejunal bypass liner implantation period or after explantation. The duodenal-jejunal bypass liner improves glycaemia in overweight and obese patients with Type 2 diabetes by rapidly improving insulin sensitivity. A reduction in hepatic glucose output is the most likely explanation for this improvement. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  5. Jejunal administration of glucose enhances acyl ghrelin suppression in obese humans

    PubMed Central

    Sidani, Reem M.; Garcia, Anna E.; Antoun, Joseph; Isbell, James M.; Abumrad, Naji N.

    2016-01-01

    Ghrelin is a gastric hormone that stimulates hunger and worsens glucose metabolism. Circulating ghrelin is decreased after Roux-en-Y gastric bypass (RYGB) surgery; however, the mechanism(s) underlying this change is unknown. We tested the hypothesis that jejunal nutrient exposure plays a significant role in ghrelin suppression after RYGB. Feeding tubes were placed in the stomach or jejunum in 13 obese subjects to simulate pre-RYGB or post-RYGB glucose exposure to the gastrointestinal (GI) tract, respectively, without the confounding effects of caloric restriction, weight loss, and surgical stress. On separate study days, the plasma glucose curves obtained with either gastric or jejunal administration of glucose were replicated with intravenous (iv) infusions of glucose. These “isoglycemic clamps” enabled us to determine the contribution of the GI tract and postabsorptive plasma glucose to acyl ghrelin suppression. Plasma acyl ghrelin levels were suppressed to a greater degree with jejunal glucose administration compared with gastric glucose administration (P < 0.05). Jejunal administration of glucose also resulted in a greater suppression of acyl ghrelin than the corresponding isoglycemic glucose infusion (P ≤ 0.01). However, gastric and isoglycemic iv glucose infusions resulted in similar degrees of acyl ghrelin suppression (P > 0.05). Direct exposure of the proximal jejunum to glucose increases acyl ghrelin suppression independent of circulating glucose levels. The enhanced suppression of acyl ghrelin after RYGB may be due to a nutrient-initiated signal in the jejunum that regulates ghrelin secretion. PMID:27279247

  6. Jejunal pouch with nerve preservation and interposition after total gastrectomy.

    PubMed

    Kobayashi, I; Ohwada, S; Ohya, T; Yokomori, T; Iesato, H; Morishita, Y

    1998-01-01

    In this paper, we describe operative technique details and our results with a modified technique for jejunal pouch formation and interposition after total gastrectomy, with an overall aim to achieve results superior to jejunal pouch and Roux-en-Y reconstruction, as reported in the literature. Following total gastrectomy, the jejunum was divided approximately 20 cm distal to the ligament of Treitz. Marginal vessels were not divided in order to preserve the nerves in the 50 cm of distal jejunum which would be used for pouch construction. The pouch was constructed using a linear stapler (Endo GiA, United States Surgical Corp., Norwalk, Conn). A total of 15 gastric cancer patients underwent construction of a nerve-preserving jejunal pouch and interposition following total gastrectomy. None of the patients experienced postoperative complications due to pouch construction. Additionally, discomforts such as dumping or stagnation were not observed. Mild reflux esophagitis occurred in five of the 15 patients and was resolved by oral administration of camostat mesilate. Six months after surgery, the average patient's diet volume and body weight had gradually increased to 79% and 86%, respectively, of the presurgical levels. A dual phase, dual isotope radionucleid pouch emptying study was also performed six months after surgery. The intra-pouch RI retention rate was 47% for liquid food and 53% for solid food 120 minutes after intake. The emptying rate was slower for both solid and liquid food, as compared with healthy individuals. The pouch-emptying test demonstrated a satisfactory retention capacity and an acceptable emptying time as a gastric substitute. The patients who underwent gastric reconstruction with a nerve-preserving jejunal pouch with interposition have experienced a reasonably good quality of life.

  7. Jejunal Gastric Heterotopia causing Multiple Strictures and Perforation Peritonitis- A Case Report with Review of Literature.

    PubMed

    Vani, M; Nambiar, Ajit; Geetha, K; Kundil, Byju

    2017-03-01

    Gastric heterotopias beyond the ligament of Treitz though rare, should be thought of in the differential diagnosis of polypoid lesions presenting with gastrointestinal bleed or obstructive symptoms especially in children and in the young. Here is a 24-year-old male with multifocal jejunal gastric heterotopias causing multiple strictures and perforation peritonitis. Patient presented with acute abdomen pain and an emergency laparotomy was performed revealing jejunum with multiple strictures and perforation, followed by jejunal resection. On gross examination polypoid mucosa was noted at the stricture sites which showed heterotopic gastric mucosa on microscopy. Jejunal gastric heterotopias are extremely rare with less than ten reported cases and those presenting with multiple strictures are even rarer. To our knowledge this is the second case of jejunal gastric heterotopia presenting with multiple strictures.

  8. GASTRIC AND JEJUNAL HISTOPATHOLOGICAL CHANGES IN PATIENTS UNDERGOING BARIATRIC SURGERY

    PubMed Central

    RODRIGUES, Rosemary Simões Nomelini; ALMEIDA, Élia Cláudia de Souza; CAMILO, Silvia Maria Perrone; TERRA-JÚNIOR, Júverson Alves; GUIMARÃES, Lucinda Calheiros; DUQUE, Ana Cristina da Rocha; ETCHEBEHERE, Renata Margarida

    2016-01-01

    ABSTRACT Background: Morbid obesity is a multifactorial disease that increasingly is being treated by surgery. Aim: To evaluate gastric histopathological changes in obese, and to compare with patients who underwent gastrojejunal bypass and the jejunal mucosa after the surgery. Methods: This is an observational study performed at a tertiary public hospital, evaluating endoscopic biopsies from 36 preoperative patients and 35 postoperative. Results: In the preoperative group, 80.6% had chronic gastritis, which was active in 38.9% (77.1% and 20.1%, respectively, in the postoperative). The postoperative group had a significant reduction in H. pylori infection (p=0.0001). A longer length of the gastric stump and a time since surgery of more than two years were associated with Helicobacter pylori infection. The jejunal mucosa was normal in 91.4% and showed slight nonspecific chronic inflammation in 8.6%. Conclusion: There was a reduction in the incidence of Helicobacter pylori infection in the postoperative group. A longer length of the gastric stump and longer time elapsed since surgery were associated with Helicobacter pylori infection. The jejunal mucosa was considered normal in an absolute majority of patients. PMID:27683773

  9. Jejunal obstruction caused by metastasis from an undiagnosed breast cancer: a case report.

    PubMed

    Calò, Pietro Giorgio; Fanni, Daniela; Ionta, Maria Teresa; Medas, Fabio; Faa, Gavino; Atzori, Francesco

    2012-01-01

    Solitary metastasis from breast carcinoma to the gastrointestinal tract is an uncommon finding. We describe a female patient with a solitary jejunal metastasis from an undiagnosed breast cancer who presented to the emergency department with a bowel obstruction. Abdominal surgery was performed, revealing a jejunal stenosis from a metastatic lobular carcinoma. The primary tumor in the left breast was subsequently diagnosed and surgically removed.

  10. Jejunal and ileal absorption of oxprenolol in man: influence of nutrients and digestive secretions on jejunal absorption and systemic availability.

    PubMed Central

    Godbillon, J; Vidon, N; Palma, R; Pfeiffer, A; Franchisseur, C; Bovet, M; Gosset, G; Bernier, J J; Hirtz, J

    1987-01-01

    1 Study I evaluated the absorption of oxprenolol in the ileum, compared to jejunum, in healthy volunteers by an intestinal perfusion technique. Around 80 mg of drug were delivered as a saline solution directly in the small bowel. 2 Samples taken 30 cm distally to the site of perfusion showed that 63% of perfused oxprenolol was absorbed in the jejunum and 48% in the ileum; the differences were significant. 3 The plasma concentration-time profiles were similar for the two perfusions. The AUC and Cmax values of free and conjugated oxprenolol for the jejunal perfusion were significantly lower than those of ileum. They showed large but consistent intersubject variations in the two treatments. 4 Study II investigated, using the same technique, the influence of nutrients and digestive secretions on jejunal absorption and systemic availability of this drug. A saline (in treatments A and B) or a nutrient (in treatment C) solution containing oxprenolol was perfused into the jejunum below a balloon either inflated (A) or deflated (B and C). 5 The disappearance rate of oxprenolol from the jejunum was unaffected by endogenous secretions. The mean amount of drug absorbed along a 30-cm jejunal segment accounted for 52 (A) and 57% (B) of the total amount perfused. The intestinal absorption rate was markedly increased in the presence of nutrients (mean amount absorbed 96% for C). 6 The change in the rate of disappearance from the intestine had no effect on the systemic availability of oxprenolol (mean AUC values 8740, 8250 and 8020 nmol l-1 h for A, B and C, respectively) or its elimination from plasma.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3663450

  11. Comparison of enterotomy leak pressure among fresh, cooled, and frozen-thawed porcine jejunal segments.

    PubMed

    Aeschlimann, Kimberly A; Mann, F A; Middleton, John R; Belter, Rebecca C

    2018-05-01

    OBJECTIVE To determine whether stored (cooled or frozen-thawed) jejunal segments can be used to obtain dependable leak pressure data after enterotomy closure. SAMPLE 36 jejunal segments from 3 juvenile pigs. PROCEDURES Jejunal segments were harvested from euthanized pigs and assigned to 1 of 3 treatment groups (n = 12 segments/group) as follows: fresh (used within 4 hours after collection), cooled (stored overnight at 5°C before use), and frozen-thawed (frozen at -12°C for 8 days and thawed at room temperature [23°C] for 1 hour before use). Jejunal segments were suspended and 2-cm enterotomy incisions were made on the antimesenteric border. Enterotomies were closed with a simple continuous suture pattern. Lactated Ringer solution was infused into each segment until failure at the suture line was detected. Leak pressure was measured by use of a digital transducer. RESULTS Mean ± SD leak pressure for fresh, cooled, and frozen-thawed segments was 68.3 ± 23.7 mm Hg, 55.3 ± 28.1 mm Hg, and 14.4 ± 14.8 mm Hg, respectively. Overall, there were no significant differences in mean leak pressure among pigs, but a significant difference in mean leak pressure was detected among treatment groups. Mean leak pressure was significantly lower for frozen-thawed segments than for fresh or cooled segments, but mean leak pressure did not differ significantly between fresh and cooled segments. CONCLUSIONS AND CLINICAL RELEVANCE Fresh porcine jejunal segments or segments cooled overnight may be used for determining intestinal leak pressure, but frozen-thawed segments should not be used.

  12. Acupuncture at heterotopic acupoints enhances jejunal motility in constipated and diarrheic rats

    PubMed Central

    Qin, Qing-Guang; Gao, Xin-Yan; Liu, Kun; Yu, Xiao-Chun; Li, Liang; Wang, Hai-Ping; Zhu, Bing

    2014-01-01

    AIM: To investigate the effect and mechanism of acupuncture at heterotopic acupoints on jejunal motility, particularly in pathological conditions. METHODS: Jejunal motility was assessed using a manometric balloon placed in the jejunum approximately 18-20 cm downstream from the pylorus and filled with approximately 0.1 mL warm water in anesthetized normal rats or rats with diarrhea or constipation. The heterotopic acupoints including LI11 (Quchi), ST37 (Shangjuxu), BL25 (Dachangshu), and the homotopic acupoint ST25 (Tianshu), and were stimulated for 60 s by rotating acupuncture needles right and left at a frequency of 2 Hz. To determine the type of afferent fibers mediating the regulation of jejunal motility by manual acupuncture, the ipsilateral sciatic A or C fibers of ST37 were inactivated by local application of the A-fiber selective demyelination agent cobra venom or the C fiber blocker capsaicin. Methoctramine, a selective M2 receptor antagonist, was injected intravenously to identify a specific role for M2 receptors in mediating the effect of acupuncture on jejunal motility. RESULTS: Acupuncture at heterotopic acupoints, such as LI11 and ST37, increased jejunal motility not only in normal rats, but also in rats with constipation or diarrhea. In normal rats, manual acupuncture at LI11 or ST37 enhanced jejunal pressure from 7.34 ± 0.19 cmH2O to 7.93 ± 0.20 cmH2O, an increase of 9.05% ± 0.82% (P < 0.05), and from 6.95 ± 0.14 cmH2O to 8.97 ± 0.22 cmH2O, a significant increase of 27.44% ± 1.96% (P < 0.01), respectively. In constipated rats, manual acupuncture at LI11 or ST37 increased intrajejunal pressure from 8.17 ± 0.31 cmH2O to 9.86 ± 0.36 cmH2O, an increase of 20.69% ± 2.10% (P < 0.05), and from 8.82 ± 0.28 cmH2O to 10.83 ± 0.28 cmH2O, an increase of 22.81% ± 1.46% (P < 0.05), respectively. In rats with diarrhea, MA at LI11 or ST37 increased intrajejunal pressure from 11.95 ± 0.35 cmH2O to 13.96 ± 0.39 cmH2O, an increase of 16.82% ± 2.35% (P

  13. A scintigraphic study to investigate the potential for altered gut distribution of loperamide from a loperamide-simethicone formulation in man.

    PubMed

    Connor, A L; Wray, H; Cottrell, J; Wilding, I R

    2001-07-01

    A loperamide simethicone combination formulation has recently been demonstrated to have significant clinical advantages compared to loperamide alone in the relief of diarrhoea and related symptoms. The product visualisation technique of gamma scintigraphy has been used to investigate the interaction of the formulation with the heterogenous environment of the human gut in a group of 12 healthy volunteers. The results suggest that changes in the intestinal kinetics of loperamide from the combination product, e.g. jejunal coating, could be contributing to the improved efficacy.

  14. Vascularized Jejunal Mesenteric Lymph Node Transfer: A Novel Surgical Treatment for Extremity Lymphedema.

    PubMed

    Coriddi, Michelle; Wee, Corrine; Meyerson, Joseph; Eiferman, Daniel; Skoracki, Roman

    2017-11-01

    Vascularized lymph node transfer (VLNT) is a surgical treatment for lymphedema. Multiple donor sites have been described and each has significant disadvantages. We propose the jejunal mesentery as a novel donor site for VLNT. We performed a cadaveric anatomic study analyzing jejunal lymph nodes (LNs) and describe outcomes from the first patients who received jejunal mesenteric VLNT for treatment of lymphedema. In 5 cadavers, the average numbers of total LNs and peripheral LNs were identified in the proximal, middle, and distal segments of jejunum. Totals counted were 19.2/13.8/9.6, (SD 7.0/4.4/1.1), respectively; of those, 10.4/6.8/3.4 (SD 3.6/2.3/2.6), respectively, were in the periphery. There were significantly more total and peripheral lymph nodes in the proximal segment compared with the middle and distal segments (p = 0.027 and p = 0.008, respectively). The jejunal VLNT was used in 15 patients for treatment of upper (n = 8) or lower (n = 7) extremity lymphedema. Average follow-up was 9.1 (±6.4) months (range 1 to 19 months). Of 14 patients with viable flaps (93.3%), 12 had subjective improvement (87.5%). Ten patients had preoperative measurements, and of those, 7 had objective improvement in lymphedema (70%). The jejunal mesenteric VLNT is an excellent option for lymphedema treatment because there is no risk of donor site lymphedema or nerve damage, and the scar is easily concealed. Harvest from the periphery of the proximal jejunum is optimal. Improvement from lymphedema can be expected in a majority of patients. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Complicated jejunal diverticula as surgical emergency: experience at a tertiary care hospital in Peshawar, Pakistan.

    PubMed

    Ahmed, Ijaz; Naeem, Mohammad; Samad, Ambreen; Nasir, Amir; Aman, Zahid; Ahmed, Siddique; Manan, Fazal

    2010-01-01

    Diverticula of small intestine are rare. Jejunal diverticula can be single or multiple. Diverticula in the jejunum tend to be large and multiple. Clinically they may be asymptomatic or may give rise to symptoms like pain, flatulence and borborygmi, may produce malabsorption syndrome or may present in emergency with different acute pathologies like perforation, haemorrhage, obstruction, enterolith formation and inflammation. The Objective was to see the pattern of complications in jejunal diverticula presenting as a surgical emergency. This descriptive study was conducted at Surgical Units of the 3 tertiary care Hospitals of Peshawar, for 7 years from January 1, 2002 to December 31, 2008. Study included all patients presenting to and admitted in Surgical Unit, Hayatabad Medical Complex, Peshawar with complicated jejunal diverticula during the above mentioned period. Name, age, sex, other relevant data, history and examination findings and results of investigation were recorded. Uncomplicated jejuna diverticula were excluded from study. The operative findings and the type of complication were recorded. Ten patients were admitted during 7 years of study. Out of all patients 9 were male and 1 was female. Eight out of 10 patients presented with perforation of diverticula while 1 patient had severe inflammation of diverticulum causing pain, ileus and acute abdomen. One patient had acute pain due to adhesion formation. It is seen that complicated jejunal diverticulae are quite rare and the most common complication is perforation. Inflammation and adhesion are other complications with which jejunal diverticula presented during this study.

  16. Percutaneous Retrograde Sclerotherapy for Refractory Bleeding of Jejunal Varices: Direct Injection via Superficial Epigastric Vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakata, Manabu, E-mail: nktmnbohsu@jichi.ac.jp; Nakata, Waka, E-mail: waka-s@jichi.ac.jp; Isoda, Norio, E-mail: isodano1@jichi.ac.jp

    2012-02-15

    Small-bowel varices are rare and almost always occur in cases with portal hypertension. We encountered a patient with bleeding jejunal varices due to liver cirrhosis. Percutaneous retrograde sclerotherapy was performed via the superficial epigastric vein. Melena disappeared immediately after treatment. Disappearance of jejunal varices was confirmed by contrast-enhanced computed tomography. After 24 months of follow-up, no recurrent melena was observed.

  17. Glutamine supplementation does not improve protein synthesis rate by the jejunal mucosa of the malnourished rat.

    PubMed

    Tannus, Andrea Ferreira S; Darmaun, Dominique; Ribas, Durval F; Oliveira, José Eduardo D; Marchini, Julio Sergio

    2009-08-01

    It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with l-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 22%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation.

  18. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  19. Retrograde stapling of a free cervical jejunal interposition graft: a technical innovation and case report

    PubMed Central

    2014-01-01

    Background Free jejunal interposition is a useful technique for reconstruction of the cervical esophagus. However, the distal anastomosis between the graft and the remaining thoracic esophagus or a gastric conduit can be technically challenging when located very low in the thoracic aperture. We here describe a modified technique for retrograde stapling of a jejunal graft to a failed gastric conduit using a circular stapler on a delivery system. Case presentation A 56 year-old patient had been referred for esophageal squamous cell carcinoma at 20 cm from the incisors. On day 8 after thoracoabdominal esophagectomy with gastric pull-up, an anastomotic leakage was diagnosed. A proximal-release stent was successfully placed by gastroscopy and the patient was discharged. Two weeks later, an esophagotracheal fistula occurred proximal to the esophageal stent. Cervical esophagostomy was performed with cranial closure of the gastric conduit, which was left in situ within the right hemithorax. Three months later, reconstruction was performed using a free jejunal interposition. The anvil of a circular stapler (Orvil®, Covidien) was placed transabdominally through an endoscopic rendez-vous procedure into the gastric conduit. A free jejunal graft was retrogradely stapled to the proximal end of the conduit. Microvascular anastomoses were performed subsequently. The proximal anastomosis of the conduit was completed manually after reperfusion. Conclusions This modified technique allows stapling of a jejunal interposition graft located deep in the thoracic aperture and is therefore a useful method that may help to avoid reconstruction by colonic pull-up and thoracotomy. PMID:25319372

  20. Study of the effect of ileal distension on the motor activity of the jejunum, and of jejunal distension on the motor activity of the ileum.

    PubMed

    Shafik, Ahmed; Shafik, Ali A; El, Sibai Olfat; Shafik, Ismail A

    2007-01-01

    The effect of ileal distension on the jejunal motor activity and ofjejunal distension on the ileal motility have been poorly addressed in the literature. We investigated the hypothesis that distension of either ileum or jejunum would affect the motile activity of the other. Response of jejunal pressure to ileal balloon distension and of ileal pressure to jejunal distension in increments of 2 mL of normal saline were recorded in 18 dogs. The test was performed after individual local anesthetization of the ileum and jejunum and was repeated using saline instead of lidocaine. Ileal distension with 2, 4, and 6mL of saline produced no jejunal pressure response (p >0.05), while 8- and up to 12-mL distension effected jejunal pressure decrease (p<0.05). Jejunal distension up to 6mL did not change ileal pressure (p>0.05); distension with 8, 10, and 12 mL reduced it (p<0.05). Jejunal or ileal pressure responses were maintained as long as ileal or jejunal distension was continued. Distension of the anesthetized ileum or jejunum did not produce significant pressure changes in either. Jejunal or ileal pressure decrease and presumably hypotonia upon large-volume ileal or jejunal, respectively, distension postulate reflex relationship which we call 'ileal-jejunal and jejuno-ileal inhibitory reflex'. These reflexes appear to regulate chyme flow in small intestine by creating a balance of chyme delivery between the jejunum and ileum. Reflex derangement in neurogenic and myogenic diseases may result in gastrointestinal disorders, a point that needs to be investigated.

  1. Effect of medium chain triglycerides (MCT) on jejunal mucosa mass and protein synthesis.

    PubMed Central

    Schwartz, S; Farriol, M; Garcia-Arumi, E; Andreu, A L; López Hellín, J; Arbós, M A

    1994-01-01

    The effects of medium chain triglycerides (MCT) on jejunal mucosa mass and protein synthesis were compared with results from previous experiments with rats fed by parenteral nutrition or enteral nutrition. Other published studies have also been analysed. Three experimental models were studied. In the traumatic model, production of a femoral fracture was followed by Kirschner pin insertion into the medullary canal of both fragments at reduction. (Forty ras were fed enteral nutrition and 93 were given parenteral nutrition.) A second model entailed resection under ether anaesthesia using the technique described by Higgins. (Fifty five rats were fed enteral nutrition and 28 with parenteral nutrition.) A third model entailed a terminolateral portocaval shunt under anaesthesia with pentobarbital. (Sixty nine rats were treated this way and then given enteral nutrition.) Proportions of medium chain/long chain triglycerides (LCT) were as follows: 0/100, 20/80, 40/60, 50/50, and 92/8 for enteral nutrition and 0/100, 30/70, 50/50, and 70/30 for parenteral nutrition. Faecal losses of alpha amino nitrogen, protein, total fats, and free fatty acids were analysed together with the quantitative intake, weight gain of the rats, jejunal mucosal mass, and protein synthesis in relation to the MCT proportion ingested or given by enteral nutrition or parenteral nutrition. From analysis of our results and those of others, several conclusions could be drawn. Firstly, the route of administration of MCT is extremely important and enterocytes might be considered one of the main target sites. Secondly, a high proportion of MCT (more than 80%) offers no advantage for jejunal mucosa and produces undesirable side effects. Thirdly, the effect of MCT on jejunal mucosal protein synthesis depends on the metabolic state. Finally, an increase in jejunal mucosal mass directly correlated with MCT concentrations, but no correlation was found between mass and protein synthesis. A positive correlation

  2. Jejunal varices diagnosed by capsule endoscopy in patients with post-liver transplant portal hypertension.

    PubMed

    Bass, Lee M; Kim, Stanley; Superina, Riccardo; Mohammad, Saeed

    2017-02-01

    Portal hypertension secondary to portal vein obstruction following liver transplant occurs in 5%-10% of children. Jejunal varices are uncommon in this group. We present a case series of children with significant GI blood loss, negative upper endoscopy, and jejunal varices detected by CE. Case series of patients who had CE for chronic GI blood loss following liver transplantation. Three patients who had their initial transplants at a median age of 7 months were identified at our institution presenting at a median age of 8 years (range 7-16 years) with a median Hgb of 2.8 g/dL (range 1.8-6.8 g/dL). Upper endoscopy was negative for significant esophageal varices, gastric varices, and bleeding portal gastropathy in all three children. All three patients had significant jejunal varices noted on CE in mid-jejunum. Jejunal varices were described as large prominent bluish vessels underneath visualized mucosa, one with evidence of recent bleeding. The results led to venoplasty of the portal vein in two patients and a decompressive shunt in one patient with resolution of GI bleed and anemia. CE is useful to diagnose intestinal varices in children with portal hypertension and GI bleeding following liver transplant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Jejunal wall triglyceride concentration of morbidly obese persons is lower in those with type 2 diabetes mellitus

    PubMed Central

    Soriguer, F.; García-Serrano, S.; Garrido-Sánchez, L.; Gutierrez-Repiso, C.; Rojo-Martínez, G.; Garcia-Escobar, E.; García-Arnés, J.; Gallego-Perales, J. L.; Delgado, V.; García-Fuentes, Eduardo

    2010-01-01

    The overproduction of intestinal lipoproteins may contribute to the dyslipidemia found in diabetes. We studied the influence of diabetes on the fasting jejunal lipid content and its association with plasma lipids and the expression of genes involved in the synthesis and secretion of these lipoproteins. The study was undertaken in 27 morbidly obese persons, 12 of whom had type 2 diabetes mellitus (T2DM). The morbidly obese persons with diabetes had higher levels of chylomicron (CM) triglycerides (P < 0.001) and apolipoprotein (apo)B48 (P = 0.012). The jejunum samples obtained from the subjects with diabetes had a lower jejunal triglyceride content (P = 0.012) and angiopoietin-like protein 4 (ANGPTL4) mRNA expression (P = 0.043). However, the apoA-IV mRNA expression was significantly greater (P = 0.036). The jejunal triglyceride content correlated negatively with apoA-IV mRNA expression (r = −0.587, P = 0.027). The variables that explained the jejunal triglyceride content in a multiple linear regression model were the insulin resistance state and the apoA-IV mRNA expression. Our results show that the morbidly obese subjects with diabetes had lower jejunal lipid content and that this correlated negatively with apoA-IV mRNA expression. These findings show that the jejunum appears to play an active role in lipid homeostasis in the fasting state. PMID:20855567

  4. Congenital intrahepatic arterioportal and portosystemic venous fistulae with jejunal arteriovenous malformation depicted on multislice spiral CT.

    PubMed

    Chae, Eun Jin; Goo, Hyun Woo; Kim, Seong-Chul; Yoon, Chong Hyun

    2004-05-01

    We report a symptomatic infant with very rare congenital arterioportal and portosystemic venous fistulae in the liver. Multislice CT after partial transcatheter embolisation revealed not only the complicated vascular architecture of the lesion, but also an incidental jejunal arteriovenous malformation which explained the patient's melena. The patient underwent ligation of the hepatic artery and resection of the jejunal arteriovenous malformation. Postoperative multislice CT clearly demonstrated the success of the treatment.

  5. Jejunal feeding tubes can be efficiently and independently placed by intensive care unit teams.

    PubMed

    Welpe, Pascal; Frutiger, Adrian; Vanek, Patrik; Kleger, Gian-Reto

    2010-01-01

    Nutrition support is an important therapeutic measure in critically ill patients. Several studies have shown that the enteral route is preferable to the parenteral route. Insertion of a feeding tube beyond the ligament of Treitz combined with continuous gastric drainage will reduce regurgitation and probably also the rate of nosocomial pneumonia. This study was conducted to assess the safety, success rate, and time required to establish jejunal nutrition by the fluoroscopy-guided technique in intensive care unit (ICU) patients. This was a prospective observational study in the ICUs of a 300-bed and a 600-bed community hospital. Indications were large gastric residuals during attempted gastric feeding, severe acute pancreatitis, or recurrent aspiration. Feeding tubes were introduced by the ICU staff at bedside under fluoroscopic guidance (a senior ICU physician and a resident or a registered ICU nurse). The correct jejunal position was documented by the application of a radiopaque contrast medium through the tube. After confirmation of the correct position, jejunal tube feeding was immediately started. The insertion procedure in 38 patients lasted a median of 17 minutes. The median time from decision to place the tube until start of enteral feeding was 141 minutes. The success rate was 84.2%. No adverse events were observed. Fluoroscopic placement of a jejunal feeding tube at the bedside is fast, is safe, and has a high success rate when performed by well-trained ICU staff. Using this method makes the ICU team more self-sufficient when critically ill patients require enteral nutrition and no gastroenterologist is available.

  6. [Reconstruction of the hypopharynx and cervical esophagus using a free jejunal graft].

    PubMed

    Pesko, P; Bumbasirević, M; Knezević, J; Dunjić, M; Djukić, V; Simić, A; Stojakov, D; Sabljak, P; Bjelović, M; Janković, Z; Micev, M; Saranović, D

    2000-01-01

    Extensive malignant tumors of the hypopharynx and cervical esophagus continue to challenge surgeons in respect to both type and extent of resection as well as type of reconstruction. In the period between November 1st, 1996 and November 1st, 1998, at our Department, five patients have been operated due to squamocellular carcinoma of the hypopharynx using a free jejunal graft reconstruction method. The first free jejunal graft operation due to hypopharyngeal carcinoma, at the same time the first operation of this kind ever done in our Country, was performed on November 13th, 1998. There were 4 female and one male patient, average age 47.75 years. Disfagia for solid foods was a leading symptom in all patients (mean duration of 3.5 months) and was always accompanied with weight loss (average of 8 kg for two months). In all patients barium swallow, endoscopy, CT as well as intraoperative endoscopy was performed. Radical surgical procedure was always accompanied with the bilateral modified lympf node neck dissection. As a arterial donor vessel superior thyroid artery was used in all patients. As a venous drainage in three patients a external jugular vein was used and in two facial vein. Reconstruction using a free jejunal graft of approximately 25 cm long was performed in all patients creating upper, oropharingeal, anastomosis end to side and distal, esophageal, end to end (in only one patients side to end) using 3/0 apsorbable sutures. Mean duration of the operation was six hours. The postoperative course in all patients was uneventful. On the 9th postoperative day gastrografin and three days later barium swallow radiography was performed as a standard control study. Regular check ups were done on three, six, nine months, year and two years. On all controls all patients were symptom free and feeling well. It is our opinion that in the patients with isolated carcinoma of the hypopharynx due to low morbidity and mortality rate, free jejunal graft method is the surgical

  7. Outcomes for jejunal interposition reconstruction compared with Roux-en-Y anastomosis: A meta-analysis.

    PubMed

    Fan, Kai-Xi; Xu, Zhong-Fa; Wang, Mei-Rong; Li, Dao-Tang; Yang, Xiang-Shan; Guo, Jing

    2015-03-14

    To compare the clinical outcomes between jejunal interposition reconstruction and Roux-en-Y anastomosis after total gastrostomy in patients with gastric cancer. A systematic literature search was conducted by two independent researchers on PubMed, EMBASE, the Cochrane Library, Google Scholar, and other English literature databases, as well as the Chinese Academic Journal, Chinese Biomedical Literature Database, and other Chinese literature databases using "Gastrostomy", "Roux-en-Y", and "Interposition" as keywords. Data extraction and verification were performed on the literature included in this study. RevMan 5.2 software was used for data processing. A fixed-effects model was applied in the absence of heterogeneity between studies. A random effects model was applied in the presence of heterogeneity between studies. Ten studies with a total of 762 gastric cancer patients who underwent total gastrostomy were included in this study. Among them, 357 received jejunal interposition reconstruction after total gastrostomy, and 405 received Roux-en-Y anastomosis. Compared with Roux-en-Y anastomosis, jejunal interposition reconstruction significantly decreased the incidence of dumping syndrome (OR = 0.18, 95%CI: 0.10-0.31; P < 0.001), increased the prognostic nutritional index [weighted mean difference (WMD) = 6.02, 95%CI: 1.82-10.22; P < 0.001], and improved the degree of postoperative weight loss [WMD = 2.47, 95%CI: -3.19-(-1.75); P < 0.001]. However, there is no statistically significant difference in operative time, hospital stay, or incidence of reflux esophagitis. Compared with Roux-en-Y anastomosis, patients who underwent jejunal interposition reconstruction after total gastrostomy had a lower risk of postoperative long-term complications and improved life quality.

  8. Preoperative determination of appropriate cutting line for proximal gastrectomy to avoid postoperative jejunal ulcer.

    PubMed

    Takahashi, Naoto; Kashimura, Hirotaka; Nimura, Hiroshi; Watanabe, Atsushi; Yano, Kentaro; Aoki, Hiroaki; Koyama, Tomoki; Sasaki, Toshiyuki; Shida, Atsuo; Mitsumori, Norio; Aoki, Teruaki; Kashiwagi, Hideyuki; Yanaga, Katsuhiko

    2012-01-01

    Although proximal gastrectomy has become a procedure of choice for patients' early cancer in the upper third of stomach, no clinical guide for optimal gastric resection in order to avoid postoperative jejunal ulcer is available. The aim of this study was to investigate whether determining the distribution of parietal and chief cells of the stomach using Congo red test is clinically relevant. The F-line was defined as a boundary line between fundic and intermediate area of the stomach according to the pathological findings in 29 patients who underwent total gastrectomy for early gastric cancer, whereas the f-line was regarded as a boundary line between intermediate and pyloric area. In the additional 6 patients undergoing vagus-preserving proximal gastrectomy with jejunal pouch interposition, endoscopic Congo red test was preoperatively performed to determine the F-f-line. The distances from the pyloric ring to f-line on the lesser and greater curvatures were variable. Long-term outcomes of proximal gastrectomy guided by preoperative endoscopic Congo red test were favorable. It is suggested that preoperative endoscopic Congo red test is useful to determine the appropriate cutting line in order to avoid postoperative jejunal ulcer after proximal gastrectomy.

  9. Jejunal perforation due to porcupine quill ingestion in a horse

    PubMed Central

    Anderson, Stacy L.; Panizzi, Luca; Bracamonte, Jose

    2014-01-01

    An 8-month-old Andalusian filly was treated for jejunal perforations due to ingestion of a porcupine quill. During exploratory laparotomy, 2 separate stapled side-to-side jejunojejunal resection and anastomoses were performed. Post-operative complications after 2 years follow-up included mild incisional herniation following incisional infection and chronic intermittent colic. PMID:24489394

  10. PAR-2-mediated control of barrier function and motility differs between early and late phases of postinfectious gut dysfunction in the rat.

    PubMed

    Fernández-Blanco, Joan Antoni; Fernández-Blanco, Juan A; Hollenberg, Morley D; Martínez, Vicente; Vergara, Patri

    2013-02-15

    Proteinase-activated receptor-2 (PAR-2) and mast cell (MC) mediators contribute to inflammatory and functional gastrointestinal disorders. We aimed to characterize jejunal PAR-2-mediated responses and the potential MC involvement in the early and late phases of a rat model of postinfectious gut dysfunction. Jejunal tissues of control and Trichinella spiralis-infected (14 and 30 days postinfection) rats, treated or not with the MC stabilizer, ketotifen, were used. Histopathology and immunostaining were used to characterize inflammation, PAR-2 expression, and mucosal and connective tissue MCs. Epithelial barrier function (hydroelectrolytic transport and permeability) and motility were assessed in vitro in basal conditions and after PAR-2 activation. Intestinal inflammation on day 14 postinfection (early phase) was significantly resolved by day 30 (late phase) although MC counts and epithelial permeability remained increased. PAR-2-mediated ion transport (Ussing chambers, in vitro) and epithelial surface PAR-2 expression were reduced in the early phase, with a trend toward normalization during the late phase. In control conditions, PAR-2 activation (organ bath) induced biphasic motor responses (relaxation followed by excitation). At 14 days postinfection, spontaneous contractility and PAR-2-mediated relaxations were enhanced; motor responses were normalized on day 30. Postinfectious changes in PAR-2 functions were not affected by ketotifen treatment. We concluded that, in the rat model of Trichinella spiralis infection, alterations of intestinal PAR-2 function and expression depend on the inflammatory phase considered. A lack of a ketotifen effect suggests no interplay between MCs and PAR-2-mediated motility and ion transport alterations. These observations question the role of MC mediators in PAR-2-modulating postinfectious gut dysfunction.

  11. Lanreotide inhibits human jejunal secretion induced by prostaglandin E1 in healthy volunteers.

    PubMed

    Sobhani, I; René, E; Ramdani, A; Bayod, F; Sabbagh, L C; Thomas, F; Mignon, M

    1996-02-01

    1. Somatostatin inhibits hormonal secretions in the gastrointestinal tract. Somatostatin analogues are used in the treatment of VIPome-related watery diarrhoea. In addition, more than 10% of patients with AIDS suffer from diarrhoea likely due to the increased intestinal secretion of water and ions. However, the direct effect of somatostatin on the flux of water and ions in the intestine has not been, so far, analyzed in vivo. The aim of the present study was to evaluate the effect of lanreotide, a somatostatin analogue, on the movements of water and ions in the jejunum in man. 2. Accordingly, 10 healthy volunteers (age 18-35 years, mean 27) and two patients with AIDS (26 and 33 years) suffering from water diarrhoea (> 800 ml day-1) underwent intestinal perfusion using a four lumen tube with proximal occluding balloon. The segment tested was 25 cm long. The jejunum was infused by an isotonic control saline solution containing polyethylene glycol (PEG) as nonabsorbable marker. Basal jejunal secretions were measured in all subjects. Prostaglandin E1 (PGE1) was administered intraluminally to stimulate jejunal secretion in healthy volunteers. The effect of intravenous lanreotide on the jejunal PGE1-induced secretions of water and electrolytes was analysed in healthy subjects and on the basal secretions in AIDS patients. Each period was analyzed on the basis of three (10 min) successive intestinal juice collections after 20-30 min equilibration time. The antisecretory effect of lanreotide was evaluated in each subject as the difference between fluxes compared to the control period. 3. In healthy volunteers, PGE1 induced secretion of H2O, Na+, K+ and Cl- in the jejunum and lanreotide reduced significantly PGE1-induced response. In both AIDS patients basal fluxes of water and ions were reduced by lanreotide in a dose-dependent manner. 4. Somatostatin can reduce stimulated-jejunal secretion of ions and water in normal subjects and may improve water diarrhoea in AIDS

  12. Laparoscopic duodenal-jejunal bypass for the treatment of duodenal obstruction caused by annular pancreas: description of a surgical technique.

    PubMed

    Zilberstein, Bruno; Sorbello, Mauricio P; Orso, Ivan R B; Cecconello, Ivan

    2011-04-01

    Annular pancreas is a rare congenital anomaly, which is only surgically treated in symptomatic cases. Surgical treatment consists of bypassing the duodenal transit by gastrojejunal or duodenal-jejunal anastomosis. In the absolute majority of published cases, laparotomy is the most widely used access technique. The aim of this article is to report a case of an annular pancreas and describe the technical steps involved in carrying out a laparoscopic duodenal-jejunal anastomosis, for correction of the duodenal obstruction. The patient's recovery was uneventful; she was discharged on the fourth postoperative day and remained asymptomatic for the 2-year, outpatient follow-up period. Laparoscopic duodenal-jejunal bypass is shown to be feasible and safe, and produce less surgical trauma, when carried out by an experienced surgeon who is duly trained and familiar with the laparoscopic technique.

  13. Effects of spaceflight on the proliferation of jejunal mucosal cells

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Moeller, C. L.; Sawyer, Heywood R.; Smirnov, K. L.

    1991-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  14. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin.

    PubMed

    McVey Neufeld, K A; Perez-Burgos, A; Mao, Y K; Bienenstock, J; Kunze, W A

    2015-05-01

    The microbiome is essential for normal myenteric intrinsic primary afferent neuron (IPAN) excitability. These neurons control gut motility and modulate gut-brain signaling by exciting extrinsic afferent fibers innervating the enteric nervous system via an IPAN to extrinsic fiber sensory synapse. We investigated effects of germ-free (GF) status and conventionalization on extrinsic sensory fiber discharge in the mesenteric nerve bundle and IPAN electrophysiology, and compared these findings with those from specific pathogen-free (SPF) mice. As we have previously shown that the IPAN calcium-dependent slow afterhyperpolarization (sAHP) is enhanced in GF mice, we also examined the expression of the calcium-binding protein calbindin in these neurons in these different animal groups. IPAN sAHP and mesenteric nerve multiunit discharge were recorded using ex vivo jejunal gut segments from SPF, GF, or conventionalized (CONV) mice. IPANs were excited by adding 5 μM TRAM-34 to the serosal superfusate. We probed for calbindin expression using immunohistochemical techniques. SPF mice had a 21% increase in mesenteric nerve multiunit firing rate and CONV mice a 41% increase when IPANs were excited by TRAM-34. For GF mice, this increase was barely detectable (2%). TRAM-34 changed sAHP area under the curve by -77 for SPF, +3 for GF, or -54% for CONV animals. Calbindin-immunopositive neurons per myenteric ganglion were 36% in SPF, 24% in GF, and 52% in CONV animals. The intact microbiome is essential for normal intrinsic and extrinsic nerve function and gut-brain signaling. © 2015 John Wiley & Sons Ltd.

  15. "Syndrome in syndrome": Wernicke syndrome due to afferent loop syndrome. Case report and review of the literature.

    PubMed

    D'Abbicco, D; Praino, S; Amoruso, M; Notarnicola, A; Margari, A

    2011-01-01

    Wernicke syndrome is a rare neurological pathology due to a deficit in vitamin B1. The syndrome is common among alcohol abusers, patients with malignant tumor or gastrointestinal diseases, those who undergo hemodialysis or long-term peritoneal dialysis, pregnant women with hyperemesis, women who breast-feed, patients with hyperthyroidism or anorexia nervosa or gastric or jejunal-ileal bypass surgery for obesity, patients submitted to gastric surgery or prolonged total parenteral nutrition or prolonged intravenous therapy. We report a case of Wernicke syndrome due to afferent loop syndrome characterized by incoercible vomiting.

  16. Further characterisation of the 'ileal brake' reflex in man--effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide YY.

    PubMed Central

    Spiller, R C; Trotman, I F; Adrian, T E; Bloom, S R; Misiewicz, J J; Silk, D B

    1988-01-01

    Previous studies have shown that ileal infusion of partially digested triglyceride inhibits jejunal motility. The partial digest used in those studies contained a mixture of glycerol, free fatty acid, mono-, di-, and triglycerides. In Part I of the present study we have separately infused emulsions containing either glycerol 3.1 g (n = 6), oleic acid 9.6 g (n = 6), triolein 10 g (n = 12), or medium chain triglycerides 10 g (n = 6) into the ileum and have recorded the effect this has on jejunal motility. Five further subjects received infusions of partial hydrolysates of corn starch 10 g and lactalbumin 7 g. Marked inhibition of jejunal pressure wave activity was seen after all three lipid infusions, per cent activity falling from a control of 37.7 (7.7) to 6.2 (2.1) and 22.4 (8.2)% 30 min after completing the oleic acid and triolein infusions respectively, and from a control value of 39.5 (4.1) to 17.7 (4.7) after MCTs (all p less than 0.05). No significant fall occurred after infusion of glycerol, protein or carbohydrate. All three lipid infusions raised plasma concentrations of neurotensin, enteroglucagon and peptide YY equally effectively, although only the rise in peptide YY correlated significantly with the inhibition of jejunal pressure wave activity (r = 0.80, n = 6, p less than 0.05). In Part II of this study six subjects received a 3 ml/min jejunal infusion of an isotonic carbohydrate saline solution followed after three hours by a similar infusion of a partial digest of lipid. During each infusion flow and transit time was measured by marker and dye dilution. Jejunal infusion of the carbohydrate-saline solution was associated with low jejunal flow, 4.7 (1.0) ml/min and a mean transit time through the 50 cm study segment of 36.5 (7.1) min. By contrast jejunal infusion of partially digested triglyceride was associated with a markedly increased flow, 9.0 (1.2) ml/min, a fall in mean transit time to 20.3 (2.6) min and significant rises in pancreaticobiliary

  17. HIV enteropathy: crypt stem and transit cell hyperproliferation induces villous atrophy in HIV/Microsporidia-infected jejunal mucosa.

    PubMed

    Batman, Philip A; Kotler, Donald P; Kapembwa, Moses S; Booth, Dawn; Potten, Christopher S; Orenstein, Jan M; Scally, Andrew J; Griffin, George E

    2007-02-19

    The study aim was to analyse the kinetics of stem and transit cells in the crypts of jejunal mucosa infected with HIV and Microsporidia. The size of villi, depth of crypts and proliferative activity of transit and stem cells in jejunal mucosa were measured using morphometric techniques. The surface area/volume ratio (S/V) of jejunal biopsies was estimated under light microscopy using a Weibel graticule. Crypt length was measured by counting enterocytes along the crypt side from the base to the villus junction, and the mean crypt length was calculated. The S/V and crypt lengths of the jejunal mucosa of 21 HIV and Microsporidia-infected test cases were compared with 14 control cases. The labelling index in relation to the crypt cell position of 10 of the test cases was analysed compared with 13 control cases. Differences were found in the S/V and crypt length, and there was a negative correlation between S/V and crypt length in test and control cases combined. Cell labelling indices fell into low and high proliferation groups. There were significant differences in labelling indices between low proliferation test cases and controls, between high proliferation test cases and controls, and between high and low proliferation test cases. Villous atrophy induced by HIV and Microsporidia is attributed to crypt cell hyperplasia and the encroachment of crypt cells onto villi. These infections induce crypt hypertrophy by stimulating cell mitosis predominantly in transit cells but also in stem cells. Increased stem cell proliferation occurs only in high proliferation cases.

  18. Proteomic analysis of protein interactions between Eimeria maxima sporozoites and chicken jejunal epithelial cells by shotgun LC-MS/MS.

    PubMed

    Huang, Jingwei; Liu, Tingqi; Li, Ke; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2018-04-04

    Eimeria maxima initiates infection by invading the jejunal epithelial cells of chicken. However, the proteins involved in invasion remain unknown. The research of the molecules that participate in the interactions between E. maxima sporozoites and host target cells will fill a gap in our understanding of the invasion system of this parasitic pathogen. In the present study, chicken jejunal epithelial cells were isolated and cultured in vitro. Western blot was employed to analyze the soluble proteins of E. maxima sporozoites that bound to chicken jejunal epithelial cells. Co-immunoprecipitation (co-IP) assay was used to separate the E. maxima proteins that bound to chicken jejunal epithelial cells. Shotgun LC-MS/MS technique was used for proteomics identification and Gene Ontology was employed for the bioinformatics analysis. The results of Western blot analysis showed that four proteins bands from jejunal epithelial cells co-cultured with soluble proteins of E. maxima sporozoites were recognized by the positive sera, with molecular weights of 70, 90, 95 and 130 kDa. The co-IP dilutions were analyzed by shotgun LC-MS/MS. A total of 204 proteins were identified in the E. maxima protein database using the MASCOT search engine. Thirty-five proteins including microneme protein 3 and 7 had more than two unique peptide counts and were annotated using Gene Ontology for molecular function, biological process and cellular localization. The results revealed that of the 35 annotated peptides, 22 (62.86%) were associated with binding activity and 15 (42.86%) were involved in catalytic activity. Our findings provide an insight into the interaction between E. maxima and the corresponding host cells and it is important for the understanding of molecular mechanisms underlying E. maxima invasion.

  19. Impaired gut contractility following hemorrhagic shock is accompaied by IL-6 and G-CSF production and neutrophil infiltration.

    PubMed

    Hierholzer, C; Kalff, J C; Chakraborty, A; Watkins, S C; Billiar, T R; Bauer, A J; Tweardy, D J

    2001-02-01

    Recovery from hemorrhagic shock (HS) is frequently accompanied by bowel stasis. The aim of this study was to examine whether or not HS initiates an inflammatory response that includes production of cytokines, specifically G-CSF and interleukin-6 (IL-6), and recruitment of leukocytes within the intestinal muscularis which contribute to impaired muscle contractility. Sprague-Dawley rats were subjected to HS (MAP 40 mm Hg for 156 min) followed by resuscitation, and then they were killed at 4 hr. Shock animals demonstrated accumulation of PMNs in the jejunal muscularis and decreased spontaneous and bethanechol-stimulated muscle contractility. Semiquantitative RT-PCR demonstrated elevated levels of IL-6 and G-CSF mRNA in shock animals in full-thickness jejunum and in mucosa and muscularis layers compared to sham controls. Immunostaining demonstrated increased IL-6 protein production within the muscularis externa and submucosa. In situ hybridization studies localized G-CSF mRNA production to the submucosa. Gel shift assays revealed increased NF-kappaB and Stat3 activity in full-thickness jejunum and jejunal layers of shock animals. Activation of Stat3 also was demonstrated in normal muscularis tissue exposed to IL-6 and G-CSF in vitro. IL-6 and G-CSF are produced in the muscularis and mucosa layers of the gut in HS where they may contribute to PMN recruitment and smooth muscle dysfunction.

  20. Jejunal enteropathy associated with human immunodeficiency virus infection: quantitative histology.

    PubMed Central

    Batman, P A; Miller, A R; Forster, S M; Harris, J R; Pinching, A J; Griffin, G E

    1989-01-01

    Jejunal biopsy specimens from 20 human immunodeficiency virus (HIV) positive male homosexual patients were analysed and compared with those of a control group to determine whether the abnormalities were caused by the virus or by opportunistic infection. The degree of villous atrophy was estimated with a Weibel eyepiece graticule, and this correlated strongly with the degree of crypt hyperplasia, which was assessed by deriving the mean number of enterocytes in the crypts. The density of villous intraepithelial lymphocytes fell largely within the normal range, either when expressed in relation to the number of villous enterocytes or in relation to the length of muscularis mucosae. Villous enterocytes showed mild non-specific abnormalities. Pathogens were sought in biopsy sections and in faeces. Crypt hyperplastic villous atrophy occurred at all clinical stages of HIV disease and in the absence of detectable enteropathogens. An analogy was drawn between HIV enteropathy and the small bowel changes seen in experimental graft-versus-host disease. It is suggested that the pathogenesis of villous atrophy is similar in the two states, the damage to the jejunal mucosa in HIV enteropathy being inflicted by an immune reaction mounted in the lamina propria against cells infected with HIV. Images Fig 1 Fig 2 PMID:2703544

  1. Hepatic artery reconstruction with the jejunal artery of the Roux-en-Y limb in pediatric living donor liver re-transplantation.

    PubMed

    Wakiya, T; Sanada, Y; Mizuta, K; Umehara, M; Urahashi, T; Egami, S; Hishikawa, S; Nakata, M; Hakamada, K; Yasuda, Y; Kawarasaki, H

    2012-05-01

    When re-anastomosis and re-transplantation becomes necessary after LDLT, arterial reconstruction can be extremely difficult because of severe inflammation and lack of an adequate artery for reconstruction. Frequently, the recipient's HA is not in good condition, necessitating an alternative to the HA. In such cases, the recipient's splenic artery, right gastroepiploic artery or another vessel can be safely used for arterial reconstruction. There have, however, been few reports on using the jejunal artery. Herein, we report our experience with arterial reconstruction using the jejunal artery of the Roux-en-Y limb as an alternative to the HA. A three-yr-old girl who had developed graft failure due to early HA thrombosis after LDLT required re-transplantation. At re-transplantation, an adequate artery for reconstruction was lacking. We reconstructed the artery by using the jejunal artery of the Roux-en-Y limb, as we judged it to be the most appropriate alternative. After surgery, stent was deployed because hepatic blood flow had reduced due to kinking of the anastomosed site, and a favorable outcome was obtained. In conclusion, when an alternative to the HA is required, using the jejunal artery is a feasible alternative. © 2010 John Wiley & Sons A/S.

  2. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis.

    PubMed

    Dinning, Phil G; Wiklendt, Lukasz; Omari, Taher; Arkwright, John W; Spencer, Nick J; Brookes, Simon J H; Costa, Marcello

    2014-01-01

    Propulsive contractions of circular muscle are largely responsible for the movements of content along the digestive tract. Mechanical and electrophysiological recordings of isolated colonic circular muscle have demonstrated that localized distension activates ascending and descending interneuronal pathways, evoking contraction orally and relaxation anally. These polarized enteric reflex pathways can theoretically be sequentially activated by the mechanical stimulation of the advancing contents. Here, we test the hypothesis that initiation and propagation of peristaltic contractions involves a neuromechanical loop; that is an initial gut distension activates local and oral reflex contraction and anal reflex relaxation, the subsequent movement of content then acts as new mechanical stimulus triggering sequentially reflex contractions/relaxations at each point of the gut resulting in a propulsive peristaltic contraction. In fluid filled isolated rabbit distal colon, we combined spatiotemporal mapping of gut diameter and intraluminal pressure with a new analytical method, allowing us to identify when and where active (neurally-driven) contraction or relaxation occurs. Our data indicate that gut dilation is associated with propagating peristaltic contractions, and that the associated level of dilation is greater than that preceding non-propagating contractions (2.7 ± 1.4 mm vs. 1.6 ± 1.2 mm; P < 0.0001). These propagating contractions lead to the formation of boluses that are propelled by oral active neurally driven contractions. The propelled boluses also activate neurally driven anal relaxations, in a diameter dependent manner. These data support the hypothesis that neural peristalsis is the consequence of the activation of a functional loop involving mechanical dilation which activates polarized enteric circuits. These produce propulsion of the bolus which activates further anally, polarized enteric circuits by distension, thus closing the neuromechanical loop.

  3. The influence of dibutyryl adenosine cyclic monophosphate on cell proliferation in the epithelium of the jejunal crypts, the colonic crypts and in colonic carcinomata of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1980-01-01

    1. Cell proliferation in the jejunal crypts, the colonic crypts and in dimethylhydrazine (DMH)-induced adenocarcinomata of rat colon was measured using a stathmokinetic technique. 2. Dibutryl cyclic adneosine monophosphate (dibutyryl cAMP) was found to inhibit cell proliferation in colonic crypts and in colonic adenocarcinomata. 3. Dibutryl cAMP at very high doses was found to inhibit jejunal crypt cell proliferation but at lower doses was found to accelerate jejunal crypt cell proliferation. 4. Neither bilateral adrenalectomy nor chemical sympathectomy was found to abolish the ability of dibutryl cAMP to stimulate jejunal crypt cell proliferation. 5. The present results are difficult to interpret in terms of known hormonal influences on cell proliferation in the tissues examined and of established actions, of these hormones on cyclic nucleotide metabolism in other tissues.

  4. Dietary glutamine and oral antibiotics each improve indexes of gut barrier function in rat short bowel syndrome.

    PubMed

    Tian, Junqiang; Hao, Li; Chandra, Prakash; Jones, Dean P; Willams, Ifor R; Gewirtz, Andrew T; Ziegler, Thomas R

    2009-02-01

    Short bowel syndrome (SBS) is associated with gut barrier dysfunction. We examined effects of dietary glutamine (GLN) or oral antibiotics (ABX) on indexes of gut barrier function in a rat model of SBS. Adult rats underwent a 60% distal small bowel + proximal colonic resection (RX) or bowel transection (TX; control). Rats were pair fed diets with or without l-GLN for 20 days after operation. Oral ABX (neomycin, metronidazole, and polymyxin B) were given in some RX rats fed control diet. Stool secretory immunoglobulin A (sIgA) was measured serially. On day 21, mesenteric lymph nodes (MLN) were cultured for gram-negative bacteria. IgA-positive plasma cells in jejunum, stool levels of flagellin- and lipopolysaccharide (LPS)-specific sIgA, and serum total, anti-flagellin- and anti-LPS IgG levels were determined. RX caused gram-negative bacterial translocation to MLN, increased serum total and anti-LPS IgG and increased stool total sIgA. After RX, dietary GLN tended to blunt bacterial translocation to MLN (-29%, P = NS) and significantly decreased anti-LPS IgG levels in serum, increased both stool and jejunal mucosal sIgA and increased stool anti-LPS-specific IgA. Oral ABX eliminated RX-induced bacterial translocation, significantly decreased total and anti-LPS IgG levels in serum, significantly decreased stool total IgA and increased stool LPS-specific IgA. Partial small bowel-colonic resection in rats is associated with gram-negative bacterial translocation from the gut and a concomitant adaptive immune response to LPS. These indexes of gut barrier dysfunction are ameliorated or blunted by administration of dietary GLN or oral ABX, respectively. Dietary GLN upregulates small bowel sIgA in this model.

  5. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    NASA Astrophysics Data System (ADS)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  6. Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers

    PubMed Central

    2015-01-01

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [14C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery. PMID:24992090

  7. Transepithelial transport of PAMAM dendrimers across isolated rat jejunal mucosae in ussing chambers.

    PubMed

    Hubbard, Dallin; Ghandehari, Hamidreza; Brayden, David J

    2014-08-11

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [(14)C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery.

  8. Further studies on the effect of adenosine cyclic monophosphate derivatives on cell proliferation in the jejunal crypts of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    1. Cell proliferation in the jejunal crypt epithelium of rat was measured using a stathmokinetic technique. 2. Sodium butyrate was found to promote jejunal crypt cell proliferation. 3. N6, O2'-Dibutyryl cyclic adenosine monophosphate (cAMP), N6-monobutyryl-cAMP and N6-monobutyryl-8-bromo-cAMP were found to inhibit cell proliferation when compared to sodium butyrate treated tissues. 4. 8-Chlorophenylthio-cAMP was found to inhibit cell division when compared to untreated animals. 5. O2'-Monobutyryl cAMP and 8-bromo-cAMP were not found to inhibit cell proliferation.

  9. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats.

    PubMed

    Lai, Sarah W; de Heuvel, Elaine; Wallace, Laurie E; Hartmann, Bolette; Holst, Jens J; Brindle, Mary E; Chelikani, Prasanth K; Sigalet, David L

    2017-01-01

    To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats. GLP-2 is a gut hormone known to be trophic for small bowel mucosa, and to mimic intestinal adaptation in short bowel syndrome (SBS). However, the effects of exogenous GLP-2 and SBS on enteric neurons are unclear. Sprague Dawley rats were randomized to four treatments: Transected Bowel (TB) (n = 8), TB + GLP-2 (2.5 nmol/kg/h, n = 8), SBS (n = 5), or SBS + GLP-2 (2.5 nmol/kg/h, n = 9). SBS groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis. All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5) and GLP-2 receptor mRNA, whole mount immunohistochemistry for neurons (HuC/D, VIP, nNOS), plasma glucose, gut hormones, and body composition. Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal muscularis propria thickness and crypt cell proliferation, which were not recapitulated by GLP-2 therapy. Exogenous GLP-2 increased jejunal mucosal surface area without affecting enteric VIP or nNOS neuronal immunopositivity, attenuated resection-induced reductions in jejunal hexose transporter abundance (SGLT-1, GLUT-2), increased plasma amylin and decreased peptide YY concentrations. Exogenous GLP-2 attenuated resection-induced increases in blood glucose and body fat loss. Exogenous GLP-2 stimulates jejunal adaptation independent of enteric neuronal VIP or nNOS changes, and has divergent effects on plasma amylin and peptide YY concentrations. The novel ability of exogenous GLP-2 to modulate resection-induced changes in peripheral glucose and lipid reserves may be important in understanding the whole-body response following intestinal resection, and is worthy of further study.

  10. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs.

    PubMed

    Williams, Andrew R; Krych, Lukasz; Fauzan Ahmad, Hajar; Nejsum, Peter; Skovgaard, Kerstin; Nielsen, Dennis S; Thamsborg, Stig M

    2017-01-01

    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.

  11. A case of incisional hernia repair using Composix mesh prosthesis after antethoracic pedicled jejunal flap reconstruction following an esophagectomy.

    PubMed

    Yasuda, Atsushi; Yasuda, Takushi; Kato, Hiroaki; Iwama, Mitsuru; Shiraishi, Osamu; Hiraki, Yoko; Tanaka, Yumiko; Shinkai, Masayuki; Imano, Motohiro; Kimura, Yutaka; Imamoto, Haruhiko

    2017-12-01

    An incisional hernia in a case of antethoracic pedicled jejunal flap esophageal reconstruction after esophagectomy is a very rare occurrence, and this hernia was distinctive in that the reconstructed jejunum had passed through the hernial orifice; a standard surgical treatment for such a presentation has not been established. Herein, we describe a case of repair using mesh prosthesis for an atypical and distinctive incisional hernia after antethoracic pedicled jejunal flap esophageal reconstruction. A 77-year-old woman with a history of subtotal esophagectomy who had undergone antethoracic pedicled jejunal flap reconstruction complained of epigastric prominence and discomfort without pain. On examination, she had an abdominal protrusion between the xiphoid process and the umbilicus that contained the small bowel. Computed tomography showed that the fenestration of the abdominal wall that was intentionally created for jejunum pull-up was dehisced in a region measuring 9 × 15 cm and the small intestine protruded through it into the subcutaneous space without strangulation. Because the hernial orifice was too large and the reconstructed jejunum was passing through the hernial orifice in this case, we applied a parastomal hernia repair method that was modified from the inguinal hernia repair using the Lichtenstein technique. After 3 years and 5 months following surgery, the patient has recovered without hernia recurrence or other complications. We consider this to be the first case of repair using Composix mesh prosthesis for repair of an atypical and distinctive incisional hernia after an antethoracic pedicled jejunal flap reconstruction. This method seems to be useful and could potentially be widely adopted as the surgical treatment for this condition.

  12. Jejunal diverticulitis in a healthy 91-year-old man.

    PubMed

    Kagolanu, Deepthi Chaitanya; Subhani, Miral; Novick, Daniel; Rizvon, Kaleem

    2018-05-30

    A 91-year-old African American man was admitted with sudden onset diffuse abdominal pain which radiated to the right flank. CT of the abdomen with contrast showed diverticula in the jejunum with adjacent inflammation and microperforation that was contained. Conservative therapy similar to colonic diverticulitis was effective. Although rare, our case highlights the importance of having an early and high suspicion for jejunal diverticulitis when patients present with non-specific abdominal symptoms in order to avoid perforation. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. “A New Reconstructive Method after Pancreaticoduodenectomy: the Triple Roux on a “P” Loop. Rationale and Radionuclide Scanning Evaluatlon.”

    PubMed Central

    Cariati, Erminio

    1996-01-01

    We propose a method of reconstruction after pancreaticoduodenectomy consisting of a double Roux en Y on the same jejunal loop without interruption of the mesentery and a third anatomical Roux en Y to reconstitute the alimentary tract. The construction of the double Roux en Y draining pancreas and bile ducts separately, requires a linear Stapler 3-4 centimeters from the biliary anastomosis. In this way, by employing the same loop without mesenteric interruption, two functional excluded loops will be ’obtained. The rationale of the suggested model is based on the separation of biliary and pancreatic secretions. This makes it possible to avoid a stagnant cul-de-sac coinciding with the pancreaticojejunal anastomosis and to obtain in the case of leakage, a pure biliary and/or pancreatic fistula as far as is possible. 99mTc HIDA scans demonstrated the efficiency, of the biliopancreatic limbs of the reconstruction, showing normal emptying time for the gastric remnant and the absence of radionuclide stagnation or any alkaline enterogastric reflux. PMID:8809583

  14. Caco-2 cells - expression, regulation and function of drug transporters compared with human jejunal tissue.

    PubMed

    Brück, S; Strohmeier, J; Busch, D; Drozdzik, M; Oswald, S

    2017-03-01

    Induction or inhibition of drug transporting proteins by concomitantly administered drugs can cause serious drug-drug interactions (DDIs). However, in vitro assays currently available are mostly for studying the inhibitory potential of drugs on intestinal transporter proteins, rather than induction. Therefore, this study investigated the suitability of the frequently used intestinal Caco-2 cell line to predict transporter-mediated DDIs as caused by induction via activation of nuclear receptors. TaqMan® low density arrays and LC-MS/MS based targeted proteomics were used to evaluate transporter expression in Caco-2 cells in comparison with jejunal tissue, in culture-time dependence studies and after incubation with different known inducers of drug metabolism and transport. Additionally, studies on ABCB1 function were performed using Transwell® assays with [ 3 H]-digoxin and [ 3 H]-talinolol as substrates after incubation with the prototypical inducers rifampicin, St John's wort, carbamazepine and efavirenz. The gene and protein expression pattern of drug transporters in Caco-2 cells and jejunal tissue differed considerably. For some transporters culture-time dependent differences in mRNA expression and/or protein abundance could be determined. Finally, none of the studied prototypical inducers showed an effect either on mRNA expression and protein abundance or on the function of ABCB1. Differences in transporter expression in Caco-2 cells compared with jejunal tissue, as well as expression dependence on culture time must be considered in in vitro studies to avoid under- or overestimation of certain transporters. The Caco-2 cell model is not suitable for the evaluation of DDIs caused by transporter induction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs.

    PubMed

    Xiao, Yingping; Kong, Fanli; Xiang, Yun; Zhou, Weidong; Wang, Junjun; Yang, Hua; Zhang, Guolong; Zhao, Jiangchao

    2018-04-13

    The intestinal microbiome is critically important in shaping a variety of host physiological responses. However, it remains elusive on how gut microbiota impacts overall growth and more specifically, adipogenesis. Using the pig as an animal model, we compared the differences in bacterial community structure throughout the intestinal tract in two breeds (Landrace and Jinhua) of pigs with distinct phenotypes. The Landrace is a commercial purebred and the Jinhua is a Chinese indigenous, slow-growing breed with high propensity for fat deposition. Using 16S rRNA gene sequencing, we revealed that the bacterial communities are more diverse in the duodenum, jejunum, and cecum of Jinhua pigs than in those of Landrace pigs, whereas the ileal and colonic microbiota show a similar complexity between the two breeds. Furthermore, a number of bacterial taxa differentially exist in Jinhua and Landrace pigs throughout the entire intestinal tract, with the jejunal and ileal microbiome showing the greatest contrast. Functional prediction of the bacterial community suggested increased fatty acid biosynthesis in Jinghua pigs, which could partially explain their adiposity phenotype. Further studies are warranted to experimentally verify the relative contribution of each enriched bacterial species and their effect on adipogenesis and animal growth.

  16. Transmissible Gastroenteritis in Feeder Pigs: Observations on the Jejunal Epithelium of Normal Feeder Pigs and Feeder Pigs Infected with TGE Virus

    PubMed Central

    Morin, M.; Morehouse, L. G.

    1974-01-01

    Light and electron microscopy findings in the jejunal mucosa of the normal feeder pig and feeder pigs infected with transmissible gastroenteritis (TGE) virus are reported. Villi in the mid jejunum of the normal feeder pig were elongated, finger shaped and covered with a layer of columnar absorptive cells with a well developed and regular brush border. Severe lesions of villous atrophy were present in all jejunal segments of feeder swine killed 96 hours post infection with TGE virus. Atrophic villi were covered by flat to cuboidal cells with a poorly developed brush border in some areas. In other segments, cells varied in appearance from sub-columnar to columnar type of near normal appearance. The ultrastructure of the jejunal absorptive cells in the normal feeder pig was found to be similar to that described for the jejunal cells of other adult mammals. There were no significant indications of high pinocytotic activity. The epithelial cells covering the atrophic villi of TGE infected pigs had a fine structure similar to that described for the crypt cells, ranging in appearance from very immature to moderately differentiated cells. Microvilli were very short, decreased markedly in number and irregular in arrangement. The terminal web was poorly developed. Strands of rough endoplasmic reticulum were markedly diminished and an increase in free ribosomes was noted. The significance of these observations in explaining pathogenesis of TGE in feeder pigs is discussed. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8. PMID:4277743

  17. Emergency arterial embolization of upper gastrointestinal and jejunal tumors: An analysis of 12 patients with severe bleeding.

    PubMed

    Zandrino, F; Tettoni, S M; Gallesio, I; Summa, M

    2017-01-01

    The goal of this study was to retrospectively assess the efficacy of emergency percutaneous transcatheter arterial embolization in patients with severe bleeding due to upper gastrointestinal or jejunal tumor. Twelve patients (7 men, 5 women; mean age, 74 years±14 (SD); range: 54-86 years) with severe bleeding from the upper gastrointestinal tract, with failed endoscopic treatment not eligible for emergency surgery were treated by emergency percutaneous transcatheter arterial embolization. The bleeding cause was gastric tumor in 7 patients, duodenal tumor in 4 patients and jejunal tumor in one patient. Procedure details and follow-up were reviewed. Twelve embolization procedures were performed using various embolic agents. Embolization was achieved and bleeding was stopped in all patients. Five patients underwent surgery within the 30 days following embolization. In the remaining 7 patients, no bleeding occurred at 1 month follow-up in 6 patients and bleeding recurred in one patient at 1 month. In this later patient, endoscopic treatment was successful. The results of our study suggest that transcatheter arterial embolization is safe and effective in patients with severe arterial bleeding due to upper gastrointestinal or jejunal tumor. In some patients, transcatheter arterial embolization can be used as a bridge to surgery. Copyright © 2016 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  18. Interposition of a reversed jejunal segment enhances intestinal adaptation in short bowel syndrome: an experimental study on pigs.

    PubMed

    Digalakis, Michail; Papamichail, Michail; Glava, Chryssoula; Grammatoglou, Xanthippi; Sergentanis, Theodoros N; Papalois, Apostolos; Bramis, John

    2011-12-01

    Interposition of a reversed intestinal segment as a factor facilitating intestinal adaptation has been experimentally investigated. Controversy exists about its efficacy in terms of body weight improvement, direction of luminal changes, and underlying mechanisms. This study aims to provide a comprehensive approach. The pigs were randomly allocated to two groups: (1) short bowel (SB) group (n=8) and (2) short bowel reverse jejunal segment (SB-RS) group (n=8). On postoperative d 3, 30, and 60, intestinal transit time was measured; body weight and serum albumin were measured on baseline, as well as on postoperative d 30 and 60. After sacrifice, histopathologic and immunohistochemical (PCNA, activated caspase-3) evaluation followed. Transit time was numerically longer in SB-RS group at all time points; the difference reached statistical significance on d 60. No statistically significant differences were observed concerning body weight or serum albumin. In the SB-RS group, a statistically significant increase in muscle thickness, crypt depth, villus height, and PCNA immunostaining, and a decrease in caspase-3 positive (+) cell count were documented both at the jejunal and ileal level. The reversed jejunal segment seemed able to enhance intestinal adaptation at a histopathologic level, as well as to favorably modify transit time. These putatively beneficial actions were not reflected upon body weight. The decrease in apoptosis was caspase-3-dependent. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  19. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  20. Jejunal permeability to water and electrolytes in patients with chronic intrahepatic hypertension: evidence for a role of aldosterone.

    PubMed Central

    Duclos, B; Bories, P; Mathieu-Daude, J C; Michel, H

    1991-01-01

    Acute prehepatic portal hypertension induces intestinal secretion in animal models. In the course of chronic liver disease, however, these changes are not observed, despite higher portal pressures than those found in experimental studies. Eight patients without diarrhoea and with chronic alcoholic liver disease were examined for evidence of increased jejunal secretion; their suprahepatic wedge pressure was raised from 21 to 45 mmHg (mean 34.6 mmHg). Jejunal perfusion with a triple lumen catheter and a proximal occluding balloon was used to study net flows of water and chloride as well as net and unidirectional flows of sodium and potassium. No statistical difference in intestinal flows of water and electrolytes was noted between cirrhotic patients and control subjects after infusion with a 30 mmol/l glucose solution. Infusion with a 30 mmol/l mannitol solution resulted in a lower absorption of water, Na, K, and Cl than with the glucose solution. A higher rate of Na secretion was observed in cirrhotic patients than control subjects after infusion with 30 mmol/l mannitol (p less than 0.01). In addition, the rate of Na secretion was higher in cirrhotic patients than in control subjects (p less than 0.05). There was no correlation between the net flow of Na and the suprahepatic wedge pressure. A second perfusion with a 30 mmol/l glucose solution was given 75 minutes after a bolus injection of spironolactone (400 mg). Net flows of Na and Cl were lower in cirrhotic patients than in control subjects (p less than 0.05) because of a lower absorption of Na. Patients with gradually developing portal hypertension have moderate jejunal secretions of H2O and electrolytes which we assume are partly masked by increased absorption resulting from hyperaldosteronism. In contrast to animal models, this mechanism may be part of the jejunal adaptation to permeability in acute portal hypertension. PMID:2060871

  1. Experiment K-7-17: Effects of Spaceflight on the Proliferation of Jejunal Mucosal Cells

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Moeller, C. L.; Sawyer, H. R.; Smirnov, K. L.

    1994-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  2. A novel surgical procedure of vagal nerve, lower esophageal sphincter, and pyloric sphincter-preserving nearly total gastrectomy reconstructed by single jejunal interposition, and postoperative quality of life.

    PubMed

    Tomita, Ryouichi

    2005-01-01

    For early gastric cancer total gastrectomy (TG) has so far been essentially unavoidable. We performed the nearly TG reconstructed by single jejunal interposition preservation of the vagal nerve, lower esophageal sphincter (LES) and pyloric sphincter (D1 or D2 lymph node dissection, curability A) as a function-preserving surgical technique (i.e. NTG) to improve postoperative quality of life (QOL). In this report, the application criteria and points of the technique are outlined. QOL in patients after NTG was also compared with those after TG. Sixteen subjects who underwent NTG (12 men and 4 women subjects at age 30 to 70 years, mean 55.6 years) were interviewed to inquire about abdominal symptoms and compared with 20 patients after conventional TG (excision with D2 lymph node, radical curability A) reconstructed by single jejunal interposition without preserving the vagal nerve, LES, and pyloric sphincter (i.e. TGI; 14 men and 6 women at age 26 to 70 years, mean 54.8 years). The former was named group A and the latter group B. Included were cases with early cancer localizing at the upper third and middle stomach, 2cm or further in distance from oral-side margin of the cancer to esophagogastric mucosal junction; and 3.5cm or further in distance from anal-side margin of the cancer to the pyloric sphincter. In excision with the lymph node, hepatic and celiac branches were preserved. To preserve LES, the abdominal esophagus was completely preserved. The pyloric antrum was also preserved at 1.5cm from the pyloric sphincter. The substitute stomach was created as a 30-cm-long single jejunal segment having orthodromic peristaltic movement. The operative procedure in group A significantly improved postoperative gastrointestinal symptoms such as appetite loss (p=0.0004), weight loss (p=0.0369), reflux esophagitis (RE) (p=0.0163), early dumping syndrome (p=0.0163), endoscopic RE (p=0.0311), and postgastrectomy cholecystolithiasis (p=0.0163) compared with group B. Oral intake

  3. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats

    PubMed Central

    de Heuvel, Elaine; Wallace, Laurie E.; Hartmann, Bolette; Holst, Jens J.; Brindle, Mary E.; Chelikani, Prasanth K.; Sigalet, David L.

    2017-01-01

    Objective To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats. Background GLP-2 is a gut hormone known to be trophic for small bowel mucosa, and to mimic intestinal adaptation in short bowel syndrome (SBS). However, the effects of exogenous GLP-2 and SBS on enteric neurons are unclear. Methods Sprague Dawley rats were randomized to four treatments: Transected Bowel (TB) (n = 8), TB + GLP-2 (2.5 nmol/kg/h, n = 8), SBS (n = 5), or SBS + GLP-2 (2.5 nmol/kg/h, n = 9). SBS groups underwent a 60% jejunoileal resection with cecectomy and jejunocolic anastomosis. All rats were maintained on parenteral nutrition for 7 d. Parameters measured included gut morphometry, qPCR for hexose transporter (SGLT-1, GLUT-2, GLUT-5) and GLP-2 receptor mRNA, whole mount immunohistochemistry for neurons (HuC/D, VIP, nNOS), plasma glucose, gut hormones, and body composition. Results Resection increased the proportion of nNOS immunopositive myenteric neurons, intestinal muscularis propria thickness and crypt cell proliferation, which were not recapitulated by GLP-2 therapy. Exogenous GLP-2 increased jejunal mucosal surface area without affecting enteric VIP or nNOS neuronal immunopositivity, attenuated resection-induced reductions in jejunal hexose transporter abundance (SGLT-1, GLUT-2), increased plasma amylin and decreased peptide YY concentrations. Exogenous GLP-2 attenuated resection-induced increases in blood glucose and body fat loss. Conclusions Exogenous GLP-2 stimulates jejunal adaptation independent of enteric neuronal VIP or nNOS changes, and has divergent effects on plasma amylin and peptide YY concentrations. The novel ability of exogenous GLP-2 to modulate resection-induced changes in peripheral glucose and lipid reserves may be important in understanding the whole-body response following intestinal resection, and is worthy

  4. Recurrent hemorrhaging from stomal ulcers following a side to side longitudinal pancreaticojejunostomy for chronic pancreatitis: report of a case.

    PubMed

    Isa, T; Muto, Y; Kurashita, K; Kusano, T; Matsumoto, M; Tomita, S

    2000-12-01

    Gastrointestinal (GI) hemorrhaging secondary to stomal ulcers following a pancreaticojejunostomy for chronic pancreatitis is a rare postoperative condition that has not hitherto been reported in the literature. A 25-yr-old Japanese female was referred to Ryukyu University Hospital with GI hemorrhaging of unknown origin. She had undergone a modified Puestow procedure (Partington procedure) for chronic pancreatitis with pancreatolithiasis and an associated dilatation of the main pancreatic duct at 19 yr of age. A technetium-99m blood-flow scan demonstrated the pooling of radionuclides in the area of the jejunal loop, which was highly suggestive of bleeding into the jejunum. Over the next day, she demonstrated persistent melena. At exploratory laparotomy, the anastomotic jejunal loop was filled with clotted blood. Operative endoscopy through an incision of the jejunal loop in close proximity to the anastomosis showed oozing blood from the anastomotic jejunal mucosa. Following a resection of the affected anastomotic segment of the jejunum, a side to side longitudinal pancreaticojejunostomy was again performed on this patient. The resected jejunum showed pathologically pseudopolyp-like edema, congestion, and an ulceration of the stomal mucosa. The patient showed a good postoperative course and has been doing well for the past 8 yr since reoperation.

  5. Urticaria due to polyethylene glycol-3350 and electrolytes for oral solution in a patient with jejunal nodular lymphoid hyperplasia.

    PubMed

    Zhang, Hongfeng; Henry, Winoah A; Chen, Lea Ann; Khashab, Mouen A

    2015-01-01

    Both jejunal nodular lymphoid hyperplasia (NLH) and polyethylene glycol (PEG)-3350 hypersensitivity are extremely rare. We describe a 30-year-old female who had previously taken a PEG-3350 bowel preparation without adverse effects, and presented for evaluation of chronic diarrhea. An upper and lower gastrointestinal endoscopy, and small bowel series were scheduled. PEG-3350 and electrolytes for oral solution was prescribed for bowel cleansing. During consumption of the bowel preparation she developed urticarial hypersensitivity. An alternative bowel preparation was used. Colonoscopy and upper endoscopy were normal, but small bowel series revealed innumerable sand-like lucencies in the jejunum. NLH was confirmed on biopsy from antegrade enteroscopy. This is the first case report on the pathological jejunal NLH in association with the PEG-3350 urticarial hypersensitivity. The potential pathophysiological etiology of this association is discussed.

  6. [Fungi in the gut - the gut mycobiome].

    PubMed

    Hof, Herbert

    2017-08-01

    Many different fungi, including yeasts and molds, can be found in the intestinal tract of humans constituting the gut mycobiome. In case the bacterial flora is altered, the fungal flora may react inversely. By a so-called fungal diet, however, the composition of the mycobiome can hardly be influenced. Whereas some fungi are only transiently present in the gut after oral uptake, others, such as Candida, Saccharomyces, Rhodotorula, Trichosporon, Geotrichum, amongst others, are members of the residential, autochthonous gut flora. Some of these fungi exert beneficial effects, for example by synthesizing useful materials. Rhodotorula can produce fatty acids and carotenoids. Others are able to metabolize toxic compounds, for example mycotoxins as well as procarcinogenic items in food. Toxins, as well as pathogenic bacteria, can be bound to mannans on the surface of fungi und can consequently be exported. Some fungi are said to exert probiotic activities. Certain fungal constituents, such as glucans, may even stimulate the immune system. On the other hand, some fungi cannot only colonize the gut asymptomatically but can also be noxious under certain conditions when, for example, the bacterial flora is disturbed. By means of their virulence factors, they can damage the gut epithelium and even penetrate into the Mukosa inducing inflammation, They can also aggravate chronic inflammatory processes. Fungi play a role in the development of obesity. Lastly, fungi in the gut represent a reservoir from which they may spread to other sites when the conditions are favorable. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Systemic and local gut-specific antibody responses in preruminant calves sensitive to soya.

    PubMed

    Lallès, J P; Dréau, D; Huet, A; Toullec, R

    1995-07-01

    The systemic and local (gut) patterns of antibodies against various proteins from soyabean were analysed in preruminant calves fed milk substitutes based on skim milk powder (SMP) or heated soyabean flour (HSF) as the main protein sources. The titres of IgM, IgA, IgG1 and IgG2 antibodies were determined against feed extracts and purified soyabean proteins by dot-blotting in plasma after three months and jejunal mucous secretions after six months of feeding the experimental diets. The calves fed HSF had higher levels of circulating IgA, IgG1 and IgG2 antibodies against raw or heated soya extracts and purified proteins including alpha-conglycinin, beta-conglycinin, Bowman-Birk protease inhibitors and lectins than the calves fed SMP. In contrast, the differences between the IgM titres of the groups were most often not significant. The patterns of specific antibodies present in the jejunum were broadly similar to those observed in the blood, although the differences between the groups of calves more often reached significance for IgG2 and IgM than for IgA and IgG1, when the purified soyabean proteins were considered.

  8. Duodenal and jejunal Dieulafoy’s lesions: optimal management

    PubMed Central

    Yılmaz, Tonguç Utku; Kozan, Ramazan

    2017-01-01

    Dieulafoy’s lesions (DLs) are rare and cause gastrointestinal bleeding resulting from erosion of dilated submucosal vessels. The most common location for DL is the stomach, followed by duodenum. There is little information about duodenal and jejunal DLs. Challenges for diagnosis and treatment of Dieulafoy’s lesions include the rare nature of the disease, asymptomatic patients, bleeding symptoms often requiring rapid diagnosis and treatment in symptomatic patients, variability in the diagnosis and treatment methods resulting from different lesion locations, and the risk of re-bleeding. For these reasons, there is no universal consensus about the diagnosis and treatment approach. There are few published case reports and case series recently published. Most duodenal DLs are not evaluated seperately in the studies, which makes it difficult to determine the optimal model. In this study, we summarize the general aspects and recent approaches used to treat duodenal DL. PMID:29158686

  9. Jejunal brush border microvillous alterations in Giardia muris-infected mice: role of T lymphocytes and interleukin-6.

    PubMed

    Scott, K G; Logan, M R; Klammer, G M; Teoh, D A; Buret, A G

    2000-06-01

    Intestinal colonization with the protozoan Giardia causes diffuse brush border microvillous alterations and disaccharidase deficiencies, which in turn are responsible for intestinal malabsorption and maldigestion. The role of T cells and/or cytokines in the pathogenesis of Giardia-induced microvillous injury remains unclear. The aim of this study was to assess the role of T cells and interleukin-6 (IL-6) in the brush border pathophysiology of acute murine giardiasis in vivo. Athymic nude (nu(-)/nu(-)) CD-1 mice and isogenic immunocompetent (nu(+)/nu(+)) CD-1 mice (4 weeks old) received an axenic Giardia muris trophozoite inoculum or vehicle (control) via orogastric gavage. Weight gain and food intake were assessed daily. On day 6, segments of jejunum were assessed for parasite load, brush border ultrastructure, IL-6 content, maltase and sucrase activities, villus-crypt architecture, and intraepithelial lymphocyte (IEL) infiltration. Despite similar parasitic loads on day 6, infected immunocompetent animals, but not infected nude mice, showed a diffuse loss of brush border microvillous surface area, which was correlated with a significant reduction in maltase and sucrase activities and a decrease in jejunal IL-6 concentration. In both athymic control and infected mice, jejunal brush border surface area and disaccharidases were high, but levels of tissue IL-6 were low and comparable to the concentration measured in immunocompetent infected animals. In both immunocompetent and nude mice, infection caused a small but significant increase in the numbers of IELs. These findings suggest that the enterocyte brush border injury and malfunction seen in giardiasis is, at least in part, mediated by thymus-derived T lymphocytes and that suppressed jejunal IL-6 does not necessarily accompany microvillous shortening.

  10. Roux-en Y gastric bypass is superior to duodeno-jejunal bypass in improving glycaemic control in Zucker diabetic fatty rats.

    PubMed

    Seyfried, Florian; Bueter, Marco; Spliethoff, Kerstin; Miras, Alexander D; Abegg, Kathrin; Lutz, Thomas A; le Roux, Carel W

    2014-11-01

    Whilst weight loss results in many beneficial metabolic consequences, the immediate improvement in glycaemia after Roux-en-Y Gastric bypass (RYGB) remains intriguing. Duodenal jejunal bypass (DJB) induces similar glycaemic effects, while not affecting calorie intake or weight loss. We studied diabetic ZDF(fa/fa) rats to compare the effects of DJB and RYGB operations on glycaemia. Male ZDF(fa/fa) rats, aged 12 weeks underwent RYGB, DJB or sham operations. Unoperated ZDF(fa/fa) and ZDF(fa/+w)ere used as controls. Body weight, food intake, fasting glucose, insulin and gut hormones were measured at baseline and on postoperative days 2, 10 and 35. An oral glucose tolerance test (OGTT) was performed on days 12 and 26. DJB had similar food intake and body weight to sham-operated and unoperated control ZDF(fa/fa) rats (p = NS), but had lower fasting glucose (p < 0.05). RYGB had lower food intake, body weight and fasting glucose compared to all groups (p < 0.001). DJB prevented the progressive decline in fasting insulin observed in the sham-operated or unoperated ZDF(fa/fa) rats, while RYGB with normalized glycaemia reduced the physiological requirement for raised fasting insulin. Bypassing the proximal small bowel with the DJB has mild to moderate body weight independent effects on glucose homeostasis and preservation of fasting insulin levels in the medium term. These effects might be further amplified by the additional anatomical and physiological changes after RYGB.

  11. Urticaria due to polyethylene glycol-3350 and electrolytes for oral solution in a patient with jejunal nodular lymphoid hyperplasia

    PubMed Central

    Zhang, Hongfeng; Henry, Winoah A.; Chen, Lea Ann; Khashab, Mouen A.

    2015-01-01

    Both jejunal nodular lymphoid hyperplasia (NLH) and polyethylene glycol (PEG)-3350 hypersensitivity are extremely rare. We describe a 30-year-old female who had previously taken a PEG-3350 bowel preparation without adverse effects, and presented for evaluation of chronic diarrhea. An upper and lower gastrointestinal endoscopy, and small bowel series were scheduled. PEG-3350 and electrolytes for oral solution was prescribed for bowel cleansing. During consumption of the bowel preparation she developed urticarial hypersensitivity. An alternative bowel preparation was used. Colonoscopy and upper endoscopy were normal, but small bowel series revealed innumerable sand-like lucencies in the jejunum. NLH was confirmed on biopsy from antegrade enteroscopy. This is the first case report on the pathological jejunal NLH in association with the PEG-3350 urticarial hypersensitivity. The potential pathophysiological etiology of this association is discussed. PMID:25608714

  12. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    PubMed

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  13. The human gut resistome

    PubMed Central

    van Schaik, Willem

    2015-01-01

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium. PMID:25918444

  14. The human gut resistome.

    PubMed

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  15. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  16. Jejuno-jejunal intussusception in a guinea pig (Cavia porcellus)

    PubMed Central

    Fetzer, Tara J.; Mans, Christoph

    2017-01-01

    An approximately four-year-old male castrated guinea pig (Cavia porcellus) was presented for painful defecation with a 24-hour history of hyporexia and intermittent episodes of rolling behavior. Upon presentation the patient was quiet, alert, and responsive, and mildly hypothermic. Abdominal palpation revealed an approximately 2-cm long oblong mass within the caudal abdomen. Abdominal radiographs revealed gastric dilation without volvulus and a peritoneal mass effect. The patient was euthanized following gastric reflux of brown malodorous fluid from his nares and oral cavity. A necropsy was performed and revealed a jejuno-jejunal intussusception causing mechanical gastrointestinal ileus, and gastric dilatation without volvulus. While non-obstructive gastrointestinal stasis is common and obstructive ileus is uncommon in guinea pigs, this report shows that intestinal intussusception is a differential in guinea pigs with ileus and gastric dilatation. PMID:29038782

  17. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    PubMed

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  18. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease.

    PubMed

    Mohan, Mahesh; Chow, Cheryl-Emiliane T; Ryan, Caitlin N; Chan, Luisa S; Dufour, Jason; Aye, Pyone P; Blanchard, James; Moehs, Charles P; Sestak, Karol

    2016-10-28

    The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity ( p < 0.05) following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae ) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change ( p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated ( p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in

  19. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    PubMed

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  20. Diet, gut microbiota and cognition.

    PubMed

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  1. The role of gut peptides in the gut-brain-axis of livestock

    USDA-ARS?s Scientific Manuscript database

    Gut peptides are small hormones produced within the gut that are involved in many biological processes including, but not limited to, appetite regulation, mucosal growth, and metabolism regulation. Some peptides, such as cholecystokinin (CCK) and xenin-25 may affect appetite by altering gut motilit...

  2. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  3. Small bowel volvulus with jejunal diverticulum: Primary or secondary?

    PubMed

    Shen, Xiao-Fei; Guan, Wen-Xian; Cao, Ke; Wang, Hao; Du, Jun-Feng

    2015-09-28

    Small bowel volvulus, which is torsion of the small bowel and its mesentery, is a medical emergency, and is categorized as primary or secondary type. Primary type often occurs without any apparent intrinsic anatomical anomalies, while the secondary type is common clinically and could be caused by numerous factors including postoperative adhesions, intestinal diverticulum, and/or tumors. Here, we report a rare case of a 60-year-old man diagnosed with small bowel volvulus using multidetector computed tomography (MDCT) angiography. Further discovery by laparotomy showed one jejunal diverticulum, longer corresponding mesentery with a narrower insertion, and a lack of mesenteric fat. This case report includes several etiological factors of small bowel volvulus, and we discuss the possible cause of small bowel volvulus in this patient. We also highlight the importance of MDCT angiography in the diagnosis of volvulus and share our experience in treating this disease.

  4. Small bowel volvulus with jejunal diverticulum: Primary or secondary?

    PubMed Central

    Shen, Xiao-Fei; Guan, Wen-Xian; Cao, Ke; Wang, Hao; Du, Jun-Feng

    2015-01-01

    Small bowel volvulus, which is torsion of the small bowel and its mesentery, is a medical emergency, and is categorized as primary or secondary type. Primary type often occurs without any apparent intrinsic anatomical anomalies, while the secondary type is common clinically and could be caused by numerous factors including postoperative adhesions, intestinal diverticulum, and/or tumors. Here, we report a rare case of a 60-year-old man diagnosed with small bowel volvulus using multidetector computed tomography (MDCT) angiography. Further discovery by laparotomy showed one jejunal diverticulum, longer corresponding mesentery with a narrower insertion, and a lack of mesenteric fat. This case report includes several etiological factors of small bowel volvulus, and we discuss the possible cause of small bowel volvulus in this patient. We also highlight the importance of MDCT angiography in the diagnosis of volvulus and share our experience in treating this disease. PMID:26420976

  5. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    PubMed

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The gut in trauma.

    PubMed

    Patel, Jayshil J; Rosenthal, Martin D; Miller, Keith R; Martindale, Robert G

    2016-08-01

    The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.

  7. Gut microbiota and obesity.

    PubMed

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  8. Deciphering microbial interactions in synthetic human gut microbiome communities.

    PubMed

    Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth; Hsu, Ryan H; Lau, Rebecca; Bowen, Benjamin P; Hromada, Susan; Northen, Trent; Arkin, Adam P

    2018-06-21

    The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Effects of rye inclusion in grower diets on immune competence-related parameters and performance in broilers.

    PubMed

    van Krimpen, M M; Torki, M; Schokker, D

    2017-09-01

    An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 d of age on immune competence-related parameters and performance of broilers. A total of 960 day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to 1 of 3 experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence-related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d 14 to 28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which among others are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds. © 2017 Poultry Science Association Inc.

  10. Refractory cytopenias secondary to copper deficiency in children receiving exclusive jejunal nutrition.

    PubMed

    Jacobson, Amanda E; Kahwash, Samir B; Chawla, Anjulika

    2017-11-01

    Copper deficiency is a known cause of anemia and neutropenia that is easily remedied with copper supplementation. Copper is primarily absorbed in the stomach and proximal duodenum, so patients receiving enteral nutrition via methods that bypass this critical region may be at increased risk for copper deficiency. In pediatrics, postpyloric enteral feeding is increasingly utilized to overcome problems related to aspiration, severe reflux, poor gastric motility, and gastric outlet obstruction. However, little is known about the prevalence of copper deficiency in this population. We describe three pediatric patients receiving exclusive jejunal feeds who developed cytopenias secondary to copper deficiency. © 2017 Wiley Periodicals, Inc.

  11. Physics of the gut: How polymers dynamically structure the gut environment

    NASA Astrophysics Data System (ADS)

    Preska Steinberg, Asher; Datta, Sujit; Bogatyrev, Said; Ismagilov, Rustem

    While the gut microbiome and biological regulation of the gut environment is being exhaustively studied by the microbiology community, little is known about the rich physics that governs the macro- and microstructure of the gut environment. The mammalian gut abounds in soft materials; ranging from soluble polymers (e.g. dietary fibers, therapeutic polymers and mucins) to colloidal matter (e.g. bacteria, viruses and nanoparticles carrying drugs). We have found experimentally that soluble polymers can dynamically re-structure the colonic mucus hydrogel by modulating its degree of swelling. We implemented a mean-field Flory-Huggins model to reveal that these polymer-mucus interactions can be captured using a simple, first principles thermodynamics model. In this model, the amount of deswelling increases with polymer concentration and size. We then used these physical principles to make predictions about how different polymer solutions affect the structure of mucus. Lastly, we explore applying this framework and similar physical principles to a variety of biological problems in the gut.

  12. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  13. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans.

    PubMed

    Glaeser, Hartmut; Drescher, Siegfried; Hofmann, Ute; Heinkele, Georg; Somogyi, Andrew A; Eichelbaum, Michel; Fromm, Martin F

    2004-09-01

    In humans gut wall metabolism can be quantitatively as important as hepatic drug metabolism in limiting the systemic exposure to drugs after oral administration. However, it has been proposed that the role of gut wall metabolism might be overemphasized, because high luminal drug concentrations would lead to a saturation of gut wall metabolism. Therefore we investigated the impact of concentration and rate of intraluminal drug delivery on absorption (F(abs)) and gastrointestinal extraction (E(GI)) of a luminally administered cytochrome P450 (CYP) 3A4 substrate (verapamil) using a multilumen perfusion catheter in combination with a stable isotope technique. Two 20-cm-long, adjacent jejunal segments were isolated with the multilumen perfusion catheter in 7 subjects. In this study 80 mg of unlabeled verapamil (d0-verapamil 15 min) was infused into one segment over a 15-minute period, 80 mg of 3-fold deuterated verapamil (d3-verapamil 240 min) was administered over a 240-minute period into the other segment, and simultaneously, 5 mg of 7-fold deuterated verapamil (d7-verapamil) was injected intravenously over a 15-minute period. The rate of intraluminal drug delivery had only a modest effect on bioavailability of the verapamil isotopes (after correction for F abs ) (F/F abs d3-verapamil 240 min versus d0-verapamil 15 min, 0.24 +/- 0.10 versus 0.20 +/- 0.09; P <.05). Accordingly, the E GI value for d3-verapamil 240 min was 0.50 +/- 0.18 compared with 0.59 +/- 0.14 for d0 -verapamil 15 min ( P <.05). In vivo, E GI (d0-verapamil 15 min ) correlated strongly with E GI (d3-verapamil 240 min ) (r = 0.94, P <.005). Moreover, intrinsic clearance of CYP3A4-mediated verapamil metabolism in homogenates of simultaneously collected shed enterocytes correlated with in vivo E GI of d0-verapamil 15 min /d3-verapamil 240 min (r = 0.62, P =.03). Substantial gut wall metabolism of verapamil occurs in humans and can be predicted from ex vivo data by use of shed enterocytes. The different

  14. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    PubMed

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  15. Gut microbiome and bone.

    PubMed

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  16. Comparative gut physiology symposium: The microbe-gut-brain axis

    USDA-ARS?s Scientific Manuscript database

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  17. Short- and long-term outcomes from percutaneous endoscopic gastrostomy with jejunal extension.

    PubMed

    Ridtitid, Wiriyaporn; Lehman, Glen A; Watkins, James L; McHenry, Lee; Fogel, Evan L; Sherman, Stuart; Coté, Gregory A

    2017-07-01

    There is a paucity of data regarding the safety and efficacy of percutaneous endoscopic gastrostomy with jejunal extension (PEG-J). We evaluated adverse events related to PEG-J and determined the clinical impact of PEG-J in those with chronic pancreatitis (CP). This cohort study included all patients who underwent PEG-J placement in a tertiary-care academic medical center between 2010 and 2012. Main outcome measurements were (1) short- and long-term complications related to PEG-J and (2) changes in weight and hospitalizations during the 12-month period before and after PEG-J in the CP subgroup. Of 102 patients undergoing PEG-J placement, the overall technical success rate was 97 %. During a median follow-up period of 22 months (1-46 months, n = 90), at least one tube malfunction occurred in 52/90 (58 %; 177 episodes) after a median of 53 days (3-350 days), requiring a median of two tube replacements. Short-term (<30 days) tube malfunction occurred in 28/90 (31 %) and delayed in 24/90 (27 %); these included dislodgement (29 %), clogging (26 %) and kinking (14 %). In the CP subgroup (n = 58), mean body weight (kg) (70 vs. 71, p = 0.06) and body mass index (kg/m 2 , 26 vs. 27, p = 0.05) increased post-PEG-J. Mean number of hospitalizations (5 vs. 2, p < 0.0001) and inpatient days per 12 months (22 vs. 12, p = 0.005) decreased. While we observed no major complications related to PEG-J, half of patients had at least one episode of tube malfunction. In the CP subgroup, jejunal feeding via PEG-J significantly reduced the number of hospitalizations and inpatients days, while improving nutritional parameters.

  18. Gut microbiota and metabolic syndrome.

    PubMed

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  19. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  20. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health.

    PubMed

    Malmuthuge, Nilusha; Guan, Le Luo

    2017-07-01

    Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. [Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].

    PubMed

    Konturek, Peter C; Zopf, Yurdagül

    2016-05-25

    The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.

  2. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  3. Gut microbiota and metabolic syndrome

    PubMed Central

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-01-01

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159

  4. Gut microbiota and liver diseases

    PubMed Central

    Minemura, Masami; Shimizu, Yukihiro

    2015-01-01

    Several studies revealed that gut microbiota are associated with various human diseases, e.g., metabolic diseases, allergies, gastroenterological diseases, and liver diseases. The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein, and the liver-gut axis is important to understand the pathophysiology of several liver diseases, especially non-alcoholic fatty liver disease and hepatic encephalopathy. Moreover, gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis. Based on these previous findings, trials using probiotics have been performed for the prevention or treatment of liver diseases. In this review, we summarize the current understanding of the changes in gut microbiota associated with various liver diseases, and we describe the therapeutic trials of probiotics for those diseases. PMID:25684933

  5. Carbohydrates and the human gut microbiota.

    PubMed

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  6. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    PubMed

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  7. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children

    PubMed Central

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-01-01

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 106 microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome. PMID:27044409

  8. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children.

    PubMed

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-04-05

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 10(6) microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome.

  9. Gut microbiota and allogeneic transplantation.

    PubMed

    Wang, Weilin; Xu, Shaoyan; Ren, Zhigang; Jiang, Jianwen; Zheng, Shusen

    2015-08-23

    The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the human gut. These microbes are not only important to maintain human health, but also closely related to the occurrence and development of various diseases. With the development of transplantation technologies, allogeneic transplantation has become an effective therapy for a variety of end-stage diseases. However, complications after transplantation still restrict its further development. Post-transplantation complications are closely associated with a host's immune system. There is also an interaction between a person's gut microbiota and immune system. Recently, animal and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplantations, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hematopoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in allogeneic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications after transplantation are also discussed. Further research in this new field needs to determine the definite relationship between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut microbial intervention methods to ameliorate complications after transplantation is warranted. A better understanding of the

  10. The effect of experimental gastric dilatation-volvulus on adenosine triphosphate content and conductance of the canine gastric and jejunal mucosa.

    PubMed

    Peycke, Laura E; Hosgood, Giselle; Davidson, Jacqueline R; Tetens, Joanne; Taylor, H Wayne

    2005-07-01

    The objective of this study was to determine if experimental gastric dilatation volvulus (GDV) would decrease adenosine triphosphate (ATP) concentration and increase membrane conductance of the canine gastric and jejunal mucosa. Male dogs (n = 15) weighing between 20 and 30 kg were used. Dogs were randomly assigned to 1 of 3 equal groups: Group 1 was control, group 2 was GDV, and group 3 was ischemia. All dogs were anesthetized for 210 min. Group 1 had no manipulation. Group 2 had GDV experimentally induced for 120 min followed by decompression, derotation, and reperfusion for 90 min. Group 3 had GDV experimentally induced for 210 min. Gastric (fundus and pylorus) and jejunal tissue was taken at 0, 120, and 210 min from all of the dogs. Tissue was analyzed for ATP concentration, mucosal conductance, and microscopic changes. The ATP concentration in the fundus did not change significantly from baseline in group 2, but decreased significantly below baseline at 210 min in group 3. The ATP concentration in the jejunum decreased significantly below baseline in groups 2 and 3 at 120 min, remaining significantly decreased in group 3 but returning to baseline at 210 min in group 2. Mucosal conductance of the fundus did not change significantly in any dog. Mucosal conductance of the jejunum increased at 120 min in groups 2 and 3, and became significantly increased above baseline at 210 min. The jejunal mucosa showed more profound cellular changes than the gastric mucosa. The jejunum showed substantial decreases in ATP concentration with an increase in mucosal conductance, suggesting cell membrane dysfunction. Dogs sustaining a GDV are likely to have a change in the activity of mucosal cells in the jejunum, which may be important in the pathophysiology of GDV.

  11. The effect of experimental gastric dilatation-volvulus on adenosine triphosphate content and conductance of the canine gastric and jejunal mucosa

    PubMed Central

    2005-01-01

    Abstract The objective of this study was to determine if experimental gastric dilatation volvulus (GDV) would decrease adenosine triphosphate (ATP) concentration and increase membrane conductance of the canine gastric and jejunal mucosa. Male dogs (n = 15) weighing between 20 and 30 kg were used. Dogs were randomly assigned to 1 of 3 equal groups: Group 1 was control, group 2 was GDV, and group 3 was ischemia. All dogs were anesthetized for 210 min. Group 1 had no manipulation. Group 2 had GDV experimentally induced for 120 min followed by decompression, derotation, and reperfusion for 90 min. Group 3 had GDV experimentally induced for 210 min. Gastric (fundus and pylorus) and jejunal tissue was taken at 0, 120, and 210 min from all of the dogs. Tissue was analyzed for ATP concentration, mucosal conductance, and microscopic changes. The ATP concentration in the fundus did not change significantly from baseline in group 2, but decreased significantly below baseline at 210 min in group 3. The ATP concentration in the jejunum decreased significantly below baseline in groups 2 and 3 at 120 min, remaining significantly decreased in group 3 but returning to baseline at 210 min in group 2. Mucosal conductance of the fundus did not change significantly in any dog. Mucosal conductance of the jejunum increased at 120 min in groups 2 and 3, and became significantly increased above baseline at 210 min. The jejunal mucosa showed more profound cellular changes than the gastric mucosa. The jejunum showed substantial decreases in ATP concentration with an increase in mucosal conductance, suggesting cell membrane dysfunction. Dogs sustaining a GDV are likely to have a change in the activity of mucosal cells in the jejunum, which may be important in the pathophysiology of GDV. PMID:16187546

  12. Gut-liver axis: gut microbiota in shaping hepatic innate immunity.

    PubMed

    Wu, Xunyao; Tian, Zhigang

    2017-11-01

    Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.

  13. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    PubMed

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  14. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease.

  15. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    PubMed

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  16. The Green Gut: Chlorophyll Degradation in the Gut of Spodoptera littoralis.

    PubMed

    Badgaa, Amarsanaa; Büchler, Rita; Wielsch, Natalie; Walde, Marie; Heintzmann, Rainer; Pauchet, Yannik; Svatos, Ales; Ploss, Kerstin; Boland, Wilhelm

    2015-11-01

    Chlorophylls, the most prominent natural pigments, are part of the daily diet of herbivorous insects. The spectrum of ingested and digested chlorophyll metabolites compares well to the pattern of early chlorophyll-degradation products in senescent plants. Intact chlorophyll is rapidly degraded by proteins in the front- and midgut. Unlike plants, insects convert both chlorophyll a and b into the corresponding catabolites. MALDI-TOF/MS imaging allowed monitoring the distribution of the chlorophyll catabolites along the gut of Spodoptera littoralis larvae. The chlorophyll degradation in the fore- and mid-gut is strongly pH dependent, and requires alkaline conditions. Using LC-MS/MS analysis we identified a lipocalin-type protein in the intestinal fluid of S. littoralis homolog to the chlorophyllide a binding protein from Bombyx mori. Widefield and high-resolution autofluorescence microscopy revealed that the brush border membranes are covered with the chlorophyllide binding protein tightly bound via its GPI-anchor to the gut membrane. A function in defense against gut microbes is discussed.

  17. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease.

    PubMed

    Yang, Tao; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-07-01

    Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.

  18. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    PubMed

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  19. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers.

    PubMed

    Röhe, I; Boroojeni, F Goodarzi; Zentek, J

    2017-09-01

    Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune

  20. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    PubMed Central

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  1. Dietary acylated starch improves performance and gut health in necrotic enteritis challenged broilers.

    PubMed

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Swick, Robert A; Choct, Mingan

    2015-10-01

    Resistant starch has been reported to act as a protective agent against pathogenic organisms in the gut and to encourage the proliferation of beneficial organisms. This study examined the efficacy of acetylated high amylose maize starch (SA) and butyralated high-amylose maize starch (SB) in reducing the severity of necrotic enteritis (NE) in broilers under experimental challenge. A total of 720 one-day-old male Ross 308 chicks were assigned to 48 floor pens with a 2 × 4 factorial arrangement of treatments. Factors were a) challenge: no or yes; and b) feed additive: control, antibiotics (AB), SA, or SB. Birds were challenged with Eimeria and C. perfringens according to a previously reported protocol. On d 24 and 35, challenged birds had lower (P < 0.001) livability (LV), weight gain (WG), and feed intake (FI) compared to unchallenged birds. Challenged birds fed SA and SB had higher FI and WG at d 24 and 35 (P < 0.05) compared to birds fed the control diet, while being significantly lower than those fed AB. Unchallenged birds fed SA or SB had higher FI at d 24 and 35 compared to those fed the control diet (P < 0.05). Birds fed SB had increased (P < 0.001) jejunal villus height/crypt depth (VH:CD) ratios at d 15, increased ileal (P < 0.001) and caecal (P < 0.001) butyrate levels at d 15 and 24, and decreased (P < 0.01) caecal pH at d 15. Birds fed SA had increased (P < 0.001) ileal acetate content at d 24 and decreased (P < 0.01) caecal pH at d 15. These results demonstrated that dietary acylated starch improved WG in birds challenged with necrotic enteritis. Depending on the acid used, starch acylation also offers a degree of specificity in short chain fatty acid (SCFA) delivery to the lower intestinal tract which improves gut health. © 2015 Poultry Science Association Inc.

  2. Equivalent Increases in Circulating GLP-1 Following Jejunal Delivery of Intact and Hydrolysed Casein: Relevance to Satiety Induction Following Bariatric Surgery.

    PubMed

    le Roux, Carel W; Engström, My; Björnfot, Niclas; Fändriks, Lars; Docherty, Neil G

    2016-08-01

    Both Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) decrease the latency of food delivery to the proximal small intestine. This is implicated in exaggerated post-prandial release of glucagon-like peptide 1 (GLP-1), which provokes early satiety and reductions in food intake. Altered stomach anatomy also creates a deficit in enzymatic pre-processing. The impact of this state effect as a modulator of gut hormone responses remains underexplored. A double-blind cross-over trial study was conducted in 13 healthy subjects assigned to receive in the fasted state and in random order at 1 week apart, a direct jejunal infusion of either intact casein or a casein hydrolysate. Downstream effects on GLP-1 release, ratings of hunger and fullness and food and water intake on each study day were recorded when an ad libitum meal was provided 30 min after the infusion. Circulating GLP-1 was increased 25 min after infusions and peaked to a similar degree at 15 min post-meal initiation. The hormone surge had no impact on ratings of hunger and fullness ahead of the ad libitum meal. The kinetic and magnitude of satiation following each infusion was not significantly different. Food and water intake were likewise not differentially impacted by the two infusion types. Protein macronutrient state upon arrival in the small intestine does not in isolation impact upon GLP-1 responses and subsequent onset of satiety. This potentially points to rate of delivery being the dominant factor in exaggerated post-prandial GLP-1 responses in patients post-RYGB and VSG.

  3. Reduced Human α-defensin 6 in Noninflamed Jejunal Tissue of Patients with Crohn's Disease.

    PubMed

    Hayashi, Ryohei; Tsuchiya, Kiichiro; Fukushima, Keita; Horita, Nobukatsu; Hibiya, Shuji; Kitagaki, Keisuke; Negi, Mariko; Itoh, Eisaku; Akashi, Takumi; Eishi, Yoshinobu; Okada, Eriko; Araki, Akihiro; Ohtsuka, Kazuo; Fukuda, Shinji; Ohno, Hiroshi; Okamoto, Ryuichi; Nakamura, Tetsuya; Tanaka, Shinji; Chayama, Kazuaki; Watanabe, Mamoru

    2016-05-01

    Mucosal barrier dysfunction is considered a critical component of Crohn's disease (CD) pathogenesis after the identification of susceptibility genes. However, the precise mechanism underlying mucosal barrier dysfunction has not yet been elucidated. We therefore aimed to elucidate the molecular mechanism underlying the expression of human α-defensin 6 (HD6) in patients with CD. HD6 expression was induced by the transfection of an atonal homolog 1 (Atoh1) transgene and was assessed by reverse transcription polymerase chain reaction. The HD6 promoter region targeted by Atoh1 and β-catenin was determined by reporter analysis and chromatin immunoprecipitation assay. HD5/HD6/Atoh1/β-catenin expression in noninflamed jejunal samples collected by balloon endoscopy from 15 patients with CD and 9 non-inflammatory bowel disease patients were assessed by immunofluorescence. Both promoter activity and gene expression of HD6 was significantly upregulated by the Atoh1 transgene in human colonic cancer cell line. We identified a TCF4 binding site and an E-box site, critical for the regulation of HD6 transcriptional activity by directly binding of Atoh1 in the 200-bp HD6 promoter region. The treatment with β-catenin inhibitor also decreases HD6 promoter activity and gene expression. Moreover, HD6 expression, but not HD5 expression, was found to be decreased in noninflamed jejunal regions from patients with CD. In HD6-negative crypts, nuclear accumulation of β-catenin was impaired. HD6 expression was found to be regulated by cooperation between Atoh1 and β-catenin within the HD6 promoter region. Downregulation of HD6 in noninflamed mucosa may contribute to mucosal barrier dysfunction of patients with CD.

  4. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion.

    PubMed

    Geloneze, Bruno; Geloneze, Sylka R; Fiori, Carla; Stabe, Christiane; Tambascia, Marcos A; Chaim, Elinton A; Astiarraga, Brenno D; Pareja, Jose Carlos

    2009-08-01

    A 24-week interventional prospective trial was performed to compare the benefits of open duodenal-jejunal exclusion surgery (GJB) with a matched control group on standard medical care. One-hundred eighty patients were screened for the surgical approach. Twelve patients accepted to be operated and presented the full eligibility criteria for surgery that includes overweight BMI (25-29.9 kg/m2), T2DM diagnosis for less than 15 years, insulin-treated patients, no history of major complications, preserved beta-cell function, and absence of autoimmunity. A matched control group (CG) of patients whom refused surgical treatment was placed to receive standard care. Patients had age of 50 (5) years, time of diagnosis 9 years (range, 3 to 15 years), time of insulin usage 6 months (range, 3 to 48 months), fasting glucose (FG), 9.8 (2.5) mg/dL, and glycated hemoglobin (A1C) 8.90 (2.12)%. At 24 weeks after surgery, patients experienced greater reductions on FG (14% vs. 7% on CG), A1C (from 8.78 to 7.84 in GJB-p<0.01 and 8.93 to 8.71 in CG; p<0.05 between groups) and reductions on average daily insulin requirement (93% vs. 29%, p<0.01). Ten patients stopped insulin usage in GJB but they remain taking oral medications. No differences were observed in both groups regarding BMI, body distribution and composition, blood pressure, and lipids. In conclusion, duodenal-jejunal exclusion was an effective treatment for nonobese T2DM subjects. GJB was superior to standard care in achieving better glycemic control along with reduction in insulin requirements.

  5. Cospeciation of gut microbiota with hominids

    PubMed Central

    Moeller, Andrew H.; Caro-Quintero, Alejandro; Mjungu, Deus; Georgiev, Alexander V.; Lonsdorf, Elizabeth V.; Muller, Martin N.; Pusey, Anne E.; Peeters, Martine; Hahn, Beatrice H.; Ochman, Howard

    2016-01-01

    The evolutionary origins of the bacterial lineages that populate the human gut are unknown. Here we show that multiple lineages of the predominant bacterial taxa in the gut arose via cospeciation with humans, chimpanzees, bonobos, and gorillas over the past 15 million years. Analyses of strain-level bacterial diversity within hominid gut microbiomes revealed that clades of Bacteroidaceae and Bifidobacteriaceae have been maintained exclusively within host lineages across hundreds of thousands of host generations. Divergence times of these cospeciating gut bacteria are congruent with those of hominids, indicating that nuclear, mitochondrial, and gut bacterial genomes diversified in concert during hominid evolution. This study identifies human gut bacteria descended from ancient symbionts that speciated simultaneously with humans and the African apes. PMID:27463672

  6. Probiotics, gut microbiota and health.

    PubMed

    Butel, M-J

    2014-01-01

    The human gut is a huge complex ecosystem where microbiota, nutrients, and host cells interact extensively, a process crucial for the gut homeostasis and host development with a real partnership. The various bacterial communities that make up the gut microbiota have many functions including metabolic, barrier effect, and trophic functions. Hence, any dysbiosis could have negative consequences in terms of health and many diseases have been associated to impairment of the gut microbiota. These close relationships between gut microbiota, health, and disease, have led to great interest in using probiotics (i.e. live micro-organisms), or prebiotics (i.e. non-digestible substrates) to positively modulate the gut microbiota to prevent or treat some diseases. This review focuses on probiotics, their mechanisms of action, safety, and major health benefits. Health benefits remain to be proven in some indications, and further studies on the best strain(s), dose, and algorithm of administration to be used are needed. Nevertheless, probiotic administration seems to have a great potential in terms of health that justifies more research. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Effect of aqueous fruit extract of Xylopia aethiopica on intestinal fluid and glucose transfer in rats.

    PubMed

    Okwari, O O; Nneli, R O; Osim, E E

    2010-11-28

    Intestinal fluid and glucose absorption was studied in jejunal and ileal segments in Xylopia aethiopica fed rats using inverted sac technique. Thirty male Wistar rats were assigned into three groups of 10 rats each; control, 100mg/kg and 200mg/kg Xylopia aethiopica treated groups. The control group received normal rat chow and water while the low dose and high dose groups received oral administration of Xylopia aethiopica extract at doses of 100mg/kg and 200mg/kg body weight respectively in addition to daily rat chow and water intake for 28 days. The results showed significant reduction and increase in fluid transfer in the jejunum and ileum respectively compared with control. 100mg/kg increased gut fluid uptake in the ileum while 200mg/kg treatment reduced uptake in jejunum compared with control. Both doses had significantly increased jejunal and ileal glucose transfer. Gut glucose uptake was increased in jejunum and ileum of Xylopia aethiopica treated groups. Both doses increased the crypt depth but significantly decreased the villus height in the ileum. In conclusion, increased ileal gut fluid uptake may be beneficial in diarrheal state while an enhanced glucose uptake implies that glucose substrate may be made available to cells for synthesize of ATP for cellular activities.

  8. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    PubMed

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Role of the normal gut microbiota.

    PubMed

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  10. Gut Microbiota and Metabolic Disorders

    PubMed Central

    Hur, Kyu Yeon

    2015-01-01

    Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders. PMID:26124989

  11. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Maternal Gut Microbiome During Pregnancy.

    PubMed

    Edwards, Sara M; Cunningham, Solveig A; Dunlop, Anne L; Corwin, Elizabeth J

    The gut microbiome is a critical component of an individual's metabolism and overall health. The prenatal period is marked by unique inflammatory and immune changes that alter maternal gut function and bacterial composition as the pregnancy advances. The composition of the maternal gut microbiome contributes to obstetric outcomes with long-term health sequelae for mother and child. Estrogen and progesterone also have an impact on gut function, especially during the prenatal period. These physiologic changes in pregnancy allow for adjustments in maternal metabolism and weight necessary to support the pregnancy. Normal hormonal, metabolic, and immunologic changes to the maternal gut microbiome throughout the prenatal period are reviewed, including relevant implications for nurses providing care for pregnant women.

  13. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    PubMed

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  14. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes.

    PubMed

    Sato, Junko; Kanazawa, Akio; Ikeda, Fuki; Yoshihara, Tomoaki; Goto, Hiromasa; Abe, Hiroko; Komiya, Koji; Kawaguchi, Minako; Shimizu, Tomoaki; Ogihara, Takeshi; Tamura, Yoshifumi; Sakurai, Yuko; Yamamoto, Risako; Mita, Tomoya; Fujitani, Yoshio; Fukuda, Hiroshi; Nomoto, Koji; Takahashi, Takuya; Asahara, Takashi; Hirose, Takahisa; Nagata, Satoru; Yamashiro, Yuichiro; Watada, Hirotaka

    2014-08-01

    Mounting evidence indicates that the gut microbiota are an important modifier of obesity and diabetes. However, so far there is no information on gut microbiota and "live gut bacteria" in the systemic circulation of Japanese patients with type 2 diabetes. Using a sensitive reverse transcription-quantitative PCR (RT-qPCR) method, we determined the composition of fecal gut microbiota in 50 Japanese patients with type 2 diabetes and 50 control subjects, and its association with various clinical parameters, including inflammatory markers. We also analyzed the presence of gut bacteria in blood samples. The counts of the Clostridium coccoides group, Atopobium cluster, and Prevotella (obligate anaerobes) were significantly lower (P < 0.05), while the counts of total Lactobacillus (facultative anaerobes) were significantly higher (P < 0.05) in fecal samples of diabetic patients than in those of control subjects. Especially, the counts of Lactobacillus reuteri and Lactobacillus plantarum subgroups were significantly higher (P < 0.05). Gut bacteria were detected in blood at a significantly higher rate in diabetic patients than in control subjects (28% vs. 4%, P < 0.01), and most of these bacteria were Gram-positive. This is the first report of gut dysbiosis in Japanese patients with type 2 diabetes as assessed by RT-qPCR. The high rate of gut bacteria in the circulation suggests translocation of bacteria from the gut to the bloodstream. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs.

    PubMed

    Liu, Yulan; Huang, Jingjing; Hou, Yongqing; Zhu, Huiling; Zhao, Shengjun; Ding, Binying; Yin, Yulong; Yi, Ganfeng; Shi, Junxia; Fan, Wei

    2008-09-01

    This study evaluated whether arginine (Arg) supplementation could attenuate gut injury induced by Escherichia coli lipopolysaccharide (LPS) challenge through an anti-inflammatory role in weaned pigs. Pigs were allotted to four treatments including: (1) non-challenged control; (2) LPS-challenged control; (3) LPS+0.5 % Arg; (4) LPS+1.0 % Arg. On day 16, pigs were injected with LPS or sterile saline. At 6 h post-injection, pigs were killed for evaluation of small intestinal morphology and intestinal gene expression. Within 48 h of challenge, 0.5 % Arg alleviated the weight loss induced by LPS challenge (P = 0.025). In all three intestinal segments, 0.5 or 1.0 % Arg mitigated intestinal morphology impairment (e.g. lower villus height and higher crypt depth) induced by LPS challenge (P < 0.05), and alleviated the decrease of crypt cell proliferation and the increase of villus cell apoptosis after LPS challenge (P < 0.01). The 0.5 % Arg prevented the elevation of jejunal IL-6 mRNA abundance (P = 0.082), and jejunal (P = 0.030) and ileal (P = 0.039) TNF-alpha mRNA abundance induced by LPS challenge. The 1.0 % Arg alleviated the elevation of jejunal IL-6 mRNA abundance (P = 0.053) and jejunal TNF-alpha mRNA abundance (P = 0.003) induced by LPS challenge. The 0.5 % Arg increased PPARgamma mRNA abundance in all three intestinal segments (P < 0.10), and 1.0 % Arg increased duodenal PPARgamma mRNA abundance (P = 0.094). These results indicate that Arg supplementation has beneficial effects in alleviating gut mucosal injury induced by LPS challenge. Additionally, it is possible that the protective effects of Arg on the intestine are associated with decreasing the expression of intestinal pro-inflammatory cytokines through activating PPARgamma expression.

  16. Gut microbiome and its role in cardiovascular diseases.

    PubMed

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  17. 33 CFR 117.537 - Townsend Gut.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Townsend Gut. 117.537 Section 117... OPERATION REGULATIONS Specific Requirements Maine § 117.537 Townsend Gut. The draw of the Southport (SR27) Bridge, at mile 0.7, across Townsend Gut between Boothbay Harbor and Southport, Maine shall open on...

  18. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    PubMed

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  19. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment

    PubMed Central

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being. PMID:27416027

  20. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    PubMed

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  1. Gut immunity in Lepidopteran insects.

    PubMed

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Esophagogastric separation and abdominal esophagostomy via jejunal interposition: a new operation for extreme forms of pathologic aerophagia.

    PubMed

    Fukuzawa, Hiroaki; Urushihara, Naoto; Fukumoto, Koji; Sugiyama, Akihide; Mitsunaga, Maki; Watanabe, Kentaro; Hasegawa, Shiro

    2011-10-01

    Pathologic aerophagia is sometimes seen in patients with neurologic disorders. It rarely causes massive bowel distention, ileus, and volvulus. Here, we report the use of esophagogastric separation and abdominal esophagostomy via jejunal interposition to prevent bowel distention caused by severe aerophagia in 2 patients with neurologic disorders in whom the usual nonoperative methods of management failed. In both cases, swallowed air was evacuated via the jejunostomy, eliminating bowel distention. This operation may be useful in patients with neurologic disorders associated with severe aerophagia. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Healthy human gut phageome

    PubMed Central

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; van der Oost, John; de Vos, Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20–50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health. PMID:27573828

  4. Healthy human gut phageome.

    PubMed

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  5. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    PubMed Central

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  6. Functional jejunal interposition, a reconstruction procedure, promotes functional outcomes after total gastrectomy.

    PubMed

    Ding, Xuewei; Yan, Fang; Liang, Han; Xue, Qiang; Zhang, Kuo; Li, Hui; Ren, Xiubao; Hao, Xishan

    2015-04-15

    Functional jejunal interposition (FJI) has been applied as a reconstruction procedure to maintain the jejunal continuity and duodenal food passage after total gastrectomy in patients with gastric cancer. The purpose of this study was to evaluate clinical efficacy of the FJI procedure by comparing the functional outcomes of FJI to Roux-en-Y after total gastrectomy in gastric cancer patients, and investigate physiologic mechanisms by which FJI exerts beneficial outcomes in beagles. Patients with stage I-IV gastric cancer without metastasis and recurrence one year after surgery were enrolled in this retrospective study. Seventy one patients received FJI and seventy nine patients received Roux-en-Y after total gastrectomy. We evaluated the nutritional status at three and twelve months and incidence of complications up to twelve months after surgery. Beagles receiving sham operation, FJI, or Roux-en-Y after total gastrectomy were sacrificed forty eight hours postoperatively. Beagles were gavaged with active carbon for evaluating the intestinal transit rate. Intestinal tissues from the duodenojejunal anastomosis were collected for examining interstitial cells of Cajal (ICC), inflammation, and apoptosis. Compared to the bodyweight before surgery, the bodyweight loss at three and twelve months after surgery in patients receiving FJI was significant less than that in patients with Roux-en-Y. Patients with the FJI procedure showed significant increase of blood hemoglobin and total protein, compared to those at one month after surgery, and the prognostic nutrition index scores at three and twelve months after surgery. The incidence rates of post-operative complications, including reflux esophagitis, dumping syndrome, and Roux-en-Y syndrome were decreased in patients with FJI. Compared to beagles receiving Roux-en-Y, more ICC in the intestinal submuocsa, less intestinal epithelial cell apoptosis, and decreased inflammation in serosal side of the intestine were found in the FJI

  7. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    PubMed Central

    Tasnim, Nishat; Abulizi, Nijiati; Pither, Jason; Hart, Miranda M.; Gibson, Deanna L.

    2017-01-01

    Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development. PMID:29056933

  8. Innate immunity and gut-microbe mutualism in Drosophila.

    PubMed

    Ryu, Ji-Hwan; Ha, Eun-Mi; Lee, Won-Jae

    2010-04-01

    Metazoan guts face a wide variety of microorganisms upon exposure to the environment, including beneficial symbionts, non-symbionts, food-borne microbes and life-threatening pathogens. Recent evidence has shown that the innate immunity of gut epithelia, such as anti-microbial peptide- and reactive oxygen species-based immune systems, actively participate in gut-microbe homeostasis by shaping the commensal community while efficiently eliminating unwanted bacteria. Therefore, elucidation of the regulatory mechanism by which gut innate immunity occurs at the molecular level will provide a novel perspective of gut-microbe mutualisms as well as of gut diseases caused by alterations in the innate immunity.

  9. Gut microbiota and malnutrition.

    PubMed

    Million, Matthieu; Diallo, Aldiouma; Raoult, Didier

    2017-05-01

    Malnutrition is the leading cause of death worldwide in children under the age of five, and is the focus of the first World Health Organization (WHO) Millennium Development Goal. Breastfeeding, food and water security are major protective factors against malnutrition and critical factors in the maturation of healthy gut microbiota, characterized by a transient bifidobacterial bloom before a global rise in anaerobes. Early depletion in gut Bifidobacterium longum, a typical maternal probiotic, known to inhibit pathogens, represents the first step in gut microbiota alteration associated with severe acute malnutrition (SAM). Later, the absence of the Healthy Mature Anaerobic Gut Microbiota (HMAGM) leads to deficient energy harvest, vitamin biosynthesis and immune protection, and is associated with diarrhea, malabsorption and systemic invasion by microbial pathogens. A therapeutic diet and infection treatment may be unable to restore bifidobacteria and HMAGM. Besides refeeding and antibiotics, future trials including non-toxic missing microbes and nutrients necessary to restore bifidobacteria and HMAGM, including prebiotics and antioxidants, are warranted in children with severe or refractory disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Adaptive immune education by gut microbiota antigens.

    PubMed

    Zhao, Qing; Elson, Charles O

    2018-05-01

    Host-microbiota mutualism has been established during long-term co-evolution. A diverse and rich gut microbiota plays an essential role in the development and maturation of the host immune system. Education of the adaptive immune compartment by gut microbiota antigens is important in establishing immune balance. In particular, a critical time frame immediately after birth provides a 'window of opportunity' for the development of lymphoid structures, differentiation and maturation of T and B cells and, most importantly, establishment of immune tolerance to gut commensals. Depending on the colonization niche, antigen type and metabolic property of different gut microbes, CD4 T-cell responses vary greatly, which results in differentiation into distinct subsets. As a consequence, certain bacteria elicit effector-like immune responses by promoting the production of pro-inflammatory cytokines such as interferon-γ and interleukin-17A, whereas other bacteria favour the generation of regulatory CD4 T cells and provide help with gut homeostasis. The microbiota have profound effects on B cells also. Gut microbial exposure leads to a continuous diversification of B-cell repertoire and the production of T-dependent and -independent antibodies, especially IgA. These combined effects of the gut microbes provide an elegant educational process to the adaptive immune network. Contrariwise, failure of this process results in a reduced homeostasis with the gut microbiota, and an increased susceptibility to various immune disorders, both inside and outside the gut. With more definitive microbial-immune relations waiting to be discovered, modulation of the host gut microbiota has a promising future for disease intervention. © 2018 John Wiley & Sons Ltd.

  11. Gut dysfunction in Parkinson's disease

    PubMed Central

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  12. The gut microbiota, obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  13. Brain-gut-microbiota axis in Parkinson's disease.

    PubMed

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  14. A closed-loop multi-level model of glucose homeostasis

    PubMed Central

    Uluseker, Cansu; Simoni, Giulia; Dauriz, Marco; Matone, Alice

    2018-01-01

    Background The pathophysiologic processes underlying the regulation of glucose homeostasis are considerably complex at both cellular and systemic level. A comprehensive and structured specification for the several layers of abstraction of glucose metabolism is often elusive, an issue currently solvable with the hierarchical description provided by multi-level models. In this study we propose a multi-level closed-loop model of whole-body glucose homeostasis, coupled with the molecular specifications of the insulin signaling cascade in adipocytes, under the experimental conditions of normal glucose regulation and type 2 diabetes. Methodology/Principal findings The ordinary differential equations of the model, describing the dynamics of glucose and key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adipose tissue, were designed for being embedded in a modular, hierarchical structure. The closed-loop model structure allowed self-sustained simulations to represent an ideal in silico subject that adjusts its own metabolism to the fasting and feeding states, depending on the hormonal context and invariant to circadian fluctuations. The cellular level of the model provided a seamless dynamic description of the molecular mechanisms downstream the insulin receptor in the adipocytes by accounting for variations in the surrounding metabolic context. Conclusions/Significance The combination of a multi-level and closed-loop modeling approach provided a fair dynamic description of the core determinants of glucose homeostasis at both cellular and systemic scales. This model architecture is intrinsically open to incorporate supplementary layers of specifications describing further individual components influencing glucose metabolism. PMID:29420588

  15. Mycotoxin: Its Impact on Gut Health and Microbiota

    PubMed Central

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  16. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  17. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae).

    PubMed

    Treves, D S; Martin, M M

    1994-08-01

    Antibiotic feeding studies were conducted on the firebrat,Thermobia domestica (Zygentoma, Lepismatidae) to determine if the insect's gut cellulases were of insect or microbial origin. Firebrats were fed diets containing either nystatin, metronidazole, streptomycin, tetracycline, or an antibiotic cocktail consisting of all four antibiotics, and then their gut microbial populations and gut cellulase levels were monitored and compared with the gut microbial populations and gut cellulase levels in firebrats feeding on antibiotic-free diets. Each antibiotic significantly reduced the firebrat's gut micro-flora. Nystatin reduced the firebrat's viable gut fungi by 89%. Tetracycline and the antibiotic cocktail reduced the firebrat's viable gut bacteria by 81% and 67%, respectively, and metronidazole, streptomycin, tetracycline, and the antibiotic cocktail reduced the firebrat's total gut flora by 35%, 32%, 55%, and 64%, respectively. Although antibiotics significantly reduced the firebrat's viable and total gut flora, gut cellulase levels in firebrats fed antibiotics were not significantly different from those in firebrats on an antibiotic-free diet. Furthermore, microbial populations in the firebrat's gut decreased significantly over time, even in firebrats feeding on the antibiotic-free diet, without corresponding decreases in gut cellulase levels. Based on this evidence, we conclude that the gut cellulases of firebrats are of insect origin. This conclusion implies that symbiont-independent cellulose digestion is a primitive trait in insects and that symbiont-mediated cellulose digestion is a derived condition.

  18. No-scale SU( 5) super-GUTs

    DOE PAGES

    Ellis, John; Evans, Jason L.; Nagata, Natsumi; ...

    2017-04-12

    We reconsider the minimal SU( 5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M in above the GUT scale M GUT. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. Furthermore, we do not find consistent solutions if none of the matter and Higgs fields aremore » assigned to twisted chiral supermultiplets, even in the presence of Giudice–Masiero terms. But, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions.« less

  19. Drug-Gut Microbiota Interactions: Implications for Neuropharmacology.

    PubMed

    Walsh, Jacinta; Griffin, Brendan T; Clarke, Gerard; Hyland, Niall P

    2018-05-21

    The fate and activity of drugs are frequently dictated not only by the host per se but also by the microorganisms present in the gastrointestinal tract. The gut microbiome is known to, both directly and indirectly, affect drug metabolism. More evidence now hints at the impact that drugs can have on the function and composition of the gut microbiome. Both microbiota-mediated alterations in drug metabolism and drug-mediated alterations in the gut microbiome can have beneficial or detrimental effects on the host. Greater insights into the mechanisms driving these reciprocal drug-gut microbiota interactions are needed, to guide the development of microbiome-targeted dietary or pharmacological interventions, with the potential to enhance drug efficacy or reduce drug side-effects. In this review, we explore the relationship between drugs and the gut microbiome, with a specific focus on potential mechanisms underpinning the drug-mediated alterations on the gut microbiome and the potential implications for psychoactive drugs. This article is protected by copyright. All rights reserved.

  20. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    PubMed

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  1. Microbiota-gut-brain axis and the central nervous system.

    PubMed

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  2. [Multi-disciplinary treatment increases the survival rate of late stage pharyngeal, laryngeal or cervical esophageal cancers treated by free jejunal flap reconstruction after cancer resection].

    PubMed

    Zhu, Y M; Zhang, H; Ni, S; Wang, J; Li, D Z; Liu, S Y

    2016-05-23

    To investigate the survival status of patients with pharyngeal, laryngeal or cervical esophageal cancers, who received free jejunal flap (FJF) to repair the defects following tumor resection, and to analyze the effect of multi-disciplinary treatment on their survival. Fifty-eight patients with pharyngeal, laryngeal or cervical esophageal cancer underwent free jejunal flap (FJF) reconstruction after cancer resection between 2010 and 2013. All their clinical records were reviewed and analyzed. The success rate of flap transplantation was 91.4% (53/58). The 2-year overall survival rates (OSR) of cervical esophageal cancer and hypopharyngeal cancer patients were 67.5% and 49.3%, respectively, both were significantly better than that of laryngeal cancer. The main causes of death were local recurrence and distant metastases. The group with no short-term complications had a better two-year OSR (59.0%) than the group with short-term complications (46.6%), however, the difference between them was not significant (P=0.103). The 2-year survival rate of the initial treatment group was 65.0%, better than that of the salvage treatment group (49.4%), but the difference was not significant (P=0.051). For the stage III and IV patients, the multi-disciplinary treatment group had a significantly better 2-year OSR (64.7%) than the single or sequential treatment group (37.0%, P=0.016). Free jejunal flap reconstruction is an ideal option for repairing the cervical digestive tract circumferential defects caused by tumor resection with a high success rate and a low mortality. Compared with the single or sequential treatment, multi-disciplinary treatment can significantly improve the survival rate of late-stage hypopharyngeal and cervical esophageal cancer patients.

  3. Gut Microbiota of Nonalcoholic Fatty Liver Disease.

    PubMed

    Abdou, Reham M; Zhu, Lixin; Baker, Robert D; Baker, Susan S

    2016-05-01

    The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.

  4. The Gut Microbiota and Autism Spectrum Disorders

    PubMed Central

    Li, Qinrui; Han, Ying; Dy, Angel Belle C.; Hagerman, Randi J.

    2017-01-01

    Gastrointestinal (GI) symptoms are a common comorbidity in patients with autism spectrum disorder (ASD), but the underlying mechanisms are unknown. Many studies have shown alterations in the composition of the fecal flora and metabolic products of the gut microbiome in patients with ASD. The gut microbiota influences brain development and behaviors through the neuroendocrine, neuroimmune and autonomic nervous systems. In addition, an abnormal gut microbiota is associated with several diseases, such as inflammatory bowel disease (IBD), ASD and mood disorders. Here, we review the bidirectional interactions between the central nervous system and the gastrointestinal tract (brain-gut axis) and the role of the gut microbiota in the central nervous system (CNS) and ASD. Microbiome-mediated therapies might be a safe and effective treatment for ASD. PMID:28503135

  5. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies.

    PubMed

    West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. [Gut microbiota: Description, role and pathophysiologic implications].

    PubMed

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  7. GUT MICROBIOTA DYSBIOSIS IS LINKED TO HYPERTENSION

    PubMed Central

    Yang, Tao; Santisteban, Monica M.; Rodriguez, Vermali; Li, Eric; Ahmari, Niousha; Carvajal, Jessica Marulanda; Zadeh, Mojgan; Gong, Minghao; Qi, Yanfei; Zubcevic, Jasenka; Sahay, Bikash; Pepine, Carl J.; Raizada, Mohan K.; Mohamadzadeh, Mansour

    2015-01-01

    Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. The present study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension since genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of two rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes to Bacteroidetes ratio. These changes were accompanied with decreases in acetate- and butyrate-producing bacteria. Additionally, the microbiota of a small cohort of human hypertension patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes to Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes to Bacteroidetes ratio. These observations demonstrate that high BP is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension. PMID:25870193

  8. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    PubMed

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  9. Gut-Bioreactor and Human Health in Future.

    PubMed

    Purohit, Hemant J

    2018-03-01

    Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.

  10. Gut dysbiosis impairs recovery after spinal cord injury

    PubMed Central

    Wang, Lingling; Mo, Xiaokui

    2016-01-01

    The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid–producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI. PMID:27810921

  11. Villification of the gut

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas; Shyer, Amy E.; Tabin, Clifford J.; Mahadevan, L.

    2014-03-01

    The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We combine biological manipulations and quantitative modeling to show that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. Our computational model incorporates measured elastic properties and growth rates in the developing gut, recapitulating the morphological patterns seen during villification in a variety of species. Our study provides a mechanical basis for the genesis of these epithelial protrusions that are essential for providing sufficient surface area for nutrient absorption.

  12. Influence of gut microbiota on neuropsychiatric disorders.

    PubMed

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  13. Influence of gut microbiota on neuropsychiatric disorders

    PubMed Central

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-01-01

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson’s disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors

  14. Gut microbiota and host metabolism in liver cirrhosis

    PubMed Central

    Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato

    2015-01-01

    The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics

  15. Gut microbiota and host metabolism in liver cirrhosis.

    PubMed

    Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato

    2015-11-07

    The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics

  16. Enterohemorrhagic Escherichia coli infection has donor-dependent effect on human gut microbiota and may be antagonized by probiotic yeast during interaction with Peyer's patches.

    PubMed

    Thévenot, J; Cordonnier, C; Rougeron, A; Le Goff, O; Nguyen, H T T; Denis, S; Alric, M; Livrelli, V; Blanquet-Diot, S

    2015-11-01

    Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens responsible for serious infections ranging from mild diarrhea to hemorrhagic colitis and life-threatening complications. Shiga toxins (Stxs) are the main virulence factor of EHEC. The antagonistic effect of a prophylactic treatment with the probiotic strain Saccharomyces cerevisiae against EHEC O157:H7 was investigated using complementary in vitro human colonic model and in vivo murine ileal loop assays. In vitro, the probiotic treatment had no effect on O157:H7 survival but favorably influenced gut microbiota activity through modulation of short-chain fatty acid production, increasing acetate production and decreasing that of butyrate. Both pathogen and probiotic strains had individual-dependent effects on human gut microbiota. For the first time, stx expression was followed in human colonic environment: at 9 and 12 h post EHEC infection, probiotic treatment significantly decreased stx mRNA levels. Besides, in murine ileal loops, the probiotic yeast specifically exerted a trophic effect on intestinal mucosa and inhibited O157:H7 interactions with Peyer's patches and subsequent hemorrhagic lesions. Taken together, the results suggest that S. cerevisiae may be useful in the fight against EHEC infection and that host associated factors such as microbiota could influence clinical evolution of EHEC infection and the effectiveness of probiotics.

  17. The Gut Microbiota of Marine Fish.

    PubMed

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research.

  18. Molecular Insight into Gut Microbiota and Rheumatoid Arthritis.

    PubMed

    Wu, Xiaohao; He, Bing; Liu, Jin; Feng, Hui; Ma, Yinghui; Li, Defang; Guo, Baosheng; Liang, Chao; Dang, Lei; Wang, Luyao; Tian, Jing; Zhu, Hailong; Xiao, Lianbo; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-03-22

    Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.

  19. Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs.

    PubMed

    Caton, J S; Reed, J J; Aitken, R P; Milne, J S; Borowicz, P P; Reynolds, L P; Redmer, D A; Wallace, J M

    2009-01-01

    Peripubertal ewe lambs (44.3 +/- 1.1 kg of initial BW) were used in a 2 x 3 factorial design to test the effects of plane of nutrition (diet) and stage of gestation on maternal visceral tissue mass, intestinal cellularity, crypt cell proliferation, and jejunal mucosal vascularity. Singleton pregnancies to a single sire were established by embryo transfer, and thereafter ewes were offered a control (Control) or high (High) amount of a complete diet (2.84 Mcal/kg and 15.9% CP; DM basis) to promote slow or rapid maternal growth rates. After d 90 of gestation, feed intake of the Control group was adjusted weekly to maintain BCS and meet the increasing nutrient demands of the gravid uterus. Ewes were slaughtered at 50 d (n = 6 Control; n = 5 High), 90 d (n = 8 Control; n = 6 High), or 130 d (n = 8 Control; n = 6 High) of gestation. Ewes were eviscerated and masses of individual organs were recorded. The jejunum was sampled and processed for subsequent analyses. Final ewe BW for Control-fed ewes was similar at d 50 and 90 and increased (P = 0.10) from d 90 to 130 (46.0, 48.9, and 58.2 +/- 1.6 kg, respectively), whereas final BW increased (P Jejunal RNA and protein concentrations were less (P

  20. Mechanisms of inflammation-driven bacterial dysbiosis in the gut

    PubMed Central

    Zeng, MY; Inohara, N; Nuñez, G

    2018-01-01

    The gut microbiota has diverse and essential roles in host metabolism, development of the immune system and as resistance to pathogen colonization. Perturbations of the gut microbiota, termed gut dysbiosis, are commonly observed in diseases involving inflammation in the gut, including inflammatory bowel disease, infection, colorectal cancer and food allergies. Importantly, the inflamed microenvironment in the gut is particularly conducive to blooms of Enterobacteriaceae, which acquire fitness benefits while other families of symbiotic bacteria succumb to environmental changes inflicted by inflammation. Here we summarize studies that examined factors in the inflamed gut that contribute to blooms of Enterobacterieaceae, and highlight potential approaches to restrict Enterobacterial blooms in treating diseases that are otherwise complicated by overgrowth of virulent Enterobacterial species in the gut. PMID:27554295

  1. Study of the effect of jejuno-ileal distension on the motor activity of the stomach with evidence of "entero-gastric inhibitory reflex".

    PubMed

    Shafik, Ahmed; Shafik, Ali A; el-Sibai, Olfat

    2003-01-01

    In chronic constipation due to delayed colonic transit, stasis of the ileal contents with resulting ileal distension may occur. The current study investigated the effect of ileal and jejunal distension on the gastric motility, aiming at elucidating the possible existence of a relationship and its role in the flow through the gut. The response of the gastric pressure to ileal and jejunal balloon distension in increments of 2 mL of saline was recorded in 12 mongrel dogs. The test was repeated after separate local anesthetization of the ileum, jejunum and stomach. 2- and 4-mL ileal balloon distension produced no significant gastric pressure response, while 6- and up to 10-mL distension effected decrease of the antral and corporeal pressures (p < 0.05, p < 0.05, respectively). Jejunal distension produced a gastric pressure decline (p < 0.05) with 4 and up to 10 mL of saline. The gastric pressure decrease did not show significant changes with the various distending volumes. It was maintained as long as ileal or jejunal distension was continued. Distension of the anesthetized ileum or jejunum caused no gastric pressure changes, nor did ileal or jejunal distension produce pressure changes in the anesthetized stomach. The gastric pressure decline and presumably hypotonia upon ileal or jejunal distension with big volumes postulate a reflex relationship which we call "entero-gastric inhibitory reflex". The small intestine is suggested to slow down gastric emptying through this reflex. A balance is thus created between chyme delivery from the stomach and chyme processing by the small intestine. Reflex derangement in neurogenic and myogenic diseases may result in gastrointestinal disorders, a point that needs to be investigated.

  2. [Glucose homeostasis and gut-brain connection].

    PubMed

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  3. Introduction to the human gut microbiota.

    PubMed

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  4. Introduction to the human gut microbiota

    PubMed Central

    Thursby, Elizabeth

    2017-01-01

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions. PMID:28512250

  5. Microbiota-gut-brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers.

    PubMed

    Bhattarai, Y

    2018-06-01

    The gastrointestinal barrier and the blood brain barrier represent an important line of defense to protect the underlying structures against harmful external stimuli. These host barriers are composed of epithelial and endothelial cells interconnected by tight junction proteins along with several other supporting structures. Disruption in host barrier structures has therefore been implicated in various diseases of the gastrointestinal tract and the central nervous system. While there are several factors that influence host barrier, recently there is an increasing appreciation of the role of gut microbiota and their metabolites in regulating barrier integrity. In the current issue of Neurogastroenterology and Motility, Marungruang et al. describe the effect of gastrointestinal barrier maturation on gut microbiota and the blood brain barrier adding to the growing evidence of microbiota-barrier interactions. In this mini-review I will discuss the effect of gut microbiota on host epithelial barriers and its implications for diseases associated with disrupted gut-brain axis. © 2018 John Wiley & Sons Ltd.

  6. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    PubMed

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  7. The human gut microbiota and virome: Potential therapeutic implications.

    PubMed

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta.

    PubMed

    Ellis, P R; Roberts, F G; Low, A G; Morgan, L M

    1995-10-01

    The present study was designed to determine the quantitative effects of starchy meals containing guar gum on rates of net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide (GIP) production in growing pigs. The effects of these meals on the viscosity of jejunal digesta were also examined and correlated to changes in glucose absorption. Four growing pigs were each given either a low-fat semi-purified diet (control) or the same diet supplemented with a high-molecular-weight guar gum at concentrations in the diet of 20 or 40 g/kg. Blood samples were removed simultaneously via indwelling catheters from the mesenteric artery and the hepatic portal vein. Samples of jejunal digesta were removed via a T-piece cannula and used immediately for viscosity measurements at 39 degrees. The 'zero-shear' viscosity of each sample was then calculated. Blood-flow measurements were made using an ultrasonic flow probe fitted to the hepatic portal vein. All measurements were made at intervals of 10 or 30 min during a 4 h postprandial period. Meals containing guar gum significantly increased (P < 0.05) the viscosity of jejunal digesta, an effect that was strongly dependent on the concentration of guar gum in the original diet. No significant differences in blood-flow rates were found between the control and guar-containing diets. Both concentrations of guar gum significantly reduced (P < 0.05) glucose absorption and insulin and GIP secretion rates over the 4 h postprandial period. An inverse relationship between the rate of glucose absorption and the 'zero-shear' viscosity of jejunal digesta was found. This study also provides direct evidence for the important role played by the enteroinsular axis in modifying the glycaemic response to a meal containing guar gum.

  9. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  10. Mechanisms Linking the Gut Microbiome and Glucose Metabolism

    PubMed Central

    Kratz, Mario; Damman, Chris J.; Hullarg, Meredith

    2016-01-01

    Context: Type 2 diabetes mellitus is associated with gastrointestinal dysbiosis involving both compositional and functional changes in the gut microbiome. Changes in diet and supplementation with probiotics and prebiotics (ie, fermentable fibers) can induce favorable changes in gut bacterial species and improve glucose homeostasis. Objective: This paper will review the data supporting several potential mechanisms whereby gut dysbiosis contributes to metabolic dysfunction, including microbiota driven increases in systemic lipopolysaccharide concentrations, changes in bile acid metabolism, alterations in short chain fatty acid production, alterations in gut hormone secretion, and changes in circulating branched-chain amino acids. Methods: Data for this review were identified by searching English language references from PubMed and relevant articles. Conclusions: Understanding the mechanisms linking the gut microbiome to glucose metabolism, and the relevant compositional and functional characteristics of the gut microbiome, will help direct future research to develop more targeted approaches or novel compounds aimed at restoring a more healthy gut microbiome as a new approach to prevent and treat type 2 diabetes mellitus and related metabolic conditions. PMID:26938201

  11. Microbiota in fermented feed and swine gut.

    PubMed

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  12. The Gut Microbiota of Marine Fish

    PubMed Central

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  13. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    PubMed

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  14. Treatment of spontaneous esophageal rupture with transnasal thoracic drainage and temporary esophageal stent and jejunal feeding tube placement.

    PubMed

    Wu, Gang; Zhao, Yan Shi; Fang, Yi; Qi, Yu; Li, Xiangnan; Jiao, Dechao; Ren, Kewei; Han, Xinwei

    2017-01-01

    Spontaneous rupture of the esophagus is a rare but life-threatening thoracic emergency, with high rates of clinical misdiagnosis and mortality. This article summarizes our experience in the treatment of spontaneous esophageal rupture with transnasal thoracic drainage and temporary esophageal stent and jejunal feeding tube placement. We retrospectively assessed the medical records of 19 patients with spontaneous esophageal rupture treated using our intervention protocol. Patients received local anesthesia and sedation prior to undergoing transnasal drainage catheter placement into the thoracic abscess cavity, followed by temporary esophageal stent and jejunal feeding tube placement. After the operation, abscess lavage, nutritional support, and anti-inflammatory treatment were given. The transnasal thoracic drainage catheter, esophageal stent, and feeding tube were removed after the healing of the abscess cavity. In all, 19 covered esophageal stents were placed in 19 patients with spontaneous esophageal rupture. All operations were technically successful. After an average of 84.06 days, the stents were successfully removed from 17 patients. No cases of massive hemorrhage, esophageal rupture, or other complications occurred during stent removal. An 82-year-old patient died of heart failure 2 months after the operation. One patient died of sudden massive hematemesis and hematochezia 55 days after the operation. In one patient, the esophageal injury failed to heal completely. Our treatment protocol is simple, minimally invasive, and efficacious and may be an alternative for patients who are not candidates for surgery, have a high risk of postoperative complications, or wish to undergo minimally invasive surgery. Therapeutic study, level V.

  15. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    PubMed

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae ( S. cerevisiae ) and Saccharomyces boulardii ( S. boulardii ) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae , S. boulardii , or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency (Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity (mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity

  16. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility

    PubMed Central

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-01-01

    AIM To investigate the capacity of Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardii (S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility. METHODS Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae, S. boulardii, or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. RESULTS S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency (Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity (mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar

  17. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  18. Recruitment and establishment of the gut microbiome in arctic shorebirds.

    PubMed

    Grond, Kirsten; Lanctot, Richard B; Jumpponen, Ari; Sandercock, Brett K

    2017-12-01

    Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the rate and compositional dynamics of accumulation of gut microbiota. Contrary to earlier reports of microbial recruitment before hatching in chickens, quantitative PCR and Illumina sequence data indicated negligible microbiota in the guts of shorebird embryos before hatching. Analyses of chick feces indicated an exponential increase in bacterial abundance of guts 0-2 days post-hatch, followed by stabilization. Gut communities were characterized by stochastic recruitment and convergence towards a community dominated by Clostridia and Gammaproteobacteria. We conclude that guts of shorebird chicks are likely void of microbiota prior to hatch, but that stable gut microbiome establishes as early as 3 days of age, probably from environmental inocula. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change

    PubMed Central

    Chen, Po-Cheng; Weng, Francis Cheng-Hsuan; Shaw, Grace Tzun-Wen

    2017-01-01

    Growing evidence points out that the capacity of organisms to acclimate or adapt to new habitat conditions basically depends on their phenomic plasticity attributes, of which their gut commensal microbiota might be an essential impact factor. Especially in aquatic organisms, which are in direct and continual contact with the aquatic environment, the complex and dynamic microbiota have significant effects on health and development. However, an understanding of the relative contribution of internal sorting (host genetic) and colonization (environmental) processes is still unclear. To understand how microbial communities differ in response to rapid environmental change, we surveyed and studied the environmental and gut microbiota of native and habitat-exchanged shrimp (Macrobrachium nipponense) using 16S rRNA amplicon sequencing on the Illumina MiSeq platform. Corresponding with microbial diversity of their living water areas, the divergence in gut microbes of lake-to-river shrimp (CK) increased, while that of river-to-lake shrimp (KC) decreased. Importantly, among the candidate environment specific gut microbes in habitat-exchanged shrimp, over half of reads were associated with the indigenous bacteria in native shrimp gut, yet more candidates presented in CK may reflect the complexity of new environment. Our results suggest that shrimp gut microbiota has high plasticity when its host faces environmental changes, even over short timescales. Further, the changes in external environment might influence the gut microbiome not just by providing environment-associated microbes directly, but also by interfering with the composition of indigenous gut bacteria indirectly. PMID:28715471

  20. Relationship between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in the action of thyroid hormone on rat jejunal mucosa.

    PubMed Central

    Liberman, U A; Asano, Y; Lo, C S; Edelman, I S

    1979-01-01

    Administration of three successive doses of triiodothyronine (T3) (50 micrograms/100 g body wt), given on alternate days to thyroidectomized and euthyroid rats, stimulated oxygen consumption (QO2) and Na+ transport-dependent respiration (QO2 [5]) in the stripped jejunal mucosa, a preparation that consisted mostly of epithelial cells. The increase in QO2(t) accounted for 57% of the increment in QO2 in the transition from the hypothyroid to the euthyroid state and for 29% of the increment in the transition from the euthyroid to the hyperthyroid state. Administration of T3 to hypothyroid rats also increased the yield of epithelial cells. Injection of T3 into thyroidectomized and euthyroid rats increased the specific activity (at Vmax) of the (Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) in jejunal crude membrane preparations. No significant change was recorded in the activity of Mg-ATPase in the same preparation. The ratio of QO2/NaK-ATPase and QO2(t)/NaK-ATPase in the various thyroid states remained constant, indicating proportionate increased in the respiratory and enzymatic indices. The effect of administration of T3 to thyroidectomized rats on the number of NaK-ATPase units (recovered in the crude membrane preparation) was estimated by: (a) Na+ + Mg++ + ATP-dependent binding of [3H]-ouabain to crude membrane fractions, and (b) the amount of the phosphorylated intermediate formed in the NaK-ATPase reaction from AT32P(gamma). Estimates were obtained of the maximal number of [3H]ouabain binding sites (Nm) and dissociation constants (Kd). Nm for [3H]ouabain and Nak-ATPase specific activity increased to about the same extent after T3 administration to thyroidectomized rats, with no change in the apparent Kd values. The amount of phosphorylated intermediate formed in jejunal crude membrane preparations also increased significantly. Thus, thyroid hormone administration may increase the number of active Na+pump sites in the plasma membrane. The apparent

  1. Relationship between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in the action of thyroid hormone on rat jejunal mucosa.

    PubMed

    Liberman, U A; Asano, Y; Lo, C S; Edelman, I S

    1979-07-01

    Administration of three successive doses of triiodothyronine (T3) (50 micrograms/100 g body wt), given on alternate days to thyroidectomized and euthyroid rats, stimulated oxygen consumption (QO2) and Na+ transport-dependent respiration (QO2 [5]) in the stripped jejunal mucosa, a preparation that consisted mostly of epithelial cells. The increase in QO2(t) accounted for 57% of the increment in QO2 in the transition from the hypothyroid to the euthyroid state and for 29% of the increment in the transition from the euthyroid to the hyperthyroid state. Administration of T3 to hypothyroid rats also increased the yield of epithelial cells. Injection of T3 into thyroidectomized and euthyroid rats increased the specific activity (at Vmax) of the (Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) in jejunal crude membrane preparations. No significant change was recorded in the activity of Mg-ATPase in the same preparation. The ratio of QO2/NaK-ATPase and QO2(t)/NaK-ATPase in the various thyroid states remained constant, indicating proportionate increased in the respiratory and enzymatic indices. The effect of administration of T3 to thyroidectomized rats on the number of NaK-ATPase units (recovered in the crude membrane preparation) was estimated by: (a) Na+ + Mg++ + ATP-dependent binding of [3H]-ouabain to crude membrane fractions, and (b) the amount of the phosphorylated intermediate formed in the NaK-ATPase reaction from AT32P(gamma). Estimates were obtained of the maximal number of [3H]ouabain binding sites (Nm) and dissociation constants (Kd). Nm for [3H]ouabain and Nak-ATPase specific activity increased to about the same extent after T3 administration to thyroidectomized rats, with no change in the apparent Kd values. The amount of phosphorylated intermediate formed in jejunal crude membrane preparations also increased significantly. Thus, thyroid hormone administration may increase the number of active Na+pump sites in the plasma membrane. The apparent

  2. Gut hormones: the future of obesity treatment?

    PubMed Central

    McGavigan, Anne K; Murphy, Kevin G

    2012-01-01

    Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of anti-obesity drugs in development, focusing on gut hormone-based therapies. PMID:22452339

  3. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    PubMed

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  4. The Role of Microbiota on the Gut Immunology.

    PubMed

    Min, Yang Won; Rhee, Poong-Lyul

    2015-05-01

    The human gut contains >100 trillion microbes. This microbiota plays a crucial role in the gut homeostasis. Importantly, the microbiota contributes to the development and regulation of the gut immune system. Dysbiosis of the gut microbiota could also cause several intestinal and extraintestinal diseases. Many experimental studies help us to understand the complex interplay between the host and microbiota. This review presents our current understanding of the mucosal immune system and the role of gut microbiota for the development and functionality of the mucosal immunity, with a particular focus on gut-associated lymphoid tissues, mucosal barrier, TH17 cells, regulatory T cells, innate lymphoid cells, dendritic cells, and IgA-producing B cells and plasma cells. Comparative studies using germ-free and conventionally-raised animals reveal that the presence of microbiota is important for the development and regulation of innate and adaptive immune systems. The host-microbial symbiosis seems necessary for gut homeostasis. However, the precise mechanisms by which microbiota contributes to development and functionality of the immune system remain to be elucidated. Understanding the complex interplay between the host and microbiota and further investigation of the host-microbiota relationship could provide us the insight into the therapeutic and/or preventive strategy for the disorders related to dysbiosis of the gut microbiota. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  5. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    PubMed

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  6. The giant panda gut microbiome.

    PubMed

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Early gut mycobiota and mother-offspring transfer.

    PubMed

    Schei, Kasper; Avershina, Ekaterina; Øien, Torbjørn; Rudi, Knut; Follestad, Turid; Salamati, Saideh; Ødegård, Rønnaug Astri

    2017-08-24

    The fungi in the gastrointestinal tract, the gut mycobiota, are now recognised as a significant part of the gut microbiota, and they may be important to human health. In contrast to the adult gut mycobiota, the establishment of the early gut mycobiota has never been described, and there is little knowledge about the fungal transfer from mother to offspring. In a prospective cohort, we followed 298 pairs of healthy mothers and offspring from 36 weeks of gestation until 2 years of age (1516 samples) and explored the gut mycobiota in maternal and offspring samples. Half of the pregnant mothers were randomised into drinking probiotic milk during and after pregnancy. The probiotic bacteria included Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis subsp. lactis Bb-12 and Lactobacillus acidophilus La-5. We quantified the fungal abundance of all the samples using qPCR of the fungal internal transcribed spacer (ITS)1 segment, and we sequenced the 18S rRNA gene ITS1 region of 90 high-quantity samples using the MiSeq platform (Illumina). The gut mycobiota was detected in most of the mothers and the majority of the offspring. The offspring showed increased odds of having detectable faecal fungal DNA if the mother had detectable fungal DNA as well (OR = 1.54, p = 0.04). The fungal alpha diversity in the offspring gut increased from its lowest at 10 days after birth, which was the earliest sampling point. The fungal diversity and fungal species showed a succession towards the maternal mycobiota as the child aged, with Debaryomyces hansenii being the most abundant species during breast-feeding and Saccharomyces cerevisiae as the most abundant after weaning. Probiotic consumption increased the gut mycobiota abundance in pregnant mothers (p = 0.01). This study provides the first insight into the early fungal establishment and the succession of fungal species in the gut mycobiota. The results support the idea that the fungal host phenotype is transferred from

  8. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research.

    PubMed

    Gajardo, Karina; Rodiles, Ana; Kortner, Trond M; Krogdahl, Åshild; Bakke, Anne Marie; Merrifield, Daniel L; Sørum, Henning

    2016-08-03

    Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.

  9. Diet and Gut Microbiota in Health and Disease.

    PubMed

    Shen, Ting-Chin David

    2017-01-01

    Gut microbiota plays an important role in host health maintenance and disease pathogenesis. The development of a stable and diverse gut microbiota is essential to various host physiologic functions such as immunoregulation, pathogen prevention, energy harvest, and metabolism. At the same time, a dysbiotic gut microbiota associated with disease is altered in structure and function, and often characterized by a decrease in species richness and proliferation of pathogenic bacterial taxa. As a shared substrate between the host and the gut microbiota, diet significantly impacts the health and disease states of the host both directly and through gut microbial metabolite production. This is demonstrated in the examples of short-chain fatty acid and trimethylamine production via bacterial metabolism of dietary complex carbohydrates and choline, respectively. In disorders related to mucosal immune dysregulation such as inflammatory bowel disease, the dysbiotic gut microbiota and diet contribute to its pathogenesis. Reversal of dysbiosis through fecal microbiota transplantation and dietary interventions may thus represent important strategies to modify the gut microbiota and its metabolite production for health maintenance as well as disease prevention and management. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  10. Loop technique.

    PubMed

    Seeburger, Joerg; Noack, Thilo; Winkfein, Michael; Ender, Joerg; Mohr, Friedrich Wilhelm

    2010-01-01

    The loop technique facilitates mitral valve repair for leaflet prolapse by implantation of Gore-Tex neo-chordae. The key feature of the technique is a premade bundle of four loops made out of one suture. The loops are available in different lengths ranging from 10 to 26 mm. After assessment of the ideal length of neo-chordae with a caliper the loops are then secured to the body of the papillary muscle over an additional felt pledget. In the following step, the free ends of the loops are distributed along the free margin of the prolapsing segment using one additional suture for each loop.

  11. Engineering the gut microbiota to treat hyperammonemia.

    PubMed

    Shen, Ting-Chin David; Albenberg, Lindsey; Bittinger, Kyle; Chehoud, Christel; Chen, Ying-Yu; Judge, Colleen A; Chau, Lillian; Ni, Josephine; Sheng, Michael; Lin, Andrew; Wilkins, Benjamin J; Buza, Elizabeth L; Lewis, James D; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Bushman, Frederic D; Wu, Gary D

    2015-07-01

    Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.

  12. Early-life gut microbiome and egg allergy.

    PubMed

    Fazlollahi, M; Chun, Y; Grishin, A; Wood, R A; Burks, A W; Dawson, P; Jones, S M; Leung, D Y M; Sampson, H A; Sicherer, S H; Bunyavanich, S

    2018-07-01

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis P adj  = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  13. The gut microbiota and its relationship to diet and obesity

    PubMed Central

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  14. Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling

    PubMed Central

    Aguirre, Marisol; Venema, Koen

    2015-01-01

    Increasing evidence suggests that gut microbiota is an environmental factor that plays a crucial role in obesity. However, the aetiology of obesity is rather complex and depends on different factors. Furthermore, there is a lack of consensus about the exact role that this microbial community plays in the host. The aim of this review is to present evidence about what has been characterized, compositionally and functionally, as obese gut microbiota. In addition, the different reasons explaining the so-far unclear role are discussed considering evidence from in vitro, animal and human studies. PMID:27682087

  15. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be

  16. Brain-gut-microbiota axis: challenges for translation in psychiatry.

    PubMed

    Kelly, John R; Clarke, Gerard; Cryan, John F; Dinan, Timothy G

    2016-05-01

    The accruing data linking the gut microbiome to the development and function of the central nervous system has been proposed as a paradigm shift in neuroscience. The gut microbiota can communicate with the brain via neuroimmune, neuroendocrine, and neural pathways comprising the brain-gut-microbiota axis. Dysfunctional neuroimmune pathways are implicated in stress-related psychiatric disorders. Using depression as our primary example, we review both the preclinical and clinical evidence supporting the possible role played by the gut microbiota in stress-related psychiatric disorders. We consider how this can inform future treatment strategies and outline the challenges and necessary studies for moving the field forward. The role played by the gut microbiota has not been fully elucidated in psychiatric populations. Although tempting to speculate that psychiatric patients may benefit from therapeutic modulation of the brain-gut-microbiota axis, the translational applications of the results obtained in rodent studies have yet to be demonstrated. Evidence of altered gut microbiota composition and function in psychiatric patients is limited and cannot be regarded as proven. Moreover the efficacy of targeting the gut microbiota has not yet been established, and needs further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  18. Influence of functional food components on gut health.

    PubMed

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  19. Challenges of metabolomics in human gut microbiota research.

    PubMed

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Global F-theory GUTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also providemore » a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.« less

  1. Peritoneal mesothelioma presenting as an acute surgical abdomen due to jejunal perforation.

    PubMed

    Salemis, Nikolaos S; Tsiambas, Evangelos; Gourgiotis, Stavros; Mela, Ageliki; Karameris, Andreas; Tsohataridis, Efstathios

    2007-11-01

    Peritoneal mesothelioma is a rare disease associated with poor prognosis. Acute abdomen as the first presentation is an extremely rare occurrence. We report an exceptional case of a patient who was found to have a jejunal perforation due to infiltration of peritoneal mesothelioma. A 62-year-old man was admitted with clinical signs of peritonitis. Computerized tomographic scans showed a mass distal to the ligament of Treitz, thickening of the mesentery and a small amount of ascites. Emergency laparotomy revealed a perforated tumor 15 cm distal to the ligament of Treitz and diffuse peritoneal disease. Segmental small bowel resection and suboptimal cytoreduction were performed. Histopathology and immunohistochemistry showed infiltration of malignant mesothelioma. During the postoperative period pleural mesothelioma was also diagnosed. Despite adjuvant chemotherapy, the patient died of disseminated progressive disease 7 months after surgery. Peritoneal mesothelioma is a rare malignancy with grim prognosis. Small bowel involvement is a poor prognostic indicator. Our case of a small bowel perforation due to direct infiltration by peritoneal mesothelioma appears to be the first reported in the English literature.

  2. [Implantation of ultra thin naso-duodenal and naso-jejunal tubes for feeding].

    PubMed

    Manegold, B C; Jung, M; Miceli, F; Schneider, K G

    1984-05-01

    Enteral nutrition through filiform naso-duodenal or naso-jejunal tubes with homogeneous low molecular nutritional solutions has a rather important place in therapy of different conditions; endoscopy can help to introduce these tubes into the intestinal tract in the following situations: A leak in the upper gastrointestinal tract, which may occur after surgical resections of the esophagus or stomach, or which may occur in rare cases after bouginage or after diagnostic procedures can be passed by with an ultrathin tube until it is healed of. Patients with stenotic lesions of the esophagus or the cardia, which can not be treated by surgery or conservative procedures like pertubation and dilation can be fed enterally if it is possible to move the tube beyond the stenosis. Patients with neurogenic swallowing dysfunction of different origine can be fed during long periods of time through such filiform naso-enteral tubes successfully and reach a perfect nutritional state. In acute treatment of Crohn's disease and other inflammatory intestinal diseases enteral nutrition through tubes is an essential therapeutic procedure.

  3. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  4. Impacts of Gut Bacteria on Human Health and Diseases

    PubMed Central

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  5. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    PubMed Central

    2012-01-01

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine. PMID:23194438

  6. The influence of gut microbiota on drug metabolism and toxicity

    PubMed Central

    Li, Houkai; He, Jiaojiao; Jia, Wei

    2017-01-01

    Introduction Gut microbiota plays critical roles in drug metabolism. The individual variation of gut microbiota contributes to the interindividual differences towards drug therapy including drug-induced toxicity and efficacy. Accordingly, the investigation and elucidation of gut microbial impacts on drug metabolism and toxicity will not only facilitate the way of personalized medicine, but also improve the rational drug design. Areas covered This review provide an overview on the microbiota-host cometabolism on drug metabolism and summarize 30 clinical drugs which are co-metabolized by host and gut microbiota. Moreover, this review is specifically focused on elucidating the gut microbial modulation on some clinical drugs, in which the gut microbial influences on drug metabolism, drug-induced toxicity and efficacy are intensively discussed. Expert opinion The gut microbial contribution to drug metabolism and toxicity is increasingly recognized, but remains largely unexplored due to the extremely complex relationship between gut microbiota and host. The mechanistic elucidation of gut microbiota in drug metabolism is critical before any practical progress in drug design or personalized medicine could be made by modulating human gut microbiota, which is predominantly relied on the technical innovations such as metagenomics and metabolomics, as well as the integration of multi-disciplinary knowledge. PMID:26569070

  7. The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

    PubMed Central

    Boursier, Jérôme; Mueller, Olaf; Barret, Matthieu; Machado, Mariana; Fizanne, Lionel; Araujo-Perez, Felix; Guy, Cynthia D.; Seed, Patrick C.; Rawls, John F.; David, Lawrence A.; Hunault, Gilles; Oberti, Frédéric; Calès, Paul; Diehl, Anna Mae

    2016-01-01

    Background & aims Several animal studies have emphasized the role of gut microbiota in non-alcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remains scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, i.e. non-alcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Methods 57 patients with biopsy-proven NAFLD were enrolled. The taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Results 30 patients had F0/1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these 2 bacteria generated 3 patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, KEGG pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. Conclusion NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre/probiotics therapies. PMID:26600078

  8. Developmental biology of gut-probiotic interaction

    PubMed Central

    Patel, Ravi Mangal

    2010-01-01

    While our current knowledge of probiotic interaction in the developing gut remains poorly understood, emerging science is providing greater biological insight into their mechanism of action and therapeutic potential for human disease. Given their beneficial effects, probiotics remain promising agents in neonatal gastrointestinal disorders. Probiotics may restore or supply essential bacterial strains needed for gut maturation and homeostasis, particularly in hosts where this process has been disrupted. Here we highlight the unique characteristics of developing intestinal epithelia with a focus on gut development and colonization as well as the inflammatory propensity of immature epithelia. Additionally, we review potential mechanisms of beneficial probiotic interaction with immature intestinal epithelia including immunomodulation, upregulation of cytoprotective genes, prevention and regulation of apoptosis and maintenance of barrier function. Improved knowledge of gut-probiotic interaction in developing epithelia will allow for a better understanding of how probiotics exert their beneficial effects and help guide their therapeutic use. PMID:21327024

  9. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut.

    PubMed

    Zhao, Yi; Su, Jian-Qiang; An, Xin-Li; Huang, Fu-Yi; Rensing, Christopher; Brandt, Kristian Koefoed; Zhu, Yong-Guan

    2018-04-15

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Antibiotics and metals are widely used as feed additives and could consequently affect ARGs in swine gut. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) based ARG chip and next-generation 16S rRNA gene amplicon sequencing data were analyzed using multiple statistical approaches to profile the antibiotic resistome and investigate its linkages to antibiotics and metals used as feed additives and to the microbial community composition in freshly collected swine manure samples from three large-scale Chinese pig farms. A total of 146 ARGs and up to 1.3×10 10 total ARG copies per gram of swine feces were detected. ARGs conferring resistance to aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB) and tetracycline were dominant in pig gut. Total abundance of ARGs was positively correlated with in-feed antibiotics, microbial biomass and abundance of mobile genetic elements (MGEs) (P<0.05). A significant correlation between microbial communities and ARG profiles was observed by Procrustes analysis. Network analysis revealed that Bacteroidetes and Firmicutes were the most dominant phyla co-occurring with specific ARGs. Partial redundancy analysis indicated that the variance in ARG profiles could be primarily attributed to antibiotics and metals in feed (31.8%), gut microbial community composition (23.3%) and interaction between feed additives and community composition (16.5%). These results suggest that increased levels of in-feed additives could aggravate the enrichment of ARGs and MGEs in swine gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Kynurenine pathway metabolism and the microbiota-gut-brain axis.

    PubMed

    Kennedy, P J; Cryan, J F; Dinan, T G; Clarke, G

    2017-01-01

    It has become increasingly clear that the gut microbiota influences not only gastrointestinal physiology but also central nervous system (CNS) function by modulating signalling pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms underpinning the influence exerted by the gut microbiota on brain function and behaviour has become a key research priority. Microbial regulation of tryptophan metabolism has become a focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the control of kynurenine pathway metabolism. Here, we focus in detail on the latter pathway and begin by outlining the structural and functional dynamics of the gut microbiota and the signalling pathways of the brain-gut axis. We summarise preclinical and clinical investigations demonstrating that the gut microbiota influences CNS physiology, anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn from neurogastroenterology demonstrating the importance of tryptophan and its metabolites in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may be regulated by microbial control of neuroendocrine function and components of the immune system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, with downstream effects on CNS function, is reviewed. Targeting the gut microbiota represents a tractable target to modulate kynurenine pathway metabolism. Efforts to develop this approach will markedly increase our understanding of how the gut microbiota shapes brain and behaviour and provide new insights towards successful translation of microbiota-gut-brain axis research from bench to bedside. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures

    PubMed Central

    Rosenfeld, Cheryl S.

    2017-01-01

    The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals. PMID:28936425

  13. Gut Microbiota as a Therapeutic Target for Metabolic Disorders.

    PubMed

    Okubo, Hirofumi; Nakatsu, Yusuke; Kushiyama, Akifumi; Yamamotoya, Takeshi; Matsunaga, Yasuka; Inoue, Masa-Ki; Fujishiro, Midori; Sakoda, Hideaki; Ohno, Haruya; Yoneda, Masayasu; Ono, Hiraku; Asano, Tomoichiro

    2018-01-01

    Gut microbiota play a vital role not only in the digestion and absorption of nutrients, but also in homeostatic maintenance of host immunity, metabolism and the gut barrier. Recent evidence suggests that gut microbiota alterations contribute to the pathogenesis of metabolic disorders. In this review, we discuss the association between the gut microbiota and metabolic disorders, such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease, and the contribution of relevant modulating interventions, focusing on recent human studies. Several studies have identified potential causal associations between gut microbiota and metabolic disorders, as well as the underlying mechanisms. The effects of modulating interventions, such as prebiotics, probiotics, fecal microbiota transplantation, and other new treatment possibilities on these metabolic disorders have also been reported. A growing body of evidence highlights the role of gut microbiota in the development of dysbiosis, which in turn influences host metabolism and disease phenotypes. Further studies are required to elucidate the precise mechanisms by which gut microbiota-derived mediators induce metabolic disorders and modulating interventions exert their beneficial effects in humans. The gut microbiota represents a novel potential therapeutic target for a range of metabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Exercise, fitness, and the gut.

    PubMed

    Cronin, Owen; Molloy, Michael G; Shanahan, Fergus

    2016-03-01

    Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.

  15. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    NASA Astrophysics Data System (ADS)

    Berumen, M. L.; Pratchett, M. S.; Goodman, B. A.

    2011-12-01

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors.

  16. Redefining the gut as the motor of critical illness

    PubMed Central

    Mittal, Rohit; Coopersmith, Craig M.

    2013-01-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiologic insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. PMID:24055446

  17. Salmonella serovar-specific interaction with jejunal epithelial cells.

    PubMed

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gut Microbiota in Cardiovascular Health and Disease.

    PubMed

    Tang, W H Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-03-31

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through many pathways, including the trimethylamine/trimethylamine N -oxide pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these metabolism-dependent pathways, metabolism-independent processes are suggested to also potentially contribute to cardiovascular disease pathogenesis. For example, heart failure-associated splanchnic circulation congestion, bowel wall edema, and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are thought to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites, and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. © 2017 American Heart

  19. Gut Microbiota in Cardiovascular Health and Disease

    PubMed Central

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  20. Handling stress may confound murine gut microbiota studies.

    PubMed

    Allen-Blevins, Cary R; You, Xiaomeng; Hinde, Katie; Sela, David A

    2017-01-01

    Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis) , a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantis during critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis , we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium , Bacteroides , Bacteroidetes, and Firmicutes. Our results

  1. Renormalization of loop functions for all loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-08-15

    It is shown that the vacuum expectation values W(C/sub 1/,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp(igcontour-integral/sub C/iA/sub ..mu../(x)dx/sup ..mu../) are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub ..mu../(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multipliedmore » by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub ..gamma../ is a loop which is smooth and simple except for a single cusp of angle ..gamma.., then W/sub R/(C/sub ..gamma../) = Z(..gamma..)W(C/sub ..gamma../) is finite for a suitable renormalization factor Z(..gamma..) which depends on ..gamma.. but on no other characteristic of C/sub ..gamma../. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub ..gamma../) = 1 for an arbitrary but fixed loop C-bar/sub ..gamma../. Next, if C/sub ..beta../ is a loop which is smooth and simple except for a cross point of angles ..beta.., then W(C/sub ..beta../) must be renormalized together with the loop functions of associated sets S/sup i//sub ..beta../ = )C/sup i//sub 1/,xxx, C/sup i//sub p/i) (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub ..beta../equivalentC/sup 1//sub 1/. Then W/sub R/(S/sup i//sub ..beta../) = Z/sup i

  2. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens

    PubMed Central

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-01-01

    Background Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. Aim We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Methods Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFPtg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium. Results SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC)TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. Conclusions SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. PMID:28341747

  3. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability.

    PubMed

    Cani, P D; Possemiers, S; Van de Wiele, T; Guiot, Y; Everard, A; Rottier, O; Geurts, L; Naslain, D; Neyrinck, A; Lambert, D M; Muccioli, G G; Delzenne, N M

    2009-08-01

    Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions

  4. Breaking down the gut microbiome composition in multiple sclerosis.

    PubMed

    Budhram, Adrian; Parvathy, Seema; Kremenchutzky, Marcelo; Silverman, Michael

    2017-04-01

    The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.

  5. The Gut Microbiome and the Brain

    PubMed Central

    Galland, Leo

    2014-01-01

    Abstract The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adaptive immune system. (3) Bacterial enzymes may produce neurotoxic metabolites such as D-lactic acid and ammonia. Even beneficial metabolites such as short-chain fatty acids may exert neurotoxicity. (4) Gut microbes can produce hormones and neurotransmitters that are identical to those produced by humans. Bacterial receptors for these hormones influence microbial growth and virulence. (5) Gut bacteria directly stimulate afferent neurons of the enteric nervous system to send signals to the brain via the vagus nerve. Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome. Their role in multiple sclerosis and the neurologic manifestations of celiac disease is being studied. Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics. PMID:25402818

  6. Compartmentalization of Inflammatory Response Following Gut Ischemia Reperfusion.

    PubMed

    Collange, O; Charles, A-L; Lavaux, T; Noll, E; Bouitbir, J; Zoll, J; Chakfé, N; Mertes, M; Geny, B

    2015-01-01

    Gut ischemia reperfusion (IR) is thought to trigger systemic inflammation, multiple organ failure, and death. The aim of this study was to investigate inflammatory responses in blood and in two target organs after gut IR. This was a controlled animal study. Adult male Wistar rats were randomized into two groups of eight rats: control group and gut IR group (60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion). Lactate and four cytokines (tumor necrosis factor-a, interleukin [IL]-1b, IL-6, and IL-10) were measured in mesenteric and systemic blood. The relative gene expression of these cytokines was determined by real time polymerase chain reaction in the gut, liver, and lung. Gut IR significantly increased lactate levels in mesenteric (0.9 ± 0.4 vs. 3.7 ± 1.8 mmol/L; p < .001) and in systemic blood (1.3 ± 0.2 vs. 4.0 ± 0.3 mmol/L; p < .001). Gut IR also increased the levels of four cytokines in mesenteric and systemic blood. IL-6 and IL-10 were the main circulating cytokines; there were no significant differences between mesenteric and systemic cytokine levels. IL-10 was upregulated mainly in the lung,suggesting that this organ could play a major role during gut reperfusion. The predominance of IL-10 over other cytokines in plasma and the dissimilar organ responses,especially of the lung, might be a basis for the design of therapies, for example lung protective ventilation strategies, to limit the deleterious effects of the inflammatory cascade. A multi-organ protective approach might involve gut directed therapies, protective ventilation, hemodynamic optimization, and hydric balance.

  7. Redefining the gut as the motor of critical illness.

    PubMed

    Mittal, Rohit; Coopersmith, Craig M

    2014-04-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiological insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Targeting gut microbiome: A novel and potential therapy for autism.

    PubMed

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neutrino assisted GUT baryogenesis revisited

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  10. The super-GUT CMSSM revisited

    DOE PAGES

    Ellis, John; Evans, Jason L.; Mustafayev, Azar; ...

    2016-10-28

    Here, we revisit minimal supersymmetric SU(5) grand unification (GUT) models in which the soft supersymmetry-breaking parameters of the minimal supersymmetric Standard Model (MSSM) are universal at some input scale, M in, above the supersymmetric gauge-coupling unification scale, M GUT. As in the constrained MSSM (CMSSM), we assume that the scalar masses and gaugino masses have common values, m 0 and m 1/2, respectively, at M in, as do the trilinear soft supersymmetry-breaking parameters A 0. Going beyond previous studies of such a super-GUT CMSSM scenario, we explore the constraints imposed by the lower limit on the proton lifetime and themore » LHC measurement of the Higgs mass, m h. We find regions of m 0, m 1/2 A 0 and the parameters of the SU(5) superpotential that are compatible with these and other phenomenological constraints such as the density of cold dark matter, which we assume to be provided by the lightest neutralino. Typically, these allowed regions appear for m 0 and m 1/2 in the multi-TeV region, for suitable values of the unknown SU(5) GUT-scale phases and superpotential couplings, and with the ratio of supersymmetric Higgs vacuum expectation values tan β≲6.« less

  11. [Current view on gut microbiota].

    PubMed

    Bourlioux, P

    2014-01-01

    Gut microbiota is more and more important since metagenomic research have brought new knowledge on this topic especially for human health. Firstly, gut microbiota is a key element for our organism he lives in symbiosis with. Secondly, it interacts favorably with many physiological functions of our organism. Thirdly, at the opposite, it can be an active participant in intestinal pathologies linked to a dysbiosis mainly in chronic inflammatory bowel diseases like Crohn disease or ulcerative colitis but also in obesity, metabolic syndrome, and more prudently in autism and behavioral disorders. In order to keep a good health, it is essential to protect our gut microbiota as soon as our young age and maintain it healthy. Face to a more and more important number of publications for treating certain digestive diseases with fecal microbial transplantation, it needs to be very careful and recommend further studies in order to assess risks and define standardized protocols. Gut microbiota metabolic capacities towards xenobiotics need to be developed, and we must take an interest in the modifications they induce on medicinal molecules. On the other hand, it is essential to study the potent effects of pesticides and other pollutants on microbiota functions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Gut microbiota-bone axis.

    PubMed

    Villa, Christopher R; Ward, Wendy E; Comelli, Elena M

    2017-05-24

    The gut microbiota (GM) is an important regulator of body homeostasis, including intestinal and extra-intestinal effects. This review focuses on the GM-bone axis, which we define as the effect of the gut-associated microbial community or the molecules they synthesize, on bone health. While research in this field is limited, findings from preclinical studies support that gut microbes positively impact bone mineral density and strength parameters. Moreover, administration of beneficial bacteria (probiotics) in preclinical models has demonstrated higher bone mineralization and greater bone strength. The preferential bacterial genus that has shown these beneficial effects in bone is Lactobacillus and thus lactobacilli are among the best candidates for future clinical intervention trials. However, their effectiveness is dependent on stage of development, as early life constitutes an important time for impacting bone health, perhaps via modulation of the GM. In addition, sex-specific difference also impacts the efficacy of the probiotics. Although auspicious, many questions regarding the GM-bone axis require consideration of potential mechanisms; sex-specific efficacy; effective dose of probiotics; and timing and duration of treatment.

  13. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    PubMed

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity.

    PubMed

    Stephens, Richard W; Arhire, Lidia; Covasa, Mihai

    2018-05-01

    This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity. © 2018 The Obesity Society.

  15. The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review.

    PubMed

    Huang, Chun Hua; Yu, Xin; Liao, Wen Bo

    2018-06-17

    The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH) that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.

  16. Altered gut microbiota in Rett syndrome.

    PubMed

    Strati, Francesco; Cavalieri, Duccio; Albanese, Davide; De Felice, Claudio; Donati, Claudio; Hayek, Joussef; Jousson, Olivier; Leoncini, Silvia; Pindo, Massimo; Renzi, Daniela; Rizzetto, Lisa; Stefanini, Irene; Calabrò, Antonio; De Filippo, Carlotta

    2016-07-30

    The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT's gastrointestinal abnormalities and the gut microbiota. The aim of this study was to evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with gastrointestinal abnormalities and inflammatory status. Our findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida. We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles. We demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT

  17. Gut as a target for cadmium toxicity.

    PubMed

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Gut microbiota and the development of obesity.

    PubMed

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  19. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota.

    PubMed

    Mishra, Alok Kumar; Dubey, Vinay; Ghosh, Asit Ranjan

    2016-01-01

    Obesity is one of the major challenges for public health in 21st century, with 1.9 billion people being considered as overweight and 600 million as obese. There are certain diseases such as type 2 diabetes, hypertension, cardiovascular disease, and several forms of cancer which were found to be associated with obesity. Therefore, understanding the key molecular mechanisms involved in the pathogenesis of obesity could be beneficial for the development of a therapeutic approach. Hormones such as ghrelin, glucagon like peptide 1 (GLP-1) peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK) secreted by an endocrine organ gut, have an intense impact on energy balance and maintenance of homeostasis by inducing satiety and meal termination. Glucose and energy homeostasis are also affected by lipid sensing in which different organs respond in different ways. However, there is one common mechanism i.e. formation of esterified lipids (long chain fatty acyl CoAs) and the activation of protein kinase C δ (PKC δ) involved in all these organs. The possible role of gut microbiota and obesity has been addressed by several researchers in recent years, indicating the possible therapeutic approach toward the management of obesity by the introduction of an external living system such as a probiotic. The proposed mechanism behind this activity is attributed by metabolites produced by gut microbial organisms. Thus, this review summarizes the role of various physiological factors such as gut hormone and lipid sensing involved in various tissues and organ and most important by the role of gut microbiota in weight management. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Role of Gut Microbiota in Liver Disease.

    PubMed

    Brenner, David A; Paik, Yong-Han; Schnabl, Bernd

    2015-01-01

    Many lines of research have established a relationship between the gut microbiome and patients with liver disease. For example, patients with cirrhosis have increased bacteremia, increased blood levels of lipopolysaccharide, and increased intestinal permeability. Patients with cirrhosis have bacterial overgrowth in the small intestine. Selective intestinal decontamination with antibiotics is beneficial for patients with decompensated cirrhosis. In experimental models of chronic liver injury with fibrosis, several toll-like receptors (TLR) are required to make mice sensitive to liver fibrosis. The presumed ligand for the TLRs are bacterial products derived from the gut microbiome, and TLR knockout mice are resistant to liver inflammation and fibrosis. We and others have characterized the association between preclinical models of liver disease in mice with the microbial diversity in their gut microbiome. In each model, including intragastric alcohol, bile duct ligation, chronic carbon tetrachloride (CCl4), administration, and genetic obesity, there is a significant change in the gut microbiome from normal control mice. However, there is not a single clear bacterial strain or pattern that distinguish mice with liver injury from controlled mice. So how can the gut microbiota affect liver disease? We can identify at least 6 changes that would result in liver injury, inflammation, and/or fibrosis. These include: (1) changes in caloric yield of diet; (2) regulation of gut permeability to release bacterial products; (3) modulation of choline metabolism; (4) production of endogenous ethanol; (5) regulation of bile acid metabolism; and (6) regulation in lipid metabolism.

  1. A gut (microbiome) feeling about the brain.

    PubMed

    Sherwin, Eoin; Rea, Kieran; Dinan, Timothy G; Cryan, John F

    2016-03-01

    There is an increasing realization that the microorganisms which reside within our gut form part of a complex multidirectional communication network with the brain known as the microbiome-gut-brain axis. In this review, we focus on recent findings which support a role for this axis in modulating neurodevelopment and behavior. A growing body of research is uncovering that under homeostatic conditions and in response to internal and external stressors, the bacterial commensals of our gut can signal to the brain through a variety of mechanisms to influence processes such neurotransmission, neurogenesis, microglia activation, and modulate behavior. Moreover, the mechanisms underlying the ability of stress to modulate the microbiota and also for microbiota to change the set point for stress sensitivity are being unraveled. Dysregulation of the gut microbiota composition has been identified in a number of psychiatric disorders, including depression. This has led to the concept of bacteria that have a beneficial effect upon behavior and mood (psychobiotics) being proposed for potential therapeutic interventions. Understanding the mechanisms by which the bacterial commensals of our gut are involved in brain function may lead to the development of novel microbiome-based therapies for these mood and behavioral disorders.

  2. Gut Melatonin in Vertebrates: Chronobiology and Physiology.

    PubMed

    Mukherjee, Sourav; Maitra, Saumen Kumar

    2015-01-01

    Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT) is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23 kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s) as its synchronizer. Based on mammalian findings, physiological significance of gut-derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini review is to summarize the existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  3. Inheritance and Establishment of Gut Microbiota in Chickens

    PubMed Central

    Ding, Jinmei; Dai, Ronghua; Yang, Lingyu; He, Chuan; Xu, Ke; Liu, Shuyun; Zhao, Wenjing; Xiao, Lu; Luo, Lingxiao; Zhang, Yan; Meng, He

    2017-01-01

    In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development. PMID:29067020

  4. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    PubMed

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Maximal sfermion flavour violation in super-GUTs

    DOE PAGES

    Ellis, John; Olive, Keith A.; Velasco-Sevilla, Liliana

    2016-10-20

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m 0 specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m 1/2, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m 1/2 and generation independent. In this case, the input scalar masses m 0 may violate flavour maximally, amore » scenario we call MaxSFV, and there is no supersymmetric flavour problem. As a result, we illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity« less

  6. Sneutrino driven GUT inflation in supergravity

    NASA Astrophysics Data System (ADS)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-06-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  7. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of

  8. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    PubMed

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  9. Impact of gut microbiota on the fly's germ line.

    PubMed

    Elgart, Michael; Stern, Shay; Salton, Orit; Gnainsky, Yulia; Heifetz, Yael; Soen, Yoav

    2016-04-15

    Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation.

  10. The role of diet on gut microbiota composition.

    PubMed

    Bibbò, S; Ianiro, G; Giorgio, V; Scaldaferri, F; Masucci, L; Gasbarrini, A; Cammarota, G

    2016-11-01

    Gut microbiota is characterized by an inter-individual variability due to genetic and environmental factors. Among the environmental ones, dietary habits play a key role in the modulation of gut microbiota composition. There are main differences between the intestinal microbiota of subjects fed with prevalent Western diet and that of subjects with a diet rich in fibers. Specific changes in the composition of gut microbiota have been demonstrated among subjects according to a different dietary intake. A particular diet may promote the growth of specific bacterial strains, driving hosts to a consequent alteration of fermentative metabolism, with a direct effect on intestinal pH, which can be responsible for the development of a pathogenic flora. Moreover, a high-fat diet can promote the development of a pro-inflammatory gut microbiota, with a consequent increase of intestinal permeability and, consequently, of circulating levels of lipopolysaccharides. In this review, we discuss the direct role of the diet in the composition of gut microbiota and about the possible clinical consequences.

  11. Gut microbiota and obesity: lessons from the microbiome.

    PubMed

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  12. Gene expression profiling gut microbiota in different races of humans

    PubMed Central

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome. PMID:26975620

  13. Gene expression profiling gut microbiota in different races of humans

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  14. Diets Alter the Gut Microbiome of Crocodile Lizards

    PubMed Central

    Jiang, Hai-Ying; Ma, Jing-E; Li, Juan; Zhang, Xiu-Juan; Li, Lin-Miao; He, Nan; Liu, Hai-Yang; Luo, Shu-Yi; Wu, Zheng-Jun; Han, Ri-Chou; Chen, Jin-Ping

    2017-01-01

    The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4%) and Bacteroidetes (∼19.1%). However, the abundance of Firmicutes (∼2.6%) in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus–Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards. PMID:29118742

  15. Standard methods for research on Apis mellifera gut symbionts

    USDA-ARS?s Scientific Manuscript database

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  16. Standard methods for research on apis mellifera gut symbionts

    USDA-ARS?s Scientific Manuscript database

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  17. Two-loop hard-thermal-loop thermodynamics with quarks

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-08-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.

  18. The gut microbiota: A treasure for human health.

    PubMed

    Li, Daotong; Wang, Pan; Wang, Pengpu; Hu, Xiaosong; Chen, Fang

    2016-11-15

    The interplay between the host and host-associated gut microbiota is an area of increasing interest during the recent decade. From young infants to elderly people, from primitive tribes to modern societies, accumulating evidence has suggested the association of critical physiological roles of gut microbiota in the pathogenesis of a variety of human metabolic, immunological and neurological diseases. Importantly, it appears that the relationship between the gut microbiota and disease is bidirectional, instead of causal or consequential. Personalized nutritional and therapeutic strategies targeting the gut microbiota such as prebiotics, probiotics, drugs and fecal microbiota transplantation may create a new era in the human health. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Gut barrier in health and disease: focus on childhood.

    PubMed

    Viggiano, D; Ianiro, G; Vanella, G; Bibbò, S; Bruno, G; Simeone, G; Mele, G

    2015-01-01

    The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the immune tolerance and the immune response to pathogens. Other mechanisms, such as gastric juice and pancreatic enzymes (which both have antibacterial properties) participate in the luminal integrity of the gut barrier. From the outer layer to the inner layer, the physical barrier is composed of gut microbiota (that competes with pathogens to gain space and energy resources, processes the molecules necessary to mucosal integrity and modulates the immunological activity of deep barrier), mucus (which separates the intraluminal content from more internal layers and contains antimicrobial products and secretory IgA), epithelial cells (which form a physical and immunological barrier) and the innate and adaptive immune cells forming the gut-associated lymphoid tissue (which is responsible for antigen sampling and immune responses). Disruption of the gut barrier has been associated with many gastrointestinal diseases, but also with extra-intestinal pathological condition, such as type 1 diabetes mellitus, allergic diseases or autism spectrum disorders. The maintenance of a healthy intestinal barrier is therefore of paramount importance in children, for both health and economic reasons. Many drugs or compounds used in the treatment of gastrointestinal disorders act through the restoration of a normal intestinal permeability. Several studies have highlighted the role of probiotics in the modulation and reduction of intestinal permeability, considering the strong influence of gut microbiota in the modulation of the function and structure of gut barrier, but also on the immune response of the host. To date, available weapons for the

  20. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    PubMed

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  1. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    PubMed Central

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  2. Human gut microbiota and healthy aging: Recent developments and future prospective.

    PubMed

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  3. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model.

    PubMed

    Villalona, Gustavo; Price, Amber; Blomenkamp, Keith; Manithody, Chandrashekhara; Saxena, Saurabh; Ratchford, Thomas; Westrich, Matthew; Kakarla, Vindhya; Pochampally, Shruthika; Phillips, William; Heafner, Nicole; Korremla, Niraja; Greenspon, Jose; Guzman, Miguel A; Kumar Jain, Ajay

    2018-04-27

    Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS. © 2018 American Society for Parenteral and Enteral Nutrition.

  4. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    PubMed

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Allometry and Ecology of the Bilaterian Gut Microbiome

    PubMed Central

    Sherrill-Mix, Scott; McCormick, Kevin; Lauder, Abigail; Bailey, Aubrey; Zimmerman, Laurie; Li, Yingying; Django, Jean-Bosco N.; Bertolani, Paco; Colin, Christelle; Hart, John A.; Hart, Terese B.; Georgiev, Alexander V.; Sanz, Crickette M.; Morgan, David B.; Atencia, Rebeca; Cox, Debby; Muller, Martin N.; Sommer, Volker; Piel, Alexander K.; Stewart, Fiona A.; Speede, Sheri; Roman, Joe; Wu, Gary; Taylor, Josh; Bohm, Rudolf; Rose, Heather M.; Carlson, John; Mjungu, Deus; Schmidt, Paul; Gaughan, Celeste; Bushman, Joyslin I.; Schmidt, Ella; Bittinger, Kyle; Collman, Ronald G.; Hahn, Beatrice H.

    2018-01-01

    ABSTRACT Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. PMID:29588401

  6. Gut hormone release after intestinal resection.

    PubMed Central

    Besterman, H S; Adrian, T E; Mallinson, C N; Christofides, N D; Sarson, D L; Pera, A; Lombardo, L; Modigliani, R; Bloom, S R

    1982-01-01

    To investigate the possible role of gut and pancreatic hormones in the adaptive responses to gut resection, plasma concentrations of the circulating hormones were measured, in response to a test breakfast, in patients with either small or large intestinal resection and in healthy control subjects. In 18 patients with partial ileal resection a significant threefold rise was found in basal and postprandial levels of pancreatic polypeptide, a fourfold increase in motilin, and more than a twofold increase in gastrin and enteroglucagon levels compared with healthy controls. In contrast, nine patients with colonic resection had a threefold rise in levels of pancreatic polypeptide only. One or more of these peptides may have a role in stimulating the adaptive changes found after gut resection. PMID:7117905

  7. Emerging Technologies for Gut Microbiome Research

    PubMed Central

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  8. Gut Microbes and the Brain: Paradigm Shift in Neuroscience

    PubMed Central

    Knight, Rob; Mazmanian, Sarkis K.; Cryan, John F.; Tillisch, Kirsten

    2014-01-01

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. PMID:25392516

  9. Gut microbiota may predict host divergence time during Glires evolution.

    PubMed

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen

    2017-03-01

    The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Comparison of Gut Microbiota between Sasang Constitutions

    PubMed Central

    Bae, Hyo Sang; Lim, Chi-yeon; Kim, Mi Jeong; Seo, Jae-gu; Kim, Jong Yeol; Kim, Jai-eun

    2013-01-01

    The Sasang constitutional medicine has long been applied to diagnose and treat patients with various diseases. Studies have been conducted for establishment of scientific evidence supporting Sasang Constitutional (SC) diagnosis. Recent human microbiome studies have demonstrated individual variations of gut microbiota which can be dependent on lifestyle and health conditions. We hypothesized that gut microbial similarities and discrepancies may exist across SC types. We compared the difference of gut microbiota among three constitutions (So-Yang, So-Eum, and Tae-Eum), along with the investigation of anthropometric and biochemical parameters. Firmicutes and Bacteroidetes were predominant phyla in all SC types. The median plot analysis suggested that Firmicutes and Bacteroidetes appeared more abundant in SE and TE, respectively, in the male subjects of 20–29 years old. At the genus level, Bifidobacterium and Bacteroides manifested the difference between SE and TE types. For anthropometry, body weight, body mass index, and waist circumference of the TE type were significantly higher than those of the other types. Overall, findings indicated a possible link between SC types and gut microbiota within a narrow age range. Further investigations are deemed necessary to elucidate the influences of age, gender, and other factors in the context of SC types and gut microbiota. PMID:24454486

  11. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Characterization of the human gut microbiome during travelers' diarrhea

    PubMed Central

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel. PMID:25695334

  13. A retrospective series of gut aspergillosis in haematology patients.

    PubMed

    Kazan, E; Maertens, J; Herbrecht, R; Weisser, M; Gachot, B; Vekhoff, A; Caillot, D; Raffoux, E; Fagot, T; Reman, O; Isnard, F; Thiebaut, A; Bretagne, S; Cordonnier, C

    2011-04-01

    Gut invasive aspergillosis is an extremely rare infection in immunocompromised patients. The goal of this retrospective multicentre study is to report on cases of gut aspergillosis in haematology patients, including clinical presentation, risk factors, and outcome. Twenty-one patients from nine centres were identified. Eight had isolated gut aspergillosis, with no evidence of other infected sites, and 13 had disseminated aspergillosis. Thirteen patients had acute leukaemia. Nine were allogeneic stem cell transplant recipients. Clinical symptoms and imaging were poorly specific. The galactomannan antigenaemia test result was positive in 16/25 (64%) patients, including in four of the eight cases of isolated gut aspergillosis. Five of 21 patients had a dietary regimen rich in spices, suggesting that, in these cases, food could have been the source of gut colonization, and then of a primary gut Aspergillus lesion. The diagnosis was made post-mortem in six patients. The mortality rate in the remaining patients at 12 weeks was 7/15 (47%). Gut aspergillosis is probably misdiagnosed and underestimated in haematology patients, owing to the poor specificity of symptoms and imaging. Patients with a persistently positive galactomannan antigenaemia finding that is unexplained by respiratory lesions should be suspected of having gut aspergillosis in the presence of abdominal symptoms, and be quickly investigated. In the absence of severe abdominal complications leading to surgery and resection of the lesions, the optimal treatment is not yet defined. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.

  14. Characterization of the human gut microbiome during travelers' diarrhea.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  15. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  16. Human genetic variation and the gut microbiome in disease.

    PubMed

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-11-01

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  17. The gut microbiota regulates bone mass in mice

    PubMed Central

    Sjögren, Klara; Engdahl, Cecilia; Henning, Petra; Lerner, Ulf H; Tremaroli, Valentina; Lagerquist, Marie K; Bäckhed, Fredrik; Ohlsson, Claes

    2012-01-01

    The gut microbiota modulates host metabolism and development of immune status. Here we show that the gut microbiota is also a major regulator of bone mass in mice. Germ-free (GF) mice exhibit increased bone mass associated with reduced number of osteoclasts per bone surface compared with conventionally raised (CONV-R) mice. Colonization of GF mice with a normal gut microbiota normalizes bone mass. Furthermore, GF mice have decreased frequency of CD4+ T cells and CD11b+/GR 1 osteoclast precursor cells in bone marrow, which could be normalized by colonization. GF mice exhibited reduced expression of inflammatory cytokines in bone and bone marrow compared with CONV-R mice. In summary, the gut microbiota regulates bone mass in mice, and we provide evidence for a mechanism involving altered immune status in bone and thereby affected osteoclast-mediated bone resorption. Further studies are required to evaluate the gut microbiota as a novel therapeutic target for osteoporosis. © 2012 American Society for Bone and Mineral Research. PMID:22407806

  18. Probiotics drive gut microbiome triggering emotional brain signatures.

    PubMed

    Bagga, Deepika; Reichert, Johanna Louise; Koschutnig, Karl; Aigner, Christoph Stefan; Holzer, Peter; Koskinen, Kaisa; Eichinger, Christine Moissl; Schöpf, Veronika

    2018-05-03

    Experimental manipulation of the gut microbiome was found to modify emotional and cognitive behavior, neurotransmitter expression and brain function in rodents, but corresponding human data remain scarce. The present double-blind, placebo-controlled randomised study aimed at investigating the effects of 4 weeks' probiotic administration on behavior, brain function and gut microbial composition in healthy volunteers. Forty-five healthy participants divided equally into three groups (probiotic, placebo and no intervention) underwent functional MRI (emotional decision-making and emotional recognition memory tasks). In addition, stool samples were collected to investigate the gut microbial composition. Probiotic administration for 4 weeks was associated with changes in brain activation patterns in response to emotional memory and emotional decision-making tasks, which were also accompanied by subtle shifts in gut microbiome profile. Microbiome composition mirrored self-reported behavioral measures and memory performance. This is the first study reporting a distinct influence of probiotic administration at behavioral, neural, and microbiome levels at the same time in healthy volunteers. The findings provide a basis for future investigations into the role of the gut microbiota and potential therapeutic application of probiotics.

  19. Gut microbiota, epigenetic modification and colorectal cancer

    PubMed Central

    Rezasoltani, Sama; Asadzadeh-Aghdaei, Hamid; Nazemalhosseini-Mojarad, Ehsan; Dabiri, Hossein; Ghanbari, Reza; Zali, Mohammad Reza

    2017-01-01

    Micro-organisms contain 90% of cells in human body and trillions foreign genes versus less than 30 thousand of their own. The human colon host various species of microorganisms, appraised at more than 1014 microbiota and contained of over a thousand species. Although each one’s profile is separable, the relative abundance and distribution of bacterial species is the same between healthy ones, causing conservation of each person’s overall health. Germline DNA mutations have been attributed to the less than 5% of CRC occurrence while more than 90% is associated with the epigenetic regulation. The most ubiquitous environmental factor in epigenetic modification is gut microbiota. Disruptive changes in the gut microbiome strongly contributed to the improvement of colorectal cancer. Gut microbiota may play critical role in progression of CRC via their metabolite or their structural component interacting with host intestinal epithelial cell (IEC). Herein we discuss the mechanism of epigenetic modification and its implication in CRC development, progression even metastasis by gut microbiota induction. PMID:29213996

  20. The gut microbiota, obesity and insulin resistance.

    PubMed

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  1. Human gut microbiota and healthy aging: Recent developments and future prospective

    PubMed Central

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-01-01

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics. PMID:28035338

  2. The Gut Microbiota: Ecology and Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, B.P.; Jansson, J.K.

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowelmore » diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.« less

  3. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    PubMed

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases

    PubMed Central

    Ghaisas, Shivani; Maher, Joshua; Kanthasamy, Anumantha

    2015-01-01

    The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer’s and Parkinson’s diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies. PMID:26627987

  5. Varietal Loops

    NASA Image and Video Library

    2016-09-15

    A series of active regions stretched along the right side of the sun exhibited a wide variety of loops cascading above them (Sept. 12-14, 2016). The active region near the center has tightly coiled loops, while the region rotating over the right edge has some elongated and some very stretched loops above it. The loops are actually charged particles spiraling along magnetic field lines, observed here in a wavelength of extreme ultraviolet light. Near the middle of the video the Earth quickly passes in front of a portion of the sun as viewed by SDO. http://photojournal.jpl.nasa.gov/catalog/PIA16997

  6. Development of the preterm infant gut microbiome: A research priority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groer, Maureen W.; Luciano, Angel A.; Dishaw, Larry J.

    The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role ofmore » the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. In conclusion, the study speculates about how the VLBW infants’ gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.« less

  7. Development of the preterm infant gut microbiome: A research priority

    DOE PAGES

    Groer, Maureen W.; Luciano, Angel A.; Dishaw, Larry J.; ...

    2014-10-13

    The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role ofmore » the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. In conclusion, the study speculates about how the VLBW infants’ gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.« less

  8. [Research advances in the relationship between childhood malnutrition and gut microbiota].

    PubMed

    Wang, Hui-Hui; Wen, Fei-Qiu; Wei, Ju-Rong

    2016-11-01

    Childhood malnutrition is an important disease threatening healthy growth of children worldwide. Gut microbiota has close links to food digestion, absorption and intestinal function. Current research considers that alterations in gut microbiota have been strongly implicated in childhood malnutrition. This review article addresses the latest understanding and evidence of interrelationship between gut microbiota and individual nutrition status, the changes of gut microbiota in different types of malnutrition, and the attribution of gut microbiota in the treatment and prognosis of malnutrition. It provides in depth understanding of childhood malnutrition from the perspective of microbiome.

  9. Gut microbes and the brain: paradigm shift in neuroscience.

    PubMed

    Mayer, Emeran A; Knight, Rob; Mazmanian, Sarkis K; Cryan, John F; Tillisch, Kirsten

    2014-11-12

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. Copyright © 2014 the authors 0270-6474/14/3415490-07$15.00/0.

  10. The Role of the Gut Microbiota in Childhood Obesity.

    PubMed

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2016-08-01

    Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism associated with obesity. We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. The review discusses the potential role of the bacterial component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood obesity. A vast number of variables are influencing the gut microbial ecology (e.g., the host genetics, delivery method, diet, age, environment, and the use of pre-, pro-, and antibiotics); but the exact physiological processes behind these relationships need to be clarified. Exploring the role of the gut microbiota in the development of childhood obesity may potentially reveal new strategies for obesity prevention and treatment.

  11. Gut-Liver Axis, Nutrition, and Non Alcoholic Fatty Liver Disease

    PubMed Central

    Kirpich, Irina A.; Marsano, Luis S.; McClain, Craig J.

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases involving hepatic fat accumulation, inflammation with the potential progression to fibrosis and cirrhosis over time. NAFLD is often associated with obesity, insulin resistance, and diabetes. The interactions between the liver and the gut, the so-called ”gut-liver axis”, play a critical role in NAFLD onset and progression. Compelling evidence links the gut microbiome, intestinal barrier integrity, and NAFLD. The dietary factors may alter the gut microbiota and intestinal barrier function, favoring the occurrence of metabolic endotoxemia and low grade inflammation, thereby contributing to the development of obesity and obesity-associated fatty liver disease. Therapeutic manipulations with prebiotics and probiotics to modulate the gut microbiota and maintain intestinal barrier integrity are potential agents for NAFLD management. This review summarizes the current knowledge regarding the complex interplay between the gut microbiota, intestinal barrier, and dietary factors in NAFLD pathogenesis. The concepts addressed in this review have important clinical implications, although more work needs to be done to understand how dietary factors affect the gut barrier and microbiota, and to comprehend how microbe-derived components may interfere with the host’s metabolism contributing to NAFLD development. PMID:26151226

  12. Human gut microbiome: the second genome of human body.

    PubMed

    Zhu, Baoli; Wang, Xin; Li, Lanjuan

    2010-08-01

    The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

  13. Bacterial-modulated host immunity and stem cell activation for gut homeostasis.

    PubMed

    Lee, Won-Jae

    2009-10-01

    Although it is widely accepted that dynamic cross-talk between gut epithelia and microorganisms must occur to achieve gut homeostasis, the critical mechanisms by which gut-microbe interactions are regulated remain uncertain. In this issue of Genes & Development, Buchon and colleagues (pp. 2333-2344) revealed that the reaction of the gut to microorganisms is not restricted to activating immune systems, but extends to integrated responses essential for gut tissue homeostasis, including self-renewal and the differentiation of stem cells. Further investigation of the connection between immune response and stem cell regulation at the molecular level in the microbe-laden mucosal epithelia will accelerate our understanding of the regulatory mechanisms of gut homeostasis and of the pathogenesis of diseases such as chronic inflammatory diseases and colorectal cancers.

  14. A review of metabolic potential of human gut microbiome in human nutrition.

    PubMed

    Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh

    2018-03-01

    The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.

  15. Noninvasive photoacoustic identification and imaging of gut microbes.

    PubMed

    Huang, Xiaoxiao; Shi, Ying; Liu, Yajing; Xu, Hongzhi; Liu, Yu; Xiao, Chuanxing; Ren, Jianlin; Nie, Liming

    2017-08-01

    Homeostasis of the gut microbiota is indispensable for various physiological functions. Its composition and activity co-develop with the host, and especially associate with human colorectal cancer. However, current composition identification methods are complicated and not timely without spatial distribution information. In this Letter, we explored the photoacoustic imaging (PAI) technique to characterize the composition and quantify the proportions of the gut microbes after optical probe labeling. Our experimental results demonstrated that PAI has the potential to identify different gut bacterial species on the spot.

  16. Gut microbiome and dietary patterns in different Saudi populations and monkeys.

    PubMed

    Angelakis, Emmanouil; Yasir, Muhammad; Bachar, Dipankar; Azhar, Esam I; Lagier, Jean-Christophe; Bibi, Fehmida; Jiman-Fatani, Asif A; Alawi, Maha; Bakarman, Marwan A; Robert, Catherine; Raoult, Didier

    2016-08-31

    Host genetics, environment, lifestyle and proximity between hosts strongly influence the composition of the gut microbiome. To investigate the association of dietary variables with the gut microbiota, we used 16S rDNA sequencing to test the fecal microbiome of Bedouins and urban Saudis and we compared it to the gut microbiome of baboons living in close contact with Bedouins and eating their leftovers. We also analyzed fermented dairy products commonly consumed by Bedouins in order to investigate their impact on the gut microbiome of this population. We found that the gut microbiomes of westernized urban Saudis had significantly lower richness and biodiversity than the traditional Bedouin population. The gut microbiomes of baboons were more similar to that of Bedouins compared to urban Saudis, probably due the dietary overlap between baboons and Bedouins. Moreover, we found clusters that were compositionally similar to clusters identified in humans and baboons, characterized by differences in Acinetobacter, Turicibacter and Collinsella. The fermented food presented significantly more bacteria genera common to the gut microbiome of Bedouins compared to urban Saudis. These results support the hypothesis that dietary habits influence the composition of the gut microbiome.

  17. Gut microbiota composition modifies fecal metabolic profiles in mice.

    PubMed

    Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan

    2013-06-07

    The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.

  18. Polymers in the gut compress the colonic mucus hydrogel.

    PubMed

    Datta, Sujit S; Preska Steinberg, Asher; Ismagilov, Rustem F

    2016-06-28

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.

  19. Microbes vs. chemistry in the origin of the anaerobic gut lumen.

    PubMed

    Friedman, Elliot S; Bittinger, Kyle; Esipova, Tatiana V; Hou, Likai; Chau, Lillian; Jiang, Jack; Mesaros, Clementina; Lund, Peder J; Liang, Xue; FitzGerald, Garret A; Goulian, Mark; Lee, Daeyeon; Garcia, Benjamin A; Blair, Ian A; Vinogradov, Sergei A; Wu, Gary D

    2018-04-17

    The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO 2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.

  20. Homeostasis of the gut barrier and potential biomarkers

    PubMed Central

    Brummer, Robert J.; Derrien, Muriel; MacDonald, Thomas T.; Troost, Freddy; Cani, Patrice D.; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M.; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L.

    2017-01-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies

  1. Comparison of laparoscopic jejunostomy tube to percutaneous endoscopic gastrostomy tube with jejunal extension: long-term durability and nutritional outcomes.

    PubMed

    Haskins, Ivy N; Strong, Andrew T; Baginsky, Mary; Sharma, Gautam; Karafa, Matthew; Ponsky, Jeffrey L; Rodriguez, John H; Kroh, Matthew D

    2018-05-01

    Enteral access through the jejunum is indicated when patients cannot tolerate oral intake or gastric feeding. While multiple approaches for feeding jejunal access exist, few studies have compared the efficacy of these techniques. The purpose of this study was to investigate the long-term durability, re-intervention rates, and nutritional outcomes following percutaneous endoscopic gastrostomy tubes with jejunal extension tubes (PEG-JET) versus laparoscopic jejunostomy tubes (j-tubes). Retrospective chart review was performed on all patients who underwent PEG-JET or laparoscopic jejunostomy tube placement from January 2005 through December 2015 at our institution. Thirty-day and long-term outcomes were compared between the two groups. A total of 105 patients underwent PEG-JET and 307 patients underwent laparoscopic j-tube placement during the defined study period. In terms of 30-day outcomes, patients who underwent PEG-JET placement were significantly more likely to experience a tube dislodgement event (p = 0.005) and undergo a re-intervention (p < 0.001). Patients who had a laparoscopic j-tube placed were significantly more likely to meet their enteral feeding goals (p = 0.002) and less likely to require nutritional supplementation with total parenteral nutrition (TPN) (p < 0.001). With regard to long-term outcomes, patients who underwent PEG-JET placement were significantly more likely to experience tube occlusion (p < 0.001) and require an endoscopic or surgical tube re-intervention (p < 0.001). Patients who underwent laparoscopic j-tube placement were significantly more likely to experience a tube site leak (p = 0.015) but were less likely to require nutritional supplementation with TPN (p = 0.001). Laparoscopic jejunostomy tubes provide more durable long-term enteral access compared to PEG-JET. Consideration should be given to laparoscopic jejunostomy tube placement in eligible patients who cannot tolerate oral intake or gastric

  2. Changes in human gut flora with age: an Indian familial study.

    PubMed

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.

  3. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    PubMed

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  4. Prebiotics and gut microbiota in chickens.

    PubMed

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Microbial nutrient niches in the gut

    PubMed Central

    Pereira, Fátima C.

    2017-01-01

    Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations. PMID:28035742

  6. Gut-kidney crosstalk in septic acute kidney injury.

    PubMed

    Zhang, Jingxiao; Ankawi, Ghada; Sun, Jian; Digvijay, Kumar; Yin, Yongjie; Rosner, Mitchell H; Ronco, Claudio

    2018-05-03

    Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Septic AKI is a complex and multifactorial process that is incompletely understood. During sepsis, the disruption of the mucus membrane barrier, a shift in intestinal microbial flora, and microbial translocation may lead to systemic inflammation, which further alters host immune and metabolic homeostasis. This altered homeostasis may promote and potentiate the development of AKI. As part of this vicious cycle, when AKI develops, the clearance of inflammatory mediators and metabolic products is decreased. This will lead to further gut injury and breakdown in mucous membrane barriers. Thus, changes in the gut during sepsis can initiate and propagate septic AKI. This deleterious gut-kidney crosstalk may be a potential target for therapeutic maneuvers. This review analyses the underlying mechanisms in gut-kidney crosstalk in septic AKI.

  7. Evidence for a core gut microbiota in the zebrafish

    PubMed Central

    Roeselers, Guus; Mittge, Erika K; Stephens, W Zac; Parichy, David M; Cavanaugh, Colleen M; Guillemin, Karen; Rawls, John F

    2011-01-01

    Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status. PMID:21472014

  8. Non-alcoholic fatty liver disease, diet and gut microbiota

    PubMed Central

    Finelli, Carmine; Tarantino, Giovanni

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a severe liver disease that is increasing in prevalence with the worldwide epidemic of obesity and its related insulin-resistance state. Evidence for the role of the gut microbiota in energy storage and the subsequent development of obesity and some of its related diseases is now well established. More recently, a new role of gut microbiota has emerged in NAFLD. The gut microbiota is involved in gut permeability, low-grade inflammation and immune balance, it modulates dietary choline metabolism, regulates bile acid metabolism and produces endogenous ethanol. All of these factors are molecular mechanisms by which the microbiota can induce NAFLD or its progression toward overt non-alcoholic steatohepatitis. Modification of the gut microbiota composition and/or its biochemical capacity by specific dietary or pharmacological interventions may advantageously affect host metabolism. Large-scale intervention trials, investigating the potential benefit of prebiotics and probiotics in improving cardiometabolic health in high-risk populations, are fervently awaited. PMID:26417275

  9. The altered gut microbiota in adults with cystic fibrosis.

    PubMed

    Burke, D G; Fouhy, F; Harrison, M J; Rea, M C; Cotter, P D; O'Sullivan, O; Stanton, C; Hill, C; Shanahan, F; Plant, B J; Ross, R P

    2017-03-09

    Cystic Fibrosis (CF) is an autosomal recessive disease that affects the function of a number of organs, principally the lungs, but also the gastrointestinal tract. The manifestations of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the gastrointestinal tract, as well as frequent antibiotic exposure, undoubtedly disrupts the gut microbiota. To analyse the effects of CF and its management on the microbiome, we compared the gut microbiota of 43 individuals with CF during a period of stability, to that of 69 non-CF controls using 454-pyrosequencing of the 16S rRNA gene. The impact of clinical parameters, including antibiotic therapy, on the results was also assessed. The CF-associated microbiome had reduced microbial diversity, an increase in Firmicutes and a reduction in Bacteroidetes compared to the non-CF controls. While the greatest number of differences in taxonomic abundances of the intestinal microbiota was observed between individuals with CF and the healthy controls, gut microbiota differences were also reported between people with CF when grouped by clinical parameters including % predicted FEV 1 (measure of lung dysfunction) and the number of intravenous (IV) antibiotic courses in the previous 12 months. Notably, CF individuals presenting with severe lung dysfunction (% predicted FEV 1  ≤ 40%) had significantly (p < 0.05) reduced gut microbiota diversity relative to those presenting with mild or moderate dysfunction. A significant negative correlation (-0.383, Simpson's Diversity Index) was also observed between the number of IV antibiotic courses and gut microbiota diversity. This is one of the largest single-centre studies on gut microbiota in stable adults with CF and demonstrates the significantly altered gut microbiota, including reduced microbial diversity seen in CF patients compared to healthy controls. The data show the impact that CF and it's management have on gut microbiota, presenting the opportunity to

  10. Control of lupus nephritis by changes of gut microbiota.

    PubMed

    Mu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R; Ahmed, S Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E; Branson, David B; Kirby, Jay L; Goswami, Poorna; Leeth, Caroline M; Read, Kaitlin A; Oestreich, Kenneth J; Vieson, Miranda D; Reilly, Christopher M; Luo, Xin M

    2017-07-11

    Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

  11. Food Design To Feed the Human Gut Microbiota.

    PubMed

    Ercolini, Danilo; Fogliano, Vincenzo

    2018-04-18

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and the production of microbiota metabolites. In this perspective, the current possibilities to address food design toward a better feeding of gut microbiota are highlighted, together with a summary of the most interesting microbial metabolites that can be made from dietary precursors.

  12. Food Design To Feed the Human Gut Microbiota

    PubMed Central

    2018-01-01

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and the production of microbiota metabolites. In this perspective, the current possibilities to address food design toward a better feeding of gut microbiota are highlighted, together with a summary of the most interesting microbial metabolites that can be made from dietary precursors. PMID:29565591

  13. Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission.

    PubMed

    Kohl, Kevin D; Brun, Antonio; Magallanes, Melisa; Brinkerhoff, Joshua; Laspiur, Alejandro; Acosta, Juan Carlos; Caviedes-Vidal, Enrique; Bordenstein, Seth R

    2017-02-01

    Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in-depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores: Liolaemus parvus and Liolaemus ruibali and an herbivore: Phymaturus williamsi). Using 16S rRNA gene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host-specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts. © 2016 John Wiley & Sons Ltd.

  14. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling

    PubMed Central

    Powell, J. Elijah; Steele, Margaret I.; Dietrich, Carsten; Moran, Nancy A.

    2017-01-01

    Social bees harbor a simple and specialized microbiota that is spatially organized into different gut compartments. Recent results on the potential involvement of bee gut communities in pathogen protection and nutritional function have drawn attention to the impact of the microbiota on bee health. However, the contributions of gut microbiota to host physiology have yet to be investigated. Here we show that the gut microbiota promotes weight gain of both whole body and the gut in individual honey bees. This effect is likely mediated by changes in host vitellogenin, insulin signaling, and gustatory response. We found that microbial metabolism markedly reduces gut pH and redox potential through the production of short-chain fatty acids and that the bacteria adjacent to the gut wall form an oxygen gradient within the intestine. The short-chain fatty acid profile contributed by dominant gut species was confirmed in vitro. Furthermore, metabolomic analyses revealed that the gut community has striking impacts on the metabolic profiles of the gut compartments and the hemolymph, suggesting that gut bacteria degrade plant polymers from pollen and that the resulting metabolites contribute to host nutrition. Our results demonstrate how microbial metabolism affects bee growth, hormonal signaling, behavior, and gut physicochemical conditions. These findings indicate that the bee gut microbiota has basic roles similar to those found in some other animals and thus provides a model in studies of host–microbe interactions. PMID:28420790

  15. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  16. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    PubMed

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  17. Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.

    PubMed

    Chen, Xiyue; Eslamfam, Shabnam; Fang, Luoyun; Qiao, Shiyan; Ma, Xi

    2017-01-01

    Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Supersymmetry searches in GUT models with non-universal scalar masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannoni, M.; Gómez, M.E.; Ellis, J.

    2016-03-01

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of ∼t{sub 1}−χ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in differentmore » models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E{sub T}, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CTA γ-ray searches.« less

  19. Development of the intrinsic and extrinsic innervation of the gut.

    PubMed

    Uesaka, Toshihiro; Young, Heather M; Pachnis, Vassilis; Enomoto, Hideki

    2016-09-15

    The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Colonization Dynamics of the Gut Microbiota in Tilapia Larvae

    PubMed Central

    Giatsis, Christos; Sipkema, Detmer; Smidt, Hauke; Verreth, Johan; Verdegem, Marc

    2014-01-01

    The gut microbiota of fish larvae evolves fast towards a complex community. Both host and environment affect the development of the gut microbiota; however, the relative importance of both is poorly understood. Determining specific changes in gut microbial populations in response to a change in an environmental factor is very complicated. Interactions between factors are difficult to separate and any response could be masked due to high inter-individual variation even for individuals that share a common environment. In this study we characterized and quantified the spatio-temporal variation in the gut microbiota of tilapia larvae, reared in recirculating aquaculture systems (RAS) or active suspension tanks (AS). Our results showed that variation in gut microbiota between replicate tanks was not significantly higher than within tank variation, suggesting that there is no tank effect on water and gut microbiota. However, when individuals were reared in replicate RAS, gut microbiota differed significantly. The highest variation was observed between individuals reared in different types of system (RAS vs. AS). Our data suggest that under experimental conditions in which the roles of deterministic and stochastic factors have not been precisely determined, compositional replication of the microbial communities of an ecosystem is not predictable. PMID:25072852

  1. Probiotic legacy effects on gut microbial assembly in tilapia larvae

    PubMed Central

    Giatsis, Christos; Sipkema, Detmer; Ramiro-Garcia, Javier; Bacanu, Gianina M.; Abernathy, Jason; Verreth, Johan; Smidt, Hauke; Verdegem, Marc

    2016-01-01

    The exposure of fish to environmental free-living microbes and its effect on early colonization in the gut have been studied in recent years. However, little is known regarding how the host and environment interact to shape gut communities during early life. Here, we tested whether the early microbial exposure of tilapia larvae affects the gut microbiota at later life stages. The experimental period was divided into three stages: axenic, probiotic and active suspension. Axenic tilapia larvae were reared either under conventional conditions (active suspension systems) or exposed to a single strain probiotic (Bacillus subtilis) added to the water. Microbial characterization by Illumina HiSeq sequencing of 16S rRNA gene amplicons showed the presence of B. subtilis in the gut during the seven days of probiotic application. Although B. subtilis was no longer detected in the guts of fish exposed to the probiotic after day 7, gut microbiota of the exposed tilapia larvae remained significantly different from that of the control treatment. Compared with the control, fish gut microbiota under probiotic treatment was less affected by spatial differences resulting from tank replication, suggesting that the early probiotic contact contributed to the subsequent observation of low inter-individual variation. PMID:27670882

  2. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  3. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.

    PubMed

    Boulangé, Claire L; Neves, Ana Luisa; Chilloux, Julien; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2016-04-20

    The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.

  4. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    PubMed

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  5. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    PubMed Central

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity. PMID:29311977

  6. Antibiotics and the developing infant gut microbiota and resistome.

    PubMed

    Gibson, Molly K; Crofts, Terence S; Dantas, Gautam

    2015-10-01

    The microbial communities colonizing the human gut are tremendously diverse and highly personal. The composition and function of the microbiota play important roles in human health and disease, and considerable research has focused on understanding the ecological forces shaping these communities. While it is clear that factors such as diet, genotype of the host, and environment influence the adult gut microbiota community composition, recent work has emphasized the importance of early-life assembly dynamics in both the immediate and long-term personalized nature of the gut microbiota. While the mature adult gut microbiota is believed to be relatively stable, the developing infant gut microbiota (IGM) is highly dynamic and prone to disruption by external factors, including antibiotic exposure. Studies have revealed both transient and persistent alterations to the adult gut microbiota community resulting from antibiotic treatment later in life. As antibiotics are routinely prescribed at a greater rate in the first years of life, the impact of these interventions on the developing IGM is emerging as a key research priority. In addition to understanding the impact of these disruptions on the infant gut microbial architecture and related host diseases, we need to understand the contribution of early life antibiotics to the selection of antibiotic resistance gene reservoirs in the microbiota, and their threat to successful treatment of infectious disease. Here we review the current understanding of the developmental progression of the IGM and the impact of antibiotic therapies on its composition and encoded reservoir of antibiotic resistance genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fiber effects in nutrition and gut health in pigs

    PubMed Central

    2014-01-01

    Dietary fiber is associated with impaired nutrient utilization and reduced net energy values. However, fiber has to be included in the diet to maintain normal physiological functions in the digestive tract. Moreover, the negative impact of dietary fiber will be determined by the fiber properties and may differ considerably between fiber sources. Various techniques can be applied to enhance nutritional value and utilization of available feed resources. In addition, the extent of fiber utilization is affected by the age of the pig and the pig breed. The use of potential prebiotic effects of dietary fiber is an attractive way to stimulate gut health and thereby minimize the use of anti-microbial growth promoters. Inclusion of soluble non-starch polysaccharides (NSP) in the diet can stimulate the growth of commensal gut microbes. Inclusion of NSP from chicory results in changes in gut micro-environment and gut morphology of pigs, while growth performance remains unaffected and digestibility was only marginally reduced. The fermentation products and pH in digesta responded to diet type and were correlated with shifts in the microbiota. Interestingly, fiber intake will have an impact on the expression of intestinal epithelial heat-shock proteins in the pig. Heat-shock proteins have an important physiological role in the gut and carry out crucial housekeeping functions in order to maintain the mucosal barrier integrity. Thus, there are increasing evidence showing that fiber can have prebiotic effects in pigs due to interactions with the gut micro-environment and the gut associated immune system. PMID:24580966

  8. Polymers in the gut compress the colonic mucus hydrogel

    PubMed Central

    Datta, Sujit S.; Preska Steinberg, Asher

    2016-01-01

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host–microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer–mucus interactions can be described using a thermodynamic model based on Flory–Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice—whose microbiota degrade gut polymers—did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes. PMID:27303035

  9. Early-life gut microbiome composition and milk allergy resolution

    PubMed Central

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M.; Leung, Donald; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C.

    2016-01-01

    Background Gut microbiota may play a role in the natural history of cow’s milk allergy Objective To examine the association between early life gut microbiota and the resolution of cow’s milk allergy Methods We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy (CoFAR) observational study of food allergy. Fecal samples were collected at age 3–16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using QIIME (Quantitative Insights into Microbial Ecology), PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), and STAMP (Statistical Analysis of Metagenomic Profiles). Results Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3–6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = 0.047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η2 = 0.43, ANOVA P = 0.034). Conclusions Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. PMID:27292825

  10. Proximal gastrectomy with jejunal interposition and TGRY anastomosis for proximal gastric cancer.

    PubMed

    Zhao, Ping; Xiao, Shuo-Meng; Tang, Ling-Chao; Ding, Zhi; Zhou, Xiang; Chen, Xiao-Dong

    2014-07-07

    To compare the short-term outcomes of patients who underwent proximal gastrectomy with jejunal interposition (PGJI) with those undergoing total gastrectomy with Roux-en-Y anastomosis (TGRY). From January 2009 to January 2011, thirty-five patients underwent PGJI, and forty-one patients underwent TGRY. The surgical efficacy and short-term follow-up outcomes were compared between the two groups. There were no differences in the demographic and clinicopathological characteristics. The mean operation duration and postoperative hospital stay in the PGJI group were statistically longer than those in the TGRY group (P = 0.00). No anastomosis leakage was observed in two groups. No statistically significant difference was found in endoscopic findings, Visick grade or serum albumin level. The single-meal food intake in the PGJI group was more than that in the TGRY group (P = 0.00). The PG group showed significantly better hemoglobin levels in the second year (P = 0.02). The two-year survival rate was not significantly different (PGJI vs TGRY, 93.55% vs 92.5%, P = 1.0). PGJI is a safe, radical surgical method for proximal gastric cancer and leads to better outcomes in terms of the single-meal food intake and hemoglobin level, compared with TGRY in the short term.

  11. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing.

    PubMed

    Kim, Hyeun Bum; Isaacson, Richard E

    2015-06-12

    The importance of the gut microbiota of animals is widely acknowledged because of its pivotal roles in the health and well being of animals. The genetic diversity of the gut microbiota contributes to the overall development and metabolic needs of the animal, and provides the host with many beneficial functions including production of volatile fatty acids, re-cycling of bile salts, production of vitamin K, cellulose digestion, and development of immune system. Thus the intestinal microbiota of animals has been the subject of study for many decades. Although most of the older studies have used culture dependent methods, the recent advent of high throughput sequencing of 16S rRNA genes has facilitated in depth studies exploring microbial populations and their dynamics in the animal gut. These culture independent DNA based studies generate large amounts of data and as a result contribute to a more detailed understanding of the microbiota dynamics in the gut and the ecology of the microbial populations. Of equal importance, is being able to identify and quantify microbes that are difficult to grow or that have not been grown in the laboratory. Interpreting the data obtained from this type of study requires using basic principles of microbial diversity to understand importance of the composition of microbial populations. In this review, we summarize the literature on culture independent studies of the pig gut microbiota with an emphasis on its succession and alterations caused by diverse factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of the Distal Gut Microbiota from People and Animals in Africa

    PubMed Central

    Ellis, Richard J.; Bruce, Kenneth D.; Jenkins, Claire; Stothard, J. Russell; Ajarova, Lilly; Mugisha, Lawrence; Viney, Mark E.

    2013-01-01

    The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human – animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas. PMID:23355898

  13. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    PubMed

    Alhasson, Firas; Das, Suvarthi; Seth, Ratanesh; Dattaroy, Diptadip; Chandrashekaran, Varun; Ryan, Caitlin N; Chan, Luisa S; Testerman, Traci; Burch, James; Hofseth, Lorne J; Horner, Ronnie; Nagarkatti, Mitzi; Nagarkatti, Prakash; Lasley, Stephen M; Chatterjee, Saurabh

    2017-01-01

    Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  14. The obese gut microbiome across the epidemiologic transition.

    PubMed

    Dugas, Lara R; Fuller, Miles; Gilbert, Jack; Layden, Brian T

    2016-01-01

    The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host's geographic location 'human geography', and behavioral factors (diet and physical activity). Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic.

  15. Gut microbiota in autoimmunity: potential for clinical applications.

    PubMed

    Kim, Donghyun; Yoo, Seung-Ah; Kim, Wan-Uk

    2016-11-01

    Microbial habitation in the human body begins immediately after birth, and adults are colonized by microbes outnumbering human cells by a factor of ten. Especially, intestinal track is a living space for diverse microbial species that have coevolved symbiotically. A principal function of the gut microbiota is to protect the host from harmful bacteria and to provide benefits for the host through several mechanisms, including direct competition for limited nutrients, training of host immune systems to recognize specifically foreign materials and conversion of otherwise indigestible food into energy and absorbable nutrients. Therefore, gut dysbiosis, a bacterial imbalance state, is related with the pathogenesis of various host diseases including autoimmune diseases. In the current review, we highlight the importance of gut microbiota in the normal health and autoimmune diseases. We also discuss regulation of gut dysbiosis and future direction for potential clinical applications, including treatment and diagnostics of autoimmune diseases.

  16. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    PubMed

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  17. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal.

    PubMed

    Kanwar, Jagat R; Kanwar, Rupinder K

    2009-01-31

    Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1beta and TNF-alpha) and up-regulated IFN-gamma, IL-2 and IL-10. Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD

  18. The Role of Probiotics and Prebiotics in Inducing Gut Immunity

    PubMed Central

    Vieira, Angélica T.; Teixeira, Mauro M.; Martins, Flaviano S.

    2013-01-01

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446

  19. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    USDA-ARS?s Scientific Manuscript database

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  20. In vitro organogenesis of gut-like structures from mouse embryonic stem cells.

    PubMed

    Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S

    2004-04-01

    Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.

  1. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    PubMed

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  2. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy

    PubMed Central

    Ma, Junli; Zhou, Qihang; Li, Houkai

    2017-01-01

    The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future. PMID:29035308

  3. Gut microbiota derived metabolites in cardiovascular health and disease.

    PubMed

    Wang, Zeneng; Zhao, Yongzhong

    2018-05-03

    Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.

  4. Human gut microbiome viewed across age and geography

    USDA-ARS?s Scientific Manuscript database

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, we characterized bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy child...

  5. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problemmore » invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational

  6. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis.

    PubMed

    Stromberg, Paul E; Woolsey, Cheryl A; Clark, Andrew T; Clark, Jessica A; Turnbull, Isaiah R; McConnell, Kevin W; Chang, Katherine C; Chung, Chun-Shiang; Ayala, Alfred; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2009-06-01

    Lymphocytes help determine whether gut epithelial cells proliferate or differentiate but are not known to affect whether they live or die. Here, we report that lymphocytes play a controlling role in mediating gut epithelial apoptosis in sepsis but not under basal conditions. Gut epithelial apoptosis is similar in unmanipulated Rag-1(-/-) and wild-type (WT) mice. However, Rag-1(-/-) animals have a 5-fold augmentation in gut epithelial apoptosis following cecal ligation and puncture (CLP) compared to septic WT mice. Reconstitution of lymphocytes in Rag-1(-/-) mice via adoptive transfer decreases intestinal apoptosis to levels seen in WT animals. Subset analysis indicates that CD4(+) but not CD8(+), gammadelta, or B cells are responsible for the antiapoptotic effect of lymphocytes on the gut epithelium. Gut-specific overexpression of Bcl-2 in transgenic mice decreases mortality following CLP. This survival benefit is lymphocyte dependent since gut-specific overexpression of Bcl-2 fails to alter survival when the transgene is overexpressed in Rag-1(-/-) mice. Further, adoptively transferring lymphocytes to Rag-1(-/-) mice that simultaneously overexpress gut-specific Bcl-2 results in improved mortality following sepsis. Thus, sepsis unmasks CD4(+) lymphocyte control of gut apoptosis that is not present under homeostatic conditions, which acts as a key determinant of both cellular survival and host mortality.

  7. Bidirectional interactions between dietary curcumin and gut microbiota.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2018-05-21

    Curcumin is a polyphenolic compound with a long history of use as an herbal remedy, dietary spice and food-coloring agent. Despite curcumin possesses a wide range of biological and pharmacological activities, it exhibits extremely poor bioavailability, which makes its pharmacology intriguing and also hinders its clinical application. In recent years, there is ample evidence supporting the associations between the alteration of gut microbiota and many diseases. Interestingly, after oral administration, curcumin shows its preferential distribution and accumulation in the intestine. In view of the above aspects, we reviewed the updated knowledge regarding the bidirectional interactions between curcumin and gut microbiota from two perspectives: i) gut microbiota regulation by curcumin and ii) curcumin biotransformation by digestive microbiota. Besides the study deals with 3 potential pharmacological implications: i) identification of metabolites being more active and bioavaliable than parent curcumin; ii) assessment of contribution of gut microbiota regulation of curcumin to its pharmacological effects and iii) development of gut microbiota regulation-based disease prevention/treatment strategy for curcumin in view of its clinical safety. This review is important to deepen our understanding of the mechanisms of action of curcumin and to provide future directions about how to use this natural compound to combat human diseases.

  8. Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species.

    PubMed

    Fietz, Katharina; Rye Hintze, Christian Olaf; Skovrind, Mikkel; Kjærgaard Nielsen, Tue; Limborg, Morten T; Krag, Marcus A; Palsbøll, Per J; Hestbjerg Hansen, Lars; Rask Møller, Peter; Gilbert, M Thomas P

    2018-05-02

    Deciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it has recently been argued that their microbiomes may also contribute to population genetic divergence. We explored whether this might be plausible along the well-described environmental gradient of the Baltic Sea in two species of sand lance (Ammodytes tobianus and Hyperoplus lanceolatus). Specifically, we assessed both their population genetic and gut microbial composition variation and investigated not only which environmental parameters correlate with the observed variation, but whether host genome also correlates with microbiome variation. We found a clear genetic structure separating the high-salinity North Sea from the low-salinity Baltic Sea sand lances. The observed genetic divergence was not simply a function of isolation by distance, but correlated with environmental parameters, such as salinity, sea surface temperature, and, in the case of A. tobianus, possibly water microbiota. Furthermore, we detected two distinct genetic groups in Baltic A. tobianus that might represent sympatric spawning types. Investigation of possible drivers of gut microbiome composition variation revealed that host species identity was significantly correlated with the microbial community composition of the gut. A potential influence of host genetic factors on gut microbiome composition was further confirmed by the results of a constrained analysis of principal coordinates. The host genetic component was among the parameters that best explain observed variation in gut microbiome composition. Our findings have relevance for the population structure of two commercial species but also provide insights into potentially relevant genomic and microbial factors with regards to sand lance adaptation across

  9. Meta-analysis To Define a Core Microbiota in the Swine Gut

    PubMed Central

    Holman, Devin B.; Brunelle, Brian W.; Trachsel, Julian

    2017-01-01

    ABSTRACT The swine gut microbiota encompasses a large and diverse population of bacteria that play a significant role in pig health. As such, a number of recent studies have utilized high-throughput sequencing of the 16S rRNA gene to characterize the composition and structure of the swine gut microbiota, often in response to dietary feed additives. It is important to determine which factors shape the composition of the gut microbiota among multiple studies and if certain bacteria are always present in the gut microbiota of swine, independently of study variables such as country of origin and experimental design. Therefore, we performed a meta-analysis using 20 publically available data sets from high-throughput 16S rRNA gene sequence studies of the swine gut microbiota. Next to the “study” itself, the gastrointestinal (GI) tract section that was sampled had the greatest effect on the composition and structure of the swine gut microbiota (P = 0.0001). Technical variation among studies, particularly the 16S rRNA gene hypervariable region sequenced, also significantly affected the composition of the swine gut microbiota (P = 0.0001). Despite this, numerous commonalities were discovered. Among fecal samples, the genera Prevotella, Clostridium, Alloprevotella, and Ruminococcus and the RC9 gut group were found in 99% of all fecal samples. Additionally, Clostridium, Blautia, Lactobacillus, Prevotella, Ruminococcus, Roseburia, the RC9 gut group, and Subdoligranulum were shared by >90% of all GI samples, suggesting a so-called “core” microbiota for commercial swine worldwide. IMPORTANCE The results of this meta-analysis demonstrate that “study” and GI sample location are the most significant factors in shaping the swine gut microbiota. However, in comparisons of results from different studies, some biological factors may be obscured by technical variation among studies. Nonetheless, there are some bacterial taxa that appear to form a core microbiota within the

  10. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  11. Gut microbiota in Parkinson disease in a northern German cohort.

    PubMed

    Hopfner, Franziska; Künstner, Axel; Müller, Stefanie H; Künzel, Sven; Zeuner, Kirsten E; Margraf, Nils G; Deuschl, Günther; Baines, John F; Kuhlenbäumer, Gregor

    2017-07-15

    Pathologic and epidemiologic studies suggest that Parkinson disease (PD) may in some cases start in the enteric nervous system and spread via the vagal nerve to the brainstem. Mounting evidence suggests that the gut microbiome plays an important role in the communication between gut and brain and that alteration of the gut microbiome is involved in the pathogenesis of numerous diseases, including Parkinson disease. The aim of this study was to determine whether Parkinson disease is associated with qualitative or quantitative changes in the gut microbiome. We analyzed the gut microbiome in 29 PD cases and 29 age-matched controls by next-generation-sequencing of the 16S rRNA gene and compared diversity indices and bacterial abundances between cases and controls. Alpha diversity measures and the abundance of major phyla did not differ between cases and controls. Beta diversity analyses and analysis on the bacterial family level revealed significant differences between cases and controls for four bacterial families. In keeping with recently published studies, Lactobacillaceae were more abundant in cases. Barnesiellaceae and Enterococcacea were also more abundant in cases in this study but not in other studies. Larger studies, accounting for drug effects and further functional investigations of the gut microbiome are necessary to delineate the role of the gut microbiome in the pathogenesis of PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Role of vitamin D on gut microbiota in cystic fibrosis.

    PubMed

    Kanhere, Mansi; Chassaing, Benoit; Gewirtz, Andrew T; Tangpricha, Vin

    2018-01-01

    This review explores the potential for vitamin D to favorably alter the gut microbiota, given emerging evidence of the role of vitamin D in controlling mucosal inflammation in the gut. It will focus on cystic fibrosis (CF) patients, a population with both vitamin D deficiency due to gut malabsorption and an altered gut microbiota composition. Recent evidence shows that vitamin D acts to maintain the integrity of the gut mucosal barrier by enhancement of intercellular junctions that control mucosal permeability and reduction of pro-inflammatory cytokines such as IL-8. In addition, vitamin D receptor-mediated signaling has been shown to inhibit inflammation-induced apoptosis of intestinal epithelial cells. As a result of these effects on the intestinal mucosa, maintenance of sufficient vitamin D status may be essential for the development of a healthy gut microbiota, particularly in conditions defined by chronic mucosal inflammation such as CF. We hypothesize here that high dose vitamin D may be used to favorably manipulate the aberrant mucosa seen in patients with CF. This may result in improved clinical outcomes in association with a low inflammatory environment that allows beneficial bacteria to outcompete opportunistic pathogens. Current evidence is sparse but encouraging, and additional evidence is needed to establish vitamin D as a therapeutic approach for gut microbiota modification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Factors influencing the grass carp gut microbiome and its effect on metabolism.

    PubMed

    Ni, Jiajia; Yan, Qingyun; Yu, Yuhe; Zhang, Tanglin

    2014-03-01

    Gut microbiota have attracted extensive attention recently because of their important role in host metabolism, immunity and health maintenance. The present study focused on factors affecting the gut microbiome of grass carp (Ctenopharyngodon idella) and further explored the potential effect of the gut microbiome on metabolism. Totally, 43.39 Gb of screened metagenomic sequences obtained from 24 gut samples were fully analysed. We detected 1228 phylotypes (116 Archaea and 1112 Bacteria), most of which belonged to the phyla Firmicutes, Proteobacteria and Fusobacteria. Totally, 41335 of the detected open reading frames (ORFs) were matched to Kyoto Encyclopedia of Genes and Genomes pathways, and carbohydrate and amino acid metabolism was the main matched pathway deduced from the annotated ORFs. Redundancy analysis based on the phylogenetic composition and gene composition of the gut microbiome indicated that gut fullness and feeding (i.e. ryegrass vs. commercial feed, and pond-cultured vs. wild) were significantly related to the gut microbiome. Moreover, many biosynthesis and metabolism pathways of carbohydrates, amino acids and lipids were significantly enhanced by the gut microbiome in ryegrass-fed grass carp. These findings suggest that the metabolic role played by the gut microbiome in grass carp can be affected by feeding. These findings contribute to the field of fish gut microbial ecology and also provide a basis for follow-up functional studies. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels.

    PubMed

    Ren, Tiantian; Boutin, Stan; Humphries, Murray M; Dantzer, Ben; Gorrell, Jamieson C; Coltman, David W; McAdam, Andrew G; Wu, Martin

    2017-12-21

    Our understanding of gut microbiota has been limited primarily to findings from human and laboratory animals, but what shapes the gut microbiota in nature remains largely unknown. To fill this gap, we conducted a comprehensive study of gut microbiota of a well-studied North American red squirrel (Tamiasciurus hudsonicus) population. Red squirrels are territorial, solitary, and live in a highly seasonal environment and therefore represent a very attractive system to study factors that drive the temporal and spatial dynamics of gut microbiota. For the first time, this study revealed significant spatial patterns of gut microbiota within a host population, suggesting limited dispersal could play a role in shaping and maintaining the structure of gut microbial communities. We also found a remarkable seasonal rhythm in red squirrel's gut microbial composition manifested by a tradeoff between relative abundance of two genera Oscillospira and Corpococcus and clearly associated with seasonal variation in diet availability. Our results show that in nature, environmental factors exert a much stronger influence on gut microbiota than host-associated factors including age and sex. Despite strong environmental effects, we found clear evidence of individuality and maternal effects, but host genetics did not seem to be a significant driver of the gut microbial communities in red squirrels. Taken together, the results of this study emphasize the importance of external ecological factors rather than host attributes in driving temporal and spatial patterns of gut microbiota in natural environment.

  15. Gut microbiota-related complications in cirrhosis

    PubMed Central

    Gómez-Hurtado, Isabel; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-01-01

    Gut microbiota plays an important role in cirrhosis. The liver is constantly challenged with commensal bacteria and their products arriving through the portal vein in the so-called gut-liver axis. Bacterial translocation from the intestinal lumen through the intestinal wall and to mesenteric lymph nodes is facilitated by intestinal bacterial overgrowth, impairment in the permeability of the intestinal mucosal barrier, and deficiencies in local host immune defences. Deranged clearance of endogenous bacteria from portal and systemic circulation turns the gut into the major source of bacterial-related complications. Liver function may therefore be affected by alterations in the composition of the intestinal microbiota and a role for commensal flora has been evidenced in the pathogenesis of several complications arising in end-stage liver disease such as hepatic encephalopathy, splanchnic arterial vasodilatation and spontaneous bacterial peritonitis. The use of antibiotics is the main therapeutic pipeline in the management of these bacteria-related complications. However, other strategies aimed at preserving intestinal homeostasis through the use of pre-, pro- or symbiotic formulations are being studied in the last years. In this review, the role of intestinal microbiota in the development of the most frequent complications arising in cirrhosis and the different clinical and experimental studies conducted to prevent or improve these complications by modifying the gut microbiota composition are summarized. PMID:25400446

  16. Microbial nutrient niches in the gut.

    PubMed

    Pereira, Fátima C; Berry, David

    2017-04-01

    The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    PubMed

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  18. Gut microbiome in type 1 diabetes: A comprehensive review.

    PubMed

    Zheng, Peilin; Li, Zhixia; Zhou, Zhiguang

    2018-06-21

    Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome-wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D have been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D-triggering factors, especially environmental factors. In this review, we summarize the current etiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future. This article is protected by copyright. All rights reserved.

  19. Structure and function of the healthy pre-adolescent pediatric gut microbiome.

    PubMed

    Hollister, Emily B; Riehle, Kevin; Luna, Ruth Ann; Weidler, Erica M; Rubio-Gonzales, Michelle; Mistretta, Toni-Ann; Raza, Sabeen; Doddapaneni, Harsha V; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Petrosino, Joseph F; Shulman, Robert J; Versalovic, James

    2015-08-26

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7-12 years). We compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same region (Houston, TX, USA). Although healthy children and adults harbored similar numbers of taxa and functional genes, their composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp., Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and triggering mucosal inflammation. Children's gut communities were enriched in functions which may support ongoing development, while adult communities were enriched in functions associated with inflammation, obesity, and increased risk of adiposity. Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more prolonged development than previously suspected.

  20. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  1. Engineering Bacterial Thiosulfate and Tetrathionate Sensors for Detecting Gut Inflammation

    DTIC Science & Technology

    2017-04-03

    Article Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation Kristina N-M Daeffler1 , Jeffrey D Galley2, Ravi U...interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we...understood. Genetically engineered sensor bacteria have untapped potential as tools for analyzing gut pathways. Bacteria have evolved sensors of a large

  2. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-11-1-0666 TITLE: Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation PRINCIPAL INVESTIGATOR...2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation 5b. GRANT NUMBER...several different mouse tissues during the development of chronic gut inflammation. 5. SUBJECT TERMS inflammatory bowel disease; mesenchymal stem

  3. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Gut microbiota and its implications in small bowel transplantation.

    PubMed

    Wang, Chenyang; Li, Qiurong; Li, Jieshou

    2018-06-01

    The gut microbiota is mainly composed of a diverse population of commensal bacterial species and plays a pivotal role in the maintenance of intestinal homeostasis, immune modulation and metabolism. The influence of the gut microbiota on solid organ transplantation has recently been recognized. In fact, several studies indicated that acute and chronic allograft rejection in small bowel transplantation (SBT) is closely associated with the alterations in microbial patterns in the gut. In this review, we focused on the recent findings regarding alterations in the microbiota following SBTand the potential roles of these alterations in the development of acute and chronic allograft rejection. We also reviewed important advances with respect to the interplays between the microbiota and host immune systems in SBT. Furthermore, we explored the potential of the gut microbiota as a microbial marker and/or therapeutic target for the predication and intervention of allograft rejection and chronic dysfunction. Given that current research on the gut microbiota has become increasingly sophisticated and comprehensive, large cohort studies employing metagenomic analysis and multivariate linkage should be designed for the characterization of host-microbe interaction and causality between microbiota alterations and clinical outcomes in SBT. The findings are expected to provide valuable insights into the role of gut microbiota in the development of allograft rejection and other transplant-related complications and introduce novel therapeutic targets and treatment approaches in clinical practice.

  5. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    PubMed

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  7. Comparative Gut Microbiota of 59 Neotropical Bird Species

    PubMed Central

    Hird, Sarah M.; Sánchez, César; Carstens, Bryan C.; Brumfield, Robb T.

    2015-01-01

    The gut microbiota of vertebrates are essential to host health. Most non-model vertebrates, however, lack even a basic description of natural gut microbiota biodiversity. Here, we sampled 116 intestines from 59 Neotropical bird species and used the V6 region of the 16S rRNA molecule as a microbial fingerprint (average coverage per bird ~80,000 reads). A core microbiota of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria was identified, as well as several gut-associated genera. We tested 18 categorical variables associated with each bird for significant correlation to the gut microbiota; host taxonomic categories were most frequently significant and explained the most variation. Ecological variables (e.g., diet, foraging stratum) were also frequently significant but explained less variation. Little evidence was found for a significant influence of geographic space. Finally, we suggest that microbial sampling during field collection of organisms would propel biological understanding of evolutionary history and ecological significance of host-associated microbiota. PMID:26733954

  8. Subsistence strategies in traditional societies distinguish gut microbiomes

    PubMed Central

    Obregon-Tito, Alexandra J.; Tito, Raul Y.; Metcalf, Jessica; Sankaranarayanan, Krithivasan; Clemente, Jose C.; Ursell, Luke K.; Zech Xu, Zhenjiang; Van Treuren, Will; Knight, Rob; Gaffney, Patrick M.; Spicer, Paul; Lawson, Paul; Marin-Reyes, Luis; Trujillo-Villarroel, Omar; Foster, Morris; Guija-Poma, Emilio; Troncoso-Corzo, Luzmila; Warinner, Christina; Ozga, Andrew T.; Lewis, Cecil M.

    2015-01-01

    Recent studies suggest that gut microbiomes of urban-industrialized societies are different from those of traditional peoples. Here we examine the relationship between lifeways and gut microbiota through taxonomic and functional potential characterization of faecal samples from hunter-gatherer and traditional agriculturalist communities in Peru and an urban-industrialized community from the US. We find that in addition to taxonomic and metabolic differences between urban and traditional lifestyles, hunter-gatherers form a distinct sub-group among traditional peoples. As observed in previous studies, we find that Treponema are characteristic of traditional gut microbiomes. Moreover, through genome reconstruction (2.2–2.5 MB, coverage depth × 26–513) and functional potential characterization, we discover these Treponema are diverse, fall outside of pathogenic clades and are similar to Treponema succinifaciens, a known carbohydrate metabolizer in swine. Gut Treponema are found in non-human primates and all traditional peoples studied to date, suggesting they are symbionts lost in urban-industrialized societies. PMID:25807110

  9. Gut Microbiota and Lifestyle Interventions in NAFLD

    PubMed Central

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  10. Gut microbial succession follows acute secretory diarrhea in humans.

    PubMed

    David, Lawrence A; Weil, Ana; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Chowdhury, Fahima; Begum, Yasmin; Qadri, Firdausi; LaRocque, Regina C; Turnbaugh, Peter J

    2015-05-19

    Disability after childhood diarrhea is an important burden on global productivity. Recent studies suggest that gut bacterial communities influence how humans recover from infectious diarrhea, but we still lack extensive data and mechanistic hypotheses for how these bacterial communities respond to diarrheal disease and its treatment. Here, we report that after Vibrio cholerae infection, the human gut microbiota undergoes an orderly and reproducible succession that features transient reversals in relative levels of enteric Bacteroides and Prevotella. Elements of this succession may be a common feature in microbiota recovery from acute secretory diarrhea, as we observed similar successional dynamics after enterotoxigenic Escherichia coli (ETEC) infection. Our metagenomic analyses suggest that multiple mechanisms drive microbial succession after cholera, including bacterial dispersal properties, changing enteric oxygen and carbohydrate levels, and phage dynamics. Thus, gut microbiota recovery after cholera may be predictable at the level of community structure but is driven by a complex set of temporally varying ecological processes. Our findings suggest opportunities for diagnostics and therapies targeting the gut microbiota in humans recovering from infectious diarrhea. Disability after diarrhea is a major burden on public health in the developing world. Gut bacteria may affect this recovery, but it remains incompletely understood how resident microbes in the digestive tract respond to diarrheal illness. Here, we observed an orderly and reproducible succession of gut bacterial groups after cholera in humans. Genomic analyses associated the succession with bacterial dispersal in food, an altered microbial environment, and changing phage levels. Our findings suggest that it may one day be feasible to manage resident bacterial populations in the gut after infectious diarrhea. Copyright © 2015 David et al.

  11. Early-life gut microbiome composition and milk allergy resolution.

    PubMed

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M; Leung, Donald Y M; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C

    2016-10-01

    Gut microbiota may play a role in the natural history of cow's milk allergy. We sought to examine the association between early-life gut microbiota and the resolution of cow's milk allergy. We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy observational study of food allergy. Fecal samples were collected at age 3 to 16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP). Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3 to 6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = .047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η 2  = 0.43; ANOVA P = .034). Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Maternal group B Streptococcus and the infant gut microbiota.

    PubMed

    Cassidy-Bushrow, A E; Sitarik, A; Levin, A M; Lynch, S V; Havstad, S; Ownby, D R; Johnson, C C; Wegienka, G

    2016-02-01

    Early patterns of gut colonization may predispose children to adult disease. Exposures in utero and during delivery are associated with the infant gut microbiome. Although ~35% of women carry group B strep (GBS; Streptococcus agalactiae) during pregnancy, it is unknown if GBS presence influences the infant gut microbiome. As part of a population-based, general risk birth cohort, stool specimens were collected from infant's diapers at research visits conducted at ~1 and 6 months of age. Using the Illumina MiSeq (San Diego, CA) platform, the V4 region of the bacterial 16S rRNA gene was sequenced. Infant gut bacterial community compositional differences by maternal GBS status were evaluated using permutational multivariate analysis of variance. Individual operational taxonomic units (OTUs) were tested using a zero-inflated negative binomial model. Data on maternal GBS and infant gut microbiota from either 1 (n=112) or 6-month-old stool (n=150) specimens was available on 262 maternal-child pairs. Eighty women (30.5%) were GBS+, of who 58 (72.5%) were given intrapartum antibiotics. After adjusting for maternal race, prenatal antifungal use and intrapartum antibiotics, maternal GBS status was statistically significantly associated with gut bacterial composition in the 6 month visit specimen (Canberra R 2=0.008, P=0.008; Unweighted UniFrac R 2=0.010, P=0.011). Individual OTU tests revealed that infants of GBS+ mothers were significantly enriched for specific members of the Clostridiaceae, Ruminococcoceae, and Enterococcaceae in the 6 month specimens compared with infants of GBS- mothers. Whether these taxonomic differences in infant gut microbiota at 6 months lead to differential predisposition for adult disease requires additional study.

  13. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis.

    PubMed

    Luo, Mei; Liu, Yong; Wu, Pengfei; Luo, Dong-Xia; Sun, Qun; Zheng, Han; Hu, Richard; Pandol, Stephen J; Li, Qing-Feng; Han, Yuan-Ping; Zeng, Yilan

    2017-01-01

    One-third of the world's population has been infected with Mycobacterium tuberculosis ( M. tuberculosis ), a primary pathogen of the mammalian respiratory system, while about 10% of latent infections progress to active tuberculosis (TB), indicating that host and environmental factors may determine the outcomes such as infection clearance/persistence and treatment prognosis. The gut microbiota is essential for development of host immunity, defense, nutrition and metabolic homeostasis. Thus, the pattern of gut microbiota may contribute to M. tuberculosis infection and prognosis. In current study we characterized the differences in gut bacterial communities in new tuberculosis patients (NTB), recurrent tuberculosis patients (RTB), and healthy control. The abundance-based coverage estimator (ACE) showed the diversity index of the gut microbiota in the patients with recurrent tuberculosis was increased significantly compared with healthy controls ( p < 0.05). At the phyla level, Actinobacteria and Proteobacteria, which contain many pathogenic species, were significantly enriched in the feces RTB patients. Conversely, phylum Bacteroidetes, containing a variety of beneficial commensal organisms, was reduced in the patients with the recurrent tuberculosis compared to healthy controls. The Gram-negative genus Prevotella of oral origin from phylum of Bacteroidetes and genus Lachnospira from phylum of Firmicutes were significantly decreased in both the new and recurrent TB patient groups, compared with the healthy control group ( p < 0.05). We also found that there was a positive correlation between the gut microbiota and peripheral CD4+ T cell counts in the patients. This study, for the first time, showed associations between gut microbiota with tuberculosis and its clinical outcomes. Maintaining eubiosis, namely homeostasis of gut microbiota, may be beneficial for host recovery and prevention of recurrence of M. tuberculosis infection.

  14. Homeostasis of the gut barrier and potential biomarkers.

    PubMed

    Wells, Jerry M; Brummer, Robert J; Derrien, Muriel; MacDonald, Thomas T; Troost, Freddy; Cani, Patrice D; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L

    2017-03-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies

  15. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    PubMed Central

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  16. Lidocaine effect on flotillin-2 distribution in detergent-resistant membranes of equine jejunal smooth muscle in vitro.

    PubMed

    Tappenbeck, Karen; Schmidt, Sonja; Feige, Karsten; Naim, Hassan Y; Huber, Korinna

    2014-05-01

    Lidocaine is the most commonly chosen prokinetic for treating postoperative ileus in horses, a motility disorder associated with ischaemia-reperfusion injury of intestinal tissues. Despite the frequent use of lidocaine, the mechanism underlying its prokinetic effects is still unclear. Previous studies suggested that lidocaine altered cell membrane characteristics of smooth muscle cells. Therefore, the present study aimed to elucidate effects of lidocaine administration on characteristics of detergent-resistant membranes in equine jejunal smooth muscle. Lidocaine administration caused significant redistribution of flotillin-2, a protein marker of detergent-resistant membranes, in fractions of sucrose-density-gradients obtained from ischaemia-reperfusion injured smooth muscle solubilised with Triton X-100. It was concluded that lidocaine induced disruption of detergent-resistant membranes which might affect ion channel activity and therefore enhance smooth muscle contractility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut

    PubMed Central

    Milani, Christian; Andrea Lugli, Gabriele; Duranti, Sabrina; Turroni, Francesca; Mancabelli, Leonardo; Ferrario, Chiara; Mangifesta, Marta; Hevia, Arancha; Viappiani, Alice; Scholz, Matthias; Arioli, Stefania; Sanchez, Borja; Lane, Jonathan; Ward, Doyle V.; Hickey, Rita; Mora, Diego; Segata, Nicola; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2015-01-01

    Bifidobacteria are common and frequently dominant members of the gut microbiota of many animals, including mammals and insects. Carbohydrates are considered key carbon sources for the gut microbiota, imposing strong selective pressure on the complex microbial consortium of the gut. Despite its importance, the genetic traits that facilitate carbohydrate utilization by gut microbiota members are still poorly characterized. Here, genome analyses of 47 representative Bifidobacterium (sub)species revealed the genes predicted to be required for the degradation and internalization of a wide range of carbohydrates, outnumbering those found in many other gut microbiota members. The glycan-degrading abilities of bifidobacteria are believed to reflect available carbon sources in the mammalian gut. Furthermore, transcriptome profiling of bifidobacterial genomes supported the involvement of various chromosomal loci in glycan metabolism. The widespread occurrence of bifidobacterial saccharolytic features is in line with metagenomic and metatranscriptomic datasets obtained from human adult/infant faecal samples, thereby supporting the notion that bifidobacteria expand the human glycobiome. This study also underscores the hypothesis of saccharidic resource sharing among bifidobacteria through species-specific metabolic specialization and cross feeding, thereby forging trophic relationships between members of the gut microbiota. PMID:26506949

  18. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  19. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  20. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut

    PubMed Central

    Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce; Nichols, Scott P; Wisniewski, Natalie A; Villa, Max M; Durand, Heather K; Jiang, Sharon; Midani, Firas S; Nimmagadda, Sai N; O'Connell, Thomas M; Wright, Justin P; Deshusses, Marc A

    2018-01-01

    How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. PMID:29916366

  1. Hemosuccus Pancreaticus following a Puestow Procedure in a Patient with Chronic Pancreatitis

    PubMed Central

    Okamoto, Hirotaka; Miura, Kazuo; Fujii, Hideki

    2011-01-01

    Hemosuccus pancreaticus is an unusual cause of gastrointestinal bleeding that occurs as a complication of chronic or acute pancreatitis. We report a case of extremely acute-onset hemosuccus pancreaticus occurring in a patient with chronic pancreatitis over a long-term follow-up after a Puestow procedure (side-to-side pancreaticojejunostomy). The patient was admitted to our hospital due to severe anemia and tarry stools indicative of gastrointestinal bleeding. Emergent endoscopy, including gastrointestinal fiberscopy and colon fiberscopy, showed no abnormal findings. Abdominal contrast-enhanced computed tomography and hemorrhagic scintigraphy did not detect a hemorrhagic lesion. Although interventional radiology was considered for diagnosis and treatment, conservative therapy seemed sufficient to affect hemostasis. Two weeks later, however, acute intestinal bleeding with hemodynamic shock occurred, and exploration was performed without delay. Intraoperative endoscopy through an incision of the reconstructed jejunal loop in the close proximal end revealed a site of active bleeding from the side-to-side anastomotic pancreatic duct. Following a longitudinal incision of the jejunal loop, a bleeding point was sutured and ligated on direct inspection. The patient showed a good postoperative course. PMID:21960948

  2. Hemosuccus Pancreaticus following a Puestow Procedure in a Patient with Chronic Pancreatitis.

    PubMed

    Okamoto, Hirotaka; Miura, Kazuo; Fujii, Hideki

    2011-05-01

    Hemosuccus pancreaticus is an unusual cause of gastrointestinal bleeding that occurs as a complication of chronic or acute pancreatitis. We report a case of extremely acute-onset hemosuccus pancreaticus occurring in a patient with chronic pancreatitis over a long-term follow-up after a Puestow procedure (side-to-side pancreaticojejunostomy). The patient was admitted to our hospital due to severe anemia and tarry stools indicative of gastrointestinal bleeding. Emergent endoscopy, including gastrointestinal fiberscopy and colon fiberscopy, showed no abnormal findings. Abdominal contrast-enhanced computed tomography and hemorrhagic scintigraphy did not detect a hemorrhagic lesion. Although interventional radiology was considered for diagnosis and treatment, conservative therapy seemed sufficient to affect hemostasis. Two weeks later, however, acute intestinal bleeding with hemodynamic shock occurred, and exploration was performed without delay. Intraoperative endoscopy through an incision of the reconstructed jejunal loop in the close proximal end revealed a site of active bleeding from the side-to-side anastomotic pancreatic duct. Following a longitudinal incision of the jejunal loop, a bleeding point was sutured and ligated on direct inspection. The patient showed a good postoperative course.

  3. Composition of the gut microbiota modulates the severity of malaria

    PubMed Central

    Villarino, Nicolas F.; LeCleir, Gary R.; Denny, Joshua E.; Dearth, Stephen P.; Harding, Christopher L.; Sloan, Sarah S.; Gribble, Jennifer L.; Campagna, Shawn R.; Wilhelm, Steven W.; Schmidt, Nathan W.

    2016-01-01

    Plasmodium infections result in clinical presentations that range from asymptomatic to severe malaria, resulting in ∼1 million deaths annually. Despite this toll on humanity, the factors that determine disease severity remain poorly understood. Here, we show that the gut microbiota of mice influences the pathogenesis of malaria. Genetically similar mice from different commercial vendors, which exhibited differences in their gut bacterial community, had significant differences in parasite burden and mortality after infection with multiple Plasmodium species. Germfree mice that received cecal content transplants from “resistant” or “susceptible” mice had low and high parasite burdens, respectively, demonstrating the gut microbiota shaped the severity of malaria. Among differences in the gut flora were increased abundances of Lactobacillus and Bifidobacterium in resistant mice. Susceptible mice treated with antibiotics followed by yogurt made from these bacterial genera displayed a decreased parasite burden. Consistent with differences in parasite burden, resistant mice exhibited an elevated humoral immune response compared with susceptible mice. Collectively, these results identify the composition of the gut microbiota as a previously unidentified risk factor for severe malaria and modulation of the gut microbiota (e.g., probiotics) as a potential treatment to decrease parasite burden. PMID:26858424

  4. Modulation of the gut microbiota by prebiotic fibres and bacteriocins

    PubMed Central

    Umu, Özgün C. O.; Rudi, Knut; Diep, Dzung B.

    2017-01-01

    ABSTRACT The gut microbiota is considered an organ that co-develops with the host throughout its life. The composition and metabolic activities of the gut microbiota are subject to a complex interplay between the host genetics and environmental factors, such as lifestyle, diet, stress and antimicrobials. It is evident that certain prebiotics, and antimicrobials produced by lactic acid bacteria (LAB), can shape the composition of the gut microbiota and its metabolic activities to promote host health and/or prevent diseases. In this review, we aim to give an overview of the impact of prebiotic fibres, and bacteriocins from LAB, on the gut microbiota and its activities, which affect the physiology and health of the host. These represent two different mechanisms in modulating the gut microbiota, the first involving exploitative competition by which the growth of beneficial bacteria is promoted and the latter involving interference competition by which the growth of pathogens and other unwanted bacteria is prevented. For interference competition in the gut, bacteriocins offer special advantages over traditional antibiotics, in that they can be designed to act towards specific unwanted bacteria and other pathogens, without any remarkable collateral effects on beneficial microbes sharing the same niche. PMID:28959178

  5. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2018-02-01

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  6. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    PubMed

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. How informative is the mouse for human gut microbiota research?

    PubMed Central

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744

  8. How informative is the mouse for human gut microbiota research?

    PubMed

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  9. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection

    PubMed Central

    Sena, Angela A. S.; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R.

    2016-01-01

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection. PMID:27484833

  10. Bacteria from diverse habitats colonize and compete in the mouse gut.

    PubMed

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Dietary Fiber Gap and Host Gut Microbiota.

    PubMed

    Han, Meng; Wang, Congmin; Liu, Ping; Li, Defa; Li, Yuan; Ma, Xi

    2017-05-10

    Accumulating evidence is dramatically increasing the access to the facts that the gut microbiota plays a pivotal role in host metabolism and health, which revealed the possibility of a plethora of associations between gut bacteria and human diseases. Several functional roles are carried out by a major class of the host's diet, such as fiber. Fiber is the main source of microbiota-accessible carbohydrate in the diet of humans. In the modern diet, it is difficult to intake sufficient dietary fiber as recommended. The low-fiber diet in the modern life, known as fiber gap, can trigger a substantial depletion of the human gut microbiota diversity and beneficial metabolites. The short-chain fatty acids are regarded as one of the major microbial metabolites of dietary fibers, which can improve intestinal mucosal immunity, as well as to be a source of energy for the liver. Thus, the loss of microbiota diversity has a potential negative function to various aspects of host health. Actually, the real "fiber gap" for ideal health and maintaining microbial diversity might be even more serious than currently appreciated. Herein, we briefly discuss the interactions between gut microbiota and the host diet, focusing specifically on the low-fiber diet. Gut bacteria in the context of the development of host low-fiber diets, which may lead to health and disorders, particularly include metabolic syndrome and obesity-related disease, IBD liver, disease, and colorectal cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The alligator gut microbiome and implications for archosaur symbioses

    PubMed Central

    Keenan, Sarah W.; Engel, Annette Summers; Elsey, Ruth M.

    2013-01-01

    Among vertebrate gastrointestinal microbiome studies, complete representation of taxa is limited, particularly among reptiles. Here, we provide evidence for previously unrecognized host-microbiome associations along the gastrointestinal tract from the American alligator, a crown archosaur with shared ancestry to extinct taxa, including dinosaurs. Microbiome compositional variations reveal that the digestive system consists of multiple, longitudinally heterogeneous microbiomes that strongly correlate to specific gastrointestinal tract organs, regardless of rearing histories or feeding status. A core alligator gut microbiome comprised of Fusobacteria, but depleted in Bacteroidetes and Proteobacteria common to mammalians, is compositionally unique from other vertebrate gut microbiomes, including other reptiles, fish, and herbivorous and carnivorous mammals. As such, modern alligator gut microbiomes advance our understanding of archosaur gut microbiome evolution, particularly if conserved host ecology has retained archosaur-specific symbioses over geologic time. PMID:24096888

  13. The Gut Microbiome: A New Frontier in Autism Research

    PubMed Central

    Mulle, Jennifer G.; Sharp, William G.; Cubells, Joseph F.

    2013-01-01

    The human gut harbors a complex community of microbes that profoundly influence many aspects of growth and development, including development of the nervous system. Advances in high-throughput DNA sequencing methods have led to rapidly expanding knowledge about this gut microbiome. Here, we review fundamental emerging data on the human gut microbiome, with a focus on potential interactions between the microbiome and autism spectrum disorders (ASD) and consider research on atypical patterns of feeding and nutrition in ASD and how they might interact with the microbiome. Finally we selectively survey results from studies in rodents on the impact of the microbiome on neurobehavioral development. The evidence reviewed here suggests that a deeper understanding of the gut microbiome could open up new avenues of research on ASD, including potential novel treatment strategies. PMID:23307560

  14. Gut microbiomes and their metabolites shape human and animal health.

    PubMed

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  15. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota

    PubMed Central

    Arnal, Marie-Edith

    2016-01-01

    The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882

  16. The human gut microbiome and its dysfunctions through the meta-omics prism.

    PubMed

    Mondot, Stanislas; Lepage, Patricia

    2016-05-01

    The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases. © 2016 New York Academy of Sciences.

  17. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    PubMed

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  18. Risk assessments: Validation, gut feeling and cognitive biases (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Merz, Bruno

    2017-04-01

    Risk management is ideally based on comprehensive risk assessments quantifying the current risk and its reduction for different mitigation strategies. Given the pivotal role of risk assessments, this contribution discusses the basis for our confidence in risk assessments. Traditional validation, i.e. comparing model simulations with past observations, is often not possible since the assessment typically contains extreme events and their impacts that have not been observed before. In this situation, the assessment is strongly based on assumptions, expert judgement and best guess. This is an unfavorable situation as humans fall prey to cognitive biases, such as 'illusion of certainty', 'overconfidence' or 'recency bias'. Such biases operate specifically in complex situations with many factors involved, when uncertainty is high and events are probabilistic, or when close learning feedback loops are missing - aspects that all apply to risk assessments. We reflect on the role of gut feeling in risk assessments, illustrate the pitfalls of cognitive biases, and discuss the possibilities for better understanding how confident we can be in the numbers resulting from risk assessments.

  19. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  20. An unusual colon atresia in a calf: at the junction of the distal loop and transverse colon. A brief overview

    PubMed Central

    Lombardero, Matilde; Yllera, María del Mar

    2014-01-01

    Congenital defects are those abnormalities present at birth. During embryogenesis, many anomalies can occur. The primitive gut tube lengthens quickly and rotates, allowing the gastrointestinal tract acquire its final position and orientation. Because the colon of large animals is complex, most changes occur in this segment. Thus, in ruminants, colon atresia is the most frequent malformation, affecting mainly ascending colon, at the level of the spiral loop. There are no previous references about a very atypical colon atresia at the junction of distal loop and transverse colon, such we have described in a 5-day-old calf, after a history of abdominal distention and absence of feces at birth, even with a patent anal opening. Atresia coli was detected at distal position of the typical colon atresia, at the junction of distal loop and transverse colon. In addition, the distal blind end was bent into a U-shape supported by the mesocolon. Besides the anatomical findings of this worthwhile atresia coli we discuss its possible etiology, in which local factors, such as a compromised blood supply during embryogenesis, are more consistent than genetic factors. Finding out the causes of atresia coli would help to reduce its incidence, lessen animal suffering and economic loss. PMID:25495264

  1. The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis

    PubMed Central

    Enaud, Raphaël; Vandenborght, Louise-Eva; Coron, Noémie; Bazin, Thomas; Prevel, Renaud; Schaeverbeke, Thierry; Berger, Patrick; Fayon, Michael; Delhaes, Laurence

    2018-01-01

    In recent years, the gut microbiota has been considered as a full-fledged actor of the gut–brain axis, making it possible to take a new step in understanding the pathophysiology of both neurological and psychiatric diseases. However, most of the studies have been devoted to gut bacterial microbiota, forgetting the non-negligible fungal flora. In this review, we expose how the role of the fungal component in the microbiota-gut-brain axis is legitimate, through its interactions with both the host, especially with the immune system, and the gut bacteria. We also discuss published data that already attest to a role of the mycobiome in the microbiota-gut-brain axis, and the impact of fungi on clinical and therapeutic research. PMID:29522426

  2. Allometry and Ecology of the Bilaterian Gut Microbiome.

    PubMed

    Sherrill-Mix, Scott; McCormick, Kevin; Lauder, Abigail; Bailey, Aubrey; Zimmerman, Laurie; Li, Yingying; Django, Jean-Bosco N; Bertolani, Paco; Colin, Christelle; Hart, John A; Hart, Terese B; Georgiev, Alexander V; Sanz, Crickette M; Morgan, David B; Atencia, Rebeca; Cox, Debby; Muller, Martin N; Sommer, Volker; Piel, Alexander K; Stewart, Fiona A; Speede, Sheri; Roman, Joe; Wu, Gary; Taylor, Josh; Bohm, Rudolf; Rose, Heather M; Carlson, John; Mjungu, Deus; Schmidt, Paul; Gaughan, Celeste; Bushman, Joyslin I; Schmidt, Ella; Bittinger, Kyle; Collman, Ronald G; Hahn, Beatrice H; Bushman, Frederic D

    2018-03-27

    Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals ( Bilateria ) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. IMPORTANCE The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic

  3. Immune Response of Chicken Gut to Natural Colonization by Gut Microflora and to Salmonella enterica Serovar Enteritidis Infection ▿

    PubMed Central

    Crhanova, Magdalena; Hradecka, Helena; Faldynova, Marcela; Matulova, Marta; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2011-01-01

    In commercial poultry production, there is a lack of natural flora providers since chickens are hatched in the clean environment of a hatchery. Events occurring soon after hatching are therefore of particular importance, and that is why we were interested in the development of the gut microbial community, the immune response to natural microbial colonization, and the response to Salmonella enterica serovar Enteritidis infection as a function of chicken age. The complexity of chicken gut microbiota gradually increased from day 1 to day 19 of life and consisted of Proteobacteria and Firmicutes. For the first 3 days of life, chicken cecum was protected by increased expression of chicken β-defensins (i.e., gallinacins 1, 2, 4, and 6), expression of which dropped from day 4 of life. On the other hand, a transient increase in interleukin-8 (IL-8) and IL-17 expression could be observed in chicken cecum on day 4 of life, indicating physiological inflammation and maturation of the gut immune system. In agreement, the response of chickens infected with S. Enteritidis on days 1, 4, and 16 of life shifted from Th1 (characterized mainly by induction of gamma interferon [IFN-γ] and inducible nitric oxide synthase [iNOS]), observed in younger chickens, to Th17, observed in 16-day-old chickens (characterized mainly by IL-17 induction). Active modification of chicken gut microbiota in the future may accelerate or potentiate the maturation of the gut immune system and increase its resistance to infection with different pathogens. PMID:21555397

  4. Functional variation in the gut microbiome of wild Drosophila populations.

    PubMed

    Bost, Alyssa; Martinson, Vincent G; Franzenburg, Soeren; Adair, Karen L; Albasi, Alice; Wells, Martin T; Douglas, Angela E

    2018-05-26

    Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Gut microbiota in patients with Parkinson's disease in southern China.

    PubMed

    Lin, Aiqun; Zheng, Wenxia; He, Yan; Tang, Wenli; Wei, Xiaobo; He, Rongni; Huang, Wei; Su, Yuying; Huang, Yaowei; Zhou, Hongwei; Xie, Huifang

    2018-05-16

    Accumulating evidence has revealed alterations in the communication between the gut and brain in patients with Parkinson's disease (PD), and previous studies have confirmed that alterations in the gut microbiome play an important role in the pathogenesis of numerous diseases, including PD. The aim of this study was to determine whether the faecal microbiome of PD patients in southern China differs from that of control subjects and whether the gut microbiome composition alters among different PD motor phenotypes. We compared the gut microbiota composition of 75 patients with PD and 45 age-matched controls using 16S rRNA next-generation-sequencing. We observed significant increases in the abundance of four bacterial families and significant decreases in the abundance of seventeen bacterial families in patients with PD compared to those of the controls. In particular, the abundance of Lachnospiraceae was reduced by 42.9% in patients with PD, whereas Bifidobacteriaceae was enriched in patients with PD. We did not identify a significant difference in the overall microbial composition among different PD motor phenotypes, but we identified the association between specific taxas and different PD motor phenotypes. PD is accompanied by alterations in the abundance of specific gut microbes. The abundance of certain gut microbes was altered depending on clinical motor phenotypes. Based on our findings, the gut microbiome may be a potential PD biomarker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Philosophy with Guts

    ERIC Educational Resources Information Center

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  7. Pathophysiology of the Gut and the Microbiome in the Host Response.

    PubMed

    Lyons, John D; Coopersmith, Craig M

    2017-03-01

    To describe and summarize the data supporting the gut as the motor driving critical illness and multiple organ dysfunction syndrome presented at the National Institute of Child Health and Human Development MODS Workshop (March 26-27, 2015). Summary of workshop keynote presentation. Not applicable. Presented by an expert in the field, the data assessing the role of gastrointestinal dysfunction driving critical illness were described with a focus on identifying knowledge gaps and research priorities. Summary of presentation and discussion supported and supplemented by relevant literature. The understanding of gut dysfunction in critical illness has evolved greatly over time, and the gut is now often considered as the "motor" of critical illness. The association of the gut with critical illness is supported by both animal models and clinical studies. Initially, the association between gut dysfunction and critical illness focused primarily on bacterial translocation into the bloodstream. However, that work has evolved to include other gut-derived products causing distant injury via other routes (e.g., lymphatics). Additionally, alterations in the gut epithelium may be associated with critical illness and influence outcomes. Gut epithelial apoptosis, intestinal hyperpermeability, and perturbations in the intestinal mucus layer have all been associated with critical illness. Finally, there is growing evidence that the intestinal microbiome plays a crucial role in mediating pathology in critical illness. Further research is needed to better understand the role of each of these mechanisms and their contribution to multiple organ dysfunction syndrome in children.

  8. Salt-responsive gut commensal modulates TH17 axis and disease.

    PubMed

    Wilck, Nicola; Matus, Mariana G; Kearney, Sean M; Olesen, Scott W; Forslund, Kristoffer; Bartolomaeus, Hendrik; Haase, Stefanie; Mähler, Anja; Balogh, András; Markó, Lajos; Vvedenskaya, Olga; Kleiner, Friedrich H; Tsvetkov, Dmitry; Klug, Lars; Costea, Paul I; Sunagawa, Shinichi; Maier, Lisa; Rakova, Natalia; Schatz, Valentin; Neubert, Patrick; Frätzer, Christian; Krannich, Alexander; Gollasch, Maik; Grohme, Diana A; Côrte-Real, Beatriz F; Gerlach, Roman G; Basic, Marijana; Typas, Athanasios; Wu, Chuan; Titze, Jens M; Jantsch, Jonathan; Boschmann, Michael; Dechend, Ralf; Kleinewietfeld, Markus; Kempa, Stefan; Bork, Peer; Linker, Ralf A; Alm, Eric J; Müller, Dominik N

    2017-11-30

    A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T H 17) cells, which can also contribute to hypertension. Induction of T H 17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T H 17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T H 17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

  9. A core gut microbiome in obese and lean twins.

    PubMed

    Turnbaugh, Peter J; Hamady, Micah; Yatsunenko, Tanya; Cantarel, Brandi L; Duncan, Alexis; Ley, Ruth E; Sogin, Mitchell L; Jones, William J; Roe, Bruce A; Affourtit, Jason P; Egholm, Michael; Henrissat, Bernard; Heath, Andrew C; Knight, Rob; Gordon, Jeffrey I

    2009-01-22

    The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person's gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable 'core microbiome' at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese

  10. A psychology of the human brain-gut-microbiome axis.

    PubMed

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  11. Alterations in Gut Microbiota and Immunity by Dietary Fat.

    PubMed

    Yang, Bo Gie; Hur, Kyu Yeon; Lee, Myung Shik

    2017-11-01

    Gut microbiota play critical physiological roles in energy extraction from the intestine and in the control of systemic immunity, as well as local intestinal immunity. Disturbance of gut microbiota leads to the development of several diseases, such as colitis, inflammatory bowel diseases, metabolic disorders, cancer, etc. From a metabolic point of view, the gut is a large metabolic organ and one of the first to come into contact with dietary fats. Interestingly, excessive dietary fat has been incriminated as a primary culprit of metabolic syndrome and obesity. After intake of high-fat diet or Western diet, extensive changes in gut microbiota have been observed, which may be an underlying cause of alterations in whole body metabolism and nutrient homeostasis. Here, we summarize recent data on changes in the gut microbiota and immunity associated with dietary fat, as well as their relationships with the pathogenesis of metabolic syndrome. These findings may provide insight into the understanding of the complex pathophysiology related to the development of metabolic diseases and offer an opportunity to develop novel candidates for therapeutic agents. © Copyright: Yonsei University College of Medicine 2017.

  12. Diet, exercise and gut mucosal immunity.

    PubMed

    Valdés-Ramos, Roxana; Martínez-Carrillo, Beatriz E; Aranda-González, Irma I; Guadarrama, Ana Laura; Pardo-Morales, Rosa Virgen; Tlatempa, Patricia; Jarillo-Luna, Rosa A

    2010-11-01

    Diet and exercise are primary strategies recommended for the control of the obesity epidemic. Considerable attention is being paid to the effect of both on the immune system. However, little research has been done on the effect of diet, nutrients or exercise on the mucosal immune system. The gastrointestinal tract (gut) is not only responsible for the entry of nutrients into the organism, but also for triggering the primary immune response to orally ingested antigens. The gut-associated lymphoid tissue contains a large amount of immune cells, disseminated all along the intestine in Peyer's patches and lamina propria. Specific nutrients or their combinations, as well as the microflora, are capable of modulating the immune system through cell activation, production of signalling molecules or gene expression. We have observed an increase in T-cells as well as a decrease in B-cells from Peyer's patches, induced by diets high in fats or carbohydrates in Balb/c mice. It has also been demonstrated that exercise modulates the immune system, where moderate levels may improve its function by increasing the proliferation of lymphocytes from various sites, including gut-associated lymphoid tissue, whereas exhaustive acute exercise may cause immunosuppression. High-fat diets combined with exercise are able to induce an increase in CD3+ lymphocytes due to increased CD8+ cells and a decrease in B-cells. Explanations and consequences of the effects of diet and exercise on the gut mucosal immunity are still being explored.

  13. Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide.

    PubMed

    Shang, Qingsen; Shi, Jingjing; Song, Guanrui; Zhang, Meifang; Cai, Chao; Hao, Jiejie; Li, Guoyun; Yu, Guangli

    2016-08-01

    Chondroitin sulfate (CS) as a dietary supplement and a symptomatic slow acting (SYSA) drug has been used for years. Recently, CS has been demonstrated to be readily degraded and fermented in vitro by specific human gut microbes, hinting that dietary CS may pose a potential effect on gut microbiota composition in vivo. However, until now, little information is available on modulations of gut microbiota by CS. In the present study, modulations of gut microbiota in Kunming mice by CS and its oligosaccharide (CSO) were investigated by high-throughput sequencing. As evidenced by Heatmap and principal component analysis (PCA), the female microbiota were more vulnerable than the male microbiota to CS and CSO treatment. Besides, it is of interest to found that CS and CSO had differing effects on the abundance of Bacteroidales S24-7, Bacteroides, Helicobacter, Odoribacter, Prevotellaceae and Lactobacillus in male mice versus female mice. Collectively, we demonstrated a sex-dependent effect on gut microbiota of CS and CSO. In addition, since gut microbiota exerts a major effect on host physiology, our study highlighted that certain beneficial effects of CS may be associated with modulations of gut microbiota, which merits further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Luminous bacteria cultured from fish guts in the Gulf of Oman.

    PubMed

    Makemson, J C; Hermosa, G V

    1999-01-01

    The incidence of culturable luminous bacteria in Omani market fish guts was correlated to habitat type amongst 109 species of fish. Isolated representative luminous bacteria were compared to known species using the Biolog system (95 traits/isolate) and cluster analysis, which showed that the main taxa present in fish guts were clades related to Vibrio harveyi and Photobacterium species with sporadic incidence of P. phosphoreum. The luminous isolates from gut of the slip-mouth (barred pony fish), Leiognathus fasciatus, were mainly a type related to Photobacterium but phenotypically different from known species. These luminous gut bacteria were identical with the bacteria in the light organ, indicating that the light organ supplies a significant quantity of luminous bacteria to the gut. In many of the fish that lack light organs, luminous bacteria were also the dominant bacterial type in the gut, while in some others luminous bacteria were encountered sporadically and at low densities, reflecting the incidence of culturable luminous bacteria in seawater. Pelagic fish contained the highest incidence of culturable luminous bacteria and reef-associated fish the lowest. No correlation was found between the incidence of culturable luminous bacteria and the degree to which fish produce a melanin-covered gut. Copyright 1999 John Wiley & Sons, Ltd.

  15. The impact of rearing environment on the development of gut microbiota in tilapia larvae

    PubMed Central

    Giatsis, Christos; Sipkema, Detmer; Smidt, Hauke; Heilig, Hans; Benvenuti, Giulia; Verreth, Johan; Verdegem, Marc

    2015-01-01

    This study explores the effect of rearing environment on water bacterial communities (BC) and the association with those present in the gut of Nile tilapia larvae (Oreochromis niloticus, Linnaeus) grown in either recirculating or active suspension systems. 454 pyrosequencing of PCR-amplified 16S rRNA gene fragments was applied to characterize the composition of water, feed and gut bacteria communities. Observed changes in water BC over time and differences in water BCs between systems were highly correlated with corresponding water physico-chemical properties. Differences in gut bacterial communities during larval development were correlated with differences in water communities between systems. The correlation of feed BC with those in the gut was minor compared to that between gut and water, reflected by the fact that 4 to 43 times more OTUs were shared between water and gut than between gut and feed BC. Shared OTUs between water and gut suggest a successful transfer of microorganisms from water into the gut, and give insight about the niche and ecological adaptability of water microorganisms inside the gut. These findings suggest that steering of gut microbial communities could be possible through water microbial management derived by the design and functionality of the rearing system. PMID:26658351

  16. Relationship between diet, the gut microbiota, and brain function.

    PubMed

    Tengeler, Anouk C; Kozicz, Tamas; Kiliaan, Amanda J

    2018-04-28

    The human intestinal microbiota, comprising trillions of microorganisms, exerts a substantial effect on the host. The microbiota plays essential roles in the function and development of several physiological processes, including those in the brain. A disruption in the microbial composition of the gut has been associated with many metabolic, inflammatory, neurodevelopmental, and neurodegenerative disorders. Nutrition is one of several key factors that shape the microbial composition during infancy and throughout life, thereby affecting brain structure and function. This review examines the effect of the gut microbiota on brain function. The ability of external factors, such as diet, to influence the microbial composition implies a certain vulnerability of the gut microbiota. However, it also offers a potential therapeutic strategy for ameliorating symptoms of mental and physical disorders. Therefore, this review examines the potential effect of nutritional components on gut microbial composition and brain function.

  17. Beyond gut microbiota: understanding obesity and type 2 diabetes.

    PubMed

    Lau, Eva; Carvalho, Davide; Pina-Vaz, Cidália; Barbosa, José-Adelino; Freitas, Paula

    2015-01-01

    Obesity and type 2 diabetes are metabolic diseases that have reached epidemic proportions worldwide. Although their etiology is complex, both result from interplay between behaviour, environment and genetic factors. Within ambient determinants, human overall gut bacteria have been identified as a crucial mediator of obesity and its consequences. Gut microbiota plays a crucial role in gastro-intestinal mucosa permeability and regulates the fermentation and absorption of dietary polyssacharides, which may explain its importance in the regulation of fat accumulation and the resultant development of obesity-related diseases. The main objective of this review is to address the pathogenic association between gut microbiota and obesity and to explore related innovative therapeutic targets. New insights into the role of the small bowel and gut microbiota in diabetes and obesity may make possible the development of integrated strategies to prevent and treat these metabolic disorders.

  18. The role of gut bacteria in Schmallenberg virus transmission by Culicoides biting midges

    USDA-ARS?s Scientific Manuscript database

    When an arbo-virus enters a vector it will first enter the gut system of this insect before entering cells of the insect body. Once in the gut-system, arbo-viruses and gut microbiota can interact with each other. We wondered if different gut bacterial communities could influence virus infection of b...

  19. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis

    PubMed Central

    Stromberg, Paul E.; Woolsey, Cheryl A.; Clark, Andrew T.; Clark, Jessica A.; Turnbull, Isaiah R.; McConnell, Kevin W.; Chang, Katherine C.; Chung, Chun-Shiang; Ayala, Alfred; Buchman, Timothy G.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2009-01-01

    Lymphocytes help determine whether gut epithelial cells proliferate or differentiate but are not known to affect whether they live or die. Here, we report that lymphocytes play a controlling role in mediating gut epithelial apoptosis in sepsis but not under basal conditions. Gut epithelial apoptosis is similar in unmanipulated Rag-1−/− and wild-type (WT) mice. However, Rag-1−/− animals have a 5-fold augmentation in gut epithelial apoptosis following cecal ligation and puncture (CLP) compared to septic WT mice. Reconstitution of lymphocytes in Rag-1−/− mice via adoptive transfer decreases intestinal apoptosis to levels seen in WT animals. Subset analysis indicates that CD4+ but not CD8+, γδ, or B cells are responsible for the antiapoptotic effect of lymphocytes on the gut epithelium. Gut-specific overexpression of Bcl-2 in transgenic mice decreases mortality following CLP. This survival benefit is lymphocyte dependent since gut-specific overexpression of Bcl-2 fails to alter survival when the transgene is overexpressed in Rag-1−/− mice. Further, adoptively transferring lymphocytes to Rag-1−/− mice that simultaneously overexpress gut-specific Bcl-2 results in improved mortality following sepsis. Thus, sepsis unmasks CD4+ lymphocyte control of gut apoptosis that is not present under homeostatic conditions, which acts as a key determinant of both cellular survival and host mortality.—Stromberg, P. E., Woolsey, C. A., Clark, A. T., Clark, J. A., Turnbull, I. R., McConnell, K. W., Chang, K. C., Chung, C.-S., Ayala, A., Buchman, T. G., Hotchkiss, R. S., Coopersmith, C. M. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis. PMID:19158156

  20. The gut microbiota, environment and diseases of modern society.

    PubMed

    Kelsen, Judith R; Wu, Gary D

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.

  1. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure.

    PubMed

    Khan, Shahzada; Telwatte, Sushama; Trapecar, Martin; Yukl, Steven; Sanjabi, Shomyseh

    2017-11-01

    The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4 + T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4 + T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.

  2. Gut microbiota trajectory in patients with severe burn: A time series study.

    PubMed

    Wang, Xinying; Yang, Jianbo; Tian, Feng; Zhang, Li; Lei, Qiucheng; Jiang, Tingting; Zhou, Jihong; Yuan, Siming; Wang, Jun; Feng, Zhijian; Li, Jieshou

    2017-12-01

    This time series experiments aimed to investigate the dynamic change of gut microbiomes after severe burn and its association with enteral nutrition (EN). Seven severely burned patients who suffered from a severe metal dust explosion injury were recruited in this study. The dynamic changes of gut microbiome of fecal samples at six time points (1-3days, 2, 3, 4, 5 and 6weeks after severe burn) were detected using 16S ribosomal RNA pyrosequencing technology. Following the post-burn temporal order, gut microbiota dysbiosis was detected in the gut microbiome after severe burn, then it was gradually resolved. The bio-diversity of gut bacteria was initially decreased, and then returned to normal level. In addition, at the early stage (from 2 to 4weeks), the majority of those patients' gut microbiome were opportunistic pathogen genus, Enterococcus and Escherichia; while at the end of this study, the majority was a beneficial genus, Bacteroides. EN can promote the recovery of gut microbiota, especially in EN well-tolerated patients. Severe burn injury can cause a dramatic dysbiosis of gut microbiota. A trend of enriched beneficial bacteria and diminished opportunistic pathogen bacteria may serve as prognosis microbiome biomarkers of severe burn patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system.

    PubMed

    Gao, Bei; Chi, Liang; Tu, Pengcheng; Bian, Xiaoming; Thomas, Jesse; Ru, Hongyu; Lu, Kun

    2018-02-01

    The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion. Copyright © 2017. Published by Elsevier B.V.

  4. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.

    PubMed

    Liu, Xiaofei; Cao, Shangqing; Zhang, Xuewu

    2015-09-16

    There exists a bidirectional communication system between the gastrointestinal tract and the brain. Increasing evidence shows that gut microbiota can play a critical role in this communication; thus, the concept of a gut microbiota and brain axis is emerging. Here, we review recent findings in the relationship between intestinal microbes and brain function, such as anxiety, depression, stress, autism, learning, and memory. We highlight the advances in modulating brain development and behavior by probiotics, prebiotics, and diet through the gut microbiota-brain axis. A variety of mechanisms including immune, neural, and metabolic pathways may be involved in modulation of the gut microbiota-brain axis. We also discuss some future challenges. A deeper understanding of the relationship between the gut bacteria and their hosts is implicated in developing microbial-based therapeutic strategies for brain disorders.

  5. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    PubMed

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  6. Effects of predation stress and food ration on perch gut microbiota.

    PubMed

    Zha, Yinghua; Eiler, Alexander; Johansson, Frank; Svanbäck, Richard

    2018-02-06

    Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.

  7. Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.

    PubMed

    Mora, J Rodrigo; von Andrian, Ulrich H

    2004-10-01

    T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.

  8. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  9. Gut microbiota and type 2 diabetes mellitus.

    PubMed

    Muñoz-Garach, Araceli; Diaz-Perdigones, Cristina; Tinahones, Francisco J

    2016-12-01

    In recent years, many studies have related gut microbiome to development of highly prevalent diseases such as type 2 diabetes and obesity. Obesity itself is associated to changes in the composition of gut microbiome, with a trend to an overgrowth of microorganisms more efficiently obtaining energy from diet. There are several mechanisms that relate microbiota to the onset of insulin resistance and diabetes, including changes in bowel permeability, endotoxemia, interaction with bile acids, changes in the proportion of brown adipose tissue, and effects associated to use of drugs like metformin. Currently, use of pro and prebiotics and other new techniques such as gut microbiota transplant, or even antibiotic therapy, has been postulated to be useful tools to modulate the development of obesity and insulin resistance through the diet. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  10. The gut-brain interaction in opioid tolerance.

    PubMed

    Akbarali, Hamid I; Dewey, William L

    2017-12-01

    The prevailing opioid crisis has necessitated the need to understand mechanisms leading to addiction and tolerance, the major contributors to overdose and death and to develop strategies for developing drugs for pain treatment that lack abuse liability and side-effects. Opioids are commonly used for treatment of pain and symptoms of inflammatory bowel disease. The significant effect of opioids in the gut, both acute and chronic, includes persistent constipation and paradoxically may also worsen pain symptoms. Recent work has suggested a significant role of the gastrointestinal microbiome in behavioral responses to opioids, including the development of tolerance to its pain-relieving effects. In this review, we present current concepts of gut-brain interaction in analgesic tolerance to opioids and suggest that peripheral mechanisms emanating from the gut can profoundly affect central control of opioid function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Disentangling metabolic functions of bacteria in the honey bee gut

    PubMed Central

    Ellegaard, Kirsten M.; Troilo, Michaël; Sauer, Uwe

    2017-01-01

    It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities. PMID:29232373

  12. Disentangling metabolic functions of bacteria in the honey bee gut.

    PubMed

    Kešnerová, Lucie; Mars, Ruben A T; Ellegaard, Kirsten M; Troilo, Michaël; Sauer, Uwe; Engel, Philipp

    2017-12-01

    It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.

  13. Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing

    PubMed Central

    Nam, Young-Do; Jung, Mi-Ja; Roh, Seong Woon; Kim, Min-Soo; Bae, Jin-Woo

    2011-01-01

    Human gut microbiota plays important roles in harvesting energy from the diet, stimulating the proliferation of the intestinal epithelium, developing the immune system, and regulating fat storage in the host. Characterization of gut microbiota, however, has been limited to western people and is not sufficiently extensive to fully describe microbial communities. In this study, we investigated the overall composition of the gut microbiota and its host specificity and temporal stability in 20 Koreans using 454-pyrosequencing with barcoded primers targeting the V1 to V3 region of the bacterial 16S rRNA gene. A total of 303,402 high quality reads covered each sample and 8,427 reads were analyzed on average. The results were compared with those of individuals from the USA, China and Japan. In general, microbial communities were dominated by five previously identified phyla: Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Proteobacteria. UPGMA cluster analysis showed that the species composition of gut microbiota was host-specific and stable over the duration of the test period, but the relative abundance of each member fluctuated. 43 core Korean gut microbiota were identified by comparison of sequences from each individual, of which 15 species level phylotypes were related to previously-reported butyrate-producing bacteria. UniFrac analysis revealed that human gut microbiota differed between countries: Korea, USA, Japan and China, but tended to vary less between individual Koreans, suggesting that gut microbial composition is related to internal and external characteristics of each country member such as host genetics and diet styles. PMID:21829445

  14. Social status shapes the bacterial and fungal gut communities of the honey bee.

    PubMed

    Yun, Ji-Hyun; Jung, Mi-Ja; Kim, Pil Soo; Bae, Jin-Woo

    2018-01-31

    Despite the fungal abundance in honey and bee bread, little is known about the fungal gut community of the honey bee and its effect on host fitness. Using pyrosequencing of the 16S rRNA gene and ITS2 region amplicons, we analysed the bacterial and fungal gut communities of the honey bee as affected by the host social status. Both communities were significantly affected by the host social status. The bacterial gut community was similar to those characterised in previous studies. The fungal gut communities of most worker bees were highly dominated by Saccharomyces but foraging bees and queens were colonised by diverse fungal species and Zygosaccharomyces, respectively. The high fungal density and positive correlation between Saccharomyces species and Lactobacillus species, known yeast antagonists, were only observed in the nurse bee; this suggested that the conflict between Saccharomyces and Lactobacillus was compromised by the metabolism of the host and/or other gut microbes. PICRUSt analysis revealed significant differences in enriched gene clusters of the bacterial gut communities of the nurse and foraging bees, suggesting that different host social status might induce changes in the gut microbiota, and, that consequently, gut microbial community shifts to adapt to the gut environment.

  15. Gut immune system: a new frontier for nutritional modulation of gut health

    USDA-ARS?s Scientific Manuscript database

    The gut represents a continuously evolving ecosystem consisting of trillions of commensal bacteria living in symbiosis with the host. The host-microbe interplay plays a crucial role in physiological development and health of the host. There is increasing evidence that shows a dynamic interaction be...

  16. Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity

    PubMed Central

    Zhang, Pengyi; Meng, Xiangjing; Li, Dongmei; Calderone, Richard; Mao, Dewei; Sui, Bo

    2018-01-01

    Gut microbiota and their metabolites have been linked to a series of chronic diseases such as obesity and other metabolic dysfunctions. Obesity is an increasingly serious international health issue that may lead to a risk of insulin resistance and other metabolic diseases. The relationship between gut microbiota and the host is both interdependent and relatively independent. In this review, the causality of gut microbiota and its role in the pathogenesis and intervention of obesity is comprehensively presented to include human genotype, enterotypes, interactions of gut microbiota with the host, microbial metabolites, and energy homeostasis all of which may be influenced by dietary nutrition. Diet can enhance, inhibit, or even change the composition and functions of the gut microbiota. The metabolites they produce depend upon the dietary substrates provided, some of which have indispensable functions for the host. Therefore, diet is a key factor that maintains or not a healthy commensal relationship. In addition, the specific genotype of the host may impact the phylogenetic compositions of gut microbiota through the production of host metabolites. The commensal homeostasis of gut microbiota is favored by a balance of microbial composition, metabolites, and energy. Ultimately the desired commensal relationship is one of mutual support. This article analyzes the clues that result in patterns of commensal homeostasis. A deeper understanding of these interactions is beneficial for developing effective prevention, diagnosis, and personalized therapeutic strategies to combat obesity and other metabolic diseases. The idea we discuss is meant to improve human health by shaping or modulating the beneficial gut microbiota. PMID:29358923

  17. Effect of milk on somatostatin degradation in suckling rat jejunum in vivo.

    PubMed

    Rao, R K; Davis, T P; Williams, C; Koldovsky, O

    1999-01-01

    Somatostatin-14 is present in breast milk, and intact somatostatin-14 has been recovered from gastric lumen of infants. Studies have shown that somatostatin-14 is metabolized in the intestinal luminal contents in vitro, which could be prevented by the presence of breast milk. In this study, the effect of milk on stability of somatostatin-14 in suckling rat jejunum in vivo was examined. 125I-Somatostatin-14[Tyr 11] was administered to the isolated jejunal loops in anesthetized suckling rats in the absence or presence of milk, fractions of milk, or known protease-peptidase inhibitors. Structural integrity of 125I-somatostatin-14[Tyr 11] recovered from tissues at different intervals was analyzed by gel filtration and high-performance liquid chromatography. Radioactivity rapidly disappeared from the jejunal lumen with a 50% clearance achieved by 1.2 minutes. Gel filtration and high-performance liquid chromatography analyses showed that 125I-somatostatin- 14[Tyr 11] was rapidly degraded into smaller fragments. At 1 minute, jejunal luminal radioactivity was eluted in a major peak with retention time of 42.4 minutes, along with other minor peaks (retention time, 5.6, 8.0, 10.4, and 14.4 minutes); only a trace amount of intact 125I-somatostatin-14[Tyr 11] (retention time, 44.8 minutes) was present. Coadministration of rat's milk or its soluble fraction increased the level of intact 125I-somatostatin-14[Tyr 11] in the jejunal lumen and jejunal tissue. Presence of rat's milk-casein or peptidase inhibitors (bestatin, phosphoramidon, or Bowman-Birk inhibitor), however, failed to increase the level of intact 125I-somatostatin-14[Tyr 11]. These results suggest that somatostatin-14 is rapidly degraded in the jejunal lumen of suckling rats, and that milk-borne peptidase inhibitors prevent this somatostatin-14 degradation.

  18. Gut microbiomes of mobile predators vary with landscape context and species identity.

    PubMed

    Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D; Gratton, Claudio

    2017-10-01

    Landscape context affects predator-prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.

  19. Ménage à trois in the human gut: interactions between host, bacteria and phages.

    PubMed

    Mirzaei, Mohammadali Khan; Maurice, Corinne F

    2017-07-01

    The human gut is host to one of the densest microbial communities known, the gut microbiota, which contains bacteria, archaea, viruses, fungi and other microbial eukaryotes. Bacteriophages in the gut are largely unexplored, despite their potential to regulate bacterial communities and thus human health. In addition to helping us understand gut homeostasis, applying an ecological perspective to the study of bacterial and phage communities in the gut will help us to understand how this microbial system functions. For example, temporal studies of bacteria, phages and host immune cells in the gut during health and disease could provide key information about disease development and inform therapeutic treatments, whereas understanding the regulation of the replication cycles of phages could help harness the gut microbiota to improve disease outcomes. As the most abundant biological entities in our gut, we must consider bacteriophages in our pursuit of personalized medicine.

  20. Gut bacteria mediate aggregation in the German cockroach

    PubMed Central

    Wada-Katsumata, Ayako; Zurek, Ludek; Nalyanya, Godfrey; Roelofs, Wendell L.; Zhang, Aijun; Schal, Coby

    2015-01-01

    Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect–insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites. PMID:26644557