Sample records for jejuni influences biofilm

  1. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    PubMed

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  2. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation.

    PubMed

    Feng, Jinsong; Ma, Lina; Nie, Jiatong; Konkel, Michael E; Lu, Xiaonan

    2018-03-01

    Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni , including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells. IMPORTANCE Campylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular

  3. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

    2014-01-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

  5. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  7. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    PubMed Central

    Melo, Roberta T.; Mendonça, Eliane P.; Monteiro, Guilherme P.; Siqueira, Mariana C.; Pereira, Clara B.; Peres, Phelipe A. B. M.; Fernandez, Heriberto; Rossi, Daise A.

    2017-01-01

    Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature biofilms. PMID

  8. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms.

    PubMed

    Melo, Roberta T; Mendonça, Eliane P; Monteiro, Guilherme P; Siqueira, Mariana C; Pereira, Clara B; Peres, Phelipe A B M; Fernandez, Heriberto; Rossi, Daise A

    2017-01-01

    Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA , and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa , which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature biofilms.

  9. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    PubMed Central

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments. PMID:26217328

  10. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment.

    PubMed

    Brown, Helen L; Hanman, Kate; Reuter, Mark; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.

  11. Flagella-Mediated Adhesion and Extracellular DNA Release Contribute to Biofilm Formation and Stress Tolerance of Campylobacter jejuni

    PubMed Central

    Svensson, Sarah L.; Pryjma, Mark; Gaynor, Erin C.

    2014-01-01

    Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ΔcprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ΔcprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ΔcprS and flagellar mutations (ΔflhA, ΔpflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms. PMID:25166748

  12. Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation.

    PubMed

    Bae, Junghee; Oh, Euna; Jeon, Byeonghwa

    2014-12-01

    Campylobacter jejuni is a leading food-borne pathogen, and its antibiotic resistance is of serious concern to public health worldwide. C. jejuni is naturally competent for DNA transformation and freely takes up foreign DNA harboring genetic information responsible for antibiotic resistance. In this study, we demonstrate that C. jejuni transfers antibiotic resistance genes more frequently in biofilms than in planktonic cells by natural transformation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    PubMed

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  14. Phytochemicals reduce biofilm formation and inactivates mature biofilm of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. However, little is known about the persistence of C. jejuni in the poultry processing environment. Several studies have shown that C. jejuni ca...

  15. Antiadhesion activity of juniper (Juniperus communis L.) preparations against Campylobacter jejuni evaluated with PCR-based methods.

    PubMed

    Klančnik, Anja; Zorko, Špela; Toplak, Nataša; Kovač, Minka; Bucar, Franz; Jeršek, Barbara; Smole Možina, Sonja

    2018-03-01

    The food-borne pathogen Campylobacter jejuni can cause bacterial gastrointestinal infections. Biofilm formation amplifies the risk of human infection by improving survival and persistence of C. jejuni in food processing environments and its transmission through the food chain. We aimed to control C. jejuni using an alternative strategy of low doses of Juniperus communis fruit preparations to target bacterial adhesion properties in the first step of biofilm formation. First, we defined the anti-Campylobacter activity of a juniper fruit crude extract and its fractionated biflavonoids, flavone glycosides, and purified amentoflavone, of juniper fruit essential oil and of juniper fruit postdistillation waste material extract. For accurate quantification of adherent C. jejuni, we optimised digital Polymerase Chain Reaction (PCR) and quantitative real-time PCR for construction of standard curves and quantification. We show for the first time that juniper fruit formulations can effectively inhibit adhesion of C. jejuni to polystyrene. Furthermore, ≥94% of the antiadhesion activity of juniper fruit crude extract and juniper fruit essential oil remained under food-related conditions: modified culture medium with glucose, or a stainless steel surface, or mixed co-cultures of C. jejuni and Listeria monocytogenes. This study indicates that addition of juniper fruit formulations can control growth and adhesion of C. jejuni and thus limit food chain transmission of campylobacters. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Influence of inoculation levels and processing parameters on the survival of Campylobacter jejuni in German style fermented turkey sausages.

    PubMed

    Alter, Thomas; Bori, Anouchka; Hamedi, Ahmad; Ellerbroek, Lüppo; Fehlhaber, Karsten

    2006-10-01

    This study investigated the influence of inoculum levels and manufacturing methods on the survival of Campylobacter (C.) jejuni in raw fermented turkey sausages. Sausages were prepared and inoculated with C. jejuni. After inoculation, these sausages were processed and ripened for 8 days. Samples were taken throughout the ripening process. The presence of C. jejuni was established bacteriologically. Additionally, lactic acid bacteria were enumerated, pH values and water activity were measured to verify the ripening process. To detect changes in genotype and verify the identity of the recovered clones, AFLP analysis was carried out on the re-isolated strains. Whereas no C. jejuni were detectable when inoculating the sausages with the lowest inoculum (0.08-0.44 log(10) cfu/g sausage emulsion), C. jejuni were detectable for 12-24h by enrichment when inoculated with approximately 2 log(10) cfu/g. After inoculation with 4 and 6 log(10) cfu/g respectively, C. jejuni were detectable without enrichment for 12-48 h and by enrichment for 144 h at the most. The greatest decrease of the C. jejuni population occurred during the first 4 h of ripening. Only a very high inoculum level allowed the survival of the organism during a fermentation process and during ripening to pose a potential risk for consumers. Lower initial Campylobacter inoculums will be eliminated during proper ripening of the sausages, if sufficient decrease in water activity and pH-value is ensured.

  17. Mechanisms underlying zoonotic success of Campylobacter jejuni: the CprRS two-component regulatory system influences essential processes, biofilm formation, and pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of food- and waterbourne bacterial gastroenteritis in the developed world. Although illness is usually self-limiting, immunocompromised individuals are at risk for infections recalcitrant to antibiotic treatment, and prior campylobacter infection correlates wi...

  18. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses.

    PubMed

    Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Mills, Dominic C; Wren, Brendan W; Dorrell, Nick

    2015-01-01

    The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment.

  19. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni

    PubMed Central

    Parker, Craig T; Miller, William G; Horn, Sharon T; Lastovica, Albert J

    2007-01-01

    Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd. PMID:17535437

  20. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump.

    PubMed

    Klančnik, A; Šikić Pogačar, M; Trošt, K; Tušek Žnidarič, M; Mozetič Vodopivec, B; Smole Možina, S

    2017-01-01

    To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. Using gene-specific knock-out Camp. jejuni mutants and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition of adhesion of Camp. jejuni to these abiotic and biotic surfaces. Low doses of GSS extract can inhibit Camp. jejuni adhesion to polystyrene surfaces and to PSI and H4 cells, and can thus modulate Camp. jejuni invasion and intracellular survival. An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step towards the application of new innovative strategies to control Campylobacter contamination and infection via the food chain. © 2016 The Society for Applied Microbiology.

  1. N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness

    PubMed Central

    Nothaft, Harald; Zheng, Jing

    2013-01-01

    Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522

  2. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance.

    PubMed

    Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W; van Vliet, Arnoud H M; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB . In C. jejuni rrpB + strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification ( hsd ) system, whilst this variable genomic region in C. jejuni rrpB - strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB - strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB + strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB + strains, but not in rrpB - strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB - and rrpB + strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.

  3. [Detection of biofilm formation by selected pathogens relevant to the food industry].

    PubMed

    Šilhová-Hrušková, L; Moťková, P; Šilha, D; Vytřasová, J

    2015-09-01

    Detection of biofilm formation by microbial pathogens relevant to the food industry and comparison of biofilm formation under different conditions of culture. The following microorganisms were selected for the study: Staphylococcus aureus, Listeria innocua, Listeria ivanovii, Cronobacter sakazakii, Cronobacter muytjensii, Arcobacter butzleri, Arcobacter cryaerophilus, Campylobacter jejuni, and Campylobacter coli. To detect biofilm formation the microtiter plate assay, as described by Christensen and culture on stainless steel coupons were used. The biofilm forming capacity was confirmed in all microorganisms tested, both on the microtiter plates and stainless steel coupons. Biofilm formation was influenced by the culture medium, material used, and culture duration as well as by the test microorganism. It was found that different species and strains of the same genus differ in biofilm formation. Differences were also found between the collection strains and isolates from the environment. Some bacteria tended to form biofilm more readily on the surface of the polyethylene microtiter plates and less readily on stainless steel coupons while others appeared to have an opposite tendency. Some pathogens were able to increase the planktonic cell density in the initial suspension even by three orders of magnitude within 72 hours while producing plenty of biofilm. The study of biofilm formation by high risk pathogens is of utmost importance, not only to the food industry. From the obtained results, it is evident that bacterial biofilms form rapidly (within 24 hours in the present study). Due to their architecture, these biofilms are difficult to eradicate, and therefore, it is crucial to prevent biofilm formation.

  4. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni

    PubMed Central

    Leveque, Rhiannon M.; Dawid, Suzanne; DiRita, Victor J.

    2017-01-01

    Campylobacter jejuni, a leading cause of bacterial gastroenteritis, is naturally competent. Like many competent organisms, C. jejuni restricts the DNA that can be used for transformation to minimize undesirable changes in the chromosome. Although C. jejuni can be transformed by C. jejuni-derived DNA, it is poorly transformed by the same DNA propagated in Escherichia coli or produced with PCR. Our work indicates that methylation plays an important role in marking DNA for transformation. We have identified a highly conserved DNA methyltransferase, which we term Campylobacter transformation system methyltransferase (ctsM), which methylates an overrepresented 6-bp sequence in the chromosome. DNA derived from a ctsM mutant transforms C. jejuni significantly less well than DNA derived from ctsM+ (parental) cells. The ctsM mutation itself does not affect transformation efficiency when parental DNA is used, suggesting that CtsM is important for marking transforming DNA, but not for transformation itself. The mutant has no growth defect, arguing against ongoing restriction of its own DNA. We further show that E. coli plasmid and PCR-derived DNA can efficiently transform C. jejuni when only a subset of the CtsM sites are methylated in vitro. A single methylation event 1 kb upstream of the DNA involved in homologous recombination is sufficient to transform C. jejuni, whereas otherwise identical unmethylated DNA is not. Methylation influences DNA uptake, with a slight effect also seen on DNA binding. This mechanism of DNA discrimination in C. jejuni is distinct from the DNA discrimination described in other competent bacteria. PMID:28855338

  6. Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport

    NASA Astrophysics Data System (ADS)

    Leff, L.

    2005-05-01

    Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.

  7. Fate of Campylobacter jejuni in butter.

    PubMed

    Zhao, T; Doyle, M P; Berg, D E

    2000-01-01

    An outbreak of Campylobacter enteritis was associated with a restaurant in Louisiana during the summer of 1995. Thirty cases were identified, and four required hospitalization. Campylobacter jejuni was isolated from the patients, and epidemiologic studies revealed illness associated with eating garlic butter served at the restaurant. Three batches of garlic butter prepared by the restaurant associated with the outbreak and a C. jejuni isolate obtained from a patient involved in the outbreak were used for studies to determine the fate of C. jejuni in garlic butter. Studies also were done to determine the efficacy of the heat treatment used by the restaurant to prepare garlic bread to kill C. jejuni. Garlic butter was inoculated with approximately 10(4) and 10(6) CFU/g of C. jejuni and held at 5 or 21 degrees C. Results revealed that the survival of C. jejuni differed greatly, depending on the presence or absence of garlic. At 5 degrees C, C. jejuni populations decreased to an undetectable level (<10 CFU/g) within 3 h for two batches and within 24 h for another batch. In contrast, C. jejuni could survive at 5 degrees C for 13 days in butter with no garlic. At 21 degrees C, C. jejuni populations decreased to an undetectable level within 5 h for two batches and to 50 CFU/g in 5 h for another batch. In contrast, C. jejuni was detected at 500 CFU/g at 28 h after inoculation but was undetectable at 3 days in butter with no garlic held at 21 degrees C. The heating procedure (135 degrees C, 4 min) used to make garlic bread by the implicated restaurant was determined not to be sufficient for killing C. jejuni, with the internal temperature of the buttered bread after heating ranging from 19 to 22 degrees C. This study revealed that C. jejuni can survive for many days in refrigerated butter, but large populations (10(3) to 10(5) CFU/g) are killed within a few hours in butter that contains garlic. Furthermore, the heat treatment used by the restaurant to melt garlic butter in

  8. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  9. Influence of Al(III) on biofilm and its extracellular polymeric substances in sequencing batch biofilm reactors.

    PubMed

    Hu, Xuewei; Yang, Lei; Lai, Xinke; Yao, Qi; Chen, Kai

    2017-10-03

    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.

  10. The influence of feeding crimped kernel maize silage on growth performance and intestinal colonization with Campylobacter jejuni of broilers.

    PubMed

    Ranjitkar, Samir; Engberg, Ricarda Margarete

    2016-01-01

    An infection trial and a production trial over 35 days were conducted in parallel to study the influence of feeding crimped kernel maize silage (CKMS) on the intestinal Campylobacter jejuni colonization and broiler performance, respectively. The CKMS was used at dietary inclusion levels of 15% and 30% in maize-based diets. Broilers were orally inoculated with 2 × 10(5) log cfu/ml C. jejuni on day 14. Four birds from each pen were randomly selected and killed by cervical dislocation on days 3, 6, 9, 14 and 21 post infection and intestinal contents from ileum, caeca and rectum as well as liver samples were taken. Body weight and feed consumption of broilers were registered on days 13, 22 and 35. On day 35, litter dry matter (DM) was measured and the condition of the foot pads was evaluated. There was no significant effect of CKMS on the colonization of C. jejuni. Body weight of the broilers supplemented with 15% CKMS was comparable with the control maize-based feed, whereas addition of 30% CKMS reduced broiler body weight (P < 0.001). However, DM intake and feed conversion ratio were the same in all three dietary treatments. Furthermore, the foot pad condition of broilers significantly improved with the inclusion of CKMS on broiler diets as a result of a higher DM content in the litter material. It is concluded that CKMS did not influence intestinal Campylobacter colonization, but improved the foot pad health of broilers.

  11. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  12. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Campylobacter jejuni inactivation in New Zealand soils.

    PubMed

    Ross, C M; Donnison, A M

    2006-11-01

    The study was undertaken to determine the inactivation rate of Campylobacter jejuni in New Zealand soils. Farm dairy effluent (FDE) inoculated at c. 10(5) ml(-1) with C. jejuni was applied to intact soil cores at a rate of 2 l m(-2). Four soils were used: Hamilton (granular); Taupo (pumice); Horotiu and Waihou (allophanic). After FDE application cores were incubated at 10 degrees C for up to 32 days. For all four soils all the FDE remained within the cores and at least 99% of C. jejuni were retained in the top 5 cm. Campylobacter jejuni had declined to the limit of detection (two C. jejuni 100 g(-1)) by 25 days in Hamilton and Taupo soils and by 32 days in Waihou soil. In contrast, in Horotiu soil the decline was only three orders of magnitude after 32 days. Simulated heavy rainfall was applied 4 and 11 days after FDE application and only about 1% of the applied C. jejuni were recovered in leachates. This study demonstrated that at least 99% of applied C. jejuni were retained in the top 5 cm of four soils where they survived for at least 25 days at 10 degrees C. Soil retention of C. jejuni is efficient at FDE application rates that prevent drainage losses. The low infectious dose of C. jejuni and its ability to survive up to 25 days have implications for stock management on dairy farms.

  14. Nutrient Acquisition and Metabolism by Campylobacter jejuni

    PubMed Central

    Stahl, Martin; Butcher, James; Stintzi, Alain

    2012-01-01

    The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar l-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron–sulfur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments. PMID:22919597

  15. Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...

  16. The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.

    PubMed

    Critchley, M M; Cromar, N J; McClure, N C; Fallowfield, H J

    2003-01-01

    This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.

  17. Contamination of meat with Campylobacter jejuni in Saitama, Japan.

    PubMed

    Ono, K; Yamamoto, K

    1999-03-15

    To determine the source of food contamination with Campylobacter jejuni, we investigated retail meat, a chicken processing plant and a broiler farm. C. jejuni was found in domestic retailed poultry (45.8%) and imported poultry (3.7%), but not in beef or pork. In the poultry processing plant, there is significant contamination with C. jejuni in chicken carcasses, equipment and workers' hands. This contamination increases during the defeathering and evisceration processes. RAPD analysis shows that contamination with C. jejuni is of intestinal origin. In a broiler farm, C. jejuni was first isolated from a faecal sample of broiler chicken after the 20th day of age. Two weeks later, all birds in this farm became C. jejuni positive. RAPD analysis indicated that C. jejuni spread rapidly from one broiler flock to the other flocks on the farm.

  18. Campylobacter jejuni in commercial eggs.

    PubMed

    Fonseca, Belchiolina Beatriz; Beletti, Marcelo Emílio; de Melo, Roberta Torres; Mendonça, Eliane Pereira; Coelho, Letícia Ríspoli; Nalevaiko, Priscila Christen; Rossi, Daise Aparecida

    2014-01-01

    This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile) after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health.

  19. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization.

    PubMed

    Fields, Joshua A; Li, Jiaqi; Gulbronson, Connor J; Hendrixson, David R; Thompson, Stuart A

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.

  20. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization

    PubMed Central

    Fields, Joshua A.; Li, Jiaqi; Gulbronson, Connor J.; Hendrixson, David R.

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5’ end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis. PMID:27257952

  1. Campylobacter jejuni--an emerging foodborne pathogen.

    PubMed

    Altekruse, S F; Stern, N J; Fields, P I; Swerdlow, D L

    1999-01-01

    Campylobacter jejuni is the most commonly reported bacterial cause of foodborne infection in the United States. Adding to the human and economic costs are chronic sequelae associated with C. jejuni infection--Guillian-Barré syndrome and reactive arthritis. In addition, an increasing proportion of human infections caused by C. jejuni are resistant to antimicrobial therapy. Mishandling of raw poultry and consumption of undercooked poultry are the major risk factors for human campylobacteriosis. Efforts to prevent human illness are needed throughout each link in the food chain.

  2. Antimicrobial Activities of Isothiocyanates Against Campylobacter jejuni Isolates

    PubMed Central

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25–5 μg mL−1) compared to AITC (MIC of 50–200 μg mL−1). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC. PMID:22919644

  3. Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation.

    PubMed

    Barros, J; Grenho, L; Manuel, C M; Ferreira, C; Melo, L; Nunes, O C; Monteiro, F J; Ferraz, M P

    2014-05-01

    Nanohydroxyapatite (nanoHA), due to its chemical properties, has appeared as an exceptionally promising bioceramic to be used as bone regeneration material. Staphylococcus epidermidis have emerged as major nosocomial pathogens associated with infections of implanted medical devices. In this work, the purpose was to study the influence of the nanoHA surface characteristics on S. epidermidis RP62A biofilm formation. Therefore, two different initial inoculum concentrations (Ci) were used in order to check if these would affect the biofilm formed on the nanoHA surfaces. Biofilm formation was followed by the enumeration of cultivable cells and by scanning electron microscopy. Surface topography, contact angle, total surface area and porosimetry of the biomaterials were studied and correlated with the biofilm data. The surface of nanoHA sintered at 830 (nanoHA830) showed to be more resistant to S. epidermidis attachment and accumulation than that of nanoHA sintered at 1000 (nanoHA1000). The biofilm formed on nanoHA830 presented differences in terms of structure, surface coverage and EPS production when compared to the one formed on nanoHA1000 surface. It was observed that topography and surface area of nanoHA surfaces had influence on the bacterial attachment and accumulation. Ci influenced bacteria attachment and accumulation on nanoHA surfaces over time. The choice of the initial inoculum concentration was relevant proving to have an effect on the extent of adherence thus being a critical point for human health if these materials are used in implantable devices. This study showed that the initial inoculum concentration and surface material properties determine the rate of microbial attachment to substrata and consequently are related to biofilm-associated infections in biomaterials.

  4. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    PubMed

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  5. L-Fucose metabolism in camplobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a gastrointestinal pathogen once considered asaccharolytic, but now known to metabolize fucose. Strains with the fuc locus encode enzymes for fucose uptake and metabolism and show a competitive colonization advantage in the piglet disease model. C. jejuni NCTC11168 shows redu...

  6. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimensmore » without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.« less

  7. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    PubMed

    Heimesaat, M M; Plickert, R; Fischer, A; Göbel, U B; Bereswill, S

    2013-03-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.

  8. Transfer of Campylobacter jejuni from raw to cooked chicken via wood and plastic cutting boards.

    PubMed

    Tang, J Y H; Nishibuchi, M; Nakaguchi, Y; Ghazali, F M; Saleha, A A; Son, R

    2011-06-01

    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE). RW and PE cutting boards (2.5 × 2.5 cm(2)) were constructed. RW surfaces were smooth and even, whereas PE was uneven. Scoring with scalpel blades produced crevices on RW and flaked patches on the PE boards. Raw chicken breast fillets or skin pieces (10 g) naturally contaminated with Camp. jejuni were used to contaminate the cutting boards (6.25 cm(2)). These were then briefly covered with pieces of cooked chicken. Campylobacter jejuni on raw chicken, the boards, and cooked chicken pieces were counted using a combined most-probable-number (MPN)-PCR method. The type of cutting board (RW, PE; unscored and scored) and temperature of cooked chicken fillets and skins were examined. Unscored PE and RW boards were not significantly different in regards to the mean transfer of Camp. jejuni from raw samples to the boards. The mean transfer of Camp. jejuni from scored RW was significantly higher than from scored PE. When the chicken fillets were held at room temperature, the mean transfer of Camp. jejuni from scored RW and PE was found to be 44.9 and 40.3%, respectively.   RW and PE cutting boards are potential vehicles for Camp. jejuni to contaminate cooked chicken. Although cooked chicken maintained at high temperatures reduced cross-contamination via contaminated boards, a risk was still present. Contamination of cooked chicken by Camp. jejuni from raw chicken via a cutting board is influenced by features of the board (material, changes caused by scoring) and chicken (types of chicken parts and temperature of the cooked chicken). © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains

    PubMed Central

    Zeng, Ximin; Ardeshna, Devarshi

    2015-01-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. PMID:25911489

  10. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    PubMed

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth

    PubMed Central

    Vegge, Christina S.; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni. PMID:23049803

  12. Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity.

    PubMed

    O'Donnell, Lindsay E; Alalwan, Hasanain K A; Kean, Ryan; Calvert, Gareth; Nile, Christopher J; Lappin, David F; Robertson, Douglas; Williams, Craig; Ramage, Gordon; Sherry, Leighann

    2017-01-01

    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome.

  13. Influence of local climate and climate change on aeroterrestrial phototrophic biofilms.

    PubMed

    Gladis-Schmacka, Franziska; Glatzel, Stephan; Karsten, Ulf; Böttcher, Heidrun; Schumann, Rhena

    2014-01-01

    Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.

  14. Reduction of Campylobacter jejuni on chicken wings by chemical treatments.

    PubMed

    Zhao, Tong; Doyle, Michael P

    2006-04-01

    Eight chemicals, including glycerol monolaurate, hydrogen peroxide, acetic acid, lactic acid, sodium benzoate, sodium chlorate, sodium carbonate, and sodium hydroxide, were tested individually or in combination for their ability to inactivate Campylobacter jejuni at 4 degrees C in suspension. Results showed that treatment for up to 20 min with 0.01% glycerol monolaurate, 0.1% sodium benzoate, 50 or 100 mM sodium chlorate, or 1% lactic acid did not substantially (< or = 0.5 log CFU/ml) reduce C. jejuni populations but that 0.1 and 0.2% hydrogen peroxide for 20 min reduced C. jejuni populations by ca. 2.0 and 4.5 log CFU/ml, respectively. By contrast, treatments with 0.5, 1.0, 1.5, and 2.0% acetic acid, 25, 50, and 100 mM sodium carbonate, and 0.05 and 0.1 N sodium hydroxide reduced C. jejuni populations by >5 log CFU/ml within 2 min. A combination of 0.5% acetic acid plus 0.05% potassium sorbate or 0.5% acetic acid plus 0.05% sodium benzoate reduced C. jejuni populations by >5 log CFU/ml within 1 min; however, substituting 0.5% lactic acid for 0.5% acetic acid was not effective, with a reduction of C. jejuni of <0.5 log CFU/ml. A combination of acidic calcium sulfate, lactic acid, ethanol, sodium dodecyl sulfate, and polypropylene glycol (ACS-LA) also reduced C. jejuni in suspension by >5 log CFU/ml within 1 min. All chemicals or chemical combinations for which there was a >5-log/ml reduction of C. jejuni in suspension were further evaluated for C. jejuni inactivation on chicken wings. Treatments at 4 degrees C of 2% acetic acid, 100 mM sodium carbonate, or 0.1 N sodium hydroxide for up to 45 s reduced C. jejuni populations by ca. 1.4, 1.6, or 3.5 log CFU/g, respectively. Treatment with ACS-LA at 4 degrees C for 15 s reduced C. jejuni by >5 log CFU/g to an undetectable level. The ACS-LA treatment was highly effective in chilled water at killing C. jejuni on chicken and, if recycled, may be a useful treatment in chill water tanks for poultry processors to reduce

  15. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 strain RM1285 that was isolated from packaged chicken

    USDA-ARS?s Scientific Manuscript database

    Poultry products serve as the main source of Campylobacter jejuni subsp. jejuni (Cjj) infections in humans. Cjj infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome (GBS). This study describes the genome of Cjj HS:19 strain RM1285 isol...

  16. Effects of antibiotic resistance (AR) and microbiota shifts on Campylobacter jejuni-mediated diseases.

    PubMed

    Brooks, Phillip T; Mansfield, Linda S

    2017-12-01

    Campylobacter jejuni is an important zoonotic pathogen recently designated a serious antimicrobial resistant (AR) threat. While most patients with C. jejuni experience hemorrhagic colitis, serious autoimmune conditions can follow including inflammatory bowel disease (IBD) and the acute neuropathy Guillain Barré Syndrome (GBS). This review examines inter-relationships among factors mediating C. jejuni diarrheal versus autoimmune disease especially AR C. jejuni and microbiome shifts. Because both susceptible and AR C. jejuni are acquired from animals or their products, we consider their role in harboring strains. Inter-relationships among factors mediating C. jejuni colonization, diarrheal and autoimmune disease include C. jejuni virulence factors and AR, the enteric microbiome, and host responses. Because AR C. jejuni have been suggested to affect the severity of disease, length of infections and propensity to develop GBS, it is important to understand how these interactions occur when strains are under selection by antimicrobials. More work is needed to elucidate host-pathogen interactions of AR C. jejuni compared with susceptible strains and how AR C. jejuni are maintained and evolve in animal reservoirs and the extent of transmission to humans. These knowledge gaps impair the development of effective strategies to prevent the emergence of AR C. jejuni in reservoir species and human populations.

  17. Survival of Campylobacter jejuni inoculated into ground beef.

    PubMed Central

    Stern, N J; Kotula, A W

    1982-01-01

    Ground beef was inoculated with mixed cultures of Campylobacter jejuni, and the samples were subjected to various cooking and cold-storage temperatures. When samples were heated in an oven at either 190 or 218 degrees C, approximately 10(7) cells of C. jejuni per g were inactivated (less than 30 cells per g) in less than 10 min after the ground beef reached an internal temperature of 70 degrees C. When the samples were held at -15 degrees C over 14 days of storage, the numbers of C. jejuni declined by 3 log10. When inoculated samples were stored with an equal amount of Cary-Blair diluent at 4 degrees C, no changes in viability were observed over 14 days of storage. Twenty-five times as much C. jejuni was recovered from inoculated ground beef when either 10% glycerol or 10% dimethyl sulfoxide was added to an equal amount of ground beef before freezing as was recovered from peptone-diluted ground beef. Twice as much inoculated C. jejuni was recovered from ground beef plus Cary-Blair diluent as was recovered from ground beef plus peptone diluent. PMID:7181502

  18. Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial.

    PubMed

    Bishop-Hurley, Sharon L; Rea, Philippa J; McSweeney, Christopher S

    2010-10-01

    In developed countries, Campylobacter jejuni is a leading cause of zoonotic bacterial gastroenteritis in humans with chicken meat implicated as a source of infection. Campylobacter jejuni colonises the lower gastrointestinal tract of poultry and during processing is spread from the gastrointestinal tract onto the surface of dressed carcasses. Controlling or eliminating C.jejuni on-farm is considered to be one of the best strategies for reducing human infection. Molecules on the cell surface of C.jejuni interact with the host to facilitate its colonisation and persistence in the gastrointestinal tract of poultry. We used a subtractive phage-display protocol to affinity select for peptides binding to the cell surface of a poultry isolate of C.jejuni with the aim of finding peptides that could be used to control this microorganism in chickens. In total, 27 phage peptides, representing 11 unique clones, were found to inhibit the growth of C.jejuni by up to 99.9% in vitro. One clone was bactericidal, reducing the viability of C.jejuni by 87% in vitro. The phage peptides were highly specific. They completely inhibited the growth of two of the four poultry isolates of C.jejuni tested with no activity detected towards other Gram-negative and Gram-positive bacteria.

  19. Hyperosmotic Stress Response of Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Frirdich, Emilisa; Huynh, Steven; Parker, Craig T.

    2012-01-01

    The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter−1. C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely “bet-hedging” survival strategies relying on the presence of stress-fit individuals in a heterogeneous population. PMID:22961853

  20. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni.

    PubMed

    Ha, Reuben; Frirdich, Emilisa; Sychantha, David; Biboy, Jacob; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Vollmer, Waldemar; Clarke, Anthony J; Gaynor, Erin C

    2016-10-21

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  2. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond.

    PubMed

    Chandrashekhar, Kshipra; Kassem, Issmat I; Rajashekara, Gireesh

    2017-07-04

    Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials.

  3. Morphology heterogeneity within a Campylobacter jejuni helical population

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni helical shape is an important factor in colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) led to the selection of C. jejuni 81-176 isolates with changes in morphology resulting in either a straight mo...

  4. Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing.

    PubMed

    Park, Hoon; Hung, Yen-Con; Brackett, Robert E

    2002-01-30

    The effectiveness of electrolyzed (EO) water for killing Campylobacter jejuni on poultry was evaluated. Complete inactivation of C. jejuni in pure culture occurred within 10 s after exposure to EO or chlorinated water, both of which contained 50 mg/l of residual chlorine. A strong bactericidal activity was also observed on the diluted EO water (containing 25 mg/l of residual chlorine) and the mean population of C. jejuni was reduced to less than 10 CFU/ml (detected only by enrichment for 48 h) after 10-s treatment. The diluted chlorine water (25 mg/l residual chlorine) was less effective than the diluted EO water for inactivation of C. jejuni. EO water was further evaluated for its effectiveness in reducing C. jejuni on chicken during washing. EO water treatment was equally effective as chlorinated water and both achieved reduction of C. jejuni by about 3 log10 CFU/g on chicken, whereas deionized water (control) treatment resulted in only 1 log10 CFU/g reduction. No viable cells of C. jejuni were recovered in EO and chlorinated water after washing treatment, whereas high populations of C. jejuni (4 log10 CFU/ml) were recovered in the wash solution after the control treatment. Our study demonstrated that EO water was very effective not only in reducing the populations of C. jejuni on chicken, but also could prevent cross-contamination of processing environments.

  5. High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat.

    PubMed

    Liu, Yang; Betti, Mirko; Gänzle, Michael G

    2012-03-01

    This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressuretreated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°C of E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin-producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.

  6. Characterization of the Thermal Stress Response of Campylobacter jejuni

    PubMed Central

    Konkel, Michael E.; Kim, Bong J.; Klena, John D.; Young, Colin R.; Ziprin, Richard

    1998-01-01

    Campylobacter jejuni, a microaerophilic, gram-negative bacterium, is a common cause of gastrointestinal disease in humans. Heat shock proteins are a group of highly conserved, coregulated proteins that play important roles in enabling organisms to cope with physiological stresses. The primary aim of this study was to characterize the heat shock response of C. jejuni. Twenty-four proteins were preferentially synthesized by C. jejuni immediately following heat shock. Upon immunoscreening of Escherichia coli transformants harboring a Campylobacter genomic DNA library, one recombinant plasmid that encoded a heat shock protein was isolated. The recombinant plasmid, designated pMEK20, contained an open reading frame of 1,119 bp that was capable of encoding a protein of 372 amino acids with a calculated molecular mass of 41,436 Da. The deduced amino acid sequence of the open reading frame shared similarity with that of DnaJ, which belongs to the Hsp-40 family of molecular chaperones, from a number of bacteria. An E. coli dnaJ mutant was successfully complemented with the pMEK20 recombinant plasmid, as judged by the ability of bacteriophage λ to form plaques, indicating that the C. jejuni gene encoding the 41-kDa protein is a functional homolog of the dnaJ gene from E. coli. The ability of each of two C. jejuni dnaJ mutants to form colonies at 46°C was severely retarded, indicating that DnaJ plays an important role in C. jejuni thermotolerance. Experiments revealed that a C. jejuni DnaJ mutant was unable to colonize newly hatched Leghorn chickens, suggesting that heat shock proteins play a role in vivo. PMID:9673247

  7. [Influence of slime production and adhesion of Candida sp. on biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Smolak, Przemysław; Wróblewska, Joanna; Gospodarek, Eugenia

    2011-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.

  8. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond

    PubMed Central

    Chandrashekhar, Kshipra; Kassem, Issmat I.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials. PMID:28080213

  9. Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells.

    PubMed

    Šikić Pogačar, Maja; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Smole Možina, Sonja

    2016-06-01

    In order to survive in food-processing environments and cause disease, Campylobacter jejuni requires specific survival mechanisms, such as biofilms, which contribute to its transmission through the food chain to the human host and present a critical form of resistance to a wide variety of antimicrobials. Phytochemical analysis of thyme ethanolic extract (TE), thyme post-hydrodistillation residue (TE-R), and olive leaf extract (OE) using high-performance liquid chromatography with photodiode array indicates that the major compounds in TE and TE-R are flavone glucuronides and rosmarinic acid derivatives, and in OE verbascoside, luteolin 7-O-glucoside and oleuroside. TE and TE-R reduced C. jejuni adhesion to abiotic surfaces by up to 30% at 0.2-12.5 µg mL(-1) , with TE-R showing a greater effect. OE from 3.125 to 200 µg mL(-1) reduced C. jejuni adhesion to polystyrene by 10-23%. On the other hand, C. jejuni adhesion to PSI cl1 cells was inhibited by almost 30% over a large concentration range of these extracts. Our findings suggest that TE, the agro-food waste material TE-R, and the by-product OE represent sources of bioactive phytochemicals that are effective at low concentrations and can be used as therapeutic agents to prevent bacterial adhesion. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  11. [Campylobacter jejuni infections in slaughterhouse workers].

    PubMed

    Mancinelli, S; Riccardi, F; Santi, A L; Palombi, L; Marazzi, M C

    1988-01-01

    Complement fixing (C.F.) antibodies to Campylobacter jejuni were detected in 83 slaughterhouse workers and 83 blood donors. Workers were aged 18-65 years (mean, 41.7 +/- 12.3) and had worked in the slaughterhouse for 2-40 years (mean, 17.5 +/- 5.1). C.F. antibodies were detected according to Mosimann's method and by including five antigens: Campylobacter jejuni, Yersinia enterocolitica types 03 and 09, Yersinia pseudotuberculosis and Brucella. Positive titers were found in 12.1% of workers and in 2.4% of control subjects (p less than 0.01); values ranged from 1:10 to 1:40. Frequent and close contact with animals or their products was significantly associated with seropositivity. No association was found with the time of employment. Sixty per cent of seropositive workers referred rheumatological symptoms. These findings confirm that slaughterhouse workers exposed to potential sources of C. jejuni have elevated titers of antibodies. Attention has, therefore, to be focused on breaking the chain of transmission as a means of control.

  12. Inactivation of Campylobacter jejuni by chlorine and monochloramine.

    PubMed Central

    Blaser, M J; Smith, P F; Wang, W L; Hoff, J C

    1986-01-01

    Campylobacter jejuni and closely related organisms are important bacterial causes of acute diarrheal illness in the United States. Both endemic and epidemic infections have been associated with consuming untreated or improperly treated surface water. We compared susceptibility of three C. jejuni strains and Escherichia coli ATCC 11229 with standard procedures used to disinfect water. Inactivation of bacterial preparations with 0.1 mg of chlorine and 1.0 mg of monochloramine per liter was determined at pH 6 and 8 and at 4 and 25 degrees C. Under virtually every condition tested, each of the three C. jejuni strains was more susceptible than the E. coli control strain, with greater than 99% inactivation after 15 min of contact with 1.0 mg of monochloramine per liter or 5 min of contact with 0.1 mg of free chlorine per liter. Results of experiments in which an antibiotic-containing medium was used suggest that a high proportion of the remaining cells were injured. An animal-passaged C. jejuni strain was as susceptible to chlorine disinfection as were laboratory-passaged strains. These results suggest that disinfection procedures commonly used for treatment of drinking water to remove coliform bacteria are adequate to eliminate C. jejuni and further correlate with the absence of outbreaks associated with properly treated water. PMID:3954344

  13. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration.

    PubMed

    Baffoni, Loredana; Gaggìa, Francesca; Garofolo, Giuliano; Di Serafino, Gabriella; Buglione, Enrico; Di Giannatale, Elisabetta; Di Gioia, Diana

    2017-06-19

    C. jejuni is considered a food safety concern to both public health authorities and consumers since it is the leading bacterial cause of food-borne gastroenteritis in humans. A high incidence of C. jejuni in broiler flocks is often correlated to pathogen recovery in retail poultry meat, which is the main source of human infection. In this work broiler chickens were fed with a synbiotic product mixed with conventional feed using two different administration strategies. The synbiotic was formulated with the microencapsulated probiotic Bifidobacterium longum PCB133 and a xylo-oligosaccharide (XOS). 1-day old chicks were infected with C. jejuni strain M1 (10 5 cells) and the synbiotic mixture was then administered starting from the first and the 14th day of chicken life (for animal groups GrpC and GrpB respectively). The goal of this study was to monitor C. jejuni load at caecum level at different sampling time by real-time PCR, identifying the best administration strategy. The microbiological analysis of the caecal content also considered the quantification of Campylobacter spp., Bifidobacterium spp. and B. longum. The supplemented synbiotic was more successful in reducing C. jejuni and Campylobacter spp. when administered lifelong, compared to the shorter supplementation (GrpB). Bifidobacterium spp. quantification did not show significant differences among treatments and B. longum PCB133 was detected in both supplemented groups evidencing the successful colonization of the strain. Moreover, the samples of the control group (GrpA) and GrpC were analysed with PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to compare the caecal microbial community profiles at the beginning and at the end of the trial. Pattern analysis evidenced the strong influence of the early synbiotic supplementation, although a physiological change in the microbial community, occurring during growth, could be observed. Experimental results demonstrate that the synbiotic approach at farm

  14. Draft Genome Sequence of Campylobacter jejuni 11168H

    PubMed Central

    Macdonald, Sarah E.; Gundogdu, Ozan; Dorrell, Nick; Wren, Brendan W.; Blake, Damer

    2017-01-01

    ABSTRACT Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H. PMID:28153902

  15. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    PubMed

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  16. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products

    PubMed Central

    Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun

    2016-01-01

    The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low. PMID:27294947

  17. The influence of Brazilian plant extracts on Streptococcus mutans biofilm.

    PubMed

    Barnabé, Michele; Saraceni, Cíntia Helena Coury; Dutra-Correa, Maristela; Suffredini, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry.

  18. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    PubMed Central

    BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471

  19. Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy.

    PubMed

    Keevil, C W

    2003-01-01

    Knowledge of biofilm structure and function has changed significantly in the last few years due to advances in light microscopy. One pertinent example is the use of scanning confocal laser microscopy (SCLM) to visualise corrosion pits caused by the biofilm mosaic footprint on corroding metal surfaces. Nevertheless, SCLM has some limitations as to its widespread use, including cost, inability to observe motile bacteria and eukaryotic grazers within biofilms, and difficulty to scan a curved surface. By contrast, episcopic differential interference contrast (EDIC) microscopy has provided a rapid, real time analysis of biofilms on opaque, curved, natural or man-made surfaces without the need for cover slips and oil. EDIC, coupled with epi-fluorescence (EDIC/EF), microscopy has been used successfully to visualise the 3-D biofilm structure, physiological niches, protozoal grazing and iron biomineralization, and the location of specific pathogens such as Legionella pneumophila, Campylobacter jejuni and Cryptosporidium parvum. These species were identified using gold nanoparticles or fluorophores coupled to monoclonal antibodies or 16S rRNA probes, respectively. Among its many potential uses, the EDIC technique will provide a rapid procedure to facilitate the calibration of the modern generation of biofilm-sensing electrodes.

  20. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae

    PubMed Central

    2013-01-01

    Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni-induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner. PMID:24364863

  1. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses

    PubMed Central

    Maziero, Maike T.; de Oliveira, Tereza Cristina R. M.

    2010-01-01

    Campylobacter jejuni is the most common thermophilic Campylobacter associated with human enteritis in many countries. Broilers and their by-products are the main sources for human enteritis. Refrigeration and freezing are used to control bacterial growth in foods. The effect of these interventions on survival of Campylobacter jejuni is yet not quite understood. This study evaluated the effect of storage temperature on the survival of C. jejuni in chicken meat stored for seven days at 4°C and for 28 days at -20°C. The influence of selective enrichment on recovery of Campylobacter was also evaluated. Thirty fresh chicken meat samples were analyzed and 93.3% was contaminated with termotolerant Campylobacter spp. with average count of 3.08 Log10 CFU/g on direct plating. After refrigeration, 53.3% of the analyzed samples tested positive for Campylobacter and the average count was 1.19 Log10 CFU/g. After storage at -20°C, 36.6% of the samples were positive with a verage count of 0.75 Log10 CFU/g. C. jejuni was detected after enrichment, respectively, in 50% of the fresh, 36.7% of the refrigerated and 33.3% of the frozen meat samples analyzed. No difference was detected for the recovery of C. jejuni from fresh, refrigerated or frozen samples after selective enrichment, showing that this microorganism can survive under the tested storage conditions. PMID:24031523

  2. Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study.

    PubMed

    Lane, Jonathan A; Mariño, Karina; Naughton, Julie; Kavanaugh, Devon; Clyne, Marguerite; Carrington, Stephen D; Hickey, Rita M

    2012-07-02

    Campylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host. Heavily colonized chickens often fail to display intestinal disease, and no cellular attachment or invasion has been demonstrated in-vivo. Recently, researchers have shown that the reason for the attenuation of C. jejuni virulence may be attributed to the presence of chicken intestinal mucus and more specifically chicken mucin. Since mucins are heavily glycosylated molecules this observation would suggest that glycan-based compounds may act as anti-infectives against C. jejuni. Considering this, we have investigated naturally sourced foods for potential anti-infective glycans. Bovine colostrum rich in neutral and acidic oligosaccharides has been identified as a potential source of anti-infective glycans. In this study, we tested oligosaccharides isolated and purified from the colostrum of Holstein Friesian cows for anti-infective activity against a highly invasive strain of C. jejuni. During our initial studies we structurally defined 37 bovine colostrum oligosaccharides (BCO) by HILIC-HPLC coupled with exoglycosidase digests and off-line mass spectroscopy, and demonstrated the ability of C. jejuni to bind to some of these structures, in-vitro. We also examined the effect of BCO on C. jejuni adhesion to, invasion of and translocation of HT-29 cells. BCO dramatically reduced the cellular invasion and translocation of C. jejuni, in a concentration dependent manner. Periodate treatment of the BCO prior to inhibition studies resulted in a loss of the anti-infective activity of the glycans suggesting a direct oligosaccharide-bacterial interaction. This was confirmed when the BCO completely prevented C. jejuni binding to chicken intestinal mucin, in-vitro. This study builds a strong case for the inclusion of oligosaccharides sourced from cow's milk in functional foods. However, it is only through further

  3. Prevalence of Campylobacter jejuni in eggs and poultry meat in New York State.

    PubMed

    Baker, R C; Paredes, M D; Qureshi, R A

    1987-11-01

    The presence of Campylobacter jejuni was tested for but not isolated from any of 276 eggs sampled from 23 egg farms in New York State. The presence of C. jejuni was evaluated in broilers, kosher broilers, spent layers, Peking ducks, and turkeys. Four of five poultry dressing plants tested showed positive growth of C. jejuni on the 25-carcass samples at various stages of processing. Twenty to 100% of live birds sampled contained C. jejuni on the skin but 90 to 100% were contaminated after scalding and defeathering operations from contaminated birds and equipment. A three to four-fold increase in carcass contamination was observed after evisceration. The number of C. jejuni on the carcasses decreased after washing and chilling. The organisms did not survive the salting, rinsing, and chilling operations in a kosher processing plant. Several pieces of equipment, i.e., shackles, eviscerating troughs, and cooling tanks were contaminated with C. jejuni. This study illustrates how C. jejuni may be transmitted from the live bird to the final poultry product.

  4. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

    PubMed Central

    Nyati, Kishan Kumar; Nyati, Roopanshi

    2013-01-01

    Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS. PMID:24000328

  5. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni

    PubMed Central

    Siringan, Patcharin; Connerton, Phillippa L.; Cummings, Nicola J.; Connerton, Ian F.

    2014-01-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage. PMID:24671947

  6. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  7. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

    PubMed Central

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-01-01

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis. The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis. The low icorr and high Rt in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis. PMID:28772615

  8. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva.

    PubMed

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-03-03

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis . The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis . The low i corr and high R t in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis .

  9. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  10. Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens

    NASA Astrophysics Data System (ADS)

    Harimawan, Ardiyan; Devianto, Hary; Kurniawan, Ignatius Chandra; Utomo, Josephine Christine

    2017-01-01

    Microbial induced corrosion (MIC) or biocorrosion is one type of corrosion, directly or indirectly influenced by microbial activities, by forming biofilm and adhering on the metal surface. When forming biofilm, the microorganisms can produce extracellular products which influence the cathodic and anodic reactions on metal surfaces. This will result in electrochemical changes in the interface between the biofilm and the metal surface, leading to corrosion and deterioration of the metal. MIC might be caused by various types of microorganism which leads to different corrosion mechanism and reaction kinetics. Furthermore, this process will also be influenced by various environmental conditions, such as pH and temperature. This research is aimed to determine the effect of incubation temperature on corrosion of carbon steel caused by Serratia marcescens in a mixture solution of synthetic seawater with Luria Bertani medium with a ratio of 4:1. The incubation was performed for 19 days with incubation temperature of 30, 37, and 50°C. The analyses of biofilm were conducted by total plate count (TPC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Biofilm was found to be evenly growth on the surface and increasing with increasing incubation temperature. It consists of functional group of alcohol, alkane, amine, nitro, sulfate, carboxylic acid, and polysulfide. The analyses of the corrosion were conducted by gravimetric and X-ray diffraction (XRD). Higher incubation temperature was found to increase the corrosion rate. However, the corrosion products were not detected by XRD analysis.

  11. Complete genome sequences of three Campylobacter jejuni phage-propagating strains

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage therapy has the potential to reduce Campylobacter jejuni numbers in livestock, but requires a detailed understanding of phage-host interactions. Some C. jejuni strains are readily infected by certain phages, and are thus designated as phage-propagating strains. Here we report the compl...

  12. Alpinia katsumadai Extracts Inhibit Adhesion and Invasion of Campylobacter jejuni in Animal and Human Foetal Small Intestine Cell Lines.

    PubMed

    Pogačar, Maja Šikić; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Možina, Sonja Smole

    2015-10-01

    Alpinia katsumadai is used in traditional Chinese medicine for abdominal distention, pain, and diarrhoea. Campylobacter jejuni is the most common cause of bacterial food-borne diarrhoeal illnesses worldwide. Adhesion to gut epithelium is a prerequisite in its pathogenesis. The antimicrobial, cytotoxic, and anti-adhesive activities of a chemically characterised extract (SEE) and its residual material of hydrodistillation (hdSEE-R) from A. katsumadai seeds were evaluated against C. jejuni. Minimal inhibitory concentrations for SEE and hdSEE-R were 0.5 mg/mL and 0.25 mg/mL, respectively, and there was no cytotoxic influence in the anti-adhesion tests, as these were performed at much lower concentrations of these tested plant extracts. Adhesion of C. jejuni to pig (PSI) and human foetal (H4) small-intestine cell lines was significantly decreased at lower concentrations (0.2 to 50 µg/mL). In the same concentration range, the invasiveness of C. jejuni in PSI cells was reduced by 45% to 65% when they were treated with SEE or hdSEE-R. The hdSEE-R represents a bioactive waste with a high phenolic content and an anti-adhesive activity against C. jejuni and thus has the potential for use in pharmaceutical and food products. Copyright © 2015 John Wiley & Sons, Ltd.

  13. L-fucose utilization provides Campylobacter jejuni with a competitive advantage.

    PubMed

    Stahl, Martin; Friis, Lorna M; Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M; Stintzi, Alain

    2011-04-26

    Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including L-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c-cj0490) that is up-regulated in the presence of both L-fucose and mucin and allows for the utilization of L-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of L-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle.

  14. l-Fucose utilization provides Campylobacter jejuni with a competitive advantage

    PubMed Central

    Stahl, Martin; Friis, Lorna M.; Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M.; Stintzi, Alain

    2011-01-01

    Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including l-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c–cj0490) that is up-regulated in the presence of both l-fucose and mucin and allows for the utilization of l-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of l-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle. PMID:21482772

  15. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    PubMed

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. Copyright © 2015. Published by Elsevier B.V.

  16. Assays to Study the Interaction of Campylobacter jejuni with the Mucosal Surface.

    PubMed

    Clyne, Marguerite; Duggan, Gina; Dunne, Ciara; Dolan, Brendan; Alvarez, Luis; Bourke, Billy

    2017-01-01

    Mucosal colonization and overcoming the mucosal barrier are essential steps in the establishment of infection by Campylobacter jejuni. The interaction between C. jejuni and host cells, including binding and invasion, is thought to be the key virulence factor important for pathogenesis of C. jejuni infections in animals or humans. The intestinal mucosal barrier is composed of a polarized epithelium covered by a thick adherent mucus gel layer. There is a requirement for cell culture assays of infection to accurately represent the in vivo mucosal surface. In this chapter, we describe the use of a number of cell culture models and the use of polarized in vitro organ culture to examine the interaction of C. jejuni with mucosal surfaces.

  17. In-water supplementation of Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni colonization in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen colonizes the ceca thereby leading to contamination of the carcass during slaughter. Reducing C. jejuni cecal colonization could pot...

  18. [Experimental study on the chitosan-DNA vaccines against campylobacter jejuni invasion].

    PubMed

    Zheng, Hui; Cai, Fang-cheng; Zhong, Min; Deng, Bing; Li, Xin; Zhang, Xiao-ping

    2007-09-01

    The immunogenicity and protective efficacy of an experimental Campylobacter jejuni (C. jejuni) chitosan-DNA vaccines were evaluated in mice. The chitosan-DNA vaccines were prepared by embedding pcDNA3.1(+)-cadF and pcDNA3.1(+)-peblA with chitosan respectively. BALB/c mice were intranasally immunized in a four-dose primary series (7 d intervals) at doses of 60 microg chitosan-DNA vaccines each time. The comparative immunogenicities of nine formulations were assessed on the basis of the generation of antigen-specific antibodies in serum and intestinal secretions. Mice were attacked repeatedly through intragastric administration of C. jejuni HS:19 at the 8th week after the immunization and protective efficacy was determined by detecting the degrees of protection afforded against C. jejuni invaded. The mice immunized with chitosan-DNA vaccines have generated high levels of IgA and IgG from the sera and IgA from the intestinal secretions and the P/N value went up to 20.58, 30.13 and 6.87 respectively. Meanwhile, the expression of intestinal SIgA increased correspondingly. Moreover the chitosan-DNA vaccines induced strongest level of protection in BALB/c mice against challenge with C. jejuni HS:19 strain and the protective efficacies was 93.70. The results of this study indicate that the chitosan-DNA vaccines could induce significant protective immunity against C. jejuni challenge in the mice model.

  19. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    PubMed

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    PubMed

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  1. [Campylobacter jejuni in poultry processed in slaughterhouses].

    PubMed

    Mícková, V

    1987-09-01

    The frequency of occurrence of Campylobacter jejuni germs in dressed poultry was studied for a year. The samples--smears from the body cavities of chickens--were collected during the technological dressing of the chickens; 101 strains of Campylobacter jejuni (i. e. 28.69%) were isolated from the 352 samples analyzed. The occurrence of the germs exhibited a considerable seasonal variance with peak rates in spring and summer. The use of a suitable culture medium, the technique of cultivation and the properties of the isolated strains were studied at the same time. The culture medium (Agar no. 3 IMUNA enriched with supplement C, horse blood and ingredients increasing the aerotolerance of the germs--sodium pyruvate and iron sulphate) used during the investigation was found to be suitable. The technique of cultivation by means of an anaerostat manufactured by the Development Station in Brno, atmosphere regulation (5% CO2) and with a pre-set cultivation temperature (43 degrees C) was found to be suitable for the screening of the Campylobacter jejuni germs.

  2. Campylobacter jejuni survival in a poultry processing plant environment.

    PubMed

    García-Sánchez, Lourdes; Melero, Beatriz; Jaime, Isabel; Hänninen, Marja-Liisa; Rossi, Mirko; Rovira, Jordi

    2017-08-01

    Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of poultry, especially chicken's meat is considered the most common route for human infection. The aim of this study was to determine if Campylobacter spp. might persist in the poultry plant environment before and after cleaning and disinfection procedures and the distribution and their genetic relatedness. During one month from a poultry plant were analyzed a total of 494 samples -defeathering machine, evisceration machine, floor, sink, conveyor belt, shackles and broiler meat- in order to isolate C. jejuni and C. coli. Results showed that C. jejuni and C. coli prevalence was 94.5% and 5.5% respectively. Different typing techniques as PFGE, MLST established seven C. jejuni genotypes. Whole genome MLST strongly suggest that highly clonal populations of C. jejuni can survive in adverse environmental conditions, even after cleaning and disinfection, and persist for longer periods than previous thought (at least 21 days) in the poultry plant environment. Even so, it might act as a source of contamination independently of the contamination level of the flock entering the slaughter line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive.

    PubMed

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9) CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.

  4. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive

    PubMed Central

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 109 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome. PMID:26161743

  5. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni

    PubMed Central

    Kovács, Judit K.; Felső, Péter; Makszin, Lilla; Pápai, Zoltán; Horváth, Györgyi; Ábrahám, Hajnalka; Palkovics, Tamás; Böszörményi, Andrea; Emődy, Levente

    2016-01-01

    ABSTRACT Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni. After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni. Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni. IMPORTANCE This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen. PMID:27520816

  6. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  7. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms.

    PubMed

    Dranguet, P; Le Faucheur, S; Cosio, C; Slaveykova, V I

    2017-01-25

    Mercury (Hg) is a pollutant of high concern for aquatic systems due to the biomagnification of its methylated form along the food chain. However, in contrast to other metals, gaining knowledge of its bioavailable forms for aquatic microorganisms remains challenging, making Hg risk assessment difficult. Ubiquitous and sessile freshwater biofilms are well known to accumulate and to transform Hg present in their ambient environment. The present study thus aims to evaluate whether non-extractable (proxy of intracellular) Hg accumulated by biofilms could be a good indicator of Hg bioavailability for microorganisms in freshwater. To that end, the link between Hg concentration and speciation, as well as biofilm composition (percentage of abiotic, biotic, chlorophyll and phycocyanin-fractions and abundance of dsrA, gcs, merA and hgcA bacterial genes) and biofilm Hg accumulation was examined. The studied biofilms were grown on artificial substrata in four reservoirs along the Olt River (Romania), which was contaminated by Hg coming from chlor-alkali plant effluents. The 0.45 μm-filterable Hg concentrations in ambient waters were measured and inorganic IHg speciation was modelled. Biofilms were analyzed for their non-extractable IHg and methylmercury (MeHg) contents as well as for their composition. The non-extractable IHg content was related, but not significantly, to the concentration of total IHg (r 2 = 0.88, p = 0.061) whereas a significant correlation was found with the predicted IHg concentration that is not bound to dissolved organic matter (r 2 = 0.95, p = 0.027), despite its extremely low concentrations (10 -25 M), showing a limitation of the thermodynamic Hg modelling to predict Hg bioavailability. The studied biofilms were different in biomass and composition and a principal component analysis showed that the non-extractable IHg content correlated with the abundance of the merA and hgcA genes, while MeHg accumulation was only linked with the abundance of the r

  8. Influence of the oscillation frequency of different side-to-side toothbrushes on noncontact biofilm removal.

    PubMed

    Schmidt, Julia C; Astasov-Frauenhoffer, Monika; Waltimo, Tuomas; Weiger, Roland; Walter, Clemens

    2018-01-22

    The objective of this study was to investigate the influence of different oscillation frequencies of three powered toothbrushes with side-to-side action for noncontact biofilm removal in an artificial interdental space model. A three-species biofilm (Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis) was formed in vitro on protein-coated titanium disks using a flow chamber system combined with a static biofilm growth model. The oscillation frequencies of three commercial side-to-side toothbrushes were evaluated by means of a dose response. The frequency was decreased in steps (100, 85, 70, 55, and 40%). Subsequently, the biofilm-coated substrates were exposed to the side-to-side toothbrushes. The biofilm volumes were measured using volumetric analyses (Imaris 8.1.2) with confocal laser scanning microscope images (Zeiss LSM700). Compared to maximum oscillation frequency (100%), lower oscillation frequencies (up to 40%) resulted in reduced median percentages of biofilm reduction (median biofilm reduction up to 53% for maximum oscillation frequency, and up to 13% for 40% oscillation frequency) (p ≥ 0.03). In addition, decreasing the oscillation frequencies of the side-to-side toothbrushes showed an enhanced variety in the results of repeated experiments. The oscillation frequency of the tested side-to-side toothbrushes affected the biofilm reduction in an interdental space model. Within a toothbrush, higher oscillation frequencies may lead to beneficial effects on interdental biofilm removal by noncontact brushing.

  9. Influence of substrate micropatterning on biofilm growth

    NASA Astrophysics Data System (ADS)

    Koehler, Stephan; Li, Yiwei; Liu, Bi-Feng Liu; Weitz, David

    2015-11-01

    We culture triple reporter Bacillus Subtilis biofilm on micropatterned agar substrates. We track the biofilm development in terms of size, thickness, shape, and phenotype expression. For a tiling composed of elevated rectangles, we observe the biofilm develops an oval shape or triangular shape depending on the rectangle's aspect ratio and orientation. The motile cells are primarily located in the valleys between the rectangles and the matrix producing cells are mostly located on the rectangles. Wrinkles form at the edges of the elevated surfaces, and upon merging form channels centered on the elevated surface. After a few days, the spore-forming cells appear at the periphery. Since biofilms in nature grow on irregular surfaces, our work may provide insight into the complex patterns observed.

  10. High frequency, spontaneous motA mutations in Campylobacter jejuni strain 81-176.

    PubMed

    Mohawk, Krystle L; Poly, Frédéric; Sahl, Jason W; Rasko, David A; Guerry, Patricia

    2014-01-01

    Campylobacter jejuni is an important cause of bacterial diarrhea worldwide. The pathogenesis of C. jejuni is poorly understood and complicated by phase variation of multiple surface structures including lipooligosaccharide, capsule, and flagellum. When C. jejuni strain 81-176 was plated on blood agar for single colonies, the presence of translucent, non-motile colonial variants was noted among the majority of opaque, motile colonies. High-throughput genomic sequencing of two flagellated translucent and two opaque variants as well as the parent strain revealed multiple genetic changes compared to the published genome. However, the only mutated open reading frame common between the two translucent variants and absent from the opaque variants and the parent was motA, encoding a flagellar motor protein. A total of 18 spontaneous motA mutations were found that mapped to four distinct sites in the gene, with only one class of mutation present in a phase variable region. This study exemplifies the mutative/adaptive properties of C. jejuni and demonstrates additional variability in C. jejuni beyond phase variation.

  11. Periphyton biofilms influence net methylmercury production in an industrially contaminated system

    DOE PAGES

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    2016-09-12

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201Hg II and MM 202Hg were added to intact periphyton samples and the formation of MM 201Hg and loss of MM 202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven bymore » differences in the demethylation rate constant (k d). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (k m). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less

  12. Microbial Activity Influences Electrical Conductivity of Biofilm Anode

    EPA Science Inventory

    This study assessed the conductivity of a Geobacter-enriched biofilm anode along with biofilm activity in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH ...

  13. Occurrence of the invasion associated marker (iam) in Campylobacter jejuni isolated from cattle

    PubMed Central

    2011-01-01

    Background The invasion associated marker (iam) has been detected in the majority of invasive Campylobacter jejuni retrieved from humans. Furthermore, the detection of iam in C. jejuni isolated from two important hosts, humans and chickens, suggested a role for this marker in C. jejuni's colonization of multiple hosts. However, no data exist regarding the occurrence of this marker in C. jejuni isolated from non-poultry food-animals such as cattle, an increasingly important source for human infections. Since little is known about the genetics associated with C. jejuni's capability for colonizing physiologically disparate hosts, we investigated the occurrence of the iam in C. jejuni isolated from cattle and assessed the potential of iam-containing cattle and human isolates for chicken colonization and human cell invasion. Results Simultaneous RAPD typing and iam-specific PCR analysis of 129 C. jejuni isolated from 1171 cattle fecal samples showed that 8 (6.2%) of the isolates were iam-positive, while 7 (54%) of human-associated isolates were iam-positive. The iam sequences were mostly heterogeneous and occurred in diverse genetic backgrounds. All iam-positive isolates were motile and possessed important genes (cadF, ciaB, cdtB) associated with adhesion and virulence. Although certain iam-containing isolates invaded and survived in INT-407 cells in high numbers and successfully colonized live chickens, there was no clear association between the occurrence, allelic sequence, and expression levels of the iam and the aforementioned phenotypes. Conclusions We show that the prevalence of iam in cattle C. jejuni is relatively lower as compared to isolates occurring in humans and chickens. In addition, iam was polymorphic and certain alleles occur in cattle isolates that were capable of colonizing and invading chickens and human intestinal cells, respectively. However, the iam did not appear to contribute to the cattle-associated C. jejuni's potential for invasion and

  14. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni

    PubMed Central

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host. PMID:25325018

  15. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  16. Antibiotic susceptibility profiling and virulence potential of Campylobacter jejuni isolates from different sources in Pakistan.

    PubMed

    Siddiqui, Fariha Masood; Akram, Muhammad; Noureen, Nighat; Noreen, Zobia; Bokhari, Habib

    2015-03-01

    To determine antibiotic resistance patterns and virulence potential of Campylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Antibiotic sensitivity patterns of C. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection of mapA (membrane-associated protein), cadF (fibronectin binding protein), wlaN (beta-l,3-galactosyltransferase) and neuAB (sialic acid biosynthesis gene). Further C. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling. A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage of C. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultry C. jejuni isolates. CadF and mapA were present in all poultry, cattle and human C. jejuni isolates, wlaN was not detected in any isolate and neuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity of C. jejuni isolates. Detection of multidrug resistant C. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors, cadF and mapA (100% each) in C. jejuni isolates from all sources and neuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types of C. jejuni to humans. Copyright © 2015 Hainan

  17. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  18. [Characterization of Campylobacter jejuni samples coming form poultry meat and feces].

    PubMed

    Gutiérrez, Sindy; Orellana, Daniel; Martínez, Claudio; García Mena, Verónica

    2017-12-01

    Background Campylobacter jejuni is one of the main causal agents of food borne diseases. Infections with this pathogen are mainly caused by chicken meat consumption. Aim To characterize antibiotic resistance and virulence factors in C. jejuni strains obtained from chicken meat and poultry feces in Central Chile. Material and Methods The presence of C. jejuni in 30 meat and 40 feces samples from poultry was studied. From these samples, we obtained 40 strains which were characterized at the molecular level for the presence of 16 genes involved in virulence using PCR. In parallel, antibiotic resistance for ciprofloxacin, nalidixic acid, tetracycline, erythromycin, azithromycin, chloramphenicol y ampicillin was analyzed. Results Twenty and 63% of feces and chicken meat samples were positive for C. jejuni, respectively. Moreover, a high percentage of strains showed antibiotic resistance, where 27% of strains were resistant to all tested antibiotics, except for azithromycin. Finally, 10% of the strains coming from feces contained 14 out of 16 virulence genes evaluated. Only 23% of the strains did not contain any of these genes. Conclusions A high percentage of feces and chicken meat samples are contaminated with C. jejuni. Moreover, these strains show a high genetic and phenotypic diversity represented by their antibiotic resistance profiles and the presence of virulence factors.

  19. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.

    PubMed

    Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros

    2014-08-01

    Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Insights into potential pathogenesis mechanisms associated with Campylobacter jejuni-induced abortion in ewes.

    PubMed

    Sanad, Yasser M; Jung, Kwonil; Kashoma, Isaac; Zhang, Xiaoli; Kassem, Issmat I; Saif, Yehia M; Rajashekara, Gireesh

    2014-11-25

    Campylobacter jejuni is commonly found in the gastrointestinal tract of many food-animals including sheep without causing visible clinical symptoms of disease. However, C. jejuni has been implicated in ovine abortion cases worldwide. Specifically, in the USA, the C. jejuni sheep abortion (SA) clone has been increasingly associated with sheep abortion. In vivo studies in sheep (the natural host) are needed to better characterize the virulence potential and pathogenesis of this clone. Pregnant ewes intravenously (IV) or orally inoculated with ovine or bovine abortion-associated C. jejuni SA clones exhibited partial or complete uterine prolapse with retained placenta, and abortion or stillbirth, whereas delivery of healthy lambs occurred in pregnant ewes inoculated with C. jejuni 81-176 or in the uninfected group. In sheep inoculated with the SA clone, histopathological lesions including suppurative necrotizing placentitis and/or endometritis coincided with: 1) increased apoptotic death of trophoblasts, 2) increased expression of the host genes (e.g. genes encoding interleukin IL-6 and IL-15) related to cellular necrosis and pro-inflammatory responses in uterus, and 3) decreased expression of the genes encoding GATA binding protein 6, chordin, and insulin-like 3 (INSL3) that account for embryonic development in uterus. Immunohistochemistry revealed localization of bacterial antigens in trophoblasts lining the chorioallantoic membrane of ewes inoculated with the C. jejuni SA clone. The results showed that C. jejuni SA clones are capable of causing abortion or stillbirth in experimentally infected sheep. Furthermore, down- or up-regulation of specific genes in the uterus of infected pregnant ewes might implicate host genes in facilitating the disease progression. Since the C. jejuni SA strains share genotypic similarities with clones that have been isolated from human clinical cases of gastroenteritis, these strains might represent a potential public health risk.

  1. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  2. Detection of Campylobacter jejuni in rectal swab samples from Rousettus amplexicaudatus in the Philippines.

    PubMed

    Hatta, Yuki; Omatsu, Tsutomu; Tsuchiaka, Shinobu; Katayama, Yukie; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Une, Yumi; Yoshikawa, Yasuhiro; Maeda, Ken; Kyuwa, Shigeru; Mizutani, Tetsuya

    2016-09-01

    Bats are the second diversity species of mammals and widely distributed in the world. They are thought to be reservoir and vectors of zoonotic pathogens. However, there is scarce report of the evidence of pathogenic bacteria kept in bats. The precise knowledge of the pathogenic bacteria in bat microbiota is important for zoonosis control. Thus, metagenomic analysis targeting the V3-V4 region of the 16S rRNA of the rectal microbiota in Rousettus amplexicaudatus was performed using high throughput sequencing. The results revealed that 103 genera of bacteria including Camplyobacter were detected. Campylobacter was second predominant genus, and Campylobacter coli and Campylobacter jejuni were identified in microbiome of R. amplexicaudatus. Campylobacteriosis is one of the serious bacterial diarrhea in human, and the most often implicated species as the causative agent of campylobacteriosis is C. jejuni. Therefore, we investigated the prevalence of C. jejuni in 91 wild bats with PCR. As a result of PCR assay targeted on 16S-23S intergenic spacer, partial genome of C. jejuni was detected only in five R. amplexicaudatus. This is the first report that C. jejuni was detected in bat rectal swab samples. C. jejuni is the most common cause of campylobacteriosis in humans, transmitted through water and contact with livestock animals. This result indicated that R. amplexicaudatus may be a carrier of C. jejuni.

  3. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs.

    PubMed

    Godlewska, Renata; Kuczkowski, Maciej; Wyszyńska, Agnieszka; Klim, Joanna; Derlatka, Katarzyna; Woźniak-Biel, Anna; Jagusztyn-Krynicka, Elżbieta K

    2016-10-01

    Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.

  4. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni.

    PubMed

    Kovács, Judit K; Felső, Péter; Makszin, Lilla; Pápai, Zoltán; Horváth, Györgyi; Ábrahám, Hajnalka; Palkovics, Tamás; Böszörményi, Andrea; Emődy, Levente; Schneider, György

    2016-10-15

    Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni IMPORTANCE: This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Complete genome sequence of Campylobacter jejuni strain 12567 a livestock-associated clade representative

    USDA-ARS?s Scientific Manuscript database

    We report the complete genome sequence of the Campylobacter jejuni strain 12567, a member of a C. jejuni livestock-associated clade that expresses glycoconjugates linked to improved gastrointestinal tract persistence....

  6. Periphyton Biofilms Influence Net Methylmercury Production in an Industrially Contaminated System.

    PubMed

    Olsen, Todd A; Brandt, Craig C; Brooks, Scott C

    2016-10-18

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from the industrially contaminated East Fork Poplar Creek, Tennessee (EFPC) were measured during 2014-2016 using stable Hg isotopic rate assays. 201 Hg II and MM 202 Hg were added to intact periphyton samples in ambient streamwater and the formation of MM 201 Hg and loss of MM 202 Hg were monitored over time and used to calculate first-order rate potentials for methylation and demethylation. The influences of location, temperature/season, light exposure and biofilm structure on methylation and demethylation potentials were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate potential (k d ). In contrast, the within-site temperature-dependent difference in net methylation was driven by changes in the methylation rate potential (k m ). Samples incubated in the dark had lower net methylation due to lower k m values than those incubated in the light. Disrupting the biofilm structure decreased k m and resulted in lower net methylation. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 3.71-7.88 mg d -1 MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.

  7. Campylobacter jejuni: A rare agent in a child with peritoneal dialysis-related peritonitis.

    PubMed

    Tural Kara, Tugce; Yilmaz, Songul; Ozdemir, Halil; Birsin Ozcakar, Zeynep; Derya Aysev, Ahmet; Ciftci, Ergin; Ince, Erdal

    2016-10-01

    Peritonitis is a serious problem in children receiving peritoneal dialysis. Campylobacter jejuni is an unusual cause of peritonitis. A 10-year-old boy who had end stage renal failure due to atypical hemolytic uremic syndrome was admitted to our hospital with abdominal pain and fever. Peritoneal dialysis fluid was cloudy and microscopic examination showed abundant leukocytes. Intraperitoneal cefepime treatment was started. Campylobacter jejuni was isolated from peritoneal dialysis fluid culture and oral clarithromycin was added to the treatment. At the end of therapy, peritoneal fluid culture was negative. To our knowledge, C. jejuni peritonitis was not reported in children previously. Although C. jejuni peritonitis is rarely encountered in children, it should be considered as an etiologic factor for peritonitis. Sociedad Argentina de Pediatría.

  8. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.

    PubMed

    Gaasbeek, Esther J; Wagenaar, Jaap A; Guilhabert, Magalie R; Wösten, Marc M S M; van Putten, Jos P M; van der Graaf-van Bloois, Linda; Parker, Craig T; van der Wal, Fimme J

    2009-04-01

    The species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C. jejuni strains was investigated. Comparative genome hybridization indicated that C. jejuni Mu-like prophage integrated element 1 (CJIE1) was more abundant in nonnaturally transformable C. jejuni strains than in naturally transformable strains. Analysis of CJIE1 indicated the presence of dns (CJE0256), which is annotated as a gene encoding an extracellular DNase. DNase assays using a defined dns mutant and a dns-negative strain expressing Dns from a plasmid indicated that Dns is an endogenous DNase. The DNA-hydrolyzing activity directly correlated with the natural transformability of the knockout mutant and the dns-negative strain expressing Dns from a plasmid. Analysis of a broader set of strains indicated that the majority of nonnaturally transformable strains expressed DNase activity, while all naturally competent strains lacked this activity. The inhibition of natural transformation in C. jejuni via endogenous DNase activity may contribute to the formation of stable lineages in the C. jejuni population.

  9. Antimicrobial wash with Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni on chicken skin

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe enteritis in humans largely due to consumption of contaminated poultry products. Reducing C. jejuni contamination on chicken carcasses would reduce subsequent human infections. This study investigated the efficacy of Trans-cinnama...

  10. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.

    PubMed

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E

    2015-03-01

    Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.

  11. Prevalence and Distribution of Campylobacter jejuni in Small-Scale Broiler Operations.

    PubMed

    Tangkham, Wannee; Janes, Marlene; LeMieux, Frederick

    2016-01-01

    Campylobacter jejuni has been recognized as one of the most prevalent causes of foodborne bacterial illnesses in humans. Previous studies have focused on the transmission routes of C. jejuni from commercial flock farms to the final retail product. The objective of this study was to determine the prevalence of C. jejuni and Campylobacter spp. in eggshells, live birds, feed, drinking water, and the rearing environment in a small-scale broiler operation. Broilers were raised under two different production systems: (i) environmentally controlled housing and (ii) open-air housing with two replications. Each week, samples were collected from eggshells, bird feces, feed, drinking water, enclosures (vertical walls of bird housing), and feed troughs for enumeration and isolation testing. All samples were plated on modified charcoal-cefoperazone-deoxycholate agar to determine the log CFU per gram and percent prevalence of Campylobacter spp. Isolation of C. jejuni was verified with latex agglutination and hippurate hydrolysis tests. The results from this study suggest that vertical transmission of these bacteria from egg surfaces to newly hatched chicks is not a significant risk factor. The results also suggest that the prevalence of C. jejuni at time of harvest (week 6) was significantly higher (P < 0.05) in the open-air housing broilers than in those in the environmentally controlled housing. Elevated levels of cross-contaminants, especially water and feed, may have played a role in this outcome.

  12. [Isolation of Campylobacter jejuni ATCC 29428 from inoculated fried pork meat and roasted chicken].

    PubMed

    Castillo-Martínez, M L; Sánchez-Sánchez, S; Rodríguez-Montaño, R; Quiñones-Ramírez, E I; Lugo de la Fuente, G; Vázquez-Salinas, C

    1993-01-01

    The human gastroenteritis caused by Campylobacter jejuni in some industrialized countries is higher than gastroenteritis produced by Salmonella and Shigella. This has induced the development of techniques to demonstrate the presence of the microorganism in different foods using some culture media combinations. There is not a method to isolate C. jejuni from roasted chicken and fried pork meat, which are popular foods in México. The sensitivity of two culture media combinations was compared: Rama broth (RB)-Rama agar (RA) and Preston broth (PB)-Skirrow agar (SA) to isolate C. jejuni from these foods. The RB-RA combination demonstrated to be the best one to isolate C. jejuni.

  13. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  14. Phenazine-1-carboxylic acid influences biofilm development and turnover of rhizobacterial biomass in a soil moisture-dependent manner

    USDA-ARS?s Scientific Manuscript database

    Rhizobacterial biofilm development influences terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Phenazine-1-carboxylic acid (PCA) is a redox-active metabolite produced by rhizobacteria in dryland wheat fields of Washington and Oregon, USA. PCA promotes biofilm dev...

  15. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  16. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    PubMed

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  17. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms

    PubMed Central

    de Queiroz, Vanessa Salvadego; Ccahuana-Vásquez, Renzo Alberto; Tedesco, Alcides Fabiano; Lyra, Luzia; Cury, Jaime Aparecido; Schreiber, Angélica Zaninelli

    2016-01-01

    The aim of this study was to evaluate the influence of culture medium on dose-response effect of chlorhexidine (CHX) on Streptococcus mutans UA159 biofilm and validate the use of the cation-adjusted-Müller-Hinton broth (MH) for the evaluation of antibacterial activity. Ultrafiltered Tryptone-Yeast Extract Broth (UTYEB) was compared against MH and MH with blood supplementation (MHS). For each medium, six groups (n = 4) were assessed: two negative control groups (baseline 48 and 120 h) and four experimental groups (0.0001, 0.001, 0.012, and 0.12% CHX). S. mutans biofilm grew on glass slides of each media containing 1% sucrose. After 48 h of growth, biofilms of baseline 48 h were collected and the other groups were treated for 1 min, twice a day, for 3 days, with their respective treatments. The media were changed daily and pH was measured. After 120 h, biofilms were collected and dry weight and viable microorganisms were determined. Results showed CHX dose-response effect being observed in all media for all the variables. However, MH and MHS showed higher sensitivity than UTYEB (p < 0.05). We can conclude that the culture medium does influence dose-response effect of CHX on Streptococcus mutans biofilm and that MH can be used for antibacterial activity. PMID:27293967

  18. Waterborne Campylobacter jejuni epidemic in a Finnish hospital for rheumatic diseases.

    PubMed

    Rautelin, H; Koota, K; von Essen, R; Jahkola, M; Siitonen, A; Kosunen, T U

    1990-01-01

    A waterborne Campylobacter jejuni outbreak in the Rheumatism Foundation Hospital in Heinola, Finland, in November-December 1986 is described. 32 patients and 62 members of the staff developed gastrointestinal symptoms. C. jejuni heat-stable serotype 45 was isolated from the faeces of 32 enteritis patients and from none of the controls. No other enteropathogens were found. Positive serological responses to C. jejuni acid extract antigen were detected by enzyme immunoassay in 34% of the symptomatic hospital patients, in 40% of the symptomatic staff members, and in 10% of the controls. The clinical course of the illness was mostly mild and self-limited. No striking progress in the arthritis symptoms of the patients was found after the outbreak. The hospital has its own water supply. C. jejuni of the same serotype as the epidemic strain was isolated from the water of the pipeline system. After a careful examination some aged components of the waterworks were found to be responsible for leaks that resulted in the contamination of the water.

  19. Autoinducer-2 Production in Campylobacter jejuni Contributes to Chicken Colonization ▿

    PubMed Central

    Quiñones, Beatriz; Miller, William G.; Bates, Anna H.; Mandrell, Robert E.

    2009-01-01

    Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells. PMID:19011073

  20. Influence of l-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride.

    PubMed

    Velmourougane, K; Prasanna, R

    2017-10-01

    The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.

  1. Survival of Campylobacter jejuni in naturally and artificially contaminated laying hen feces.

    PubMed

    Ahmed, M F M; Schulz, J; Hartung, J

    2013-02-01

    Infected laying hens regularly excrete large amounts of Campylobacter jejuni with their feces, which represent a reservoir of infection within the flock and for animals in the region. However, the knowledge about survival times of C. jejuni in these feces is still scarce. Therefore, orienting laboratory experiments were carried out under controlled conditions to estimate the survival times of C. jejuni both in artificially and naturally contaminated laying hen feces. In 6 different laying hen flocks (3 Campylobacter-free and 3 Campylobacter-positive flocks), fresh excreta were randomly collected and pooled in 20-g samples per flock. In the laboratory, each of the 3 pooled samples from the Campylobacter-free barns were homogenized and mixed with 10 mL of a freshly prepared C. jejuni suspension (3 × 10(8) cfu/mL). The other 3 samples were homogenized only. The 6 samples were stored at 20 ± 1°C and 40 to 60% RH in 2 different incubators. Specimens of 2 g were taken from all 6 samples 1 h after storage and daily at the same time during the next 10 consecutive days and investigated on culturable C. jejuni. The survival times of culturable C. jejuni ranged from 72 to 96 h in artificially inoculated feces and varied from 120 to 144 h in naturally colonized flocks. The flaA typing by RFLP confirmed that the isolates from the artificially contaminated feces were identical with the added strain. A total of 5 different flaA types were identified from the naturally contaminated feces, and survival of these isolates was dependent on flaA type. The demonstrated survival times indicate that contaminated fresh feces are an important reservoir of C. jejuni, representing a permanent source of infection over at least 6 d after excretion. It shows the considerable potential of fresh feces in transmitting the agent within and between flocks during that period. This 6-d span should be considered when poultry manure is applied to land as organic fertilizer.

  2. Accessory genetic content in Campylobacter jejuni ST21CC isolates from feces and blood.

    PubMed

    Skarp, C P A; Akinrinade, O; Kaden, R; Johansson, C; Rautelin, H

    2017-06-01

    Campylobacter jejuni is an important foodborne pathogen and the most commonly reported bacterial cause of gastroenteritis. C. jejuni is occasionally found in blood, although mechanisms important for invasiveness have remained unclear. C. jejuni is divided into many different lineages, of which the ST21 clonal complex (CC) is widely distributed. Here, we performed comparative genomic and in vitro analyses on 17C. jejuni ST21CC strains derived from human blood and feces in order to identify features associated with isolation site. The ST21CC lineage is divided into two large groups; centered around ST-21 and ST-50. Our clinical strains, typed as ST-50, showed further microevolution into two distinct clusters. These clusters were distinguished by major differences in their capsule loci and the distribution of accessory genetic content, including C. jejuni integrated elements (CJIEs) and plasmids. Accessory genetic content was more common among fecal than blood strains, whereas blood strains contained a hybrid capsule locus which partially consisted of C. jejuni subsp. doylei-like content. In vitro infection assays with human colon cell lines did not show significant differences in adherence and invasion between the blood and fecal strains. Our results showed that CJIEs and plasmid derived genetic material were less common among blood isolates than fecal isolates; in contrast, hybrid capsule loci, especially those containing C. jejuni subsp. doylei-like gene content, were found among many isolates derived from blood. The role of these findings requires more detailed investigation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Characterization of the biochemical properties of Campylobacter jejuni RNase III

    PubMed Central

    Haddad, Nabila; Saramago, Margarida; Matos, Rute G.; Prévost, Hervé; Arraiano, Cecília M.

    2013-01-01

    Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved. PMID:24073828

  4. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis

    PubMed Central

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H.; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A.

    2015-01-01

    Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates. PMID:26394042

  5. Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation

    PubMed Central

    Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca2+) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca2+ to eDNA thereby mediating bacterial aggregation and biofilm formation. PMID:24651318

  6. MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania.

    PubMed

    Ramonaite, Sigita; Tamuleviciene, Egle; Alter, Thomas; Kasnauskyte, Neringa; Malakauskas, Mindaugas

    2017-06-15

    Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database ( http://pubmlst.org/campylobacter ). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database ( http://pubmlst.org/campylobacter ). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson's index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Our results suggest that broiler products are the most important source of

  7. Serotyping of Campylobacter jejuni from an outbreak of enteritis implicating chicken.

    PubMed

    Rosenfield, J A; Arnold, G J; Davey, G R; Archer, R S; Woods, W H

    1985-09-01

    An outbreak of campylobacter enteritis involving 7 of 17 people over a period of 5 days followed a dinner at a restaurant. A chicken casserole dish was implicated with a food-specific attack rate of 58%. Campylobacter jejuni Penner serotype 18/21/29, resistant to metronidazole, was isolated from 3 of 4 symptomatic patients and from three raw fresh chicken samples closely associated with the implicated chicken. Numbers of C. jejuni in the chicken ranged from 5.3 X 10(1) to 7.5 X 10(2) colony forming units per square centimeter of surface area. This is the first outbreak of campylobacter enteritis reported in Australia in which C. jejuni has been isolated from both human and food sources and the isolates serologically confirmed as identical.

  8. Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl.

    PubMed Central

    Luechtefeld, N A; Blaser, M J; Reller, L B; Wang, W L

    1980-01-01

    Since the sources from which humans acquire Campylobacter enteritis are only partially known, we studied the frequency of carriage of Campylobacter fetus subsp. jejuni in migratory waterfowl. Cecal contents of various species of wild ducks were cultured on selective media that contained antibiotics to inhibit normal flora. Thirty-five percent of the 445 ducks cultured harbored C. fetus subsp. jejuni. Migratory waterfowl are yet another reservoir for this enteric pathogen and may be of public health importance for humans in the contamination of water or when used as food. PMID:7217334

  9. Campylobacter jejuni chromosomal sequences that hybridize to Vibrio cholerae and Escherichia coli LT enterotoxin genes.

    PubMed

    Calva, E; Torres, J; Vázquez, M; Angeles, V; de la Vega, H; Ruíz-Palacios, G M

    1989-02-20

    Campylobacter jejuni is one of the main etiologic agents of gastrointestinal illness in developing and developed areas throughout the world. Isolation of enterotoxin-producing C. jejuni has been associated with clinical symptoms of a watery-secretory type of diarrhea. Although physiological and immunological relatedness has been demonstrated between the C. jejuni enterotoxin (CJT), the Vibrio cholerae enterotoxin (CT), and the heat-labile cholera-like Escherichia coli enterotoxin (LT), nucleotide sequence similarity between C. jejuni DNA and either the toxA, toxB, eltA or eltB genes remained to be shown. We found that binding to ganglioside GM1 prevented recognition of CJT by monoclonal antibodies directed to either CT or LT. This indicates antigenic similarity between the three enterotoxins in the ganglioside GM1-binding site. Therefore we searched for corresponding similarities at the DNA level and found, by oligodeoxynucleotide hybridization, C. jejuni chromosomal nucleotide sequences similar to the coding region for a postulated ganglioside GM1-binding site on toxB and eltB.

  10. Distinct Campylobacter jejuni capsular types are related to Guillain-Barré syndrome in The Netherlands and Bangladesh

    USDA-ARS?s Scientific Manuscript database

    An infection with the intestinal pathogen Campylobacter jejuni leads to Guillain-Barré syndrome (GBS) in around one in thousand cases. It is established that sialylated lipooligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sia...

  11. Sulfonamide Resistance in Clinical Isolates of Campylobacter jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase

    PubMed Central

    Gibreel, Amera; Sköld, Ola

    1999-01-01

    The characterization of the genetic basis of sulfonamide resistance in Campylobacter jejuni was attempted. The resistance determinant from a sulfonamide-resistant strain of C. jejuni was cloned and was found to show 42% identity with the folP gene (which codes for dihydropteroate synthase, the target of sulfonamides) of the related bacterium Helicobacter pylori. The sequences of the areas surrounding the folP gene in C. jejuni showed similarity to those of the areas surrounding the corresponding gene in H. pylori. The folP gene of C. jejuni, which mediates the resistance, was observed to show particular features when it was compared to other known folP genes. One of these features is the presence of two pairs of direct repeats (15 and 27 bp) within the coding sequence of the gene. Comparison of the C. jejuni folP genes that mediate susceptibility and resistance revealed the occurrence of mutations that changed four amino acid residues. Resistance of C. jejuni to sulfonamides could be associated with one or several of these four mutational substitutions, which all occurred in the five different resistant isolates studied. The codon for one of these changed amino acids was found to be located in the second direct repeat within the coding sequence of the gene. The change made the repeat perfect. The transformation of both the resistance and the susceptibility variants of the gene into an Escherichia coli folP knockout mutant was found to complement the dihydropteroate synthase deficiency, confirming that the characterized sulfonamide resistance determinant codes for the C. jejuni dihydropteroate synthase enzyme. Kinetic measurements established different affinities of sulfonamide for the dihydropteroate synthase enzyme isolated from the resistant and susceptible strains. In conclusion, sulfonamide resistance in C. jejuni was shown to be associated with mutational changes in the chromosomally located gene for dihydropteroate synthase, the target of sulfonamides. PMID

  12. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Campylobacter jejuni host tissue tropism: a consequence of its low-carb lifestyle?

    PubMed

    Thompson, Stuart A; Gaynor, Erin C

    2008-11-13

    Mechanisms underlying virulence properties of Campylobacter jejuni have historically been difficult to identify. In this issue of Cell Host & Microbe, Hofreuter et al. (2008) show that C. jejuni's ability to metabolize glutamine, glutathione, and asparagine affects its ability to colonize specific host tissues. These findings reflect the emerging theme of bacterial physiology directly impacting pathogenesis.

  14. A new biofilm-associated colicin with increased efficiency against biofilm bacteria

    PubMed Central

    Rendueles, Olaya; Beloin, Christophe; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2014-01-01

    Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments. PMID:24451204

  15. Serum antibodies against gangliosides and Campylobacter jejuni lipopolysaccharides in Miller Fisher syndrome.

    PubMed Central

    Neisser, A; Bernheimer, H; Berger, T; Moran, A P; Schwerer, B

    1997-01-01

    Seven patients with Miller Fisher syndrome (MFS), six in the acute phase and one in the recovery phase, were investigated for serum antibodies against gangliosides and purified lipopolysaccharides (LPS) from different strains of Campylobacter jejuni, including the MFS-associated serotypes O:2 and O:23. Immunoglobulin G antibodies against gangliosides GT1a and GQ1b were found in five of six patients in the acute phase of disease. Three of these patients also displayed antibodies to ganglioside GD2, a finding not previously reported for MFS. All anti-GT1a- and anti-GQ1b-seropositive patients showed antibody binding to C. jejuni LPS, predominantly to O:2 and O:23 LPS. Antibody cross-reactivity between gangliosides GT1a and GQ1b and O:2 and O:23 LPS was demonstrated by adsorption studies. This cross-reactivity between gangliosides and C.jejuni LPS, which is obviously due to oligosaccharide homologies, may be an important pathogenetic factor in the development of MFS after C. jejuni infection. PMID:9317004

  16. Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni

    PubMed Central

    Gabriel, Edith; Leatherbarrow, Andrew J.H.; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Hart, C. Anthony; Diggle, Peter J.; Fearnhead, Paul

    2009-01-01

    Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue. PMID:19008526

  17. Cleaning and disinfection programs against Campylobacter jejuni for broiler chickens: productive performance, microbiological assessment and characterization1

    PubMed Central

    Deliberali Lelis, Karoline; Granghelli, Carlos Alexandre; Carão de Pinho, Agatha Cristina; Ribeiro Almeida Queiroz, Sabrina; Fernandes, Andrezza Maria; Moro de Souza, Ricardo Luiz; Gaglianone Moro, Maria Estela; de Andrade Bordin, Roberto; de Albuquerque, Ricardo

    2017-01-01

    Abstract Detailed cleaning and disinfection programs aims to reduce infection pressure from microorganisms from one flock to the next. However, studies evaluating the benefits to poultry performance, the sanitary status of the facilities, and the sanitary quality of the meat are rarely found. Thus, this study was designed to evaluate 2 cleaning and disinfecting programs regarding their influence on productive performance, elimination of Campylobacter, and characterization of Campylobacter jejuni strains when applied to broiler chickens’ facilities. Two subsequent flocks with 960 birds each were distributed into 32 pens containing 30 birds each. In the first, the whole flock was inoculated with a known strain of Campylobacter jejuni in order to contaminate the environment. In the second flock, performance and microbiological evaluations were done, characterizing an observational study between 2 cleaning and disinfection programs, regular and proposed. The regular program consisted of sweeping facilities, washing equipment and environment with water and neutral detergent. The proposed cleaning program consisted of dry and wet cleaning, application of 2 detergents (one acid and one basic) and 2 disinfectants (250 g/L glutaraldehyde and 185 g/L formaldehyde at 0.5% and 210 g/L para-chloro-meta-cresol at 4%). Total microorganism count in the environment and Campylobacter spp. identification were done for the microbiological assessment of the environment and carcasses. The positive samples were submitted to molecular identification of Campylobacter spp. and posterior genetic sequencing of the species identified as Campylobacter jejuni. The birds housed in the facilities and submitted to the proposed treatment had better performance when compared to the ones in the regular treatment, most likely because there was a smaller total microorganism count on the floor, walls, feeders and drinkers. The proposed program also resulted in a reduction of Campylobacter spp. on

  18. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat.

    PubMed

    Birk, Tina; Grønlund, Anne Christine; Christensen, Bjarke Bak; Knøchel, Susanne; Lohse, Kristin; Rosenquist, Hanne

    2010-02-01

    The aim of this study was to determine whether marination of chicken meat in different food ingredients can be used to reduce populations of Campylobacter jejuni. C. jejuni strains were exposed to different organic acids (tartaric, acetic, lactic, malic, and citric acids) and food marinating ingredients at 4 degrees C in broth and on chicken meat. The organic acids (0.5%) reduced populations of C. jejuni in broth (chicken juice and brain heart infusion broth) by 4 to 6 log units (after 24 h); tartaric acid was the most efficient treatment. Large strain variation was observed among 14 C. jejuni isolates inoculated in brain heart infusion broth containing 0.3% tartaric acid. On chicken meat medallions, reductions of C. jejuni were 0.5 to 2 log units when tartaric acid solutions (2, 4, 6, and 10%) were spread onto the meat. Analysis of acidic food ingredient (e.g., vinegar, lemon juice, pomegranate syrup, and soya sauce) revealed that such ingredients reduced counts of C. jejuni by at least 0.8 log units on meat medallions. Three low pH marinades (pH < 3) based on pomegranate syrup, lemon juice, and white wine vinegar were prepared. When applied to whole filets, these marinades resulted in a reduction of approximately 1.2 log units after 3 days of storage. Taste evaluations of chicken meat that had been marinated and then fried were graded positively for flavor and texture. Thus, success was achieved in creating a marinade with an acceptable taste that reduced the counts of C. jejuni.

  19. Lactobacillus johnsonii ameliorates intestinal, extra-intestinal and systemic pro-inflammatory immune responses following murine Campylobacter jejuni infection.

    PubMed

    Bereswill, Stefan; Ekmekciu, Ira; Escher, Ulrike; Fiebiger, Ulrike; Stingl, Kerstin; Heimesaat, Markus M

    2017-05-18

    Campylobacter jejuni infections are progressively increasing worldwide. Probiotic treatment might open novel therapeutic or even prophylactic approaches to combat campylobacteriosis. In the present study secondary abiotic mice were generated by broad-spectrum antibiotic treatment and perorally reassociated with a commensal murine Lactobacillus johnsonii strain either 14 days before (i.e. prophylactic regimen) or 7 days after (i.e. therapeutic regimen) peroral C. jejuni strain 81-176 infection. Following peroral reassociation both C. jejuni and L. johnsonii were able to stably colonize the murine intestinal tract. Neither therapeutic nor prophylactic L. johnsonii application, however, could decrease intestinal C. jejuni burdens. Notably, C. jejuni induced colonic apoptosis could be ameliorated by prophylactic L. johnsonii treatment, whereas co-administration of L. johnsonii impacted adaptive (i.e. T and B lymphocytes, regulatory T cells), but not innate (i.e. macrophages and monocytes) immune cell responses in the intestinal tract. Strikingly, C. jejuni induced intestinal, extra-intestinal and systemic secretion of pro-inflammatory mediators (such as IL-6, MCP-1, TNF and nitric oxide) could be alleviated by peroral L. johnsonii challenge. In conclusion, immunomodulatory probiotic species might offer valuable strategies for prophylaxis and/or treatment of C. jejuni induced intestinal, extra-intestinal as well as systemic pro-inflammatory immune responses in vivo.

  20. The Influences of LuxX in "Escherichia Coli" Biofilm Formation and Improving Teacher Quality through the Bio-Bus Program

    ERIC Educational Resources Information Center

    Robbins, Chandan Morris

    2012-01-01

    The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative…

  1. Influence of oral application of Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni.

    PubMed

    Letnická, Alica; Karaffová, Viera; Levkut, Mikuláš; Revajová, Viera; Herich, Róbert

    2017-09-01

    Campylobacteriosis is mainly caused by infection with Campylobacter jejuni following consumption or handling of Campylobacter-contaminated poultry meat. The aim of this study was to investigate the effect of probiotic Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and on immunocompetent cell distribution after C. jejuni infection in broiler chicken, as a second part of the previous study of Karaffová et al. (2017). Accordingly, day-old chicks were randomly divided into four experimental groups of 10 chicks each (n = 10): control (C), E. faecium AL41 (EFAL41), C. jejuni CCM6191 (CJ), and combined E. faecium AL41 + C. jejuni CCM6191 (EFAL41 + CJ). Samples from the caecum were collected on days 4 and 7 post Campylobacter infection (dpi), for the isolation of mRNA of TGF-β4, IL-17 and for immunohistochemistry. The relative mRNA expression of TGF-β4 was upregulated in the combined (EFAL41 + CJ) group compared to other groups during both samplings, but the expression of IL-17 was downregulated. Similarly, the highest density of CD3+ was detected in the combined group at 7 dpi, but the number of IgA+ cells was increased in both groups with EFAL41. It was concluded that the EFAL41 probiotic E. faecium strain can modulate the expression of selected cytokines (upregulation of TGF-β4 but downregulation of IL-17 relative expression), and activate IgA-producing cells in the caeca of chicks infected with C. jejuni CCM6191.

  2. Alternative sweeteners influence the biomass of oral biofilm.

    PubMed

    Abdul Razak, Fathilah; Baharuddin, Baizatul Amirah; Akbar, Elisya Farha Mohd; Norizan, Amira Hanim; Ibrahim, Nur Fazilah; Musa, Md Yusoff

    2017-08-01

    Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia ® , Tropicana Slim ® , Pal Sweet ® and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation. Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control. Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05). Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In Vivo Phase Variation and Serologic Response to Lipooligosaccharide of Campylobacter jejuni in Experimental Human Infection

    DTIC Science & Technology

    2004-02-01

    pregnancy, HLA B27 positivity, human im- munodeficiency virus seropositivity, or any disease or condition as determined by a study physician that would place...leukocyte antigen ( HLA ) types and the development of C. jejuni-associated GBS have been inconclusive (21). Thus, the requirements for an individual to be...susceptible to GBS development after C. jejuni infection remain to be identified since HLA type has not been consistently correlated with C. jejuni

  4. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface

    PubMed Central

    Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu

    2017-01-01

    To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pH<5.5) were found only in the interior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth. PMID:28452377

  5. Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber.

    PubMed

    Gusnaniar, Niar; Sjollema, Jelmer; Jong, Ed D; Woudstra, Willem; de Vries, Joop; Nuryastuti, Titik; van der Mei, Henny C; Busscher, Henk J

    2017-11-01

    In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Cleaning and disinfection programs against Campylobacter jejuni for broiler chickens: productive performance, microbiological assessment and characterization.

    PubMed

    Castro Burbarelli, Maria Fernanda de; do Valle Polycarpo, Gustavo; Deliberali Lelis, Karoline; Granghelli, Carlos Alexandre; Carão de Pinho, Agatha Cristina; Ribeiro Almeida Queiroz, Sabrina; Fernandes, Andrezza Maria; Moro de Souza, Ricardo Luiz; Gaglianone Moro, Maria Estela; de Andrade Bordin, Roberto; de Albuquerque, Ricardo

    2017-09-01

    Detailed cleaning and disinfection programs aims to reduce infection pressure from microorganisms from one flock to the next. However, studies evaluating the benefits to poultry performance, the sanitary status of the facilities, and the sanitary quality of the meat are rarely found. Thus, this study was designed to evaluate 2 cleaning and disinfecting programs regarding their influence on productive performance, elimination of Campylobacter, and characterization of Campylobacter jejuni strains when applied to broiler chickens' facilities. Two subsequent flocks with 960 birds each were distributed into 32 pens containing 30 birds each. In the first, the whole flock was inoculated with a known strain of Campylobacter jejuni in order to contaminate the environment. In the second flock, performance and microbiological evaluations were done, characterizing an observational study between 2 cleaning and disinfection programs, regular and proposed. The regular program consisted of sweeping facilities, washing equipment and environment with water and neutral detergent. The proposed cleaning program consisted of dry and wet cleaning, application of 2 detergents (one acid and one basic) and 2 disinfectants (250 g/L glutaraldehyde and 185 g/L formaldehyde at 0.5% and 210 g/L para-chloro-meta-cresol at 4%). Total microorganism count in the environment and Campylobacter spp. identification were done for the microbiological assessment of the environment and carcasses. The positive samples were submitted to molecular identification of Campylobacter spp. and posterior genetic sequencing of the species identified as Campylobacter jejuni. The birds housed in the facilities and submitted to the proposed treatment had better performance when compared to the ones in the regular treatment, most likely because there was a smaller total microorganism count on the floor, walls, feeders and drinkers. The proposed program also resulted in a reduction of Campylobacter spp. on floors

  7. Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens

    PubMed Central

    Perez-Muñoz, M. E.; Gouveia, G. J.; Wanford, J. J.; Lango-Scholey, L.; Panagos, C. G.; Srithayakumar, V.; Plastow, G. S.; Coros, C.; Bayliss, C. D.; Edison, A. S.; Walter, J.

    2017-01-01

    ABSTRACT Source attribution studies report that the consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimization of the vaccine for commercial broiler chickens has great potential to prevent the entry of the pathogen into the food chain. Here, we tested the same vaccination approach in broiler chickens and observed similar efficacies in pathogen load reduction, stimulation of the host IgY response, the lack of C. jejuni resistance development, uniformity in microbial gut composition, and the bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of Clostridiales cluster XIVa, Anaerosporobacter mobilis, that was significantly more abundant in responder birds. In broiler chickens, coadministration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody responses, and weight gain. To investigate whether the responder-nonresponder effect was due to the selection of a C. jejuni “supercolonizer mutant” with altered phase-variable genes, we analyzed all poly(G)-containing loci of the input strain compared to nonresponder colony isolates and found no evidence of phase state selection. However, untargeted nuclear magnetic resonance (NMR)-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels that is possibly linked to increased microbial diversity in this subgroup. The comprehensive methods used to examine the bimodality of the vaccine response provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy. IMPORTANCE Campylobacter jejuni is a common

  8. Virulence characterization of Campylobacter jejuni isolated from resident wild birds in Tokachi area, Japan.

    PubMed

    Shyaka, Anselme; Kusumoto, Akiko; Chaisowwong, Warangkhana; Okouchi, Yoshiki; Fukumoto, Shinya; Yoshimura, Aya; Kawamoto, Keiko

    2015-08-01

    The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells.

  9. Virulence characterization of Campylobacter jejuni isolated from resident wild birds in Tokachi area, Japan

    PubMed Central

    SHYAKA, Anselme; KUSUMOTO, Akiko; CHAISOWWONG, Warangkhana; OKOUCHI, Yoshiki; FUKUMOTO, Shinya; YOSHIMURA, Aya; KAWAMOTO, Keiko

    2015-01-01

    The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells. PMID:25843040

  10. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni.

    PubMed

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst; Brøndsted, Lone

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-forming units on C. jejuni lawns using a spot assay; (3) isolation of single plaques; (4) consecutive purification procedures; and (5) propagation of purified phages from a plate lysate to prepare master stocks.

  11. [Campylobacter jejuni O:19 serotype in Argentine poultry meat supply chain].

    PubMed

    Rossler, Eugenia; Fuhr, Estefanía M; Lorenzón, Guillermina; Romero-Scharpen, Analía; Berisvil, Ayelén P; Blajman, Jesica E; Astesana, Diego M; Zimmermann, Jorge A; Fusari, Marcia L; Signorini, Marcelo L; Soto, Lorena P; Frizzo, Laureano S; Zbrun, María V

    Thermotolerant species of Campylobacter have been focus of attention in the last years because they are the major agent causing zoonotic foodborne diseases. In addition, Campylobacter jejuni O:19 serotype was associated with Guillain Barré syndrome. The aim of this study was to determine the proportion of C. jejuni O:19 serotype isolated at different stages of three poultry meat supply chain in Santa Fe, Argentina. The analysis showed that 18% of isolated C. jejuni belong to serotype O:19. It was also determined that the presence of these strains is given in almost all production stages. These results reflect a significant risk to public health of consumers. Epidemiological studies of Campylobacter should be considered to establish a risk manager policy. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Detection of Campylobacter jejuni in Lizard Faeces from Central Australia Using Quantitative PCR

    PubMed Central

    Whiley, Harriet; McLean, Ryan; Ross, Kirstin

    2016-01-01

    Worldwide, Campylobacter is a significant cause of gastrointestinal illness. It is predominately considered a foodborne pathogen, with human exposure via non-food transmission routes generally overlooked. Current literature has been exploring environmental reservoirs of campylobacteriosis including potential wildlife reservoirs. Given the close proximity between lizards and human habitats in Central Australia, this study examined the presence of Campylobacter jejuni from lizard faeces collected from this region. Of the 51 samples collected, 17 (33%) (this included 14/46 (30%) wild and 3/5 (60%) captive lizard samples) were positive for C. jejuni using quantitative PCR (qPCR). This was the first study to investigate the presence of C. jejuni in Australian lizards. This has public health implications regarding the risk of campylobacteriosis from handling of pet reptiles and through cross-contamination or contact with wild lizard faeces. Additionally this has implication for horizontal transmission via lizards of C. jejuni to food production farms. Further research is needed on this environmental reservoir and potential transmission routes to reduce the risk to public health. PMID:28025556

  13. Campylobacter jejuni transcriptome changes during loss of culturability in water

    PubMed Central

    Bronowski, Christina; Mustafa, Kasem; Goodhead, Ian; James, Chloe E.; Nelson, Charlotte; Lucaci, Anita; Wigley, Paul; Humphrey, Tom J.; Williams, Nicola J.; Winstanley, Craig

    2017-01-01

    Background Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three, strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene

  14. Comparative quantification of Campylobacter jejuni from environmental samples using traditional and molecular biological techniques

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni (C. jejuni) is one of the most common causes of gastroenteritis in the world. Given the potential risks to human, animal and environmental health the development and optimization of methods to quantify this important pathogen in environmental samples is essential. Two of the mos...

  15. On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study

    PubMed Central

    2014-01-01

    Background A variety of conditions (culture media, inocula, incubation temperatures) are employed in antifouling tests with marine bacteria. Shewanella algae was selected as model organism to evaluate the effect of these parameters on: bacterial growth, biofilm formation, the activity of model antifoulants, and the development and nanomechanical properties of the biofilms. The main objectives were: 1) To highlight and quantify the effect of these conditions on relevant parameters for antifouling studies: biofilm morphology, thickness, roughness, surface coverage, elasticity and adhesion forces. 2) To establish and characterise in detail a biofilm model with a relevant marine strain. Results Both the medium and the temperature significantly influenced the total cell densities and biofilm biomasses in 24-hour cultures. Likewise, the IC50 of three antifouling standards (TBTO, tralopyril and zinc pyrithione) was significantly affected by the medium and the initial cell density. Four media (Marine Broth, MB; 2% NaCl Mueller-Hinton Broth, MH2; Luria Marine Broth, LMB; and Supplemented Artificial Seawater, SASW) were selected to explore their effect on the morphological and nanomechanical properties of 24-h biofilms. Two biofilm growth patterns were observed: a clear trend to vertical development, with varying thickness and surface coverage in MB, LMB and SASW, and a horizontal, relatively thin film in MH2. The Atomic Force Microscopy analysis showed the lowest Young modulii for MB (0.16 ± 0.10 MPa), followed by SASW (0.19 ± 0.09 MPa), LMB (0.22 ± 0.13 MPa) and MH2 (0.34 ± 0.16 MPa). Adhesion forces followed an inverted trend, being higher in MB (1.33 ± 0.38 nN) and lower in MH2 (0.73 ± 0.29 nN). Conclusions All the parameters significantly affected the ability of S. algae to grow and form biofilms, as well as the activity of antifouling molecules. A detailed study has been carried out in order to establish a biofilm model for further assays. The morphology and

  16. Methods for Initial Characterization of Campylobacter jejuni Bacteriophages.

    PubMed

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.

  17. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  18. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  19. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  20. [The occurrence of campylobacter fetus subsp. jejuni and Salmonella bacteria in some wild birds (author's transl)].

    PubMed

    Rosef, O

    1981-12-01

    An investigation was carried out into the occurrence of Campylobacter fetus subsp. jejuni and Salmonella species in some wild birds. A total of 129 birds was examined, consisting of 71 pigeons, 54 seagulls, three crows and one raven. Campylobacter bacteria were isolated from 32 birds (24.8%), of which three were pigeons, 27 seagulls and two were crows. Of the 27 Campylobacter strains isolated from seagulls, four had the biochemical characteristics of the NARTC biotype described by Skirrow and Benjamin, seven were grouped as Campylobacter coli biotype and 16 as the biotype of Campylobacter jejuni. All the strains isolated from crows and pigeons had the biochemical characteristics of Campylobacter jejuni biotypes. Salmonella bacteria were isolated from the intestinal contents of two of the 54 seagulls (3.7%), and were identified serologically as Salmonella indiana and Salmonella typhimurium. One seagull was found to be a carrier of both Campylobacter fetus subsp. jejuni and Salmonella typhimurium. A correlation could not be demonstrated between the occurrence of Salmonella bacteria and Campylobacter fetus subsp. jejuni.

  1. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  2. Genomic insights from whole genome sequencing of four clonal outbreak Campylobacter jejuni assessed within the global C. jejuni population.

    PubMed

    Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N

    2016-12-03

    Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression

  3. Biocorrosion: towards understanding interactions between biofilms and metals.

    PubMed

    Beech, Iwona B; Sunner, Jan

    2004-06-01

    The term microbially influenced corrosion, or biocorrosion, refers to the accelerated deterioration of metals owing to the presence of biofilms on their surfaces. The detailed mechanisms of biocorrosion are still poorly understood. Recent investigations into biocorrosion have focused on the influence of biomineralization processes taking place on metallic surfaces and the impact of extracellular enzymes, active within the biofilm matrix, on electrochemical reactions at the biofilm-metal interface.

  4. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions.

    PubMed

    Oh, Euna; McMullen, Lynn; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.

  5. Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies.

    PubMed

    Gill, Carson; Bahrndorff, Simon; Lowenberger, Carl

    2017-08-01

    The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen-induced gene expression in the intestinal tracts of adult house flies 4-24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni-infected and -uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect-pathogen interactions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  6. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  7. Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota.

    PubMed

    Mañes-Lázaro, R; Van Diemen, P M; Pin, C; Mayer, M J; Stevens, M P; Narbad, A

    2017-08-01

    1. Campylobacter jejuni is the most common bacterial cause of human food-borne gastroenteritis in the world. A major source of human infection is the consumption of contaminated meat, particularly poultry. New control measures to reduce or eliminate this pathogen from the animal gastrointestinal tract are urgently required, and the use of probiotics as competitive exclusion agents is a promising biocontrol measure to reduce C. jejuni in the food chain. 2. In this study, we assessed the potential of Lactobacillus johnsonii FI9785, which has shown efficacy against Clostridium perfringens, to combat C. jejuni. The effect of prophylactic administration of L. johnsonii on the ability of C. jejuni to colonise chickens was determined. 3. Two doses of L. johnsonii given a week apart led to a reduction in C. jejuni colonisation in the caecal contents, but this biocontrol seemed reliant upon a high level of initial colonisation by the probiotic. 4. The microbial composition in the chicken gut was significantly altered by the probiotic treatment, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. 5. Together these results demonstrate the potential of this probiotic strain to be tested further as a competitive exclusion agent in poultry against C. jejuni.

  8. Phenazine-1-carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces.

    PubMed

    LeTourneau, Melissa K; Marshall, Matthew J; Cliff, John B; Bonsall, Robert F; Dohnalkova, Alice C; Mavrodi, Dmitri V; Devi, S Indira; Mavrodi, Olga V; Harsh, James B; Weller, David M; Thomashow, Linda S

    2018-04-24

    Phenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Furthermore, the relationships between soil moisture and the rates of PCA biosynthesis and degradation have not been established. In this study, expression of PCA biosynthesis genes was up-regulated relative to background transcription, and persistence of PCA was slightly decreased in dryland relative to irrigated wheat rhizospheres. Biofilms in dryland rhizospheres inoculated with the PCA-producing (PCA + ) strain Pseudomonas synxantha 2-79RN 10 were more robust than those in rhizospheres inoculated with an isogenic PCA-deficient (PCA - ) mutant strain. This trend was reversed in irrigated rhizospheres. In dryland PCA + rhizospheres, the turnover of 15 N-labelled rhizobacterial biomass was slower than in the PCA - and irrigated PCA + treatments, and incorporation of bacterial 15 N into root cell walls was observed in multiple treatments. These results indicate that PCA promotes biofilm development in dryland rhizospheres, and likely influences crop nutrition and soil health in dryland wheat fields. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador.

    PubMed

    Graham, Jay P; Vasco, Karla; Trueba, Gabriel

    2016-06-01

    Domestic animals and animal products are the source of pathogenic Campylobacter jejuni and C. coli in industrialized countries, yet little is known about the transmission of these bacteria in developing countries. Guinea pigs (Cavia porcellus) are commonly raised for food in the Andean region of South America, however, limited research has characterized this rodent as a reservoir of zoonotic enteric pathogens. In this study, we examined the prevalence of Campylobacter spp. in 203 fecal samples from domestic animals of 59 households in a semi-rural parish of Quito, Ecuador. Of the twelve animal species studied, guinea pigs showed the highest prevalence of C. jejuni (n = 39/40; 97.5%). Multilocus sequence typing (MLST) was used to characterize the genetic relationship of C. jejuni from domestic animals and 21 sequence types (STs) were identified. The majority of STs from guinea pigs appeared to form new clonal complexes that were not related to STs of C. jejuni isolated from other animal species and shared only a few alleles with other C. jejuni previously characterized. The study identifies guinea pigs as a major reservoir of C. jejuni and suggests that some C. jejuni strains are adapted to this animal species. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Virulence characteristics of five new Campylobacter jejuni chicken isolates.

    PubMed

    Stef, Lavinia; Cean, Ada; Vasile, Aida; Julean, Calin; Drinceanu, Dan; Corcionivoschi, Nicolae

    2013-12-13

    Campylobacter enteritis has emerged as one of the most common forms of human diarrheal illness. In this study we have investigated the virulence potential of five new C. jejuni chicken isolates (RO14, RO19, RO24, RO29 and RO37) originated from private households in the rural regions of Banat and Transylvania in Romania. Following isolation and in vitro virulence assay, on HCT-8 cells, our results show that all the C. jejuni chicken isolates overcome the virulence abilities of the highly virulent strain C. jejuni 81-176. Motility, an important virulence factor was significantly improved in all the new chicken isolates. The ability to survive to the antimicrobial activity of the human serum, to resist to the violent attack of bile acids and to survive in the presence of synthetic antibiotics was increased in all the chicken isolates. However, these were statistically significant only for isolates RO29 and RO37. In conclusion our study shows, based on invasiveness and motility, and also on the data provided by the serum and bile resistance experiments that all the new chicken isolates are able to infect human cells, in vitro, and could potentially represent a health hazard for humans.

  11. High-Throughput Sequencing of Campylobacter jejuni Insertion Mutant Libraries Reveals mapA as a Fitness Factor for Chicken Colonization

    PubMed Central

    Johnson, Jeremiah G.; Livny, Jonathan

    2014-01-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture. PMID:24633877

  12. High-throughput sequencing of Campylobacter jejuni insertion mutant libraries reveals mapA as a fitness factor for chicken colonization.

    PubMed

    Johnson, Jeremiah G; Livny, Jonathan; Dirita, Victor J

    2014-06-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.

  13. Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.

    PubMed

    Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C

    2017-07-01

    An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.

  14. Influence of elevated temperature, pCO2, and nutrients on larva-biofilm interaction: Elucidation with acorn barnacle, Balanus amphitrite Darwin (Cirripedia: Thoracica)

    NASA Astrophysics Data System (ADS)

    Baragi, Lalita V.; Anil, Arga Chandrashekar

    2017-02-01

    Selection of optimal habitat by larvae of sessile organism is influenced by cues offered by the biofilm. Ocean warming and acidification are likely to enforce changes in the biofilm community and inturn influence the settlement process. Hence, we evaluated the influence of biofilm (multispecies and unialgal) and diet-mediated changes on the settlement of Balanus amphitrite cyprids (presettlement non-feeding larval stage) under different combinations of temperature (28, 30, 32 and 34 °C), pCO2 (400, 750 and 1500 μatm) and nutrient (unenriched and f/2 enriched). Nutrient enrichment enhanced the diatom and bacterial abundance at ambient temperature (30 °C) and pCO2 (400 μatm), which inturn increased larval settlement. Elevated pCO2 (750 and 1500 μatm) had no direct effect but a variable cascading effect on the settlement via biofilm-mediated changes was observed, depending on the type of biofilm. In contrast, elevated temperature (32 and 34 °C), either individually or in combination with elevated pCO2 had direct negative effect on settlement. However, biofilm-mediated changes compensated this negative effect. The larval settlement was also influenced by changes in the larval diet. Under elevated temperature and pCO2, cyprids raised with a feed (Chaetoceros calcitrans) from ambient temperature and pCO2 were of poor quality (lower RNA:DNA ratio, lower protein synthetic capacity) and yielded lower settlement. However, cyprids raised with a feed from elevated temperature and pCO2 were of better quality (higher RNA:DNA ratio, higher protein synthetic capacity) and yielded higher settlement. Overall, the observations from the present study provide insights into the significance of biotic interactions on the coastal biofouling communities under future climatic scenario and emphasise the need for future experiments on these aspects.

  15. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    PubMed

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of biofilm formation on corrosion and scaling in geothermal plants

    NASA Astrophysics Data System (ADS)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  17. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity.

    PubMed

    Méndez-Olvera, Estela T; Bustos-Martínez, Jaime A; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-10-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). The results obtained showed that the eight strains of C. jejuni , including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA , cdtB and cdtC genes.

  18. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity

    PubMed Central

    Méndez-Olvera, Estela T.; Bustos-Martínez, Jaime A.; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-01-01

    Background Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. Objectives The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Methods Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). Results The results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. Conclusions This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes. PMID:27942359

  19. Influence of subinhibitory antibiotic concentration on Streptococcus pyogenes adherence and biofilm production.

    PubMed

    Šmitran, Aleksandra; Vuković, Dragana; Opavski, Nataša; Gajić, Ina; Marinković, Jelena; Božić, Ljiljana; Živanović, Irena; Kekić, Dušan; Popović, Sunčica; Ranin, Lazar

    2018-06-01

    In this study, the focus was on the effects of sub-MICs of the antibiotics on adherence, hydrophobicity, and biofilm formation by two groups of Streptococcus pyogenes strains, which were responsible for different clinical cases. The aim of this study was to explore the effects of sub-MICs of penicillin, ceftriaxone, erythromycin, and clindamycin on adherence, surface hydrophobicity, and biofilm biomass in two selected collections of group A streptococcus (GAS): strains isolated from carriers (CA) and strains isolated from patients with tonsillopharyngitis (TPh). Isolates were tested for hydrophobicity to xylene, adherence, and biofilm production in uncoated microtiter plates before and after treatment with 1/2 and 1/4 MICs of antibiotics. Penicillin reduced adherence and biofilm production in TPh strains, whereas ceftriaxone diminished adherence and biofilm formation in CA group. On the contrary, clindamycin enhanced adherence and biofilm production in both groups of strains. Erythromycin did not significantly alter adherence, but triggered biofilm production in both groups of isolates. Hydrophobicity of both groups of strains was significantly reduced after exposure to all antibiotics. Beta-lactams displayed anti-biofilm activity; penicillin diminished both adherence and biofilm production in TPh strains, whereas ceftriaxone reduced it in strains isolated from CA.

  20. Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry.

    PubMed

    Hanning, Irene; Biswas, Debabrata; Herrera, Paul; Roesler, Mary; Ricke, Steven C

    2010-09-01

    The growing interest in organic and natural foods warrants a greater need for information on the food safety of these products. In this study, samples were taken from 2 pasture flock farms (N = 178; feed, water, drag swabs, and insect traps), pasture flock retail carcasses (N = 48) and 1 pasture flock processing facility (N = 16) over a period of 8 mo. A total of 105 Campylobacter isolates were obtained from 53 (30%), 36 (75%), and 16 (100%) samples from the farms, retail carcasses, and processing facility, respectively. Of the 105 isolates collected, 65 were C. jejuni, 31 were C. coli, and 9 were other Campylobacter spp. Using PCR, the C. jejuni isolates were further analyzed for virulence genes involved in colonization and survival (flaA, flaC, cadF, dnaJ, racR, cbrR), invasion (virB11, ciaB, pldA), protection against harsh conditions (sodB, htrA, clpA), toxin production (cdtA, cdtB, cdtC), siderophore transport (ceuE), and ganglioside mimicry (wlaN). In addition, the short variable region of the flaA locus (flaA SVR) was sequenced to determine the genetic diversity of the C. jejuni isolates. The flaA SVR diversity indices increased along the farm to carcass continuum. PCR-based analysis indicated a low prevalence of 5 genes involved in colonization (dnaJ, ciaB, pldA, racR, virB11). The results of this survey indicate that the prevalence of Campylobacter on organic retail carcasses is similar to prevalence reports of Campylobacter on conventional retail carcasses. However, the genetic diversity of the flaA SVR genotypes increased along the farm to carcass continuum that contrasted with conventional poultry studies. Campylobacter jejuni is a leading cause of foodborne illness with poultry and poultry products being leading sources of infection. Free-range and pasture flock chickens are becoming more popular; however, there is an inherent biosecurity risk that can increase the prevalence of foodborne pathogens in these flocks. This study aimed to determine sources

  1. The influences of LuxX in Escherichia coli biofilm formation and improving teacher quality through the Bio-Bus Program

    NASA Astrophysics Data System (ADS)

    Robbins, Chandan Morris

    The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative digital image analysis demonstrated the effectiveness of the agarose stabilization technique for generating reproducible measurements of three dimensional biofilm structure. The described method will also benefit researchers who transport their flow cell-cultivated biofilms to a core facility for imaging. AI-2-dependent and independent effects of LuxS on biofilm-related phenotypes were revealed, suggesting that LuxS is a versatile enzyme, possessing multiple functions in E. coli ecology that could assist E. coli in adapting to diverse conditions. Overall, the work presented in this dissertation supported the concept that QS, biofilm formation, and cell adhesion are largely related. Additionally, through this project, teachers enhanced content knowledge and confidence levels, mastered innovative teaching strategies and integrated inquiry-based, inter-disciplinary, hands-on activities in the classroom. As a result, student learning was enhanced, and Georgia's students are better equipped to become tomorrow's leaders. INDEX WORDS: Biofilm, Escherichia coli, Quorum sensing, LuxS, Autoinducer-2, Microbial ecology

  2. Presence and characterization of Campylobacter jejuni in organically raised chickens in Quebec

    PubMed Central

    Thibodeau, Alexandre; Fravalo, Philippe; Laurent-Lewandowski, Sylvette; Guévremont, Evelyne; Quessy, Sylvain; Letellier, Ann

    2011-01-01

    The objective of this study was to estimate the presence of the important foodborne pathogen Campylobacter jejuni in organically raised chickens in the province of Quebec. The recovered isolates were further characterized for their antimicrobial resistance profile, autoagglutination property and chemotaxis. Antimicrobial resistance was evaluated using agar dilution for: tetracycline, erythromycin, chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, clindamycin, ampicillin, azithromycin, bacitracin, and ceftiofur. Autoagglutination was measured by monitoring optical density changes in a bacterial suspension after 3 h of incubation at room temperature. Chemotaxis was evaluated after a contact time of 3 h between isolates and mucin, using a quantitative protocol. A total of 10 lots of chickens was sampled in August and September 2009; half of them were positive for the presence of C. jejuni. Antimicrobial resistance was found only for tetracycline (44%), erythromycin (6%), azithromycin (6%) and clindamycin (2%). Variation was observed in the minimum inhibitory concentrations (MICs) for ceftiofur and bacitracin, for which C. jejuni possess intrinsic resistance. Autoagglutination and chemotaxis varied among isolates and lot-level differences in these were observed. Autoagglutination and chemotaxis levels appeared as independent isolate properties. Further monitoring and characterization of isolates originating from organic chickens is of interest since this type of production might represent another source of exposure of consumers to a variety of the foodborne pathogen C. jejuni. PMID:22468028

  3. Silver Nanoparticles Impact Biofilm Communities and Mussel Settlement

    PubMed Central

    Yang, Jin-Long; Li, Yi-Feng; Liang, Xiao; Guo, Xing-Pan; Ding, De-Wen; Zhang, Demin; Zhou, Shuxue; Bao, Wei-Yang; Bellou, Nikoleta; Dobretsov, Sergey

    2016-01-01

    Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus. AgNP-filled PDMS significantly reduced the dry weight and bacterial density of biofilms compared with the glass and PDMS controls. AgNP incorporation impacted bacterial communities by reducing the relative abundance of Flavobacteriaceae (phylum: Bacteroidetes) and increasing the relative abundance of Vibrionaceae (phylum: Proteobacteria) in 28-day-old biofilms compared to PDMS. The settlement rate of M. coruscus on 28-day-old biofilms developed on AgNPs was lower by >30% compared to settlement on control biofilms. Thus, the incorporation of AgNPs influences biofilm bacterial communities in the marine environment and subsequently inhibits mussel settlement. PMID:27869180

  4. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm

    NASA Astrophysics Data System (ADS)

    Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid

    2016-08-01

    Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.

  5. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.

    PubMed

    Carrel, Maxence; Morales, Verónica L; Beltran, Mario A; Derlon, Nicolas; Kaufmann, Rolf; Morgenroth, Eberhard; Holzner, Markus

    2018-05-01

    This study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth. Registration of the particle tracking and X-ray data sets allows to delineate the interplay between porous medium geometry, hydrodynamic and mass transfer processes on the morphology of the developing biofilm. A local analysis revealed wide distributions of wall shear stresses and concentration boundary layer thicknesses. The spatial distribution of the biofilm patches uncovered that the wall shear stresses controlled the biofilm development. Neither external nor internal mass transfer limitations were noticeable in the considered system, consistent with the excess supply of nutrient and electron acceptors. The wall shear stress remained constant in the vicinity of the biofilm but increased substantially elsewhere. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Nucleases Encoded by Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...

  7. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    PubMed Central

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  8. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

    PubMed

    Xie, Yanping; He, Yiping; Irwin, Peter L; Jin, Tony; Shi, Xianming

    2011-04-01

    The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.

  9. Differences in the Fecal Concentrations and Genetic Diversities of Campylobacter jejuni Populations among Individual Cows in Two Dairy Herds

    PubMed Central

    Ross, Colleen M.; Pleydell, Eve J.; Muirhead, Richard W.

    2012-01-01

    Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P < 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · g−1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. PMID:22904055

  10. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling

    PubMed Central

    Corcionivoschi, Nicolae; Alvarez, Luis A.; Sharp, Thomas H.; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G.; Bourke, Billy

    2013-01-01

    Summary Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer membrane / periplasmic proteins including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987

  11. Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach.

    PubMed

    Mehla, Kusum; Ramana, Jayashree

    2017-01-01

    Campylobacter jejuni remains a major cause of human gastroenteritis with estimated annual incidence rate of 450 million infections worldwide. C. jejuni is a major burden to public health in both socioeconomically developing and industrialized nations. Virulence determinants involved in C. jejuni pathogenesis are multifactorial in nature and not yet fully understood. Despite the completion of the first C. jejuni genome project in 2000, there are currently no vaccines in the market against this pathogen. Traditional vaccinology approach is an arduous and time extensive task. Omics techniques coupled with sequencing data have engaged researcher's attention to reduce the time and resources applied in the process of vaccine development. Recently, there has been remarkable increase in development of in silico analysis tools for efficiently mining biological information obscured in the genome. In silico approaches have been crucial for combating infectious diseases by accelerating the pace of vaccine development. This study employed a range of bioinformatics approaches for proteome scale identification of peptide vaccine candidates. Whole proteome of C. jejuni was investigated for varied properties like antigenicity, allergenicity, major histocompatibility class (MHC)-peptide interaction, immune cell processivity, HLA distribution, conservancy, and population coverage. Predicted epitopes were further tested for binding in MHC groove using computational docking studies. The predicted epitopes were conserved; covered more than 80 % of the world population and were presented by MHC-I supertypes. We conclude by underscoring that the epitopes predicted are believed to expedite the development of successful vaccines to control or prevent C. jejuni infections albeit the results need to be experimentally validated.

  12. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  13. Influence of Bacterial Biofilm Polysaccharide Structure on Interactions with Antimicrobial Peptides: A Study on Klebsiella pneumoniae.

    PubMed

    Bellich, Barbara; Lagatolla, Cristina; Tossi, Alessandro; Benincasa, Monica; Cescutti, Paola; Rizzo, Roberto

    2018-06-06

    Biofilms are complex systems produced by bacteria and constituted by macromolecular matrix embedding cells. They provide advantages to bacteria including protection against antimicrobials. The protection given by biofilms produced by Klebsiella pneumoniae strains towards antimicrobial peptides of the innate immune system was investigated. In particular, the role of matrix bacterial exopolysaccharides was explored. Three clinical strains producing exopolysaccharides with different chemistry were selected and the interaction of purified biofilm polysaccharides with two bovine cathelicidins was studied by circular dichroism spectroscopy and microbiological assays to establish their influence on the peptide’s antimicrobial activity. The spectroscopic data indicated a different extent of interaction with the two peptides, in a manner dependent on their sugar composition, and in particular the presence of rhamnose residues correlated with a lower interaction. The extent of interaction was then related to the protection towards antimicrobial peptides, conferred by the addition of the different exopolysaccharides, in minimum inhibitory concentration (MIC) assays against a reference Escherichia coli strain. Microbiological results were in very good agreement with spectroscopic data, confirming the active role of matrix polysaccharides in determining a biofilm’s protective capacity and indicating lower protection levels afforded by rhamnose containing exopolysaccharides.

  14. Corrosion influencée par les micro-organismes : influence du biofilm sur la corrosion des aciers, techniques et résultats recents

    NASA Astrophysics Data System (ADS)

    Feugeas, F.; Magnin, J. P.; Cornet, A.; Rameau, J. J.

    1997-03-01

    Microbiologically Influenced Corrosion (M.I.C.) studied since the beginning of this century, is responsible for the degradation of many metallic equipments. This study is a review of results dealing with M.I.C. on several types of steels as: carbon steels, stainless steels, welded steels and covered steels. M.I.C. occurs only in presence of a biofilm. The first part of this study describes chemical and physical factors involved in its development, technical methods for studying biofilms, and its contribution in the corrosion process. The second part is devoted to the study of M.I.C. cases linked with metal nature and different aqueous environments and the last part reviews the mainly mecanisms of biocorrosion. La Corrosion Influencée par les Micro-organismes (C.I.M.) ou biocorrosion, phénomène étudié depuis le début du siècle, est responsable de la dégradation d'un grand nombre d'ouvrages métalliques. Cette étude a pour but de faire le point des connaissances sur la corrosion influencée microbiologiquement de divers types d'aciers au carbone, d'aciers inoxydables, d'assemblages soudés et d'aciers revêtus. La C.I.M. n'apparaît qu'en présence d'un biofilm. La première partie de cette étude décrit les facteurs physico-chimiques impliqués dans la formation du biofilm, ces moyens d'études ainsi que son action dans le processus de biocorrosion. La seconde partie est consacrée à la description des cas de biocorrosion classés en fonction de la nature des métaux et des milieux avec lesquels ils sont en contact. La dernière partie de ce document passe en revue les principaux mécanismes de biocorrosion décrits.

  15. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability.

    PubMed

    Nilsson, Martin; Chiang, Wen-Chi; Fazli, Mustafa; Gjermansen, Morten; Givskov, Michael; Tolker-Nielsen, Tim

    2011-05-01

    We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P. putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable exopolysaccharide genes was found to form biofilm with a structure similar to wild-type biofilm, but with a stability lower than that of wild-type biofilm. Based on our data, we suggest that the formation of structured P. putida KT2440 biofilm can occur in the absence of exopolysaccharides; however, exopolysaccharides play a role as structural stabilizers. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. The Polysaccharide Capsule of Campylobacter jejuni 81-176 Modulates the Host Immune Response

    DTIC Science & Technology

    2012-12-17

    in C. jejuni colonization of chickens (2, 16). 315 Following restimulation, IL-17 production by CD4+ LPLs was reduced in 316 mice colonized by C...produce anti-bacterial molecules (57). Recently, Th17 350 responses have been demonstrated to have protective roles against Salmonella 351 and...old 498 chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71:8031-8041. 499 17. Guerry, P., C. M. Szymanski, M. M. Prendergast, T. E. Hickey

  17. Comparison of Survival of Campylobacter jejuni in the Phyllosphere with That in the Rhizosphere of Spinach and Radish Plants

    PubMed Central

    Brandl, Maria T.; Haxo, Aileen F.; Bates, Anna H.; Mandrell, Robert E.

    2004-01-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33°C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10°C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16°C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10°C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  18. Simulation of cross-contamination and decontamination of Campylobacter jejuni during handling of contaminated raw vegetables in a domestic kitchen.

    PubMed

    Chai, Lay-Ching; Lee, Hai-Yen; Ghazali, Farinazleen Mohd; Abu Bakar, Fatimah; Malakar, Pradeep Kumar; Nishibuchi, Mitsuaki; Nakaguchi, Yoshitsugu; Radu, Son

    2008-12-01

    Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.

  19. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  20. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  2. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  3. Microfluidics Meets Metabolomics to Reveal the Impact of Campylobacter jejuni Infection on Biochemical Pathways

    PubMed Central

    Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.

    2016-01-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  4. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry.

    PubMed

    Zautner, Andreas Erich; Masanta, Wycliffe Omurwa; Tareen, Abdul Malik; Weig, Michael; Lugert, Raimond; Groß, Uwe; Bader, Oliver

    2013-11-07

    Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7(m+c). The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7(m+c)(+) and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

  5. The Evolution of Campylobacter jejuni and Campylobacter coli

    PubMed Central

    Sheppard, Samuel K.; Maiden, Martin C.J.

    2015-01-01

    The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure. PMID:26101080

  6. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    PubMed

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  7. Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization.

    PubMed

    Adcox, Haley E; Vasicek, Erin M; Dwivedi, Varun; Hoang, Ky V; Turner, Joanne; Gunn, John S

    2016-11-01

    Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni colonization of chickens is dependent upon surface exposed proteins termed adhesins. Putative C. jejuni adhesins include CadF, CapA, JlpA, MOMP, PEB1, Cj1279c, and Cj1349c. We examined the genetic relatedness of ninety-seven C. jejuni isolates recovered from human, poultry, bo...

  9. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase

    PubMed Central

    Neal-McKinney, Jason M.; Liu, Kun C.; Jinneman, Karen C.; Wu, Wen-Hsin; Rice, Daniel H.

    2018-01-01

    Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan–Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase (cst) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides. PMID:29615986

  10. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase.

    PubMed

    Neal-McKinney, Jason M; Liu, Kun C; Jinneman, Karen C; Wu, Wen-Hsin; Rice, Daniel H

    2018-01-01

    Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan-Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase ( cst ) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides.

  11. An adapted in vitro assay to assess Campylobacter jejuni interaction with intestinal epithelial cells: Taking into stimulation with TNFα.

    PubMed

    Rodrigues, Ramila Cristiane; Pocheron, Anne-Lise; Cappelier, Jean-Michel; Tresse, Odile; Haddad, Nabila

    2018-06-01

    Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 10 8 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells. Copyright © 2018. Published by Elsevier B.V.

  12. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples

    PubMed Central

    2011-01-01

    Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli), are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new diagnostic tool for studying

  13. The significance of Campylobacter jejuni infection in poultry: a review.

    PubMed

    Shane, S M

    1992-01-01

    Campylobacter is a significant cause of enterocolitis in consumers of undercooked poultry meat. Campylobacter jejuni is the most significant of the three thermophilic Campylobacter species, and is responsible for intestinal colonization in poultry and food-borne enteritis in humans. Generally, C. jejuni is apathogenic in poultry, although newly hatched chicks and turkeys may develop a transient diarrhoea following infection. Modern intensive poultry production favours the introduction of infection into commercial growing units, resulting in intestinal colonization during the second to fourth weeks inclusive. Routes of infection include contaminated fomites, infected water supply, rodents, insects, and free-living birds. Vertical transmission is considered unlikely. Contamination of poultry meat is enhanced by deficiencies in transport and processing of broilers and turkeys. Scalding, defeathering and evisceration represent the significant points of cross-contamination during processing. Epidemiological correlation has been established between consumption of contaminated chicken and outbreaks of human campylobacteriosis. Amelioration of infection by application of improved standards of hygiene and decontamination is possible in the context of commercial poultry production. Improvement in washing of carcasses, and the application of chemical disinfectants and gamma irradiation have the potential to reduce the prevalence of C. jejuni contamination in poultry meat. These innovations, together with improved storage and handling of meat products, will reduce the risk of campylobacteriosis to consumers.

  14. Biosynthesis of Nucleoside Diphosphoramidates in Campylobacter jejuni.

    PubMed

    Taylor, Zane W; Brown, Haley A; Holden, Hazel M; Raushel, Frank M

    2017-11-21

    Campylobacter jejuni is a pathogenic Gram-negative bacterium and a leading cause of food-borne gastroenteritis. C. jejuni produces a capsular polysaccharide (CPS) that contains a unique O-methyl phosphoramidate modification (MeOPN). Recently, the first step in the biosynthetic pathway for the assembly of the MeOPN modification to the CPS was elucidated. It was shown that the enzyme Cj1418 catalyzes the phosphorylation of the amide nitrogen of l-glutamine to form l-glutamine phosphate. In this investigation, the metabolic fate of l-glutamine phosphate was determined. The enzyme Cj1416 catalyzes the displacement of pyrophosphate from MgCTP by l-glutamine phosphate to form CDP-l-glutamine. The enzyme Cj1417 subsequently catalyzes the hydrolysis of CDP-l-glutamine to generate cytidine diphosphoramidate and l-glutamate. The structures of the two novel intermediates, CDP-l-glutamine and cytidine diphosphoramidate, were confirmed by 31 P nuclear magnetic resonance spectroscopy and mass spectrometry. It is proposed that the enzyme Cj1416 be named CTP:phosphoglutamine cytidylyltransferase and that the enzyme Cj1417 be named γ-glutamyl-CDP-amidate hydrolase.

  15. Biofilm in endodontics: A review

    PubMed Central

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  16. The complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized, farm raised chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterially derived foodborne illness worldwide. Human illness is commonly associated with handling and consumption of contaminated poultry products. Three C. jejuni strains were isolated from cecal contents of three different naturally colonized, farm rais...

  17. Complete genome sequence of Campylobacter jejuni RM1246-ERRC that exhibits resistance to Quaternary Ammonium Compounds

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni strain RM1246-ERRC is a clinical isolate. In laboratory experiments RM1246-ERRC exhibited resistance to the antimicrobial effects of quaternary ammonium compounds (QACs) when compared to other C. jejuni strains. The chromosome of RM1246-ERRC was determined to be 1,659,694 bp w...

  18. Prevalence, antibiogram, and cdt genes of toxigenic Campylobacter jejuni in salad style vegetables (ulam) at farms and retail outlets in Terengganu.

    PubMed

    Khalid, Mohd Ikhsan; Tang, John Yew Huat; Baharuddin, Nabila Huda; Rahman, Nasiha Shakina; Rahimi, Nurul Faizzah; Radu, Son

    2015-01-01

    The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.

  19. Species-independent attraction to biofilms through electrical signaling

    PubMed Central

    Humphries, Jacqueline; Xiong, Liyang; Liu, Jintao; Prindle, Arthur; Yuan, Fang; Arjes, Heidi A.; Tsimring, Lev; Süel, Gürol M.

    2017-01-01

    Summary Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically-mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior, but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PMID:28086091

  20. Effects of a Campylobacter jejuni infection on the development of the intestinal microflora of broiler chickens.

    PubMed

    Johansen, C H; Bjerrum, L; Finster, K; Pedersen, K

    2006-04-01

    The effect of a Campylobacter jejuni colonization on the development of the microflora of the cecum and the ileum of broiler chickens was studied using molecular methods. The infection did affect the development and complexity of the microbial communities of the ceca, but we found no permanent effect of a C. jejuni infection on the ileal microflora of the broilers. In addition, denaturant gradient gel electrophoresis (DGGE) profiles generated from cecal and ileal contents revealed several DGGE bands that were present in the control chickens, but not in the chickens colonized with C. jejuni. Some of these DGGE bands could be affiliated with Lactobacillus reuteri, Clostridium perfringens, and the genus Klebsiella.

  1. Antimicrobial resistance of Campylobacter jejuni and Campylobacter coli from poultry in Italy.

    PubMed

    Giacomelli, Martina; Salata, Cristiano; Martini, Marco; Montesissa, Clara; Piccirillo, Alessandra

    2014-04-01

    This study was aimed at assessing the antimicrobial resistance (AMR) of Campylobacter isolates from broilers and turkeys reared in industrial farms in Northern Italy, given the public health concern represented by resistant campylobacters in food-producing animals and the paucity of data about this topic in our country. Thirty-six Campylobacter jejuni and 24 Campylobacter coli isolated from broilers and 68 C. jejuni and 32 C. coli from turkeys were tested by disk diffusion for their susceptibility to apramycin, gentamicin, streptomycin, cephalothin, cefotaxime, ceftiofur, cefuroxime, ampicillin, amoxicillin+clavulanic acid, nalidixic acid, flumequine, enrofloxacin, ciprofloxacin, erythromycin, tilmicosin, tylosin, tiamulin, clindamycin, tetracycline, sulfamethoxazole+trimethoprim, chloramphenicol. Depending on the drug, breakpoints provided by Comité de l'antibiogramme de la Société Française de Microbiologie, Clinical and Laboratory Standards Institute, and the manufacturer were followed. All broiler strains and 92% turkey strains were multidrug resistant. Very high resistance rates were detected for quinolones, tetracycline, and sulfamethoxazole+trimethoprim, ranging from 65% to 100% in broilers and from 74% to 96% in turkeys. Prevalence of resistance was observed also against ampicillin (97% in broilers, 88% in turkeys) and at least three cephalosporins (93-100% in broilers, 100% in turkeys). Conversely, no isolates showed resistance to chloramphenicol and tiamulin. Susceptibility prevailed for amoxicillin+clavulanic acid and aminoglycosides in both poultry species, and for macrolides and clindamycin among turkey strains and among C. jejuni from broilers, whereas most C. coli strains from broilers (87.5%) were resistant. Other differences between C. jejuni and C. coli were observed markedly in broiler isolates, with the overall predominance of resistance in C. coli compared to C. jejuni. This study provides updates and novel data on the AMR of broiler and

  2. In vivo and in silico determination of essential genes of Campylobacter jejuni.

    PubMed

    Metris, Aline; Reuter, Mark; Gaskin, Duncan J H; Baranyi, Jozsef; van Vliet, Arnoud H M

    2011-11-01

    In the United Kingdom, the thermophilic Campylobacter species C. jejuni and C. coli are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate C. jejuni and C. coli from the food chain. A metabolic model of C. jejuni was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium Helicobacter pylori, and extensive literature mining. Using this model, we have used in silico Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this in silico approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published Campylobacter protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy. We have constructed the first curated metabolic model for the food-borne pathogen Campylobacter jejuni and have presented the resulting metabolic insights. We have shown that

  3. Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni effectively promotes commensalism in the intestinal tract of avian hosts and diarrheal disease in humans, yet components of intestinal environments sensed by the bacterium in either host to initiate interactions are mostly unknown. By analyzing a C. jejuni acetogenesis mutant th...

  4. Enhanced drug transport through alginate biofilms using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    McGill, Shayna L.; Cuylear, Carla; Adolphi, Natalie L.; Osinski, Marek; Smyth, Hugh

    2009-02-01

    The development of microbiological biofilms greatly reduces the efficacy of antibiotic therapies and is a serious problem in chronic infection and for implantable medical devices. We investigated the potential of superparamagnetic nanoparticles to increase transport through in vitro models of alginate biofilms. An in vitro alginate biofilm model was developed to mimic the composition of in vivo samples of P. aeruginosa infections. Transport through this model biofilm was performed using both bulk diffusion methods and single particle tracking techniques in the presence and absence of an external magnetic field. Bulk diffusion of nanoparticles through the biofilm was significantly enhanced in the presence of a magnetic field, both visually and quantitatively. Nanoparticle trajectories also showed transport increases were significantly higher when magnetic fields were applied. We also showed that surface chemistry (cationic, anioni, or neutral) of the nanoparticles significantly influenced transport rates. Finally, nanoparticle size also influenced the transport rates and variability of transport rates through the biofilm. In these first studies using magnetic nanoparticles in bacterial biofilms, we demonstrate that transport enhancement can be achieved and further studies are warranted.

  5. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  6. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. PMID:24419344

  7. Development of an Immunoassay for Rapid Detection of Ganglioside GM1 Mimicry in Campylobacter jejuni Strains

    PubMed Central

    Prendergast, Martina M.; Kosunen, Timo U.; Moran, Anthony P.

    2001-01-01

    Mimicry of peripheral nerve gangliosides by Campylobacter jejuni lipopolysaccharides (LPSs) has been proposed to induce cross-reacting antiganglioside antibodies in Guillain-Barré syndrome (GBS). Because current methods for LPS characterization are labor-intensive and inhibit the screening of large numbers of strains, a rapid GM1 epitope screening assay was developed. Biomass from two agar plates of confluent growth yielded sufficient LPS using a novel phenol-water and ether extraction procedure. Extracts of LPS were reacted with cholera toxin (GM1 ligand), peanut agglutinin (Galβ1→3GalNAc ligand), and anti-GM1 antibodies. After the assay was validated, 12 of 59 (20%) C. jejuni serostrains, including four serotypes that have not previously been associated with GBS, reacted with two or more anti-GM1 ganglioside reagents. Subsequently, LPS extracts from 5 of 7 (71%) C. jejuni isolates and 2 of 3 (67%) C. jejuni culture collection strains bore GM1 structures. Overall, the assay system was reliable, efficient, and reproducible and may be adapted for large-scale epidemiological studies. PMID:11283076

  8. The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings.

    PubMed

    Zakarienė, Gintarė; Rokaitytė, Anita; Ramonaitė, Sigita; Novoslavskij, Aleksandr; Mulkytė, Kristina; Zaborskienė, Gintarė; Malakauskas, Mindaugas

    2015-03-01

    The antimicrobial effect of spice-based marinades against Campylobacter jejuni on inoculated fresh broiler wings was investigated. Experiments were carried out with 1 strain of C. jejuni and 6 marinades. Four experimental marinades were composed for the study and contained spices (thyme, rosemary, basil, marjoram, and so on) and different combination of bioactive compounds. Two marinades were commercial and contained spices (black pepper, sweet red pepper, and so on) and chemical additives (monosodium glutamate, sodium diacetate, calcium lactate), 1 commercial marinade was also enriched with bioactive compounds (linalool, cinnamaldehyde, lactic acid). Total aerobic bacterial count was examined to estimate the possible effect of tested marinades on the shelf-life of marinated broiler wings. Study revealed that thyme-based marinade was the most effective against C. jejuni on broiler wings and reduced the numbers of campylobacters by 1.04 log colony forming unit (CFU)/g (P ≤ 0.05) during storage for 168 h at 4 °C temperature. Moreover, it was more effective against C. jejuni than commercial marinade with 0.47 log CFU/g (P ≤ 0.05) reduction effect. Both experimental and commercial marinades had very similar effect on the total aerobic bacterial count. Although experimental and commercial marinades had different effect on pH of broiler wings, this parameter did not show a major impact on the antimicrobial effect of tested marinades (P ≥ 0.05). Our study shows that experimental natural thyme-based marinade can reduce numbers of C. jejuni more effectively than tested commercial marinades. © 2015 Institute of Food Technologists®

  9. PFGE, Lior serotype, and antimicrobial resistance patterns among Campylobacter jejuni isolated from travelers and US military personnel with acute diarrhea in Thailand, 1998-2003

    PubMed Central

    2010-01-01

    Background Campylobacter jejuni is a major cause of gastroenteritis worldwide. In Thailand, several strains of C. jejuni have been isolated and identified as major diarrheal pathogens among adult travelers. To study the epidemiology of C. jejuni in adult travelers and U.S. military personnel with acute diarrhea in Thailand from 1998-2003, strains of C. jejuni were isolated and phenotypically identified, serotyped, tested for antimicrobial susceptibility, and characterized using pulsed-field gel electrophoresis (PFGE). Results A total of 312 C. jejuni isolates were obtained from travelers (n = 46) and U.S. military personnel (n = 266) in Thailand who were experiencing acute diarrhea. Nalidixic acid and ciprofloxacin resistance was observed in 94.9% and 93.0% of the isolates, respectively. From 2001-2003, resistance to tetracycline (81.9%), trimethoprim-sulfamethoxazole (57.9%), ampicillin (28.9%), kanamycin (5.9%), sulfisoxazole (3.9%), neomycin (2.0%), and streptomycin (0.7%) was observed. Combined PFGE analysis showed considerable genetic diversity among the C. jejuni isolates; however, four PFGE clusters included isolates from the major Lior serotypes (HL: 36, HL: 11, HL: 5, and HL: 28). The PFGE analysis linked individual C. jejuni clones that were obtained at U.S. military exercises with specific antimicrobial resistance patterns. Conclusions In summary, most human C. jejuni isolates from Thailand were multi-resistant to quinolones and tetracycline. PFGE detected spatial and temporal C. jejuni clonality responsible for the common sources of Campylobacter gastroenteritis. PMID:21062505

  10. RNAseq Reveals Complex Response of Campylobacter jejuni to Ovine Bile and In vivo Gallbladder Environment

    PubMed Central

    Kreuder, Amanda J.; Schleining, Jennifer A.; Yaeger, Michael; Zhang, Qijing; Plummer, Paul J.

    2017-01-01

    Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in transmission and persistence of these important zoonotic agents; however, little is known about the molecular mechanisms that allow for bacterial survival within this harsh environment. Recently, a highly virulent C. jejuni sheep abortion (SA) clone represented by the clinical isolate IA3902 has emerged as the dominant cause for sheep abortion in the United States. Previous studies have indicated that the C. jejuni clone SA can frequently be isolated from the gallbladders of otherwise healthy sheep, suggesting that the gallbladder may serve as an important reservoir for infection. To begin to understand the molecular mechanisms associated with survival in the host gallbladder, C. jejuni IA3902 was exposed for up to 24 h to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in vitro. Following exposure, total RNA was isolated from the bile and high throughput deep sequencing of strand specific rRNA-depleted total RNA was used to characterize the transcriptome of IA3902 under these conditions. Our results demonstrated for the first time the complete transcriptome of C. jejuni IA3902 during exposure to an important host environment, the sheep gallbladder. Exposure to the host environment as compared to in vitro bile alone provided a more robust picture of the complexity of gene regulation required for survival in the host gallbladder. A subset of genes including a large number of protein coding genes as well as seven previously identified non-coding RNAs were confirmed to be differentially expressed within our data, suggesting that they may play a key role in adaptation upon exposure to these conditions. This research provides valuable insights into the molecular mechanisms that may be utilized by C. jejuni IA3902 to colonize and survive within the inhospitable gallbladder

  11. OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system.

    PubMed

    Ma, Qun; Wood, Thomas K

    2009-10-01

    Previously we discovered that OmpA of Escherichia coli increases biofilm formation on polystyrene surfaces (González Barrios et al., Biotechnol Bioeng, 93:188-200, 2006a). Here we show OmpA influences biofilm formation differently on hydrophobic and hydrophilic surfaces since it represses cellulose production which is hydrophilic. OmpA increased biofilm formation on polystyrene, polypropylene, and polyvinyl surfaces while it decreased biofilm formation on glass surfaces. Sand column assays corroborated that OmpA decreases attachment to hydrophilic surfaces. The ompA mutant formed sticky colonies, and the extracellular polysaccharide that caused stickiness was identified as cellulose. A whole-transcriptome study revealed that OmpA induces the CpxRA two-component signal transduction pathway that responds to membrane stress. CpxA phosphorylates CpxR and results in reduced csgD expression. Reduced CsgD production represses adrA expression and results in reduced cellulose production since CsgD and AdrA are responsible for 3,5-cyclic diguanylic acid and cellulose synthesis. Real-time polymerase chain reaction confirmed csgD and adrA are repressed by OmpA. Biofilm and cellulose assays with double deletion mutants adrA ompA, csgB ompA, and cpxR ompA confirmed OmpA decreased cellulose production and increased biofilm formation on polystyrene surfaces through CpxR and AdrA. Further evidence of the link between OmpA and the CpxRA system was that overproduction of OmpA disrupted the membrane and led to cell lysis. Therefore, OmpA inhibits cellulose production through the CpxRA stress response system, and this reduction in cellulose increases biofilm formation on hydrophobic surfaces.

  12. Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing

    PubMed Central

    Connell, Sarah; Meade, Kieran G.; Allan, Brenda; Lloyd, Andrew T.; Kenny, Elaine; Cormican, Paul; Morris, Derek W.; Bradley, Daniel G.; O'Farrelly, Cliona

    2012-01-01

    Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general

  13. Gene Expression Profiling of the Local Cecal Response of Genetic Chicken Lines That Differ in Their Susceptibility to Campylobacter jejuni Colonization

    PubMed Central

    Kogut, Michael H.; Chiang, Hsin-I; Wang, Ying; Genovese, Kenneth J.; He, Haiqi; Zhou, Huaijun

    2010-01-01

    Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were

  14. Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater.

    PubMed

    Skillman, L C; Bajsa, O; Ho, L; Santhanam, B; Kumar, M; Ho, G

    2009-07-01

    Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 degrees C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni.

  15. A trait-based approach to bacterial biofilms in soil.

    PubMed

    Lennon, Jay T; Lehmkuhl, Brent K

    2016-09-01

    A trait-based approach focuses on attributes of taxa that influence the structure and function of communities. Biofilm production is a common trait among microorganisms in a wide range of environmental, engineered, and host-associated ecosystems. Here, we used Pseudomonas aeruginosa to link biofilm production to moisture availability, a common stressor for microorganisms in soil. First, we demonstrate that biofilm production is a response trait that influences the desiccation phenotype by increasing survivorship, shifting the niche space, and reducing the minimum water potential needed to sustain a net-positive growth rate (Ψ*). Although the allocation of resources to biofilms is thought to be costly, we found no evidence for a trade-off between fitness and biofilm production along a soil moisture gradient. Second, we demonstrated that biofilm production is an effect trait. Specifically, biofilm production increased water retention in soils that were exposed to a series of drying and rewetting cycles. Although this form of niche construction should affect species interactions, we found no evidence that the benefits of biofilm production were extended to another co-occurring soil bacterium. Together, our results support the view that biofilm production is an important trait that may contribute to the distribution, abundance, and functioning of microorganisms in soils. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Biofilm formation in geometries with different surface curvature and oxygen availability

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto

    2015-03-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.

  17. Draft Genome Sequences of 116 Campylobacter jejuni Strains Isolated from Humans, Animals, Food, and the Environment in Brazil.

    PubMed

    Frazão, Miliane Rodrigues; Cao, Guojie; Medeiros, Marta Inês Cazentini; Duque, Sheila da Silva; Leon, Maria Sanchez; Allard, Marc William; Falcão, Juliana Pfrimer

    2018-04-19

    Campylobacter jejuni is a major zoonotic pathogen that causes foodborne gastroenteritis worldwide. However, clinical cases of campylobacteriosis have been underreported and underdiagnosed in Brazil. Herein, we describe the draft genome sequences of 116 C. jejuni strains isolated from diverse sources in Brazil.

  18. Potential virulence and antimicrobial susceptibility of Campylobacter jejuni isolates from food and companion animals.

    PubMed

    Lee, Michelle K; Billington, Stephen J; Joens, Lynn A

    2004-01-01

    Infection in humans with Campylobacter jejuni is commonly associated with exposure to food animal fecal material. In this study, we report on the recovery, potential for virulence and antimicrobial resistance levels of C. jejuni isolated from food and companion animals. Three hundred and seventy-eight fecal samples from food and companion animals and surface swabs from beef carcasses were tested for the presence of C. jejuni. C. jejuni was isolated from 13.8% (11/80) of dogs, 5% (1/20) of goats, 28.3% (17/60) of dairy cattle, 0% (0/65) of range cattle, 73.5% (36/49) of feedlot cattle, and 94.7% (18/19) of beef carcasses. Beef cattle from a single Arizona herd showed a considerable increase in fecal shedding of C. jejuni from pasture to feedlot and over time on the feedlot. Forty-two isolates were tested for susceptibility to four antimicrobial agents, each representing a class of antimicrobial drug approved for use in both humans and animals. None of the isolates were found to be resistant to erythromycin or gentamicin, whereas 2.4% of isolates were resistant to ciprofloxacin and 28.6% of isolates were resistant to tetracycline. The presence of virulence traits among the 42 isolates was assessed using in vitro macrophage survival and epithelial cell adherence and invasion assays. Of the isolates examined, 17 were able to survive within macrophages through 72 h at viable counts of >/=10(3)/well and 12 were capable of invading epithelial cells at viable counts of >/=10(3)/well. Data from these studies suggests that many of the isolates recovered from the non-poultry animal sources have the capacity to cause disease if transmitted to humans.

  19. Biofilms in shower hoses.

    PubMed

    Proctor, Caitlin R; Reimann, Mauro; Vriens, Bas; Hammes, Frederik

    2017-12-14

    Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 10 4 -5.8 × 10 8  cells/cm 2 ), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm 2 , 75 ng-Pb/cm 2 , and 460 ng-Cu/cm 2 ) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Campylobacter fetus subsp. jejuni in poultry reared under different management systems in Nigeria.

    PubMed

    Adekeye, J O; Abdu, P A; Bawa, E K

    1989-01-01

    Cloacal swabs from 487 live birds in 36 flocks and 70 poultry carcasses were cultured for Campylobacter fetus subsp. jejuni. It was isolated from 12.3% of the birds in 19 flocks. Chickens, turkeys, and guinea fowl differed from one another in isolation rates of the organism. Management system affected its occurrence, and only 7.1% of eviscerated carcasses yielded it. It was concluded that bird species, management system, and immersing slaughtered poultry in boiling water before dressing affect recovery of C. fetus subsp. jejuni from live birds and carcasses.

  1. Standing Genetic Variation in Contingency Loci Drives the Rapid Adaptation of Campylobacter jejuni to a Novel Host

    PubMed Central

    Jerome, John P.; Bell, Julia A.; Plovanich-Jones, Anne E.; Barrick, Jeffrey E.; Brown, C. Titus; Mansfield, Linda S.

    2011-01-01

    The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64Mb genome to 200-500X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host. PMID:21283682

  2. The ecology and biogeochemistry of stream biofilms.

    PubMed

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  3. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization.

    PubMed

    Lertpiriyapong, Kvin; Gamazon, Eric R; Feng, Yan; Park, Danny S; Pang, Jassia; Botka, Georgina; Graffam, Michelle E; Ge, Zhongming; Fox, James G

    2012-01-01

    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn) mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA

  4. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells.

    PubMed

    Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.

  5. Biofilm on dental implants: a review of the literature.

    PubMed

    Subramani, Karthikeyan; Jung, Ronald E; Molenberg, Aart; Hammerle, Christoph H F

    2009-01-01

    The aim of this article was to review the current literature with regard to biofilm formation on dental implants and the influence of surface characteristics (chemistry, surface free energy, and roughness) of dental implant and abutment materials and their design features on biofilm formation and its sequelae. An electronic MEDLINE literature search was conducted of studies published between 1966 and June 2007. The following search terms were used: biofilm and dental implants, biofilm formation/plaque bacterial adhesion and implants, plaque/biofilm and surface characteristics/roughness/surface free energy of titanium dental implants, implant-abutment interface and plaque/biofilm, biofilm and supragingival/subgingival plaque microbiology, biofilm/plaque and implant infection, antibacterial/bacteriostatic titanium, titanium nanocoating/nanopatterning, antimicrobial drug/titanium implant. Both in vitro and in vivo studies were included in this review. Fifty-three articles were identified in this review process. The articles were categorized with respect to their context on biofilm formation on teeth and dental implant surfaces and with regard to the influence of surface characteristics of implant biomaterials (especially titanium) and design features of implant and abutment components on biofilm formation. The current state of literature is more descriptive, rather than providing strong data that could be analyzed through meta-analysis. Basic research articles on surface modification of titanium were also included in the review to analyze the applications of such studies on the fabrication of implant surfaces that could possibly decrease early bacterial colonization and biofilm formation. Increase in surface roughness and surface free energy facilitates biofilm formation on dental implant and abutment surfaces, although this conclusion is derived from largely descriptive literature. Surface chemistry and the design features of the implant-abutment configuration also

  6. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea

    PubMed Central

    Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

    2013-01-01

    Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

  7. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    PubMed

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.

    PubMed

    Zhang, Peiyu; Xu, Dake; Li, Yingchao; Yang, Ke; Gu, Tingyue

    2015-02-01

    In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion

    PubMed Central

    Zhang, Ji; Vehkala, Minna; Välimäki, Niko; Hakkinen, Marjaana; Hänninen, Marja-Liisa; Roasto, Mati; Mäesaar, Mihkel; Taboada, Eduardo; Barker, Dillon; Garofolo, Giuliano; Cammà, Cesare; Di Giannatale, Elisabetta; Corander, Jukka; Rossi, Mirko

    2016-01-01

    The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni. PMID:28348829

  10. Phenotypic and Transcriptomic Responses of Campylobacter jejuni Suspended in an Artificial Freshwater Medium

    PubMed Central

    Trigui, Hana; Lee, Kristen; Thibodeau, Alexandre; Lévesque, Simon; Mendis, Nilmini; Fravalo, Philippe; Letellier, Ann; Faucher, Sébastien P.

    2017-01-01

    Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is linked to ingestion of contaminated water. The differences between C. jejuni strains originating from food products and those isolated from water are poorly understood. Working under the hypothesis that water-borne C. jejuni strains are better equipped at surviving the nutrient-poor aquatic environment than food-borne strains, the present study aims to characterize these differences using outbreak strains 81116 and 81-176. Strain 81116 caused a campylobacteriosis outbreak linked to consumption of water, while strain 81-176 was linked to consumption of raw milk. CFU counts and viability assays showed that 81116 survives better than 81-176 at 4°C in a defined freshwater medium (Fraquil). Moreover, 81116 was significantly more resistant to oxidative stress and bile salt than strain 81-176 in Fraquil. To better understand the genetic response of 81116 to water, a transcriptomic profiling study was undertaken using microarrays. Compared to rich broth, strain 81116 represses genes involved in amino acid uptake and metabolism, as well as genes involved in costly biosynthetic processes such as replication, translation, flagellum synthesis and virulence in response to Fraquil. In accordance with the observed increase in stress resistance in Fraquil, 81116 induces genes involved in resistance to oxidative stress and bile salt. Interestingly, genes responsible for cell wall synthesis were also induced upon Fraquil exposure. Finally, twelve unique genes were expressed in Fraquil; however, analysis of their distribution in animal and water isolates showed that they are not uniquely and ubiquitously present in water isolates, and thus, unlikely to play a major role in adaptation to water. Our results show that some C. jejuni strains are more resilient than others, thereby challenging current water

  11. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA).

    PubMed Central

    Uyttendaele, M; Schukkink, R; van Gemen, B; Debevere, J

    1995-01-01

    An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples. PMID:7747955

  12. Plant Biofilm Inhibitors to Discover Biofilm Genes

    DTIC Science & Technology

    2011-04-08

    REPORT Final Report for Plant Biofilm Inhibitors to Discover Biofilm Genes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: To control biofilms , we have...synthesized the natural biofilm inhibitor (5Z)-4-bromo-5-(bromomethylene) -3-butyl-2(5H)-furanone from the red alga Delisea pulchra and determined that...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS biofilms , biofilm inhibitors Thomas K. Wood Texas Engineering

  13. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms

    PubMed Central

    Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M.; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-01-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms. PMID:26419730

  14. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms.

    PubMed

    Bonnichsen, Lise; Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-12-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

  15. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro

    PubMed Central

    Upadhyay, Abhinav; Arsi, Komala; Wagle, Basanta R.; Upadhyaya, Indu; Shrestha, Sandip; Donoghue, Ann M.; Donoghue, Dan J.

    2017-01-01

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT) production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth) of three GRAS (generally recognized as safe) status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%), carvacrol (CR; 0.001, 0.002%), and eugenol (EG; 0.005, 0.01%) in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2). Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81–176) of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P < 0.05. The majority of phytochemical treatments reduced C. jejuni adhesion, invasion, and translocation of Caco-2 cells (P < 0.05). In addition, the phytochemicals reduced pathogen motility and production of CDT in S-8 and NCTC 11168 (P < 0.05). Real-time quantitative PCR revealed that phytochemicals reduced the transcription of select C. jejuni genes critical for infection in humans (P < 0.05). Results suggest that TC, CR, and EG could potentially be used to control C. jejuni infection in humans. PMID:28487683

  16. Campylobacter jejuni Fatal Sepsis in a Patient with Non-Hodgkin’s Lymphoma: Case Report and Literature Review of a Difficult Diagnosis

    PubMed Central

    Gallo, Maria Teresa; Di Domenico, Enea Gino; Toma, Luigi; Marchesi, Francesco; Pelagalli, Lorella; Manghisi, Nicola; Ascenzioni, Fiorentina; Prignano, Grazia; Mengarelli, Andrea; Ensoli, Fabrizio

    2016-01-01

    Campylobacter jejuni (C. jejuni) bacteremia is difficult to diagnose in individuals with hematological disorders undergoing chemotherapy. The cause can be attributed to the rarity of this infection, to the variable clinical presentation, and to the partial overlapping symptoms underlying the disease. Here, we report a case of a fatal sepsis caused by C. jejuni in a 76-year-old Caucasian man with non-Hodgkin’s lymphoma. After chemotherapeutic treatment, the patient experienced fever associated with severe neutropenia and thrombocytopenia without hemodynamic instability, abdominal pain, and diarrhea. The slow growth of C. jejuni in the blood culture systems and the difficulty in identifying it with conventional biochemical phenotyping methods contributed to the delay of administering a targeted antimicrobial treatment, leading to a fatal outcome. Early recognition and timely intervention are critical for the successful management of C. jejuni infection. Symptoms may be difficult to recognize in immunocompromised patients undergoing chemotherapy. Thus, it is important to increase physician awareness regarding the clinical manifestations of C. jejuni to improve therapeutic efficacy. Moreover, the use of more aggressive empirical antimicrobial treatments with aminoglycosides and/or carbapenems should be considered in immunosuppressed patients, in comparison to those currently indicated in the guidelines for cancer-related infections supporting the use of cephalosporins as monotherapy. PMID:27077849

  17. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    NASA Astrophysics Data System (ADS)

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  18. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome

    PubMed Central

    Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.

    2011-01-01

    Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880

  19. Biofilms.

    PubMed

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  20. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures.

    PubMed

    Cazzaniga, Gloria; Ottobelli, Marco; Ionescu, Andrei C; Paolone, Gaetano; Gherlone, Enrico; Ferracane, Jack L; Brambilla, Eugenio

    2017-12-01

    To evaluate the influence of surface treatments of different resin-based composites (RBCs) on S. mutans biofilm formation. 4 RBCs (microhybrid, nanohybrid, nanofilled, bulk-filled) and 6 finishing-polishing (F/P) procedures (open-air light-curing, light-curing against Mylar strip, aluminum oxide discs, one-step rubber point, diamond bur, multi-blade carbide bur) were evaluated. Surface roughness (SR) (n=5/group), gloss (n=5/group), scanning electron microscopy morphological analysis (SEM), energy-dispersive X-ray spectrometry (EDS) (n=3/group), and S. mutans biofilm formation (n=16/group) were assessed. EDS analysis was repeated after the biofilm assay. A morphological evaluation of S. mutans biofilm was also performed using confocal laser-scanning microscopy (CLSM) (n=2/group). The data were analyzed using Wilcoxon (SR, gloss) and two-way ANOVA with Tukey as post-hoc tests (EDS, biofilm formation). F/P procedures as well as RBCs significantly influenced SR and gloss. While F/P procedures did not significantly influence S. mutans biofilm formation, a significant influence of RBCs on the same parameter was found. Different RBCs showed different surface elemental composition. Both F/P procedures and S. mutans biofilm formation significantly modified this parameter. The tested F/P procedures significantly influenced RBCs surface properties but did not significantly affect S. mutans biofilm formation. The significant influence of the different RBCs tested on S. mutans biofilm formation suggests that material characteristics and composition play a greater role than SR. F/P procedures of RBCs may unexpectedly play a minor role compared to that of the restoration material itself in bacterial colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression.

    PubMed

    Rodrigues, Célia F; Gonçalves, Bruna; Rodrigues, Maria Elisa; Silva, Sónia; Azeredo, Joana; Henriques, Mariana

    2017-08-01

    Candida glabrata is one of most prevalent yeast in fungal infections, especially in immunocompromised patients. Its azole resistance results in a low therapeutic response, particularly when associated with biofilms. The main goal of this work was to study the effectiveness of voriconazole (Vcz) against C. glabrata biofilms oral pathologies, as esophageal or oropharyngeal candidiasis. Antifungal susceptibilities were determined in pre-formed 24-h-biofilms and ERG genes expression was determined by qRT-PCR. Protein quantification was performed using BCA ® Kit, carbohydrate was estimated according to the Dubois assay and β-1,3 glucans concentration were determined using Glucatell ® kit. Finally, ergosterol, Vcz, and fluconazole (Flu) concentrations within the biofilm matrices were determined by RP-HPLC. Results showed that C. glabrata biofilms were more susceptible to Vcz than to Flu and that ERG genes expression evidenced an overexpression of the three ERG genes in the presence of both azoles. The matrix content presented a remarked decrease in proteins and an increase in carbohydrates, namely β-1,3 glucans. Ergosterol was successfully detected and quantified in the biofilm matrices, with no differences in all the considered conditions. Vcz demonstrated better diffusion through the biofilms and better cell penetration capacities, than Flu, indicating that the structure of the drug molecule fully influences its dissemination through the biofilm matrices. This work showed that Vcz is notably more effective than Flu for the treatment of resistant C. glabrata oral biofilms, which demonstrates a clinical relevance in its future use for the treatment of oropharyngeal/esophageal candidiasis caused by this species.

  2. Focus on the physics of biofilms

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  3. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    PubMed Central

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  4. Strain-dependent induction of epithelial cell oncosis by Campylobacter jejuni is correlated with invasion ability and is independent of cytolethal distending toxin.

    PubMed

    Kalischuk, Lisa D; Inglis, G Douglas; Buret, Andre G

    2007-09-01

    Induction of host cell death is thought to play an important role in bacterial pathogenesis. Campylobacter jejuni is a prevalent cause of bacterial enteritis; however, its effects on enterocytes remain unclear. The present study indicates for the first time that C. jejuni induces oncotic, rather than apoptotic death of T84 enterocytes. C. jejuni-treated enterocytes exhibited extensive cytoplasmic vacuolation, rapid (3-6 h) loss of plasma membrane integrity ('cytotoxicity'), loss of mitochondrial transmembrane potential, and ATP depletion. Enterocytes also exhibited increased oligonucleosomal DNA fragmentation, a feature characteristic of apoptosis. However, consistent with a non-apoptotic process, DNA fragmentation and cytotoxicity were not caspase dependent. During apoptosis, caspases mediate cleavage of poly(ADP-ribose) polymerase; however, cleavage was not observed in C. jejuni-treated monolayers. Cytotoxicity, ATP depletion and DNA fragmentation were not prevented by the deletion of the cytolethal distending toxin (CDT) gene, indicating that C. jejuni causes enterocyte oncosis via a mechanism that is CDT independent. The ability to cause oncosis was significantly decreased in a FlaAFlaB mutant (CDT(+)) that was defective in the ability to adhere and invade enterocytes. Analysis of clinical isolates revealed that oncosis was strain dependent and correlated with increased invasive ability. These observations offer new insights into the pathogenesis of C. jejuni infection.

  5. The food-borne pathogen Campylobacter jejuni depends on the AddAB DNA repair system to defend against bile in the intestinal environment.

    PubMed

    Gourley, Christopher R; Negretti, Nicholas M; Konkel, Michael E

    2017-10-31

    Accurate repair of DNA damage is crucial to ensure genome stability and cell survival of all organisms. Bile functions as a defensive barrier against intestinal colonization by pathogenic microbes. Campylobacter jejuni, a leading bacterial cause of foodborne illness, possess strategies to mitigate the toxic components of bile. We recently found that growth of C. jejuni in medium with deoxycholate, a component of bile, caused DNA damage consistent with the exposure to reactive oxygen species. We hypothesized that C. jejuni must repair DNA damage caused by reactive oxygen species to restore chromosomal integrity. Our efforts focused on determining the importance of the putative AddAB DNA repair proteins. A C. jejuni addAB mutant demonstrated enhanced sensitivity to deoxycholate and was impaired in DNA double strand break repair. Complementation of the addAB mutant restored resistance to deoxycholate, as well as function of the DNA double strand break repair system. The importance of these findings translated to the natural host, where the AddAB system was found to be required for efficient C. jejuni colonization of the chicken intestine. This research provides new insight into the molecular mechanism utilized by C. jejuni, and possibly other intestinal pathogens, to survive in the presence of bile.

  6. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the united states

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a significant concern for ruminant health and food safety. Recently, a highly pathogenic C. jejuni clone (named SA) has emerged as the predominant cause of ruminant abortion and a significant cause of foodborne illnesses in the United States. Despite the recent advance in und...

  7. Updated Campylobacter jejuni capsule PCR multiplex typing system and its application to clinical isolates from south and southeast Asia

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as gold standard for C. jejuni typing. A preliminary multiple...

  8. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter.

    PubMed

    Smith, Shaun; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul

    2016-01-01

    Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter and faeces under various environmental conditions has

  9. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.

    PubMed

    Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain

    2006-10-01

    To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.

  10. Influence of trophic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine.

    PubMed

    Samrakandi, M M; Roques, C; Michel, G

    1997-08-01

    This study examines the controversial efficacy of chlorine and monochloramine against biofilms that differ in their extracellular polysaccharide (EPS) content. The results point out a net variability of bacterial biofilm susceptibility according to the nutrients present. Chlorine and monochloramine showed an equal biocidal activity on lactose medium-grown E. coli ATCC 10536 and glycerol-ammonium nitrate medium-grown nonmucoid Pseudomonas aeruginosa biofilms. In contrast, the effect of monochloramine is greater compared with that of chlorine on E. coli and mucoid P. aeruginosa biofilms grown in sucrose and glycerol-ammonium nitrate media, respectively. In these culture conditions, treatment with 25 mg monochloramine/L for 2 h reduced culturable cells by 4.5 logs (99.997%) for E. coli and about 3 logs (99.87%) for mucoid P. aeruginosa while the similar treatment with chlorine reduced culturable cells in these biofilms by 2.2 logs (99.4%) and 1 log (10%), respectively. The decrease of chlorine disinfection efficacy on sucrose and glycerol-ammonium nitrate medium-grown biofilms is postulated to be linked to the higher polysaccharide production observed in these media. It seems likely that monochloramine produces a high leakage of material absorbing at 260 nm from sucrose medium-grown E. coli biofilm, which could indicate its better penetration into biofilms.

  11. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh

    2012-01-01

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000more » μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.« less

  12. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  13. Spatiotemporal evolution of bacterial biofilm colonies

    NASA Astrophysics Data System (ADS)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  14. Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice

    PubMed Central

    Wilson, David L.; Rathinam, Vijay A. K.; Qi, Weihong; Wick, Lukas M.; Landgraf, Jeff; Bell, Julia A.; Plovanich-Jones, Anne; Parrish, Jodi; Finley, Russell L.; Mansfield, Linda S.; Linz, John E.

    2010-01-01

    Previous studies have demonstrated that Campylobacter jejuni, the leading causative agent of bacterial food-borne disease in the USA, exhibits high-frequency genetic variation that is associated with changes in cell-surface antigens and ability to colonize chickens. To expand our understanding of the role of genetic diversity in the disease process, we analysed the ability of three C. jejuni human disease isolates (strains 11168, 33292 and 81-176) and genetically marked derivatives to colonize Ross 308 broilers and C57BL/6J IL10-deficient mice. C. jejuni colonized broilers at much higher efficiency (all three strains, 23 of 24 broilers) than mice (11168 only, 8 of 24 mice). C. jejuni 11168 genetically marked strains colonized mice at very low efficiency (2 of 42 mice); however, C. jejuni reisolated from mice colonized both mice and broilers at high efficiency, suggesting that this pathogen can adapt genetically in the mouse. We compared the genome composition in the three wild-type C. jejuni strains and derivatives by microarray DNA/DNA hybridization analysis; the data demonstrated a high degree of genetic diversity in three gene clusters associated with synthesis and modification of the cell-surface structures capsule, flagella and lipo-oligosaccharide. Finally, we analysed the frequency of mutation in homopolymeric tracts associated with the contingency genes wlaN (GC tract) and flgR (AT tracts) in culture and after passage through broilers and mice. C. jejuni adapted genetically in culture at high frequency and the degree of genetic diversity was increased by passage through broilers but was nearly eliminated in the gastrointestinal tract of mice. The data suggest that the broiler gastrointestinal tract provides an environment which promotes outgrowth and genetic variation in C. jejuni; the enhancement of genetic diversity at this location may contribute to its importance as a human disease reservoir. PMID:20360176

  15. Survival of Escherichia coli, enterococci and Campylobacter jejuni in Canada goose faeces on pasture.

    PubMed

    Moriarty, E M; Weaver, L; Sinton, L W; Gilpin, B

    2012-11-01

    Freshly excreted Canada goose faeces pose a public health risk as they contain pathogenic microorganisms. Accordingly, a study was carried out on the growth and survival of resident indicator bacteria (enterococci and Escherichia coli) and inoculated Campylobacter jejuni in freshly excreted faeces over summer and winter. Canada goose faeces were collected, mixed thoroughly and inoculated with 10⁸ g⁻¹ C. jejuni. The faeces were mixed again before making the Canada goose dropping. The simulated goose droppings (N = 70) were placed on pasture, and the concentrations of E. coli, enterococci and the pathogen, C. jejuni, were monitored. In summer only, the molecular marker of E. coli LacZ and the avian-associated bacteria E2 was also monitored. Results of the survival study indicated that significant growth of enterococci and E. coli occurred in summer, before concentrations decreased to less than 15% of the original concentration (day 77) for enterococci and 0.01% for E. coli. LacZ followed a similar pattern to E. coli, while the E2 marker dropped to below 0.1% of the original concentration within 4 days. In winter, enterococci grew slightly, while no growth of E. coli occurred. In both summer and winter, C. jejuni was rapidly inactivated. This research highlights the ability of bacterial indicators to replicate and survive in the environment when harboured by avian faeces, and the limited risk aged Canada goose faeces pose as an environmental source of Campylobacter spp. © 2012 Blackwell Verlag GmbH.

  16. Characterization of Two Campylobacter jejuni Strains for Use in Volunteer Experimental-Infection Studies▿ †

    PubMed Central

    Poly, Frédéric; Read, Timothy D.; Chen, Yu-Han; Monteiro, Mario A.; Serichantalergs, Oralak; Pootong, Piyarat; Bodhidatta, Ladaporn; Mason, Carl J.; Rockabrand, David; Baqar, Shahida; Porter, Chad K.; Tribble, David; Darsley, Michael; Guerry, Patricia

    2008-01-01

    The development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome. Clinical isolates of C. jejuni that appeared to lack genes for the synthesis of ganglioside mimics were identified by DNA probe analyses. Two clinical isolates from Southeast Asia (strains BH-01-0142 and CG8421) were determined to express the LOS type containing N-acetyl quinovosamine. No ganglioside structures were observed to be present in the LOSs of these strains, and pyrosequence analyses of the genomes of both strains confirmed the absence of genes involved in ganglioside mimicry. The capsule polysaccharide (CPS) of BH-01-0142 was determined to be composed of galactose (Gal), 6-deoxy-ido-heptose, and, in smaller amounts, d-glycero-d-ido-heptose, and the CPS of CG8421 was observed to contain Gal, 6-deoxy-altro-heptose, N-acetyl-glucosamine, and minor amounts of 6-deoxy-3-O-Me-altro-heptose. Both CPSs were shown to carry O-methyl-phosphoramidate. The two genomes contained strain-specific zones, some of which could be traced to a plasmid origin, and both contained a large chromosomal insertion related to the CJEI3 element of C. jejuni RM1221. The genomes of both strains shared a high degree of similarity to each other and, with the exception of the capsule locus of CG8421, to the type strain of the HS3 serotype, TGH9011. PMID:18809665

  17. The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15.

    PubMed

    Bertolo, Lisa; Ewing, Cheryl P; Maue, Alexander; Poly, Frederic; Guerry, Patricia; Monteiro, Mario A

    2013-01-25

    Campylobacter jejuni infection is now the main cause of diarrhea-related illnesses in humans. An efficacious vaccine for the traveler and developing world market would be welcomed. We are engaged in the discovery and characterization of serotype-specific C. jejuni capsule polysaccharides (CPSs) to study their role in virulence and as protective vaccine antigens. Our prototype conjugate vaccine with serotype HS23 CPS (strain 81-176) has been shown to fully protect non-human primates against diarrhea inflicted by C. jejuni HS23, but ultimately, a useful CPS-based vaccine will have to be multivalent. To this end, we describe here the creation of a CPS-conjugate vaccine against C. jejuni serotype HS15. Structural analysis revealed that a repeating block consisting of L-α-arabinofuranose (Ara) and 6-deoxy-L-α-gulo-heptopyranose (6d-gulo-Hep) comprised the CPS of serotype HS15 type strain ATCC 43442 [→3)-α-L-Araf-(1→3)-6d-L-α-gulo-Hepp(1→](n). Strategically, the non-reducing end of the CPS was activated and used in the attachment of CPS to CRM₁₉₇ to yield a conjugate vaccine. A serological assessment of the CPS(HS15)-CRM₁₉₇ conjugate with an anti-HS15 polyclonal antibody confirmed the conservation of antigenic epitopes, and subsequent inoculation of mice with CPS(HS15)-CRM₁₉₇ revealed that this conjugate was indeed capable of raising anti-CPS(HS15) antibodies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Implications of Antimicrobial Combinations in Complex Wound Biofilms Containing Fungi.

    PubMed

    Townsend, Eleanor M; Sherry, Leighann; Kean, Ryan; Hansom, Donald; Mackay, William G; Williams, Craig; Butcher, John; Ramage, Gordon

    2017-09-01

    Diabetic foot ulcer treatment currently focuses on targeting bacterial biofilms, while dismissing fungi. To investigate this, we used an in vitro biofilm model containing bacteria and fungi, reflective of the wound environment, to test the impact of antimicrobials. Here we showed that while monotreatment approaches influenced biofilm composition, this had no discernible effect on overall quantity. Only by combining bacterium- and fungus-specific antibiotics were we able to decrease the biofilm bioburden, irrespective of composition. Copyright © 2017 American Society for Microbiology.

  19. The Influence of Shuttle-Shape Emodin Nanoparticles on the Streptococcus suis Biofilm.

    PubMed

    Ding, Wenya; Sun, Jin; Lian, He; Xu, Changgeng; Liu, Xin; Zheng, Sidi; Zhang, Dong; Han, Xiaopeng; Liu, Yanyan; Chen, Xueying; God Spower, Bello O; Li, Yanhua

    2018-01-01

    Biofilm is one of the most important physiological protective barriers of the Streptococcus suis ( S. suis ), and it is also one of the primary causes of hindrance to drug infiltration, reduction of bactericidal effects, and the development of antibiotic resistance. In order to intervene or eliminate S. suis biofilm, shuttle-shape emodin-loaded nanoparticles were developed in our study. The emodin nanoparticles were prepared by emodin and gelatin-cyclodextrin which was synthesized as drug carrier, and the nanoparticles were 174 nm in size, -4.64 mv in zeta potential, and exhibited a sustained emodin release. Moreover, the delivery kinetics of nanoparticles were also explored in our study. The confocal laser scanning microscopy and colony forming unit enumeration experiment indicated that nanoparticles could increase drug infiltration and uptake by biofilm. The flow cytometry system analysis showed that nanoparticles could be up taken by 99% of the bacteria cells. TCP assay and scanning electron microscopy showed that the nanoparticles had better effect on biofilm inhibition and elimination when compared with emodin solution. These results revealed that the emodin nanoparticles had a better therapeutic effect on the S. suis biofilm in vitro .

  20. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.

    PubMed

    Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei

    2016-06-30

    Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.

  1. Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni.

    PubMed

    Flint, Annika; Sun, Yi-Qian; Stintzi, Alain

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.

  2. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    PubMed Central

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  3. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water.

    PubMed

    Gião, M S; Wilks, S A; Keevil, C W

    2015-04-01

    Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.

  4. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.

    PubMed

    Nguyen, Hung Duc; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-01-01

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluation of different Campylobacter jejuni isolates to colonize the intestinal tract of commercial turkey poults and selective media for enumeration

    USDA-ARS?s Scientific Manuscript database

    Consumption of contaminated poultry products is the main source of human campylobacteriosis, which Campylobacter jejuni is responsible for 90 percent of human cases. Although chickens are believed to be a main source of human exposure to C. jejuni, turkey also contributes to cases of human infection...

  6. Influence of Season and Geography on Campylobacter jejuni and C. coli Subtypes in Housed Broiler Flocks Reared in Great Britain▿

    PubMed Central

    Jorgensen, F.; Ellis-Iversen, J.; Rushton, S.; Bull, S. A.; Harris, S. A.; Bryan, S. J.; Gonzalez, A.; Humphrey, T. J.

    2011-01-01

    Geographical and seasonal variation in the incidence and prevalence of Campylobacter jejuni and C. coli in housed broiler flocks reared in Great Britain in 2004 to 2006 was investigated in this study. Ceca (30) from 797 flocks, not subject to prior partial depopulation and reared on 211 farms, were examined individually for the presence of Campylobacter spp. The best-fitting climatic factors explained approximately 46% of the prevalence of Campylobacter-colonized flocks at slaughter and consisted of a combination of temperature at slaughter, number of sunshine hours in placement month, and millimeters of rainfall in placement month. Positive flocks were more likely to be slaughtered between June and November than during the rest of the year and to be reared in northern Great Britain than in central or southern Great Britain. C. jejuni was identified in approximately 90% of flocks, and C. coli was present in 10% of flocks. The most common clonal complexes identified in 226 isolates typed by multilocus sequence typing (MLST) were ST-45, ST-21, ST-574, ST-443, and ST-828. Flocks slaughtered at the same time were more likely to have similar complexes, and ST-45 had a seasonal pattern, with the highest prevalence in June, and was also more likely to be present in flocks reared in northern Great Britain. PMID:21460110

  7. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.

    PubMed

    Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2012-03-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.

  8. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    PubMed Central

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  9. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    PubMed

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.

  10. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives.

    PubMed

    Gunther, Nereus W; Sites, Joseph; Sommers, Christopher

    2015-09-01

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli

    PubMed Central

    Jackson, Debra W.; Suzuki, Kazushi; Oakford, Lawrence; Simecka, Jerry W.; Hart, Mark E.; Romeo, Tony

    2002-01-01

    The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and those of dispersal are unknown. Here we establish that the RNA binding global regulatory protein CsrA (carbon storage regulator) of Escherichia coli K-12 serves as both a repressor of biofilm formation and an activator of biofilm dispersal under a variety of culture conditions. Ectopic expression of the E. coli K-12 csrA gene repressed biofilm formation by related bacterial pathogens. A csrA knockout mutation enhanced biofilm formation in E. coli strains that were defective for extracellular, surface, or regulatory factors previously implicated in biofilm formation. In contrast, this csrA mutation did not affect biofilm formation by a glgA (glycogen synthase) knockout mutant. Complementation studies with glg genes provided further genetic evidence that the effects of CsrA on biofilm formation are mediated largely through the regulation of intracellular glycogen biosynthesis and catabolism. Finally, the expression of a chromosomally encoded csrA′-′lacZ translational fusion was dynamically regulated during biofilm formation in a pattern consistent with its role as a repressor. We propose that global regulation of central carbon flux by CsrA is an extremely important feature of E. coli biofilm development. PMID:11741870

  12. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  13. Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States

    PubMed Central

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  14. Sensitivity of Direct Culture, Enrichment and PCR for Detection of Campylobacter jejuni and C. coli in Broiler Flocks at Slaughter.

    PubMed

    Rodgers, J D; Simpkin, E; Lee, R; Clifton-Hadley, F A; Vidal, A B

    2017-06-01

    Broiler chicken flocks are a significant source of Campylobacter jejuni and Campylobacter coli that result in the major public health problem of campylobacteriosis. Accurate estimates of the prevalence of both C. coli and C. jejuni in flocks would enhance epidemiological understanding, risk assessment and control options. This study combined results from a panel of 10 detection tests (direct culture, enrichment and PCR) on caecal samples from flocks at slaughter. A parallel interpretation approach was used to determine the presence of Campylobacter spp. and for C. jejuni and C. coli individually. The sample was considered positive if at least one method detected the target and this interpretation was taken to represent a 'proxy gold standard' for detection in the absence of a gold standard reference test. The sensitivity of each individual method to detect Campylobacter spp., C. jejuni and C. coli was then estimated relative to the proxy gold standard. Enrichment in adapted Exeter broth (deficient in polymyxin B) with a resuscitation step was 100% sensitive, whilst direct culture on modified charcoal cefoperazone deoxycholate agar (mCCDA) was highly sensitive (97.9%). Enrichment methods using Preston broth and Bolton broth were significantly less sensitive. Enrichment in Exeter broth promoted the recovery of C. jejuni, whilst enrichment in Bolton broth favoured C. coli. A RT-PCR detection test could identify 80% of flocks that were co-colonised with both species. This study found that 76.3% (n = 127) of flocks were colonised with Campylobacter spp. The majority (95.9%) of Campylobacter-positive flocks were colonised with C. jejuni; however, approximately one-third of positive flocks were simultaneously colonised with both C. jejuni and C. coli. The findings highlight the impact of different detection methodologies on the accuracy of the estimated incidence of both C. jejuni and C. coli entering the abattoir within broiler flocks and the associated

  15. Therapeutic administration of enrofloxacin in mice does not select for fluoroquinolone resistance in Campylobacter jejuni.

    PubMed

    Inglis, G Douglas; Zaytsoff, S J M; Selinger, L Brent; Taboada, Eduardo N; Uwiera, R R E

    2018-05-11

    Enrofloxacin is registered for therapeutic use in beef cattle to treat bovine respiratory disease in Canada. A murine model was used to experimentally examine the impact of therapeutic administration of enrofloxacin on fluoroquinolone resistance development in Campylobacter jejuni. Administration of enrofloxacin to mice via subcutaneous injection or per os routes resulted in equivalent levels of bioactive enrofloxacin within the intestine, but bioactivity was short-lived (<48 hr after cessation). Enrofloxacin administration did not affect densities of total bacteria, Firmicutes, or Bacteroidetes in digesta, and had modest impacts on densities of Enterobacteriaceae. All mice inoculated with C. jejuni NCTC 11168 became persistently colonized by the bacterium. Enrofloxacin reduced C. jejuni cell densities within the cecal and colonic digesta for all treatments, and densities shed in feces as a function of antibiotic duration. None of the C. jejuni isolates recovered from mice after administration of enrofloxacin (n=260) developed resistance to ciprofloxacin regardless of method or duration of administration. Furthermore, only modest shifts in the minimum inhibitory concentration of the isolates by treatment were noted. The study findings indicate that the risk posed by short-term subcutaneous administration of enrofloxacin for the development of fluoroquinolone resistance in mammals is low.

  16. Effects of biofilm on river-bed scour.

    PubMed

    Piqué, Gemma; Vericat, Damià; Sabater, Sergi; Batalla, Ramon J

    2016-12-01

    Biofilm acts stabilising river-bed sediments, interfering with particle entrainment and, consequently, preventing bed disturbance. In this paper we present the results of a series of experiments carried out in indoor channels, aimed to understand biofilm alteration of bed material motion and topographic changes in stream channels. We analysed the erosion patterns and bedload rates in non-cohesive sediments in channels colonised by biofilms and compared them to biofilm-free others. All the channels had the same conditions of light irradiance, temperature, slope, and particle size (sand). Discharge and water surface slope were modified to create a range of hydraulic conditions, with pairs of colonised and non-colonised channels subjected to the same flows. We observed that biofilm slightly modified bed roughness and flow hydraulics, but that highly influenced bed disturbance. Biofilm caused bed scour to occur in patches unevenly distributed along the channel length, as a result of localised weaknesses of the biofilm. Once biofilm was ripped up it was transported in chunks, and sand grains were observed attached to these chunks. In non-colonised sediments the erosion was more homogeneous and the formation and movement of bedforms were observed. On average, bedload rates were 5 times lower when biofilm was present. Overall, the protective effect of the biofilm prevented generalised erosion of the channel and delayed the entrainment and transport of sand grains. Results emphasised the important role of biofilm in the incipient motion of bed-material in stream channels; this role may affect the magnitude and frequency of subsequent river bed processes, notably the onset of bedload and associated channel morpho-dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa

    PubMed Central

    Lima, Ilana Schneider; Baumeier, Nicole Carmo; Rosa, Rosimeire Takaki; Campelo, Patrícia Maria Stuelp; Rosa, Edvaldo Antonio Ribeiro

    2014-01-01

    This study evaluated the impact of different concentrations of glyphosate (Rondup®) on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm) and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm) in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p < 0.05). However, these same concentrations favor the planktonic anaerobic growth (p < 0.05). On the other hand, the herbicide favors a slight growth of biofilms in a concentration-dependent manner up to 84.5 ppm (p > 0.05), and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05), regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442. PMID:25477933

  18. The complete genome sequence and annotation of a Campylobacter jejuni strain, MTVDSCj20, isolated from a naturally colonized farm-raised chicken

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major cause of human foodborne illness worldwide with contaminated poultry products serving as a main source of human infection. C. jejuni strain MTVDSCj20 was isolated from the cecal contents of a farm-raised chicken naturally colonized with Campylobacter. The complete,...

  19. Wide but Variable Distribution of a Hypervirulent Campylobacter jejuni Clone in Beef and Dairy Cattle in the United States

    PubMed Central

    Tang, Yizhi; Meinersmann, Richard J.; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee Lawrence, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T.

    2017-01-01

    ABSTRACT Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the United States and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) dairy studies in 2002, 2007, and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter organisms was 72.2%, 82.1% of which were C. jejuni. Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces, including clone SA, suggesting that these birds may play a role in the transmission of Campylobacter. In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole-genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O) in the chromosome. These findings indicate that clone SA is widely distributed in both beef and dairy cattle and provide new insights into the molecular epidemiology of clone SA in ruminants. IMPORTANCE C. jejuni clone SA is a major cause of small-ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appear to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance

  20. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States.

    PubMed

    Tang, Yizhi; Meinersmann, Richard J; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T; Zhang, Qijing

    2017-09-29

    Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here, we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the U.S. and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) Dairy Studies 2002, 2007 and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter was 72.2%, 82.1% of which were C. jejuni Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces including clone SA, suggesting it may play a role in the transmission of Campylobacter In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O ) in the chromosome. These findings indicate clone SA is widely distributed in both beef and dairy cattle, and provide new insights into the molecular epidemiology of clone SA in ruminants. Importance C. jejuni clone SA is a major cause of small ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appears to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, this

  1. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    PubMed Central

    Shemesh, Moshe; Tam, Avshalom; Kott-Gutkowski, Miriam; Feldman, Mark; Steinberg, Doron

    2008-01-01

    Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media. PMID:19114020

  2. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.

    PubMed

    Valderrama, Wladir B; Cutter, Catherine N

    2013-01-01

    Listeria monocytogenes can enter the food chain at virtually any point. However, food processing environments seem to be of particular importance. From an ecological point of view, food processing facilities are microbial habitats that are constantly disturbed by cleaning and sanitizing procedures. Although L. monocytogenes is considered ubiquitous in nature, it is important to recognize that not all L. monocytogenes strains appear to be equally distributed; the distribution of the organism seems to be related to certain habitats. Currently, no direct evidence exists that L. monocytogenes-associated biofilms have played a role in food contamination or foodborne outbreaks, likely because biofilm isolation and identification are not part of an outbreak investigation, or the definition of biofilm is unclear. Because L. monocytogenes is known to colonize surfaces, we suggest that contamination patterns may be studied in the context of how biofilm formation is influenced by the environment within food processing facilities. In this review, direct and indirect epidemiological and phenotypic evidence of lineage-related biofilm formation capacity to specific ecological niches will be discussed. A critical view on the development of the biofilm concept, focused on the practical implications, strengths, and weaknesses of the current definitions also is discussed. The idea that biofilm formation may be an alternative surrogate for microbial fitness is proposed. Furthermore, current research on the influence of environmental factors on biofilm formation is discussed.

  3. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed Central

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-01-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents. Images PMID:2543277

  4. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-03-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents.

  5. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium.

    PubMed

    Almohamad, Sam; Somarajan, Sudha R; Singh, Kavindra V; Nallapareddy, Sreedhar R; Murray, Barbara E

    2014-04-01

    Enterococcus faecium, a major cause of nosocomial infections, is often isolated from conditions where biofilm is considered to be important in the establishment of infections. We investigated biofilm formation among E. faecium isolates from diverse sources and found that the occurrence and amount of biofilm formation were significantly greater in clinical isolates than fecal isolates from community volunteers. We also found that the presence of the empfm (E. faecium pilus) operon was associated with the amount of biofilm formation. Furthermore, we analyzed the possible association between the distribution of 16 putative virulence genes and the occurrence of biofilm production. Even though the prevalence of these virulence genes was significantly higher in clinical isolates, we did not observe any correlation with the occurrence of biofilm formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  7. γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni

    PubMed Central

    Barnes, If H.A.; Bagnall, Mary C.; Browning, Darren D.; Thompson, Stuart A.; Manning, Georgina; Newell, Diane G.

    2009-01-01

    The contribution of γ-glutamyl transpeptidase (GGT) to Campylobacter jejuni virulence and colonization of the avian gut has been investigated. The presence of the ggt gene in C. jejuni strains directly correlated with the expression of GGT activity as measured by cleavage and transfer of the γ-glutamyl moiety. Inactivation of the monocistronic ggt gene in C. jejuni strain 81116 resulted in isogenic mutants with undetectable GGT activity; nevertheless, these mutants grew normally in vitro. However, the mutants had increased motility, a 5.4-fold higher invasion efficiency into INT407 cells in vitro and increased resistance to hydrogen peroxide stress. Moreover, the apoptosis-inducing activity of the ggt mutant was significantly lower than that of the parental strain. In vivo studies showed that, although GGT activity was not required for initial colonization of 1-day-old chicks, the enzyme was required for persistant colonization of the avian gut. PMID:17600669

  8. Detection of gyrA mutation among clinical isolates of Campylobacter jejuni isolated in Egypt by MAMA-PCR.

    PubMed

    Said, Mayar M; El-Mohamady, Hanan; El-Beih, Fawkia M; Rockabrand, David M; Ismail, Tharwat F; Monteville, Marshall R; Ahmed, Salwa F; Klena, John D; Salama, Mohamed S

    2010-10-04

    Campylobacter spp are the major cause of enteritis in humans and more than 90% of reported infections are caused by Campylobacter jejuni. Fluoroquinolones such as ciprofloxacin are the antibiotics of choice for treatment. An increase in the frequency of ciprofloxacin-resistant Campylobacter has been reported globally due to a single base mutation (C-257 to T) in codon 86 of the quinolone resistance determining region (QRDR) of the gyrA gene altering the amino acid sequence from threonine at position 86 to isoleucine (Thr-86 to Ile). Campylobacter spp (n = 118) were selected from a collection of Egyptian isolates spanning 1998 to 2005. The presence of C. jejuni gyrA gene was confirmed in each isolate by a PCR assay amplifying 368 bp portion of the gyrA gene. C to T alteration was detected by the mismatch amplification mutation assay MAMA PCR. The MIC of nalidixic acid (NA) and ciprofloxacin (CIP) was determined by E-test. C. jejuni gyrA gene was detected in 100 of the Campylobacter spp studied; the other 18 isolates were found to be Campylobacter coli by lpxA PCR. The mutation was detected in 89 C. jejuni resistant isolates with MIC values (NA; 8 - >256 μg/ml) and (CIP; 4 - >32 μg/ml). The other 11 sensitive C. jejuni isolates with MIC values (NA; 0.38 - 3 µg/ml) and (CIP; 0.03 - 0.125 µg/ml) were not amplified by the MAMA primers. There was 100% congruence with MAMA PCR, MIC results and gyrA gene sequence analysis. In Egypt the main mechanism for resistance to fluoroquinolones is an alteration in the gyrA QRDR. MAMA PCR provides an economical and rapid means for screening fluoroquinolone resistance.

  9. A simple 2D biofilm model yields a variety of morphological features.

    PubMed

    Hermanowicz, S W

    2001-01-01

    A two-dimensional biofilm model was developed based on the concept of cellular automata. Three simple, generic processes were included in the model: cell growth, internal and external mass transport and cell detachment (erosion). The model generated a diverse range of biofilm morphologies (from dense layers to open, mushroom-like forms) similar to those observed in real biofilm systems. Bulk nutrient concentration and external mass transfer resistance had a large influence on the biofilm structure.

  10. Development of an aptamer-ampicillin conjugate for treating biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijuan, Cheng; Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208; Xing, Yan

    Biofilm formation involves the development of extracellular matrix and initially depends on adherence and tropism by flagellar movement. With the widespread development of antibiotic resistance and tolerance of biofilms, there is a growing need for novel anti-infective strategies. No currently approved medications specifically target biofilms. Aptamers are single-stranded nucleic acid molecules that may bind to their targets with high affinity and affect the target functions. We developed a bifunctional conjugate by linking an aptamer targeting bacterial flagella with ampicillin. We investigated its influence on biofilm prevention and dissolution by ultraviolet–visible spectrophotometry, inverted microscopy, and atomic force microscopy. This conjugate hadmore » distinctive antibacterial activity. Notably, the conjugate was more active than either component, and thus had a synergistic effect against biofilms.« less

  11. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets

    PubMed Central

    ANDRUCIOLI, Marcela Cristina Damião; FARIA, Gisele; NELSON-FILHO, Paulo; ROMANO, Fábio Lourenço; MATSUMOTO, Mírian Aiko Nakane

    2017-01-01

    Abstract Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material. PMID:28403360

  12. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets.

    PubMed

    Andrucioli, Marcela Cristina Damião; Faria, Gisele; Nelson-Filho, Paulo; Romano, Fábio Lourenço; Matsumoto, Mírian Aiko Nakane

    2017-01-01

    Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material.

  13. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis

    PubMed Central

    Techaruvichit, Punnida; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2015-01-01

    Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni. PMID:26025899

  14. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    PubMed Central

    Serrano-Fujarte, Isela; Reyna-López, Georgina Elena; Martínez-Gámez, Ma. Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient. PMID:25705688

  15. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    PubMed

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  16. Analysis of the activity and regulon of the two-component regulatory system encoded by Cjj1484 and Cjj1483 of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...

  17. The civRT operon is important for Campylobacter jejuni strain 81-176 host cell interactions through regulation of the formate dehydrogenase operon

    USDA-ARS?s Scientific Manuscript database

    C. jejuni colonizes the intestinal mucosa, and the severity of disease in different strains is correlated with host cell interaction and invasion. A microarray screen to identify genes differentially regulated during C. jejuni interaction with tissue culture cells revealed the up-regulation of a two...

  18. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand

    PubMed Central

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-01-01

    Abstract A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST, and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. We applied molecular epidemiology and population genetics to obtain insights in to the population structure, host-species relationships, gene flow and

  19. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Background: Campylobacter jejuni clone SA recently emerged as the predominant cause of sheep abortion in the U.S. and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the path...

  20. Unravelling the core microbiome of biofilms in cooling tower systems.

    PubMed

    Di Gregorio, L; Tandoi, V; Congestri, R; Rossetti, S; Di Pippo, F

    2017-11-01

    In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.

  1. Static biofilm removal around ultrasonic tips in vitro.

    PubMed

    Thurnheer, Thomas; Rohrer, Elodie; Belibasakis, Georgios N; Attin, Thomas; Schmidlin, Patrick R

    2014-09-01

    This study aims to investigate the biofilm removal capacity of two ultrasonic tips under standardized conditions using a multi-species biofilm model. Six-species biofilms were grown on hydroxyapatite discs for 64.5 h and were treated for 15 s with a standardized load of 40 g with a piezoelectric or magnetostrictive device. Tips were applied either with the tip end or with the side facing downwards. Detached bacteria were determined in the supernatant and colony-forming units (CFUs) counted after 72 h of incubation. Untreated specimens served as controls. Moreover, the biofilms remaining on the hydroxyapatite surface after treatment were stained using the Live/Dead stain, and the pattern of their detachment was assessed by confocal laser scanning microscopy (CLSM). As compared to the untreated control, it was found that only a side application of the magnetostrictive device was able to remove efficiently the biofilm. In contrast, its tip application as well as both applications of the piezoelectric device removed significantly less bacteria from the biofilm structure. These findings were corroborated by CLSM observation. Both ultrasonic tips under investigations led to bacterial detachment, but the action mode as well as the tip configuration and adaptation appeared to be influenced by the biofilm removal effectiveness. Biofilm removal remains a main goal of ultrasonic debridement. This should be reflected in respective laboratory investigations. The presented combination of methods applied on a multi-species biofilm model in vitro allows the evaluation of the effectiveness of different ultrasonic scaler applications.

  2. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    The influence of flow velocity (FV) on the heat transfer process in tubes made from AISI 316L stainless steel in a heat exchanger-condenser cooled by seawater was evaluated based on the characteristics of the resulting biofilm that adhered to the internal surface of the tubes at velocities of 1, 1.2, 1.6, and 3 m s(-1). The results demonstrated that at a higher FV, despite being more compact and consistent, the biofilm was thinner with a lower concentration of solids, and smoother, which favoured the heat transfer process within the equipment. However, higher velocities increase the initial cost of the refrigerating water-pumping equipment and its energy consumption cost to compensate for the greater pressure drops produced in the tube. The velocity of 1.6 m s(-1) represented the equilibrium between the advantages and disadvantages of the variables analysed for the test conditions in this study.

  3. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.

    PubMed

    Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D

    2017-03-01

    The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

  4. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    PubMed Central

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  5. Structural Analysis of Biofilm Formation by Rapidly and Slowly Growing Nontuberculous Mycobacteria▿

    PubMed Central

    Williams, Margaret M.; Yakrus, Mitchell A.; Arduino, Matthew J.; Cooksey, Robert C.; Crane, Christina B.; Banerjee, Shailen N.; Hilborn, Elizabeth D.; Donlan, Rodney M.

    2009-01-01

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae, and M. fortuitum, implicated in health care-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understand factors that influence growth in their environmental source, clinical RGM and slowly growing MAC isolates were grown as biofilm in a laboratory batch system. High and low nutrient levels were compared, as well as stainless steel and polycarbonate surfaces. Biofilm growth was measured after 72 h of incubation by enumeration of bacteria from disrupted biofilms and by direct quantitative image analysis of biofilm microcolony structure. RGM biofilm development was influenced more by nutrient level than by substrate material, though both affected biofilm growth for most of the isolates tested. Microcolony structure revealed that RGM develop several different biofilm structures under high-nutrient growth conditions, including pillars of various shapes (M. abscessus and M. fortuitum) and extensive cording (M. abscessus and M. chelonae). Although it is a slowly growing species in the laboratory, a clinical isolate of M. avium developed more culturable biofilm in potable water in 72 h than any of the 10 RGM examined. This indicates that M. avium is better adapted for growth in potable water systems than in laboratory incubation conditions and suggests some advantage that MAC has over RGM in low-nutrient environments. PMID:19201956

  6. The ecological significance of biofilm formation by plant-associated bacteria.

    PubMed

    Morris, Cindy E; Monier, Jean-Michel

    2003-01-01

    Bacteria associated with plants have been observed frequently to form assemblages referred to as aggregates, microcolonies, symplasmata, or biofilms on leaves and on root surfaces and within intercellular spaces of plant tissues. In a wide range of habitats, biofilms are purported to be microniches of conditions markedly different from those of the ambient environment and drive microbial cells to effect functions not possible alone or outside of biofilms. This review constructs a portrait of how biofilms associated with leaves, roots and within intercellular spaces influence the ecology of the bacteria they harbor and the relationship of bacteria with plants. We also consider how biofilms may enhance airborne dissemination, ubiquity and diversification of plant-associated bacteria and may influence strategies for biological control of plant disease and for assuring food safety. Trapped by a nexus, coordinates uncertain Ever expanding or contracting Cannibalistic and scavenging sorties Excavations through signs of past alliances Consensus signals sound revelry Then time warped by viscosity Genomes showing codependence A virtual microbial beach party With no curfew and no time-out A few estranged cells seeking exit options, Looking for another menagerie. David Sands, Montana State University, Bozeman, February 2003

  7. Binational outbreak of Guillain-Barré syndrome associated with Campylobacter jejuni infection, Mexico and USA, 2011.

    PubMed

    Jackson, B R; Zegarra, J Alomía; López-Gatell, H; Sejvar, J; Arzate, F; Waterman, S; Núñez, A Sánchez; López, B; Weiss, J; Cruz, R Quintero; Murrieta, D Y López; Luna-Gierke, R; Heiman, K; Vieira, A R; Fitzgerald, C; Kwan, P; Zárate-Bermúdez, M; Talkington, D; Hill, V R; Mahon, B

    2014-05-01

    In June 2011, a cluster of suspected cases of Guillain-Barré syndrome (GBS), which can follow Campylobacter jejuni infection, was identified in San Luis Río Colorado (SLRC), Sonora, Mexico and Yuma County, Arizona, USA. An outbreak investigation identified 26 patients (18 from Sonora, eight from Arizona) with onset of GBS 4 May-21 July 2011, exceeding the expected number of cases (n = 1-2). Twenty-one (81%) patients reported antecedent diarrhoea, and 61% of 18 patients tested were seropositive for C. jejuni IgM antibodies. In a case-control study matched on age group, sex, ethnicity, and neighbourhood of residence, all Arizona GBS patients travelled to SLRC during the exposure period vs. 45% of matched controls (matched odds ratio 8·1, 95% confidence interval 1·5-∞). Exposure information and an environmental assessment suggested that GBS cases resulted from a large outbreak of C. jejuni infection from inadequately disinfected tap water in SLRC. Binational collaboration was essential in investigating this cross-border GBS outbreak, the first in mainland North America since 1976.

  8. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism.

    PubMed

    Grabowska, Anna D; Wandel, Michał P; Łasica, Anna M; Nesteruk, Monika; Roszczenko, Paula; Wyszyńska, Agnieszka; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta K

    2011-07-25

    Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows

  9. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces.

    PubMed

    Pande, Vivek V; McWhorter, Andrea R; Chousalkar, Kapil K

    2016-08-01

    This study examined the eggshell biofilm forming ability of Salmonella enterica isolates recovered from egg farms. Multicellular behaviour and biofilm production were examined at 22 and 37°C by Congo red morphology and the crystal violet staining assay. The results indicated that the biofilm forming behaviour of Salmonella isolates was dependent on temperature and associated with serovars. Significantly greater biofilm production was observed at 22°C compared with 37°C. The number of viable biofilm cells attached to eggshells after incubation for 48 h at 22°C was significantly influenced by serovar. Scanning electron microscopic examination revealed firm attachment of bacterial cells to the eggshell surface. The relative expression of csgD and adrA gene was significantly higher in eggshell biofilm cells of S. Mbandaka and S. Oranienburg. These findings demonstrate that Salmonella isolates are capable of forming biofilm on the eggshell surface and that this behaviour is influenced by temperature and serovar.

  10. Biofilm formation of Francisella noatunensis subsp. orientalis

    USGS Publications Warehouse

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T.; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  11. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-ranking of 403 representativ...

  12. Genome-Wide Identification of Host-Segregating Epidemiological Markers for Source Attribution in Campylobacter jejuni

    PubMed Central

    Thépault, Amandine; Méric, Guillaume; Rivoal, Katell; Pascoe, Ben; Mageiros, Leonardos; Touzain, Fabrice; Rose, Valérie; Béven, Véronique; Chemaly, Marianne

    2017-01-01

    ABSTRACT Campylobacter is among the most common worldwide causes of bacterial gastroenteritis. This organism is part of the commensal microbiota of numerous host species, including livestock, and these animals constitute potential sources of human infection. Molecular typing approaches, especially multilocus sequence typing (MLST), have been used to attribute the source of human campylobacteriosis by quantifying the relative abundance of alleles at seven MLST loci among isolates from animal reservoirs and human infection, implicating chicken as a major infection source. The increasing availability of bacterial genomes provides data on allelic variation at loci across the genome, providing the potential to improve the discriminatory power of data for source attribution. Here we present a source attribution approach based on the identification of novel epidemiological markers among a reference pan-genome list of 1,810 genes identified by gene-by-gene comparison of 884 genomes of Campylobacter jejuni isolates from animal reservoirs, the environment, and clinical cases. Fifteen loci involved in metabolic activities, protein modification, signal transduction, and stress response or coding for hypothetical proteins were selected as host-segregating markers and used to attribute the source of 42 French and 281 United Kingdom clinical C. jejuni isolates. Consistent with previous studies of British campylobacteriosis, analyses performed using STRUCTURE software attributed 56.8% of British clinical cases to chicken, emphasizing the importance of this host reservoir as an infection source in the United Kingdom. However, among French clinical isolates, approximately equal proportions of isolates were attributed to chicken and ruminant reservoirs, suggesting possible differences in the relative importance of animal host reservoirs and indicating a benefit for further national-scale attribution modeling to account for differences in production, behavior, and food consumption

  13. Rotation Disk Process to Assess the Influence of Metals and Voltage on the Growth of Biofilm

    PubMed Central

    Barry, Dana M.; McGrath, Paul B.

    2016-01-01

    Biofilms consist of not only bacteria but also extracellular polymer substrates (EPS). They are groups of microorganisms that adhere to each other on a surface, especially as a result of exposure to water and bacteria. They can pose health risks to humans as they grow in hospital settings that include medical supplies and devices. In a previous study, the researchers discovered that bacteria/biofilm grew well on wetted external latex, male catheters. These results concerned the investigators and encouraged them to find ways for prohibiting the growth of bacteria/biofilm on the male catheters (which are made of natural rubber). They carried out a new study to assess the influence of metals and voltage for the growth of bacteria on these latex samples. For this purpose, a unique Rotation Disk Reactor was used to accelerate biofilm formation on external male catheter samples. This setup included a dip tank containing water and a rotating wheel with the attached latex samples (some of which had single electrodes while others had paired electrodes with applied voltage). The process allowed the samples to become wetted and also exposed them to microorganisms in the ambient air during each revolution of the wheel. The results (as viewed from SEM images) showed that when compared to the control sample, the presence of metals (brass, stainless steel, and silver) was generally effective in preventing bacterial growth. Also the use of voltage (9.5 volt battery) essentially eliminated the appearance of rod shaped bacteria in some of the samples. It can be concluded that the presence of metals significantly reduced bacterial growth on latex and the application of voltage was able to essentially eliminate bacteria, providing appropriate electrode combinations were used. PMID:28773689

  14. [Outbreak of gastroenteritis caused by Campylobacter jejuni transmitted through drinking water].

    PubMed

    Godoy, Pere; Artigues, Antoni; Nuín, Carmen; Aramburu, Jesús; Pérez, Montse; Domínguez, Angela; Salleras, Lluís

    2002-11-23

    The aim of this study was to conduct a clinical-epidemiological and microbiological investigation into an outbreak of waterborne disease caused by Campylobacter jejuni due to the consumption of drinking water. A historical cohort study was carried out among 237 residents of Torres de Segre (Lleida, Spain) who were selected using a systematic sample. We conducted a telephone interview about water consumption, symptoms and the onset of disease. We investigated samples of drinking water and stools from 14 patients. The risk associated with each water source was assessed by applying relative risk (RR) analysis at 95% confidence (CI) intervals. The overall attack rate was 18.3% (43/237). The symptoms were: diarrhoea, 93.0% (18/43); abdominal pain, 80.9% (34/42); nausea; 56,1% (23/41); vomits, 42.9% (18/42), and fever, 11.9% (5/42). Only 5.8% of patients contact with his physician. The consumption of drinking water was statistically associated with the disease (RR = 3.0; 95% CI, 1.7-5.3), while the consumption of bottled water (RR = 0.6; 95% CI 0.3-1.0) and water from other villages (RR = 0.3; 95% CI, 0.1-1.1) were a protection factor. The day of outbreak notification we did not detect any residual chlorine in the drinking water: it was qualified as no potable and we isolated Campylobacter jejuni in 8 samples stools. This research highlights the potential importance of waterborne outbreaks of gastroenteritis due to Campylobacter jejuni transmitted through untreated drinking water and suggests to need systematic controls over drinking water and the proper register of their results.

  15. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    NASA Astrophysics Data System (ADS)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  16. Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age

    PubMed Central

    Vinueza-Burgos, Christian; Wautier, Magali; Martiny, Delphine; Cisneros, Marco; Van Damme, Inge; De Zutter, Lieven

    2017-01-01

    Abstract Thermotolerant Campylobacter spp. are a major cause of foodborne gastrointestinal infections worldwide. The linkage of human campylobacteriosis and poultry has been widely described. In this study we aimed to investigate the prevalence, antimicrobial resistance and genetic diversity of C. coli and C. jejuni in broilers from Ecuador. Caecal content from 379 randomly selected broiler batches originating from 115 farms were collected from 6 slaughterhouses located in the province of Pichincha during 1 year. Microbiological isolation was performed by direct plating on mCCDA agar. Identification of Campylobacter species was done by PCR. Minimum inhibitory concentration (MIC) values for gentamicin, ciprofloxacin, nalidixic acid, tetracycline, streptomycin, and erythromycin were obtained. Genetic variation was assessed by RFLP-flaA typing and Multilocus Sequence Typing (MLST) of selected isolates. Prevalence at batch level was 64.1%. Of the positive batches 68.7% were positive for C. coli, 18.9% for C. jejuni, and 12.4% for C. coli and C. jejuni. Resistance rates above 67% were shown for tetracycline, ciprofloxacin, and nalidixic acid. The resistance pattern tetracycline, ciprofloxin, and nalidixic acid was the dominant one in both Campylobacter species. RFLP-flaA typing analysis showed that C. coli and C. jejuni strains belonged to 38 and 26 profiles respectively. On the other hand MLST typing revealed that C. coli except one strain belonged to CC-828, while C. jejuni except 2 strains belonged to 12 assigned clonal complexes (CCs). Furthermore 4 new sequence types (STs) for both species were described, whereby 2 new STs for C. coli were based on new allele sequences. Further research is necessary to estimate the impact of the slaughter of Campylobacter positive broiler batches on the contamination level of carcasses in slaughterhouses and at retail in Ecuador. PMID:28339716

  17. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    PubMed

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly.

  18. Characterisation by multilocus sequence and porA and flaA typing of Campylobacter jejuni isolated from samples of dog faeces collected in one city in New Zealand.

    PubMed

    Mohan, V; Stevenson, M A; Marshall, J C; French, N P

    2017-07-01

    To investigate the prevalence of Campylobacter spp. and C. jejuni in dog faecal material collected from dog walkways in the city of Palmerston North, New Zealand, and to characterise the C. jejuni isolates by multilocus sequence typing (MLST) and porA and flaA antigen gene typing. A total of 355 fresh samples of dogs faeces were collected from bins provided for the disposal of dog faeces in 10 walkways in Palmerston North, New Zealand, between August 2008-July 2009. Presumptive Campylobacter colonies, cultured on modified charcoal cefoperazone deoxycholate plates, were screened for genus Campylobacter and C. jejuni by PCR. The C. jejuni isolates were subsequently characterised by MLST and porA and flaA typing, and C. jejuni sequence types (ST) were assigned. Of the 355 samples collected, 72 (20 (95% CI=16-25)%) were positive for Campylobacter spp. and 22 (6 (95% CI=4-9)%) were positive for C. jejuni. Of the 22 C. jejuni isolates, 19 were fully typed by MLST. Ten isolates were assigned to the clonal complex ST-45 and three to ST-52. The allelic combinations of ST-45/flaA 21/porA 44 (n=3), ST-45/flaA 22/porA 53 (n=3) and ST-52/ flaA 57/porA 905 (n=3) were most frequent. The successful isolation of C. jejuni from canine faecal samples collected from faecal bins provides evidence that Campylobacter spp. may survive outside the host for at least several hours despite requiring fastidious growth conditions in culture. The results show that dogs carry C. jejuni genotypes (ST-45, ST-50, ST-52 and ST-696) that have been reported in human clinical cases. Although these results do not provide any evidence either for the direction of infection or for dogs being a potential risk factor for human campylobacteriosis, dog owners are advised to practice good hygiene with respect to their pets to reduce potential exposure to infection.

  19. Phenotypic and genotypic characterization of biofilm formation in Staphylococcus haemolyticus.

    PubMed

    Barros, Elaine M; Lemos, Moara; Souto-Padrón, Thais; Giambiagi-deMarval, Marcia

    2015-06-01

    Staphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to produce biofilm has contributed to its emergence as a nosocomial pathogen. In this study, some growth conditions were tested to determine their influence on biofilm formation. Brain-heart infusion (BHI) broth containing glucose was used to screen 64 clinical strains. A strong biofilm producer strain showed cells surrounded by a thick layer of extracellular matrix. The presence of atlE, fbp, bap, and icaA genes was analyzed. We concluded that S. haemolyticus biofilm production can be increased with cells grown in BHI, and highlighted that it could be an ica-independent process.

  20. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation

    PubMed Central

    Hibbing, Michael E.; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M.

    2015-01-01

    ABSTRACT Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability

  1. Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms

    PubMed Central

    Webster, Nicole S.; Smith, Luke D.; Heyward, Andrew J.; Watts, Joy E. M.; Webb, Richard I.; Blackall, Linda L.; Negri, Andrew P.

    2004-01-01

    Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no

  2. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    PubMed

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  3. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    PubMed

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  4. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  5. Introduction to the IWA task group on biofilm modeling.

    PubMed

    Noguera, D R; Morgenroth, E

    2004-01-01

    An International Water Association (IWA) Task Group on Biofilm Modeling was created with the purpose of comparatively evaluating different biofilm modeling approaches. The task group developed three benchmark problems for this comparison, and used a diversity of modeling techniques that included analytical, pseudo-analytical, and numerical solutions to the biofilm problems. Models in one, two, and three dimensional domains were also compared. The first benchmark problem (BM1) described a monospecies biofilm growing in a completely mixed reactor environment and had the purpose of comparing the ability of the models to predict substrate fluxes and concentrations for a biofilm system of fixed total biomass and fixed biomass density. The second problem (BM2) represented a situation in which substrate mass transport by convection was influenced by the hydrodynamic conditions of the liquid in contact with the biofilm. The third problem (BM3) was designed to compare the ability of the models to simulate multispecies and multisubstrate biofilms. These three benchmark problems allowed identification of the specific advantages and disadvantages of each modeling approach. A detailed presentation of the comparative analyses for each problem is provided elsewhere in these proceedings.

  6. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  7. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A short history of microbial biofilms and biofilm infections.

    PubMed

    Høiby, Niels

    2017-04-01

    The observation of aggregated microbes surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is old since both Leeuwenhoek and Pasteur have described the phenomenon. In environmental and technical microbiology, biofilms, 80-90 years ago, were already shown to be important for biofouling on submerged surfaces, for example, ships. The concept of biofilm infections and their importance in medicine was, however, initiated in the early 1970s by the observation of heaps of Pseudomonas aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by J. W. Costerton. During the following decades, the number of published biofilm articles and methods for studying biofilms increased rapidly and it was shown that adhering and nonadhering biofilm infections are widespread in medicine. The medical importance of biofilm infections is now generally accepted and guidelines for prophylaxis, diagnosis, and treatment have been published. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Draft Genome Sequences of Three Multiantibiotic-Resistant Campylobacter jejuni Strains (2865, 2868, and 2871) Isolated from Poultry at Retail Outlets in Malaysia

    PubMed Central

    Teh, Amy Huei Teen; Lee, Sui Mae

    2016-01-01

    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here. PMID:27151799

  10. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    PubMed

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  11. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are

  12. Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223-Cj1222) of Campylobacter jejuni is important for the colonization of chickens. Here w...

  13. Biofilm effect on flow structure over a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook Smith, Gregory; Christensen, Kenneth

    2017-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction. Funded by UK Natural Environment Research Council.

  14. Biofilm Effect on Flow Structure over a Permeable Bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2017-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  15. Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses.

    PubMed

    Torresi, Elena; Polesel, Fabio; Bester, Kai; Christensson, Magnus; Smets, Barth F; Trapp, Stefan; Andersen, Henrik R; Plósz, Benedek Gy

    2017-10-15

    Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 μm) using targeted batch experiments (initial concentration = 1 μg L -1 , for X-ray contrast media 15 μg L -1 ) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient K d,eq (L g -1 ). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient K d,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). K d,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between K d,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that

  16. Fluid dynamic effects on staphylococci bacteria biofilms

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Bayles, Kenneth; Endres, Jennifer; Wei, Timothy

    2016-11-01

    Staphylococcus aureus bacteria are able to form biofilms and distinctive tower structures that facilitate their ability to tolerate treatment and to spread within the human body. The formation of towers, which break off, get carried downstream and serve to initiate biofilms in other parts of the body are of particular interest here. It is known that flow conditions play a role in the development, dispersion and propagation of biofilms in general. The influence of flow on tower formation, however, is not at all understood. This work is focused on the effect of applied shear on tower development. The hypothesis being examined is that tower structures form within a specific range of shear stresses and that there is an as yet ill defined fluid dynamic phenomenon that occurs hours before a tower forms. In this study, a range of shear stresses is examined that brackets 0.6 dynes/cm2, the nominal shear stress where towers seem most likely to form. This talk will include µPTV measurements and cell density data indicating variations in flow and biofilm evolution as a function of the applied shear. Causal relations between flow and biofilm development will be discussed.

  17. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers.

    PubMed

    van Bunnik, Bram A D; Hagenaars, Thomas J; Bolder, Nico M; Nodelijk, Gonnie; de Jong, Mart C M

    2012-07-25

    Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious "sender" excretes the agent, after which (2) the agent is transported via some route to a susceptible "receiver", and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side.

  18. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers

    PubMed Central

    2012-01-01

    Background Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious “sender” excretes the agent, after which (2) the agent is transported via some route to a susceptible “receiver”, and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. Results In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. Conclusions The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side. PMID:22831274

  19. Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage.

    PubMed

    Bhaduri, Saumya; Cottrell, Bryan

    2004-12-01

    Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4 degrees C, freezing at -20 degrees C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and -20 degrees C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry.

  20. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks.

    PubMed

    Oloketuyi, Sandra F; Khan, Fazlurrahman

    2017-09-01

    There is an increasing trend in the food industry on the Listeria monocytogenes biofilm formation and inhibition. This is attributed to its easy survival on contact surfaces, resistance to disinfectants or antibiotics and growth under the stringent condition used for food processing and preservation thereby leading to food contamination products by direct or indirect exposure. Though, there is a lack of conclusive evidences about the mechanism of biofilm formation, in this review, the concept of biofilm formation and various chemical, physical, and green technology approaches to prevent or control the biofilm formed is discussed. State-of-the-art approaches ranging from the application of natural to synthetic molecules with high effectiveness and non-toxicity targeted at the different steps of biofilm formation could positively influence the biofilm inhibition in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of Amphibian Antimicrobial Peptides and Short Lipopeptides on Bacterial Biofilms Formed on Contact Lenses

    PubMed Central

    Maciejewska, Magdalena; Bauer, Marta; Neubauer, Damian; Kamysz, Wojciech; Dawgul, Malgorzata

    2016-01-01

    The widespread use of contact lenses is associated with several complications, including ocular biofilm-related infections. They are very difficult to manage with standard antimicrobial therapies, because bacterial growth in a biofilm is associated with an increased antibiotic resistance. The principal aim of this study was to evaluate the efficacy of antimicrobial peptides (AMPs) in eradication of bacterial biofilms formed on commercially available contact lenses. AMPs were synthesized according to Fmoc/tBu chemistry using the solid-phase method. Minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of the compounds were determined. Anti-biofilm activity of the antimicrobial peptides determined at different temperatures (25 °C and 37 °C) were compared with the effectiveness of commercially available contact lens solutions. All of the tested compounds exhibited stronger anti-biofilm properties as compared to those of the tested lens solutions. The strongest activity of AMPs was noticed against Gram-positive strains at a temperature of 25 °C. Conclusions: The results of our experiments encourage us toward further studies on AMPs and their potential application in the prophylaxis of contact lens-related eye infections. PMID:28773992

  2. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    PubMed

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (p<0.05) prevent biofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  3. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S [Revere, MA; Lee, Shun [Arlington, VA; Doukas, Apostolos G [Belmont, MA

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  4. Gene expression profiling of chicken cecal tonsils and ileum following oral exposure to soluble and PLGA-encapsulated CpG ODN, and lysate of Campylobacter jejuni.

    PubMed

    Taha-Abdelaziz, Khaled; Alkie, Tamiru Negash; Hodgins, Douglas C; Yitbarek, Alexander; Shojadoost, Bahram; Sharif, Shayan

    2017-12-01

    Campylobacter jejuni (C. jejuni) is a leading bacterial cause of food-borne illness in humans. Contaminated chicken meat is an important source of infection for humans. Chickens are not clinically affected by colonization, and immune responses following natural infection have limited effects on bacterial load in the gut. Induction of intestinal immune responses may possibly lead to a breakdown of the commensal relationship of chickens with Campylobacter. We have recently shown that soluble and poly D, L-lactic-co-glycolic acid (PLGA)-encapsulated CpG oligodeoxynucleotide (ODN) as well as C. jejuni lysate, are effective in reducing the intestinal burden of C. jejuni in chickens; however, the mechanisms behind this protection have yet to be determined. The present study was undertaken to investigate the mechanisms of host responses conferred by these treatments. Chickens were treated orally with soluble CpG ODN, or PLGA-encapsulated CpG ODN, or C. jejuni lysate, and expression of cytokines and antimicrobial peptides was evaluated in cecal tonsils and ileum using quantitative RT-PCR. Oral administration of soluble CpG ODN upregulated the expression of interferon (IFN)-γ, interleukin (IL)-1β, CXCLi2, transforming growth factor (TGF)-β4/1, IL-10 and IL-13, while treatment with PLGA-encapsulated CpG ODN upregulated the expression of IL-1β, CXCLi2, TGF-β4/1, IL-13, avian β-defensin (AvBD) 1, AvBD2 and cathelicidin 3 (CATHL-3). C. jejuni lysate upregulated the expression of IFN-γ, IL-1β, TGF-β4/1, IL-13, AvBD1, and CATHL-3. In conclusion, induction of cytokine and antimicrobial peptides expression in intestinal microenvironments may provide a means of reducing C. jejuni colonization in broiler chickens, a key step in reducing the incidence of campylobacteriosis in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.

    PubMed

    Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng

    2017-01-01

    The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter , which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

  6. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  7. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  8. Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-03-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  9. Molecular epidemiology of Campylobacter jejuni infection in Israel-a nationwide study.

    PubMed

    Weinberger, M; Moran-Gilad, J; Rokney, A; Davidov, Y; Agmon, V; Peretz, C; Valinsky, L

    2016-12-01

    The incidence of Campylobacter infection in Israel, particularly among children <2 years of age, has risen over the last decade and became one of the highest among industrialized countries. This study explored the molecular epidemiology of Campylobacter jejuni in Israel over a decade (2003-2012) using multilocus sequence typing (MLST) combined with demographic metadata. Representative clinical isolates (438) from a large national repository together with selected veterinary isolates (74) were subject to MLST. The distribution of age groups, ethnicity and clinical source across various genotypes was evaluated using Poisson modelling. The 512 studied isolates were assigned 126 distinct sequence types (STs) (18.8% novel STs) grouped into 21 clonal complexes (CCs). Most human, poultry and bovine STs clustered together in the leading CCs. Three dominant STs (ST21, ST6608, ST4766) were detected only since 2006. Patients infected with the leading CCs were similarly distributed along densely populated areas. The frequency of blood isolates was higher in patients infected with CC353 (relative rate (RR)=2.0, 95% CI 1.03-3.9, adjusted p value (adj.p) 0.047) and CC42 (RR=4.4, 95% CI 1.7-11.6, adj.p 0.018) and lower with CC257 (RR=0.3, 95% CI 0.1-0.9, adj. p 0.047). The distribution of age groups and ethnicity also varied across the leading CCs. In conclusion, C. jejuni isolates in a national sample appeared highly diverse with a high proportion of new STs. Phylogenic analysis was compatible with poultry and cattle as possible food sources of clinical infection. Demographic characteristics of the infected patients coupled with strain invasiveness across different genotypes revealed a complex epidemiology of C. jejuni transmission in Israel. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter spp. are the second leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of nearly $2 billion per year. Most human illness associated with campylobacteriosis is due to infection by C. jejuni and chickens are recognized as a reservoir, which could le...

  11. The complete genome sequences of 65 Campylobacter jejuni and C. coli strains

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni (Cj) and C. coli (Cc) are genetically highly diverse based on various molecular methods including MLST, microarray-based comparisons and the whole genome sequences of a few strains. Cj and Cc diversity is also exhibited by variable capsular polysaccharides (CPS) that are the maj...

  12. Analysis of evolutionary patterns of genes in campylobacter jejuni and C. coli

    USDA-ARS?s Scientific Manuscript database

    Background: In order to investigate the population genetics structure of thermophilic Campylobacter spp., we extracted a set of 1029 core gene families (CGF) from 25 sequenced genomes of C. jejuni, C. coli and C. lari. Based on these CGFs we employed different approaches to reveal the evolutionary ...

  13. Genetic diversity and clonal characteristics of ciprofloxacin-resistant Campylobacter jejuni isolated from Chilean patients with gastroenteritis.

    PubMed

    Collado, Luis; Muñoz, Nataly; Porte, Lorena; Ochoa, Sofía; Varela, Carmen; Muñoz, Ivo

    2018-03-01

    Campylobacter jejuni is a major cause of acute gastroenteritis worldwide. However, it has also been associated with other diseases such as bacteremia and with several post-infection sequelae. Although campylobacteriosis is usually a self-limited infection, antibiotics are indicated for severe and chronic conditions. Unfortunately, several industrialised nations have reported a substantial increase in antibiotic resistance of C. jejuni. However, there is still a lack of knowledge about the epidemiology of resistance developed by this pathogen in the developing world. For this reason, our objective was to determine the resistance of clinical C. jejuni strains to ciprofloxacin and erythromycin in Chile and their associated genotypes. Fifty C. jejuni isolates recovered from fecal samples of people with acute gastroenteritis, in central and southern Chile between 2006 and 2015, were analysed. Resistance to erythromycin and ciprofloxacin was assessed by disk diffusion and agar dilution methods. Furthermore, these strains were genotyped by Multilocus Sequence Typing (MLST). Only one of the isolates was resistant to erythromycin. However, 48% of them were resistant to ciprofloxacin. The minimal inhibitory concentration of these ciprofloxacin-resistant isolates was in the range between 4 and 32 μg/ml. Moreover, MLST analyses showed that most ciprofloxacin-resistant strains were grouped into three dominant clonal complexes (ST-21, ST-48 and ST-353), while the unique strain resistant to both antibiotics belonged to the ST-45 complex. Our results evidence a high ciprofloxacin resistance and suggest that there is a dissemination of resistant clonal lineages responsible for cases of campylobacteriosis in Chile. Further studies should elucidate the origin of these resistant genotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Biophysics of biofilm infection.

    PubMed

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Biophysics of Biofilm Infection

    PubMed Central

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could: 1) allow prevailing hydrodynamic shear to remove biofilm, 2) increase the efficacy of designed interventions for removing biofilms, 3) enable phagocytic engulfment of softened biofilm aggregates, and 4) improve phagocyte mobility and access to biofilm. PMID:24376149

  16. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro

    USDA-ARS?s Scientific Manuscript database

    Strategies are sought to reduce intestinal colonization of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry, chestnut tannin extracts, and conden...

  17. Development of a loop-mediated isothermal amplification method for rapid campylobacter jejuni detection

    USDA-ARS?s Scientific Manuscript database

    Introduction: Campylobacter jejuni is the leading foodborne pathogen that causes human bacterial gastroenteritis worldwide. Poultry products are regarded as a major source for human infection. Early, rapid detection of this microorganism in poultry products is necessary for contamination control ...

  18. Draft Genome Sequences of Three Multiantibiotic-Resistant Campylobacter jejuni Strains (2865, 2868, and 2871) Isolated from Poultry at Retail Outlets in Malaysia.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-05-05

    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here. Copyright © 2016 Teh et al.

  19. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Efficacy of Peracetic acid and Zinc in reducing Campylobacter jejuni on chicken skin

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterial foodborne disease in humans worldwide, largely associated with the consumption of contaminated poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe status antimicrobia...

  1. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model.

    PubMed

    Rodríguez-Sevilla, Graciela; García-Coca, Marta; Romera-García, David; Aguilera-Correa, John Jairo; Mahíllo-Fernández, Ignacio; Esteban, Jaime; Pérez-Jorge, Concepción

    2018-04-01

    Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Absence of Nucleotide-Oligomerization-Domain-2 Is Associated with Less Distinct Disease in Campylobacter jejuni Infected Secondary Abiotic IL-10 Deficient Mice.

    PubMed

    Heimesaat, Markus M; Grundmann, Ursula; Alutis, Marie E; Fischer, André; Bereswill, Stefan

    2017-01-01

    Human Campylobacter jejuni -infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10 -/- (Nod2 -/- IL-10 -/- ) mice and IL-10 -/- counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81-176 infection, Nod2 mRNA was down-regulated in the colon of secondary abiotic IL-10 -/- and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and systemic translocation properties of C. jejuni . Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni -infection of both Nod2 -/- IL-10 -/- and IL-10 -/- mice, whereas expression levels were lower in infected, but also naive Nod2 -/- IL-10 -/- mice as compared to respective IL-10 -/- controls. Remarkably, C. jejuni -infected Nod2 -/- IL-10 -/- mice were less compromised than IL-10 -/- counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2 -/- IL-10 -/- as compared to IL-10 -/- mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2 -/- IL-10 -/- as compared to IL10 -/- counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels were up-regulated, IL

  3. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  4. Response of Muddy Sediments and Benthic Diatom-based Biofilms to Repeated Erosion Events

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.; Fagherazzi, S.

    2016-02-01

    Benthic biofilms, microbes aggregated within a matrix of Extracellular Polymeric Substances (EPS), are commonly found in shallow coastal areas and intertidal environments. Biofilms have the potential to stabilize sediments, hence reducing erosion and possibly mitigating land loss. The purpose of this study is to determine how repeated flow events that rework the bed affect biofilm growth and its ability to stabilize cohesive sediments. Natural mud devoid of grazers was used to create placed beds in four annular flumes; biofilms were allowed to grow on the sediment surface. Each flume was eroded at different time intervals (1 or 12 days) to allow for varied levels of biofilm growth and adjustment following erosion. In addition, experiments with abiotic mud were performed by adding bleach to the tank. Each erosion test consisted of step-wise increases in flow that were used to measured erodibility. In the experiments where the bed was eroded every day both the abiotic and biotic flumes exhibited a decrease in erodibility with time, likely due to consolidation, but the decrease in erodibility was greater in the flume with a biofilm. Specifically the presence of biofilm reduced bed erosion at low shear stresses ( 0.1 Pa). We attribute this progressive decrease in erodibility to the accumulation of EPS over time: even though the biofilm was eroded during each erosion event, the EPS was retained within the flume, mixed with the eroded sediment and eventually settled. Less frequent erosion allowed the growth of a stronger biofilm that decreased bed erosion at higher shear stresses ( 0.4 Pa). We conclude that the time between destructive flow events influences the ability of biofilms to stabilize sediments. This influence will likely be affected by biofilm growth conditions such as light, temperature, nutrients, salinity, and the microbial community.

  5. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    PubMed

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  6. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size

    PubMed Central

    Reimche, Jennifer L.; Kirse, Daniel J.; Whigham, Amy S.; Swords, W. Edward

    2016-01-01

    Abstract The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist. PMID:27956464

  7. Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated From Broiler Carcasses in Belgium.

    PubMed

    Elhadidy, Mohamed; Miller, William G; Arguello, Hector; Álvarez-Ordóñez, Avelino; Duarte, Alexandra; Dierick, Katelijne; Botteldoorn, Nadine

    2018-01-01

    Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries. This study characterized the clonal population structure, antimicrobial resistance profiles and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations (MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O) gene. These resistance determinants were observed in most but not all resistant isolates. Regarding resistance to erythromycin, different mutations occurred in diverse genetic loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the intergenic region between cmeR and cmeABC . Interestingly, and contrary to previous reports, the A2075G transition mutation in the 23S rRNA gene was only found in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular typing by multilocus sequence typing revealed that two sequence types (ST-824 and ST-2274) were associated to quinolones resistance by the presence of mutations in the gene gyrA ( p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR multidrug resistant phenotype. In contrast, clonal complex CC-45 was linked to increased susceptibility to the tested antibiotics. The results obtained in this study provide better understanding of the phenotypic and the molecular basis of antibiotic

  8. Neutrophil extracellular trap formation in supragingival biofilms.

    PubMed

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  9. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates.

    PubMed

    Dargahi, Mahdi; Hosseinidoust, Zeinab; Tufenkji, Nathalie; Omanovic, Sasha

    2014-05-01

    Electrochemical removal of biofilms deserves attention because of its ease of use and environmentally friendly nature. We investigated the influence of electrode potential and treatment time on the removal of a 10-day old Pseudomonas aeruginosa biofilm formed on stainless steel 316 L substrates. At electrode potentials more positive than -1.5 V vs. Ag/AgCl, lower removal rates were observed and only partial removal of the biofilm was achieved during a 1-min time interval. Electrostatic repulsion between the film and electrode surface is believed to drive biofilm detachment under these conditions. However, when the biofilm-coated substrates were treated at potentials negative of -1.5 V vs. Ag/AgCl, complete removal of a biofilm was achieved within seconds. Under these conditions, vigorous evolution of hydrogen gas is believed to be responsible for the film removal, mechanically detaching the bacteria and extracellular polymeric matrix from the substrate. Stainless steel substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal. High removal efficiencies were maintained throughout this process suggesting the potential of the proposed technology for application on conductive surfaces in various industrial settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.

    PubMed

    Lopes, F A; Morin, P; Oliveira, R; Melo, L F

    2006-11-01

    To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.

  11. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments

    PubMed Central

    Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  12. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  13. NMR investigation of water diffusion in different biofilm structures.

    PubMed

    Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald

    2017-12-01

    Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.

  14. Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides

    PubMed Central

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick

    2014-01-01

    ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883

  15. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm.

    PubMed

    Lee, Kai Wei Kelvin; Periasamy, Saravanan; Mukherjee, Manisha; Xie, Chao; Kjelleberg, Staffan; Rice, Scott A

    2014-04-01

    Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1-2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.

  16. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.

    PubMed

    Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P

    2017-07-01

    Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fungal Biofilms: In vivo models for discovery of anti-biofilm drugs

    PubMed Central

    Nett, Jeniel E.; Andes, David

    2015-01-01

    SUMMARY During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections, oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to development of new strategies for eradication of fungal biofilm infections. PMID:26397003

  18. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    PubMed

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  19. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand.

    PubMed

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-08-01

    A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST , and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  20. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism

    PubMed Central

    2011-01-01

    Background Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. Results In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. Conclusions The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of

  1. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size.

    PubMed

    Reimche, Jennifer L; Kirse, Daniel J; Whigham, Amy S; Swords, W Edward

    2017-02-01

    The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The RNase R from Campylobacter jejuni Has Unique Features and Is Involved in the First Steps of Infection*

    PubMed Central

    Haddad, Nabila; Matos, Rute G.; Pinto, Teresa; Rannou, Pauline; Cappelier, Jean-Michel; Prévost, Hervé; Arraiano, Cecília M.

    2014-01-01

    Bacterial pathogens must adapt/respond rapidly to changing environmental conditions. Ribonucleases (RNases) can be crucial factors contributing to the fast adaptation of RNA levels to different environmental demands. It has been demonstrated that the exoribonuclease polynucleotide phosphorylase (PNPase) facilitates survival of Campylobacter jejuni in low temperatures and favors swimming, chick colonization, and cell adhesion/invasion. However, little is known about the mechanism of action of other ribonucleases in this microorganism. Members of the RNB family of enzymes have been shown to be involved in virulence of several pathogens. We have searched C. jejuni genome for homologues and found one candidate that displayed properties more similar to RNase R (Cj-RNR). We show here that Cj-RNR is important for the first steps of infection, the adhesion and invasion of C. jejuni to eukaryotic cells. Moreover, Cj-RNR proved to be active in a wide range of conditions. The results obtained lead us to conclude that Cj-RNR has an important role in the biology of this foodborne pathogen. PMID:25100732

  3. Matrix metalloproteinases-2 and -9 in Campylobacter jejuni-induced paralytic neuropathy resembling Guillain-Barré syndrome in chickens.

    PubMed

    Nyati, Kishan Kumar; Prasad, Kashi Nath; Agrawal, Vinita; Husain, Nuzhat

    2017-10-01

    Inflammation in Guillain-Barré syndrome (GBS) is manifested by changes in matrix metalloproteinase (MMP) and pro-inflammatory cytokine expression. We investigated the expression of MMP-2, -9 and TNF-α and correlated it with pathological changes in sciatic nerve tissue from Campylobacter jejuni-induced chicken model for GBS. Campylobacter jejuni and placebo were fed to chickens and assessed for disease symptoms. Sciatic nerves were examined by histopathology and immunohistochemistry. Expressions of MMPs and TNF-α, were determined by real-time PCR, and activities of MMPs by zymography. Diarrhea developed in 73.3% chickens after infection and 60.0% of them developed GBS like neuropathy. Pathology in sciatic nerves showed perinodal and/or patchy demyelination, perivascular focal lymphocytic infiltration and myelin swelling on 10th- 20th post infection day (PID). MMP-2, -9 and TNF-α were up-regulated in progressive phase of the disease. Enhanced MMP-2, -9 and TNF-α production in progressive phase correlated with sciatic nerve pathology in C. jejuni-induced GBS chicken model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cluster Analysis of Campylobacter jejuni Genotypes Isolated from Small and Medium-Sized Mammalian Wildlife and Bovine Livestock from Ontario Farms.

    PubMed

    Viswanathan, M; Pearl, D L; Taboada, E N; Parmley, E J; Mutschall, S K; Jardine, C M

    2017-05-01

    Using data collected from a cross-sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter-specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair-group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two-dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife

  5. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  6. Effect of Infant Formula on Streptococcus Mutans Biofilm Formation.

    PubMed

    Hinds, Laura M; Moser, Elizabeth A S; Eckert, George; Gregory, Richard L

    when compared to the control than lactose and iron. The amount of iron in formula had a significant effect on biofilm formation only when comparing low iron formula to normal iron formula at the highest concentration (1:5). There was no significant difference in biofilm growth when iron was added to the low iron formula. The information obtained expands current knowledge regarding the influence of infant formula on the primary dentition and reinforces the importance of oral hygiene habits once the first tooth erupts.

  7. Key Role of Capsular Polysaccharide in the Induction of Systemic Infection and Abortion by Hypervirulent Campylobacter jejuni

    PubMed Central

    Sahin, Orhan; Terhorst, Samantha A.; Burrough, Eric R.; Shen, Zhangqi; Wu, Zuowei; Dai, Lei; Tang, Yizhi; Plummer, Paul J.; Ji, Ju; Yaeger, Michael J.

    2017-01-01

    ABSTRACT Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni. PMID:28373351

  8. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses.

    PubMed

    Garcia, Keila Carolina de Ornellas Dutka; Corrêa, Isadora Mainieri de Oliveira; Pereira, Larissa Quinto; Silva, Tarcísio Macedo; Mioni, Mateus de Souza Ribeiro; Izidoro, Ana Carolina de Moraes; Bastos, Igor Henrique Vellano; Gonçalves, Guilherme Augusto Marietto; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2017-09-01

    Foodborne diseases represent a major risk to public health worldwide. Pathogenic bacteria can live in the form of biofilm within the food industry, providing a permanent source of contamination. The aim of this study was to evaluate the influence of the types of adhesion surfaces on Salmonella biofilm formation at eight different times, and analyze the action time of a bacteriophage pool on established biofilms. Most of the samples used were classified as weak biofilm producers, with serovars Enteritidis and Heidelberg showing the highest frequency of biofilm formation. Glass and stainless steel surfaces significantly favored biofilm formation at 60 and 36 h of incubation respectively, but the polyvinyl chloride surface did not favor biofilm production, suggesting that the type of material may interfere with production. The bacteriophage pool action period focused on 3 h, but treatment of 9 h on glass surface biofilms was superior to other treatments because it affected the largest number of samples. These results suggests that some surface types and Salmonella serotypes may promote biofilm formation and indicate bacteriophages as an alternative to control biofilms. But further studies are required to prove the effectiveness and safety of bacteriophage therapy as an alternative in the antimicrobial control in the processing plants. © 2017 Poultry Science Association Inc.

  9. Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm

    PubMed Central

    Afrooz, A. R. M. Nabiul; Boehm, Alexandria B.

    2016-01-01

    The presence of microbial contaminants in urban stormwater is a significant concern for public health; however, their removal by traditional stormwater biofilters has been reported as inconsistent and inadequate. Recent work has explored the use of biochar to improve performance of stormwater biofilters under simplified conditions that do not consider potential effects of biofilm development on filter media. The present study investigates the role of biofilm on microbial contaminant removal performance of stormwater biofilters. Pseudomonas aeruginosa biofilms were formed in laboratory-scale sand and biochar-modified sand packed columns, which were then challenged with Escherichia coli laden synthetic stormwater containing natural organic matter. Results suggests that the presence of biofilm influences the removal of E. coli. However, the nature of the influence depends on the specific surface area and the relative hydrophobicity of filter media. The distribution of attached bacteria within the columns indicates that removal by filter media varies along the length of the column: the inlet was the primary removal zone regardless of experimental conditions. Findings from this research inform the design of field-scale biofilters for better and consistent performance in removing microbial contaminants from urban stormwater. PMID:27907127

  10. Mutation in the peb1A Locus of Campylobacter jejuni Reduces Interactions with Epithelial Cells and Intestinal Colonization of Mice

    PubMed Central

    Pei, Zhiheng; Burucoa, Christophe; Grignon, Bernadette; Baqar, Shahida; Huang, Xiao-Zhe; Kopecko, Dennis J.; Bourgeois, A. L.; Fauchere, Jean-Louis; Blaser, Martin J.

    1998-01-01

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea throughout the world. We previously found that PEB1 is a homolog of cluster 3 binding proteins of bacterial ABC transporters and that a C. jejuni adhesin, cell-binding factor 1 (CBF1), if not identical to, contains PEB1. A single protein migrating at approximately 27 to 28 kDa was recognized by anti-CBF1 and anti-PEB1. To determine the role that the operon encoding PEB1 plays in C. jejuni adherence, peb1A, the gene encoding PEB1, was disrupted in strain 81-176 by insertion of a kanamycin resistance gene through homologous recombination. Inactivation of this operon completely abolished expression of CBF1, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. In comparison to the wild-type strain, the mutant strain showed 50- to 100-fold less adherence to and 15-fold less invasion of epithelial cells in culture. Mouse challenge studies showed that the rate and duration of intestinal colonization by the mutant were significantly lower and shorter than with the wild-type strain. In summary, PEB1 is identical to a previously identified cell-binding factor, CBF1, in C. jejuni, and the peb1A locus plays an important role in epithelial cell interactions and in intestinal colonization in a mouse model. PMID:9488379

  11. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    PubMed

    Li, Huabing; Xu, Dake; Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  12. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris

    PubMed Central

    Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry. PMID:26308855

  13. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms

    PubMed Central

    Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated. PMID:28355248

  14. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.

    PubMed

    Jorge, Paula; Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.

  15. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    PubMed

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    PubMed

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-02

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    PubMed

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Genotyping of Campylobacter jejuni from broiler carcasses and slaughterhouse environment by amplified fragment length polymorphism.

    PubMed

    Johnsen, G; Kruse, H; Hofshagen, M

    2006-12-01

    We examined the occurrence and diversity of Campylobacter jejuni on broiler carcasses during slaughter of an infected flock and in the slaughterhouse environment during slaughter and postdisinfection before a new production run. During the slaughter of a known C. jejuni infected broiler flock, samples were taken from broiler carcasses at 7 different stages during the process. Thirty-seven sites in the slaughterhouse environment were sampled both during process and postdisinfection. The samples were analyzed for C. jejuni, and genetic fingerprinting was performed using amplified fragment length polymorphism. All carcass samples were positive. Of the environmental samples collected during slaughter, 89% were positive; 100% of those from the arrival, stunning, scalding, defeathering, and evisceration facilities and 67% of those from the cooling and sorting facilities. Postdisinfection, 41% of the samples were positive; 71% of those from the arrival and stunning area, 60% of those from the scalding and defeathering area, and 20% of those from the evisceration, cooling, and sorting area. The C. jejuni isolates (n = 60) recovered were grouped into 4 different amplified fragment length polymorphism clones with a similarity index of 95% or greater. All isolates obtained from the flock and 94% of the isolates obtained from the environment during slaughtering belonged to clone A, whereas 1 environmental isolate belonged to each of the clones B and C. Isolates from clones A, B, and D were present postdisinfection. Only clone B was detected on flocks slaughtered during the previous week. The high level and continuous presence of Campylobacter in the environment constitutes a risk for transmission to negative carcasses. In Norway, where above 96% of the broiler flocks are Campylobacter-negative, this aspect is of special importance. The ability of Campylobacter to remain in the slaughterhouse environment through washing and disinfection is associated with constructional

  19. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    NASA Astrophysics Data System (ADS)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-10-01

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.

  20. Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.

    PubMed

    Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin

    2015-09-01

    Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.

  1. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE PAGES

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; ...

    2016-10-20

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  2. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  3. Diffusion of antimicrobials in multispecies biofilms evaluated in a new biofilm model.

    PubMed

    van der Waal, S V; de Almeida, J; Krom, B P; de Soet, J J; Crielaard, W

    2017-04-01

    To describe the application of a newly-developed in vitro model in which the diffusion of antimicrobials in oral biofilms can be studied. In a flow chamber consisting of three parallel feeding channels connected with each other by eight perpendicular side channels, multispecies biofilms were grown from saliva of a single donor for 48 h. The dimensions of the side channels were 100 μm × 100 μm × 5130 μm (H × W × L). When one or more side channels were filled with biofilm, the biofilms were stained with fluorescent stains. Then, one side-channel biofilm was selected and treated with phosphate buffered saline, 2% sodium hypochlorite (NaOCl), 17% ethylenediaminetetra-acetic acid (EDTA) or modified salt solution (MSS). Diffusion of the irrigants was observed by acquiring fluorescence images at 10× objective every 15 s for 30 min. It was possible to culture biofilms in the narrow (100 μm) channels. The biofilms varied in phenotype. In this model, no diffusion of NaOCl into the biofilms was seen after its application. Seventeen-percentage EDTA only diffused into the biofilm up to 200 μm in 30 min. MSS did diffuse in the biofilm over a distance of 450 μm within 2 min after a single application. This new model enables the investigation of the diffusion of antimicrobials in biofilms. Other applications to improve our understanding of the characteristics of biofilms are now possible. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism.

    PubMed

    Zhao, L; Ashraf, M A

    2015-12-01

    The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE , fbe , sap , iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE , fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating.

  5. A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.

    PubMed

    Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V

    2018-06-05

    The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.

  6. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  7. Evaluation of Two Multiplex PCR-High-Resolution Melt Curve Analysis Methods for Differentiation of Campylobacter jejuni and Campylobacter coli Intraspecies.

    PubMed

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Raidal, Shane; Ghorashi, Seyed Ali

    2018-03-01

    Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.

  8. Effect of Feed Form and Whole Grain Feeding on Gastrointestinal Weight and the Prevalence of Campylobacter jejuni in Broilers Orally Infected

    PubMed Central

    Gracia, Marta Isabel; Sánchez, Jaime; Millán, Carlos; Casabuena, Óscar; Vesseur, Peter; Martín, Ángel; García-Peña, Francisco Javier; Medel, Pedro

    2016-01-01

    Two independent trials were carried out to evaluate the effect of feed form, whole wheat (WW) and oat hulls (OH) addition on gastrointestinal (GIT) weight and Campylobacter jejuni colonization in orally infected birds. In Trial 1, there were six treatments factorially arranged with two feed forms (mash vs pellets), and three levels of WW from 1-21/22-42d: 0/0, 7.5/15%, 15/30%. Broilers were allocated in cages (3 birds/cage, 12 cages/treatment). In Trial 2, there were three treatments: a mash diet, a mash diet including WW (7.5% from 1–21 and 15% from 22-42d), and a third treatment including also 5%OH. Broilers were allocated in floor pens (1 pen with 30 birds/treatment). At 14d, all broilers in Trial 1 or 3 broilers/pen in Trial 2 were orally challenged with 1.5 x 105 cfu of C. jejuni ST-45 /. In Trial 1, birds fed pelleted diets consumed 13.5% more feed, gained 31% more weight, and presented 12.9% better feed conversion for the whole trial (P<0.05). Pelleting decreased the relative weight of GIT and gizzard and increased the relative weight of proventriculus (P<0.05). Mash diets decreased pH in the gizzard (P<0.05). Inclusion of WW decreased the relative weight of proventriculus, increased gizzard weight, and reduced pH in the gizzard (P<0.05). At 21d of age, mash tended to reduce C. jejuni compared to pellets (7.85 vs 8.27 log10cfu/g; P = 0.091) and WW inclusion at 7.5/15% reduced C. jejuni colonization when compared to lower and higher inclusion (P<0.05). In Trial 2, birds fed T3 (WW+OH) showed 1.38 log10cfu/g less than birds fed Control diet (P<0.05). In conclusion, despite of the clear morphological changes in the GIT derived of FF and WW inclusion, no clear reductions in C. jejuni populations in the ceca were observed. However, WW and OH inclusion to mash diets significantly reduced cecal C. jejuni colonization at 42 days. PMID:27500730

  9. Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization.

    PubMed

    Awad, Wageha A; Smorodchenko, Alina; Hess, Claudia; Aschenbach, Jörg R; Molnár, Andor; Dublecz, Károly; Khayal, Basel; Pohl, Elena E; Hess, Michael

    2015-08-01

    Although a high number of chickens carry Campylobacter jejuni, the mechanistic action of colonization in the intestine is still poorly understood. The current study was therefore designed to investigate the effects of C. jejuni on glucose uptake, amino acids availability in digesta, and intracellular calcium [Ca(2+)]i signaling in the intestines of broiler chickens. For this, we compared: control birds (n = 60) and C. jejuni-infected birds (n = 60; infected orally with 1 × 10(8) CFU of C. jejuni NCTC 12744 at 14 days of age). Our results showed that glucose uptake was reduced due to C. jejuni infection in isolated jejunal, but not in cecal mucosa at 14 days postinfection (dpi). The decrease in intestinal glucose absorption coincided with a decrease in body weight gain during the 2-week post-infectious period. A reduction in the amount of the amino acids (serine, proline, valine, leucine, phenylalanine, arginine, histidine, and lysine) in ileal digesta of the infected birds at 2 and/or 7 dpi was found, indicating that Campylobacter utilizes amino acids as a carbon source for their multiplication. Applying the cell-permeable Ca(2+) indicator Fluo-4 and two-photon microscopy, we revealed that [Ca(2+)]i was increased in the jejunal and cecal mucosa of infected birds. The muscarinic agonist carbachol induced an increase in [Ca(2+)]i in jejunum and cecum mucosa of control chickens, a response absent in the mucosa of infected chickens, demonstrating that the modulation of [Ca(2+)]i by Campylobacter might be involved in facilitating the necessary cytoskeletal rearrangements that occur during the bacterial invasion of epithelial cells. In conclusion, this study demonstrates the multifaceted interactions of C. jejuni with the gastrointestinal mucosa of broiler chickens. For the first time, it could be shown that a Campylobacter infection could interfere with intracellular Ca(2+) signaling and nutrient absorption in the small intestine with consequences on

  10. Discrimination of Major Capsular Types of Campylobacter jejuni by Multiplex PCR

    DTIC Science & Technology

    2011-05-01

    strains of known Pcnnt:r type No. ,,f s1r.1ins with !he following result: %" 11 rimcr set Tl•tat TrUt: pu~illVC: Fat ~~ pus it iw F:.tsc u~gativc Trm...D., B. Kuzniar. B. Shames . L. :\\, Kurjunczyk, and .J, L. Penner. 1992. Variation of the 0 antigen of Campyh•hacter jejuni in viv’’· J. Med

  11. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection.

    PubMed

    Gil, Carmen; Solano, Cristina; Burgui, Saioa; Latasa, Cristina; García, Begoña; Toledo-Arana, Alejandro; Lasa, Iñigo; Valle, Jaione

    2014-03-01

    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.

  12. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    DTIC Science & Technology

    2009-11-01

    absorption coefficients (260nm) of 173,100 M cm–1. Desired stock solutions were freshly prepared with tris- borate ethylenediaminetetraacetic acid (EDTA... McMasters , and Paul M. Pellegrino ARL-TR-5015 November 2009 Approved for public release...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters , and Paul M. Pellegrino Sensors and Electron Devices

  13. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections

    PubMed Central

    Lebeaux, David; Chauhan, Ashwini; Rendueles, Olaya; Beloin, Christophe

    2013-01-01

    The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them. PMID:25437038

  14. Characterization and Reactivity of Broiler Chicken Sera to Selected Recombinant Campylobacter jejuni Chemotactic Proteins

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to c...

  15. Mineral Ecology: Surface Specific Colonization and Geochemical Drivers of Biofilm Accumulation, Composition, and Phylogeny

    PubMed Central

    Jones, Aaron A.; Bennett, Philip C.

    2017-01-01

    This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities. PMID:28400754

  16. Selenium-Dependent Biogenesis of Formate Dehydrogenase in Campylobacter jejuni Is Controlled by the fdhTU Accessory Genes

    PubMed Central

    Shaw, Frances L.; Mulholland, Francis; Le Gall, Gwénaëlle; Porcelli, Ida; Hart, Dave J.; Pearson, Bruce M.

    2012-01-01

    The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C. jejuni, demonstrate that they are involved in selenium-controlled production of FDH, and propose the names fdhT and fdhU, respectively. Insertional inactivation of fdhT or fdhU in C. jejuni resulted in the absence of FdhA and FdhB protein expression, reduced fdhABC RNA levels, the absence of FDH enzyme activity, and the lack of formate utilization, as assessed by 1H nuclear magnetic resonance. The fdhABC genes are transcribed from a single promoter located two genes upstream of fdhA, and the decrease in fdhABC RNA levels in the fdhU mutant is mediated at the posttranscriptional level. FDH activity and the ability to utilize formate were restored by genetic complementation with fdhU and by supplementation of the growth media with selenium dioxide. Disruption of SeC synthesis by inactivation of the selA and selB genes also resulted in the absence of FDH activity, which could not be restored by selenium supplementation. Comparative genomic analysis suggests a link between the presence of selA and fdhTU orthologs and the predicted presence of SeC in FdhA. The fdhTU genes encode accessory proteins required for FDH expression and activity in C. jejuni, possibly by contributing to acquisition or utilization of selenium. PMID:22609917

  17. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    PubMed

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  19. Complete genomic sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) that were isolated from patients with Guillain-Barré Syndrome

    USDA-ARS?s Scientific Manuscript database

    An infection with Campylobacter jejuni subsp. jejuni (Cjj) is a leading cause of foodborne gastroenteritis in humans and also the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the complete genomic sequences of Cjj HS:41 strains RM3196 (233.94) and RM3197 (308...

  20. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism

    PubMed Central

    Zhao, L; Ashraf, MA

    2015-01-01

    ABSTRACT Background: The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. Material and Method: In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE, fbe, sap, iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. Results: The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE, fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. Conclusion: These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating. PMID:27400164

  1. Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development

    PubMed Central

    Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  2. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms.

    PubMed

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller; Rahbek, Carsten; Madsen, Jesper Johannes; Wainø, Michael; Chriél, Mariann; Nordentoft, Steen; Baggesen, Dorte Lau; Madsen, Mogens

    2016-02-03

    Reducing the occurrence of campylobacteriosis is a food safety issue of high priority, as in recent years it has been the most commonly reported zoonosis in the EU. Livestock farms are of particular interest, since cattle, swine and poultry are common reservoirs of Campylobacter spp. The farm environment provides attractive foraging and breeding habitats for some bird species reported to carry thermophilic Campylobacter spp. We investigated the Campylobacter spp. carriage rates in 52 wild bird species present on 12 Danish farms, sampled during a winter and a summer season, in order to study the factors influencing the prevalence in wild birds according to their ecological guild. In total, 1607 individual wild bird cloacal swab samples and 386 livestock manure samples were cultured for Campylobacter spp. according to the Nordic Committee on Food Analysis method NMKL 119. The highest Campylobacter spp. prevalence was seen in 110 out of 178 thrushes (61.8 %), of which the majority were Common Blackbird (Turdus merula), and in 131 out of 616 sparrows (21.3 %), a guild made up of House Sparrow (Passer domesticus) and Eurasian Tree Sparrow (Passer montanus). In general, birds feeding on a diet of animal or mixed animal and vegetable origin, foraging on the ground and vegetation in close proximity to livestock stables were more likely to carry Campylobacter spp. in both summer (P < 0.001) and winter (P < 0.001) than birds foraging further away from the farm or in the air. Age, fat score, gender, and migration range were not found to be associated with Campylobacter spp. carriage. A correlation was found between the prevalence (%) of C. jejuni in wild birds and the proportions (%) of C. jejuni in both manure on cattle farms (R(2) = 0.92) and poultry farms (R(2) = 0.54), and between the prevalence (%) of C. coli in wild birds and the proportions (%) of C. coli in manure on pig farms (R(2) = 0.62). The ecological guild of wild birds influences the prevalence of

  3. A large outbreak of Campylobacter jejuni infection in a university college caused by chicken liver pâté, Australia, 2013.

    PubMed

    Moffatt, C R M; Greig, A; Valcanis, M; Gao, W; Seemann, T; Howden, B P; Kirk, M D

    2016-10-01

    In October 2013, public health authorities were notified of a suspected outbreak of gastroenteritis in students and guests following a catered function at a university residential college. A retrospective cohort study was undertaken to examine whether foods served at the function caused illness. A total of 56 cases of gastroenteritis, including seven laboratory-confirmed cases of Campylobacter jejuni infection, were identified in 235 eligible respondents. Univariate analysis showed a significant association with a chicken liver pâté entrée [relative risk (RR) 3·64, 95% confidence interval (CI) 2·03-6·52, P < 0·001], which retained significance after adjustment for confounding via multivariable analysis (adjusted RR 2·80, 95% CI 1·26-6·19, P = 0·01). C. jejuni and C. coli were also isolated in chicken liver pâté recovered from the college's kitchen. Subsequent whole genome multilocus sequence typing (wgMLST) of clinical and food-derived C. jejuni isolates showed three genetically distinct sequence types (STs) comprising ST528, ST535 (both clinically derived) and ST991 (food derived). The study demonstrates the value of utilizing complementary sources of evidence, including genomic data, to support public health investigations. The use of wgMLST highlights the potential for significant C. jejuni diversity in epidemiologically related human and food isolates recovered during outbreaks linked to poultry liver.

  4. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

    PubMed

    Li, Xiaoning; Kong, Hao; Mout, Rubul; Saha, Krishnendu; Moyano, Daniel F; Robinson, Sandra M; Rana, Subinoy; Zhang, Xinrong; Riley, Margaret A; Rotello, Vincent M

    2014-12-23

    Identification of infectious bacteria responsible for biofilm-associated infections is challenging due to the complex and heterogeneous biofilm matrix. To address this issue and minimize the impact of heterogeneity on biofilm identification, we developed a gold nanoparticle (AuNP)-based multichannel sensor to detect and identify biofilms based on their physicochemical properties. Our results showed that the sensor can discriminate six bacterial biofilms including two composed of uropathogenic bacteria. The capability of the sensor was further demonstrated through discrimination of biofilms in a mixed bacteria/mammalian cell in vitro wound model.

  5. An individual-based model for biofilm formation at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-01

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  6. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    PubMed

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  7. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    PubMed Central

    Stewart, Elizabeth J.; Ganesan, Mahesh; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism. PMID:26272750

  8. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    PubMed

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  9. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    PubMed Central

    Pepe-Ranney, Charles; Hall, Edward K.

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  10. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides.

    PubMed

    Pellizzoni, Elena; Ravalico, Fabio; Scaini, Denis; Delneri, Ambra; Rizzo, Roberto; Cescutti, Paola

    2016-02-01

    Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.

  11. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters.

    PubMed

    Favre, Laurie; Ortalo-Magné, Annick; Greff, Stéphane; Pérez, Thierry; Thomas, Olivier P; Martin, Jean-Charles; Culioli, Gérald

    2017-05-05

    Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.

  12. Uranium speciation in biofilms studied by laser fluorescence techniques.

    PubMed

    Arnold, Thuro; Grossmann, Kay; Baumann, Nils

    2010-03-01

    Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.

  13. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    PubMed

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  14. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    PubMed

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  15. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    PubMed

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  16. Biofilm formation by Staphylococcus haemolyticus.

    PubMed

    Fredheim, Elizabeth Gladys Aarag; Klingenberg, Claus; Rohde, Holger; Frankenberger, Stephanie; Gaustad, Peter; Flaegstad, Trond; Sollid, Johanna Ericson

    2009-04-01

    Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm formation. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO(4), proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO(4) caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm formation is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm formation and determination of the biofilm mass also needed to be optimized for S. haemolyticus.

  17. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    PubMed

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    PubMed

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  20. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  1. Plant-derived antimicrobial eugenol modulates C. jejuni proteome and virulence critical for colonization in chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is an important foodborne pathogen that causes severe diarrhea in humans. Chickens act as the reservoir host for Campylobacter, wherein the pathogen colonizes the ceca leading to contaminated poultry products during slaughter. The potential of natural intervention strategies, in...

  2. Functional Analysis of the RdxA and RdxB Nitroreductases of Campylobacter jejuni Reveals that Mutations in rdxA Confer Metronidazole Resistance▿ †

    PubMed Central

    Ribardo, Deborah A.; Bingham-Ramos, Lacey K.; Hendrixson, David R.

    2010-01-01

    Campylobacter jejuni is a leading cause of gastroenteritis in humans and a commensal bacterium of the intestinal tracts of many wild and agriculturally significant animals. We identified and characterized a locus, which we annotated as rdxAB, encoding two nitroreductases. RdxA was found to be responsible for sensitivity to metronidazole (Mtz), a common therapeutic agent for another epsilonproteobacterium, Helicobacter pylori. Multiple, independently derived mutations in rdxA but not rdxB resulted in resistance to Mtz (Mtzr), suggesting that, unlike the case in H. pylori, Mtzr might not be a polygenic trait. Similarly, Mtzr C. jejuni was isolated after both in vitro and in vivo growth in the absence of selection that contained frameshift, point, insertion, or deletion mutations within rdxA, possibly revealing genetic variability of this trait in C. jejuni due to spontaneous DNA replication errors occurring during normal growth of the bacterium. Similar to previous findings with H. pylori RdxA, biochemical analysis of C. jejuni RdxA showed strong oxidase activity, with reduction of Mtz occurring only under anaerobic conditions. RdxB showed similar characteristics but at levels lower than those for RdxA. Genetic analysis confirmed that rdxA and rdxB are cotranscribed and induced during in vivo growth in the chick intestinal tract, but an absence of these genes did not strongly impair C. jejuni for commensal colonization. Further studies indicate that rdxA is a convenient locus for complementation of mutants in cis. Our work contributes to the growing knowledge of determinants contributing to susceptibility to Mtz (Mtzs) and supports previous observations of the fundamental differences in the activities of nitroreductases from epsilonproteobacteria. PMID:20118248

  3. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria.

    PubMed

    Jung, Yong-Gyun; Choi, Jungil; Kim, Soo-Kyoung; Lee, Joon-Hee; Kwon, Sunghoon

    2015-01-01

    A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Effects of biofilm on flow over and through a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook-Smith, Gregory; Christensen, Kenneth

    2016-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the interface of fluids and solids, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of 'suction' and 'ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  5. Effects of biofilm on flow over and through a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2016-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of `suction' and `ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed (Figure 1). Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and accurately control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  6. Biofilms' contribution to organic carbon in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  7. Vesicle formation as a result of interaction between polymorphonuclear neutrophils and Staphylococcus aureus biofilm.

    PubMed

    Chebotar, Igor' V; Konchakova, Evgenia D; Maianskii, Andrey N

    2013-08-01

    Staphylococcus aureus, a major opportunistic pathogen, is a leading cause of biofilm-related infections in clinical practice. Staphylococcal biofilms are highly resistant to antibacterial medicines and immune effector cells. The main result of our work is the discovery of nano-vesicles in the supernatant of the human neutrophil-S. aureus biofilm system. We also found that phospholipase C treatment causes complete destruction of these vesicles. While the addition of proteinase K led to a partial structural disorganization of the vesicles, DNase treatment did not influence the vesicle structure. These observations allowed us to conclude that phospholipids and proteins play a structure-forming role in the formation of these nano-vesicles. The vesicles demonstrated anti-biofilm activities when tested against Staphylococcus epidermidis (strains 178M and 328/5) biofilms, but were ineffective for S. aureus (strains 5983/2, 5663 and 18A) biofilms.

  8. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.

    PubMed

    Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom

    2013-12-01

    Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation.

    PubMed

    Kouzel, Nadzeya; Oldewurtel, Enno R; Maier, Berenike

    2015-07-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of

  10. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    PubMed Central

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  11. The extent of surface contamination of retailed chickens with Campylobacter jejuni serogroups.

    PubMed Central

    Hood, A. M.; Pearson, A. D.; Shahamat, M.

    1988-01-01

    Eighty-two chickens purchased at 11 retailers (supplied by 12 wholesalers) in the south of England were cultured for Campylobacter jejuni by a method involving total immersion. The organism was isolated from 22 (48%) of 46 fresh birds, 12 of 12 uneviscerated (New York dressed) birds, but only 1 of 24 frozen birds. Viable counts of up to 1.5 x 10(6)/chicken were obtained from fresh birds and 2.4 x 10(7)/chicken from uneviscerated birds. Surface swabbing of breasts, thighs, wings and vents of fresh chickens showed that contamination was generally distributed over the carcasses. Salmonellas were found in only 2 of 69 of the fresh chickens. The prevalence of several Lior and Penner C. jejuni serogroups was similar in chickens and sporadic human cases of enteritis. Penner serogroup 4 (mostly of Lior serogroup 1) was found in 26% of human isolates and 14% of chicken isolates. The rising incidence of campylobacter enteritis during the last 6 years could well be a reflection of the increasing proportion of fresh chickens consumed over that period (32% higher in 1986 than in 1981). PMID:3338503

  12. Biofilm density and detection of biofilm-producing genes in methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Szczuka, Ewa; Urbańska, Katarzyna; Pietryka, Marta; Kaznowski, Adam

    2013-01-01

    Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96 % strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23 % of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.

  13. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    PubMed

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  14. Antimicrobial Tolerance in Biofilms

    PubMed Central

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  15. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    PubMed Central

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  16. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.

    PubMed

    Pammi, Mohan; Liang, Rong; Hicks, John; Mistretta, Toni-Ann; Versalovic, James

    2013-11-14

    Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.

  17. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine.

    PubMed

    Perez-Jorge, Concepcion; Arenas, Maria-Angeles; Conde, Ana; Hernández-Lopez, Juan-Manuel; de Damborenea, Juan-Jose; Fisher, Steve; Hunt, Alessandra M Agostinho; Esteban, Jaime; James, Garth

    2017-01-01

    Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.

  18. Microbial competition in porous environments can select against rapid biofilm growth

    PubMed Central

    Coyte, Katharine Z.; Tabuteau, Hervé; Gaffney, Eamonn A.; Durham, William M.

    2017-01-01

    Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow–biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. PMID:28007984

  19. A carvacrol wash and/or a chitosan based coating reduced Campylobacter jejuni on chicken wingettes

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of foodborne disease in humans, largely associated with consumption of contaminated poultry and poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe (GRAS) status plant derived com...

  20. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...