Sample records for jejuni subspeciation multiplex

  1. Multiplex PCR-based identification of Streptococcus canis, Streptococcus zooepidemicus and Streptococcus dysgalactiae subspecies from dogs.

    PubMed

    Moriconi, M; Acke, E; Petrelli, D; Preziuso, S

    2017-02-01

    Streptococcus canis (S. canis), Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) and Streptococcus dysgalactiae subspecies (S. dysgalactiae subspecies) are β-haemolytic Gram positive bacteria infecting animals and humans. S. canis and S. zooepidemicus are considered as two of the major zoonotic species of Streptococcus, while more research is needed on S. dysgalactiae subspecies bacteria. In this work, a multiplex-PCR protocol was tested on strains and clinical samples to detect S. canis, S. dysgalactiae subspecies and S. equi subspecies bacteria in dogs. All strains were correctly identified as S. canis, S. equi subspecies or S. dysgalactiae subspecies by the multiplex-PCR. The main Streptococcus species isolated from symptomatic dogs were confirmed S. canis. The multiplex-PCR protocol described is a rapid, accurate and efficient method for identifying S. canis, S. equi subspecies and S. dysgalactiae subspecies in dogs and could be used for diagnostic purposes and for epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A Cytolethal Distending Toxin Gene-Based Multiplex PCR Assay for Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari.

    PubMed

    Kamei, Kazumasa; Kawabata, Hiroki; Asakura, Masahiro; Samosornsuk, Worada; Hinenoya, Atsushi; Nakagawa, Shinsaku; Yamasaki, Shinji

    2016-05-20

    In this study, we devised a multiplex PCR assay based on the gene of cytolethal distending toxin (cdt) B subunit to simultaneously detect and discriminate Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari. Species-specific PCR products were successfully obtained from all 38 C. jejuni, 12 C. fetus, 39 C. coli, 22 C. upsaliensis, 24 C. hyointestinalis, and 7 C. lari strains tested. On the other hand, no specific PCR products were obtained from other campylobacters and bacterial species tested (41 strains in total). The proposed multiplex PCR assay is a valuable tool for detection and descrimination of 6 major Campylobacter species, that are associated with gastrointestinal diseases in humans.

  3. Updated Campylobacter jejuni capsule PCR multiplex typing system and its application to clinical isolates from south and southeast Asia

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as gold standard for C. jejuni typing. A preliminary multiple...

  4. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis

    PubMed Central

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H.; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A.

    2015-01-01

    Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates. PMID:26394042

  5. Evaluation of Two Multiplex PCR-High-Resolution Melt Curve Analysis Methods for Differentiation of Campylobacter jejuni and Campylobacter coli Intraspecies.

    PubMed

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Raidal, Shane; Ghorashi, Seyed Ali

    2018-03-01

    Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.

  6. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni

    PubMed Central

    Parker, Craig T; Miller, William G; Horn, Sharon T; Lastovica, Albert J

    2007-01-01

    Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd. PMID:17535437

  7. Isolation, identification and differentiation of Campylobacter spp. using multiplex PCR assay from goats in Khartoum State, Sudan.

    PubMed

    Elbrissi, Atif; Sabeil, Y A; Khalifa, Khalda A; Enan, Khalid; Khair, Osama M; El Hussein, A M

    2017-03-01

    The aim of this study was to identify and characterize thermophilic Campylobacter species in faecal samples from goats in Khartoum State, Sudan, by application of multiplex polymerase chain reaction. Campylobacteriosis is a zoonotic disease of global concern, and the organisms can be transmitted to human via food, water and through contact with farm animals and pets. There are five clinically related Campylobacter species: Campylobacter jejuni (C. jejuni). Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and Campylobacter fetus. Conventional cultural methods to diagnose campylobacteriosis are tedious and time consuming. Wide ranges of genes have been reported to be used for PCR-based identification of Campylobacter spp. We used a multiplex PCR assay to simultaneously detect genes from the major five clinically significant Campylobacter spp. The genes selected were hipO (hippuricase) and 23S rRNA from glyA (serine hydroxymethyl transferase) from each of C. jejuni. C. coli, C. lari, and C. upsaliensis; and sapB2 (surface layer protein) from C. fetus subsp. fetus. The assay was used to identify Campylobacter isolates recovered from 336 cultured faecal samples from goats in three localities in Khartoum State. C. coli was the most predominant isolate (234; 69.6%), followed by C. jejuni (19; 5.7%), C. upsaliensis (13; 3.9%), C. fetus subsp. fetus (7; 2.1%) and C. lari (6; 1.8%). Twenty-nine goats showed mixed infection with Campylobacter spp., 21 of which harbored two Campylobacter spp., while eight animals were infected with three species. Ten out of twelve goats that displayed diarrhea harbored C. coli only. C. coli, C. jejuni and C. upsaliensis showed significant variation with localities. The prevalence of C. coli was significantly higher (87; 25.9%) in goats from Omdurman, whereas C. jejuni and C. upsaliensis were significantly higher (11; 3.3%, 9; 2.7%) in goats from Khartoum. The multiplex PCR assay was found to be rapid and easy to perform and had a high sensitivity and specificity for characterizing the isolates, even in mixed cultures. The study demonstrated the significance of goats as reservoirs in the dissemination of Campylobacter spp. which could be considered as potential agent of caprine enteritis and abortion as well as contamination of the wider environment posing serious public health concern in Khartoum State.

  8. Statistical approaches to developing a multiplex immunoassay for determining human exposure to environmental pathogens.

    EPA Science Inventory

    This paper describes the application and method performance parameters of a Luminex xMAP™ bead-based, multiplex immunoassay for measuring specific antibody responses in saliva samples (n=5438) to antigens of six common waterborne pathogens (Campylobacter jejuni, Helicobacter pylo...

  9. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses.

    PubMed

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben

    2012-12-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.

  10. Discrimination of Major Capsular Types of Campylobacter jejuni by Multiplex PCR

    DTIC Science & Technology

    2011-05-01

    strains of known Pcnnt:r type No. ,,f s1r.1ins with !he following result: %" 11 rimcr set Tl•tat TrUt: pu~illVC: Fat ~~ pus it iw F:.tsc u~gativc Trm...D., B. Kuzniar. B. Shames . L. :\\, Kurjunczyk, and .J, L. Penner. 1992. Variation of the 0 antigen of Campyh•hacter jejuni in viv’’· J. Med

  11. Prevalence, antibiogram, and cdt genes of toxigenic Campylobacter jejuni in salad style vegetables (ulam) at farms and retail outlets in Terengganu.

    PubMed

    Khalid, Mohd Ikhsan; Tang, John Yew Huat; Baharuddin, Nabila Huda; Rahman, Nasiha Shakina; Rahimi, Nurul Faizzah; Radu, Son

    2015-01-01

    The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.

  12. Campylobacter jejuni in commercial eggs.

    PubMed

    Fonseca, Belchiolina Beatriz; Beletti, Marcelo Emílio; de Melo, Roberta Torres; Mendonça, Eliane Pereira; Coelho, Letícia Ríspoli; Nalevaiko, Priscila Christen; Rossi, Daise Aparecida

    2014-01-01

    This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile) after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health.

  13. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase

    PubMed Central

    Neal-McKinney, Jason M.; Liu, Kun C.; Jinneman, Karen C.; Wu, Wen-Hsin; Rice, Daniel H.

    2018-01-01

    Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan–Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase (cst) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides. PMID:29615986

  14. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase.

    PubMed

    Neal-McKinney, Jason M; Liu, Kun C; Jinneman, Karen C; Wu, Wen-Hsin; Rice, Daniel H

    2018-01-01

    Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan-Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase ( cst ) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides.

  15. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  16. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States

    PubMed Central

    Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard

    2013-01-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698

  17. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

    PubMed

    Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard

    2013-04-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.

  18. Non-stochastic sampling error in quantal analyses for Campylobacter species on poultry products

    USDA-ARS?s Scientific Manuscript database

    Using primers and fluorescent probes specific for the most common foodborne Campylobacter species (C. jejuni = Cj and C. coli = Cc), we developed a multiplex, most probable number (MPN) assay using quantitative PCR (qPCR) as the determinant for binomial detection: number of p positives out of n = 6 ...

  19. Prevalence and Antimicrobial Resistance of Thermophilic Campylobacter spp. from Cattle Farms in Washington State

    PubMed Central

    Bae, Wonki; Kaya, Katherine N.; Hancock, Dale D.; Call, Douglas R.; Park, Yong Ho; Besser, Thomas E.

    2005-01-01

    The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant. PMID:15640184

  20. The development and application of a multiplex short tandem repeat (STR) system for identifying subspecies, individuals and sex in tigers.

    PubMed

    Zou, Zheng-Ting; Uphyrkina, Olga V; Fomenko, Pavel; Luo, Shu-Jin

    2015-07-01

    Poaching and trans-boundary trafficking of tigers and body parts are threatening the world's last remaining wild tigers. Development of an efficient molecular genetic assay for tracing the origins of confiscated specimens will assist in law enforcement and wildlife forensics for this iconic flagship species. We developed a multiplex genotyping system "tigrisPlex" to simultaneously assess 22 short tandem repeat (STR, or microsatellite) loci and a gender-identifying SRY gene, all amplified in 4 reactions using as little as 1 ng of template DNA. With DNA samples used for between-run calibration, the system generates STR genotypes that are directly compatible with voucher tiger subspecies genetic profiles, hence making it possible to identify subspecies via bi-parentally inherited markers. We applied "tigrisPlex" to 12 confiscated specimens from Russia and identified 6 individuals (3 females and 3 males), each represented by duplicated samples and all designated as Amur tigers (Panthera tigris altaica) with high confidence. This STR multiplex system can serve as an effective and versatile approach for genetic profiling of both wild and captive tigers as well as confiscated tiger products, fulfilling various conservation needs for identifying the origins of tiger samples. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  1. The development and validation of a single SNaPshot multiplex for tiger species and subspecies identification--implications for forensic purposes.

    PubMed

    Kitpipit, Thitika; Tobe, Shanan S; Kitchener, Andrew C; Gill, Peter; Linacre, Adrian

    2012-03-01

    The tiger (Panthera tigris) is currently listed on Appendix I of the Convention on the International Trade in Endangered Species of Wild Fauna and Flora; this affords it the highest level of international protection. To aid in the investigation of alleged illegal trade in tiger body parts and derivatives, molecular approaches have been developed to identify biological material as being of tiger in origin. Some countries also require knowledge of the exact tiger subspecies present in order to prosecute anyone alleged to be trading in tiger products. In this study we aimed to develop and validate a reliable single assay to identify tiger species and subspecies simultaneously; this test is based on identification of single nucleotide polymorphisms (SNPs) within the tiger mitochondrial genome. The mitochondrial DNA sequence from four of the five extant putative tiger subspecies that currently exist in the wild were obtained and combined with DNA sequence data from 492 tiger and 349 other mammalian species available on GenBank. From the sequence data a total of 11 SNP loci were identified as suitable for further analyses. Five SNPs were species-specific for tiger and six amplify one of the tiger subspecies-specific SNPs, three of which were specific to P. t. sumatrae and the other three were specific to P. t. tigris. The multiplex assay was able to reliably identify 15 voucher tiger samples. The sensitivity of the test was 15,000 mitochondrial DNA copies (approximately 0.26 pg), indicating that it will work on trace amounts of tissue, bone or hair samples. This simple test will add to the DNA-based methods currently being used to identify the presence of tiger within mixed samples. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Phenotypic and Genotypic Diversity of Thermophilic Campylobacter spp. in Commercial Turkey Flocks: A Longitudinal Study

    PubMed Central

    Kashoma, Isaac P.; Kumar, Anand; Sanad, Yasser M.; Gebreyes, Wondwossen; Kazwala, Rudovick R.; Garabed, Rebecca

    2014-01-01

    Abstract Poultry are recognized as a main reservoir of Campylobacter spp. However, longitudinal studies investigating the persistence of Campylobacter on commercial meat turkeys are rare. The objectives of this study were to determine the prevalence, antimicrobial susceptibility, and persistence of genotypically related strains of Campylobacter spp. recovered from three commercial turkey farms in Ohio belonging to a single producer. Eight hundred ten samples were collected from birds aged 1 week to slaughter, consisting of 750 fecal droppings and 60 ceca at slaughter. Overall Campylobacter prevalence was 55.9%. Multiplex polymerase chain reaction (PCR) confirmed 72.3% of all isolates as C. coli, 5.3% as C. jejuni, 10.6% as both, and 11.9% as other Campylobacter spp. PCR restriction fragment length polymorphism of the flaA gene subtyping detected 70 types—62 for C. coli and 8 for C. jejuni isolates—with most (80%) of flaA-types constituting farm homogeneous groups. Multilocus sequence typing of 99 selected Campylobacter isolates resulted in 23 sequence types (STs), consisting of 8 STs for C. jejuni and 15 STs for C. coli isolates. Six novel STs—four for C. jejuni and two—for C. coli, were detected. In a subset of isolates (n=98) tested for antimicrobial resistance, the most common resistance was to tetracycline (95%), followed by azithromycin (43%), while 42% and 18% of the isolates were resistant to ciprofloxacin and erythromycin, respectively. All isolates were susceptible to florfenicol. C. coli isolates displayed a higher proportion of resistance than C. jejuni to most antimicrobials. This study highlights the high prevalence, genotypic diversity, and antimicrobial resistance of Campylobacter spp. in commercial turkey from farm to slaughter. PMID:25184688

  3. [Prevalence and antimicrobial behavior of Campylobacter jejuni and Campylobacter coli in children with diarrhea in Loja city, Ecuador].

    PubMed

    Simaluiza, Rosa; Toledo, Zorayda; Fernández, Heriberto

    2018-04-01

    Campylobacter is an important agent of diarrhea in humans. In Ecuador, the information on Campylobacter is scarce and there are not antecedents about antimicrobial susceptibility. To describe Campylobacter prevalence in children with diarrhea and their behavior against five antimicrobials in vitro. We studied 253 children with diarrhea aging 7 months to 9 years who consulted for diarrhea in two hospitals in the city of Loja. Fecal samples were cultured and identification by tests by phenotypic tests and multiplex PCR. Susceptibility to 5 antibiotics was determined by the disc-diffusion method. Campylobacter was found in 16 (6.3%) children, being C. jejuni the most frequent one (5.1%), followed by C. coli (1.2%). All strains were susceptible to gentamicin and ampicillin/clavulanic acid, being found low resistance to ampicillin and erythromycin and high resistance to ciprofloxacin.

  4. Analyses of Xylella whole genome sequences and proposal of Xylella taiwanensis sp. nov.

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative, xylem limited and nutritionally fastidious plant pathogenic bacterium that cause disease in many economically important plants. A single species, fastidiosa, with three subspecies (fastidiosa, multiplex, and pauca) have been described. Most Xylella strains were...

  5. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-10-01

    A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30-33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies 'sandyi' and 'morus' are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.

  6. Isolation and Identification of Campylobacter spp. from Poultry and Poultry By-Products in Tunisia by Conventional Culture Method and Multiplex Real-Time PCR.

    PubMed

    Jribi, Hela; Sellami, Hanen; Mariam, Siala; Smaoui, Salma; Ghorbel, Asma; Hachicha, Salma; Benejat, Lucie; Messadi-Akrout, Feriel; Mégraud, Francis; Gdoura, Radhouane

    2017-10-01

    Thermophilic Campylobacter spp. are one of the primary causes of bacterial human diarrhea. The consumption of poultry meats, by-products, or both is suspected to be a major cause of human campylobacteriosis. The aims of this study were to determine the prevalence of thermophilic Campylobacter spp. in fresh poultry meat and poultry by-products by conventional culture methods and to confirm Campylobacter jejuni and Campylobacter coli isolates by using the multiplex PCR assay. Two hundred fifty fresh poultry samples were collected from a variety of supermarkets and slaughterhouses located in Sfax, Tunisia, including chicken (n =149) and turkey (n =101). The samples were analyzed using conventional microbiological examinations according to the 2006 International Organization for Standardization method (ISO 10272-1) for Campylobacter spp. Concurrently, a real-time PCR was used for identification of C. jejuni and C. coli . Of the 250 samples of poultry meat and poultry by-products, 25.6% (n = 64) were contaminated with Campylobacter spp. The highest prevalence of Campylobacter spp. was found in chicken meat (26.8%) followed by turkey meat (23.7%). Among the different products, poultry breasts showed the highest contamination (36.6%) followed by poultry by-products (30%), poultry wings (28%) and poultry legs (26%) showed the lowest contamination, and no contamination was found on neck skin. Of the 64 thermophilic Campylobacter isolates, C. jejuni (59.7%) was the most frequently isolated species and 10.9% of the isolates were identified as C. coli . All of the 64 Campylobacter isolates identified by the conventional culture methods were further confirmed by PCR. The seasonal peak of Campylobacter spp. contamination was in the warm seasons (spring and summer). The study concluded that high proportions of poultry meat and poultry by-products marketed in Tunisia are contaminated by Campylobacter spp. Furthermore, to ensure food safety, poultry meats must be properly cooked before consuming.

  7. Prevalence of Campylobacter jejuni and Campylobacter coli in captive wildlife species of India

    PubMed Central

    Prince Milton, A. A.; Agarwal, R. K.; Priya, G. B.; Saminathan, M.; Aravind, M.; Reddy, A.; Athira, C. K.; Anjay; Ramees, T. P.; Dhama, K.; Sharma, A. K.; Kumar, A.

    2017-01-01

    Campylobacteriosis is an important zoonotic disease and the prevalence of Campylobacter is largely unknown in the wildlife of India. A total of 370 samples, comprising of 314 fresh faecal samples from apparently healthy captive wild animals and birds, 30 stool swabs from animal care takers and 26 samples of the animals’ food and water were collected from G. B. Pant High Altitude Zoo, Nainital, Kanpur Zoo, Wildlife Park, IVRI and the Post Graduate Research Institute in Animal Sciences (PGRIAS), Chennai, Tamilnadu from August 2014 to May 2015. Samples were processed for cultural isolation, direct PCR and multiplex PCR for species confirmation. To decipher the genetic diversity, the 16S rRNA gene was amplified, sequenced and analyzed. Based on isolation, the overall occurrence rate of Campylobacter spp. was 0.8% (3/370), being 2.94% (3/102) for captive wild birds. Three Campylobacter jejuni were isolated from silver pheasants, lady amherest pheasants and saras cranes. Direct PCR assay showed the overall occurrence rate of Campylobacter spp. to be 4.77% (15/315), being 1.58% (2/126) for captive wild ruminants, 5.81% (5/86) for non-ruminants and 7.84% (8/102) for birds. All the isolates were identified as C. jejuni. PMID:29163646

  8. Role of Poultry Meat in Sporadic Campylobacter Infections in Bosnia and Herzegovina: Laboratory-based Study

    PubMed Central

    Uzunović-Kamberović, Selma; Zorman, Tina; Heyndrickx, Marc; Smole Možina, Sonja

    2007-01-01

    Aim To investigate genetic diversity and specificity of Campylobacter jejuni and Campylobacter coli strains isolated from humans, retail poultry meat, and live farm chickens in Zenica-Doboj Canton, Bosnia and Herzegovina, and identify the role of poultry meat in sporadic Campylobacter infections. Methods We determined the type of Campylobacter species using standard microbiological methods and multiplex polymerase chain reaction (PCR), and performed pulsed field gel-electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP) typing of the flaA gene to investigate genetic diversity among the isolates. Results We isolated C jejuni and C coli from 75 (5.2%) of 1453 samples of consecutive outpatients with sporadic diarrhea; from 51 (34.7%) of 147 samples of poultry meat; and from 15 out of 23 farm chicken samples. The proportion of C coli found among human (30.1%), poultry meat (56.9%), and farm chicken isolates (53.3%), was greater than the proportion of C jejuni. Fourteen and 24 PFGE genotypes were identified among 20 C coli and 37 C jejuni isolates, respectively. Identical PFGE genotypes were found in two cases of human and poultry meat isolates and two cases of poultry meat and farm chicken isolates. Conclusion Only a minority of human Campylobacter isolates shared identical PFGE type with poultry meat isolates. Although poultry is the source of a certain number of human infections, there may be other more important sources. Further research is required to identify the environmental reservoir of Campylobacter spp responsible for causing human disease and the reason for the high prevalence of C coli human infections in this region. PMID:18074419

  9. Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States.

    PubMed

    Yuan, Xiaoli; Morano, Lisa; Bromley, Robin; Spring-Pearson, Senanu; Stouthamer, Richard; Nunney, Leonard

    2010-06-01

    Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.

  10. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae.

    PubMed

    Settypalli, Tirumala Bharani Kumar; Lamien, Charles Euloge; Spergser, Joachim; Lelenta, Mamadou; Wade, Abel; Gelaye, Esayas; Loitsch, Angelika; Minoungou, Germaine; Thiaucourt, Francois; Diallo, Adama

    2016-01-01

    Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity.

  11. Detection of sorbitol-negative and sorbitol-positive Shiga toxin-producing Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, and Salmonella spp. in dairy farm environmental samples.

    PubMed

    Murinda, S E; Nguyen, L T; Nam, H M; Almeida, R A; Headrick, S J; Oliver, S P

    2004-01-01

    Six visits were conducted to four dairy farms to collect swab, liquid, and solid dairy farm environmental samples (165 to 180/farm; 15 sample types). The objective of the study was to determine on-farm sources of Campylobacter jejuni, Salmonella spp., Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC), which might serve as reservoirs for transmission of pathogens. Samples were analyzed using mostly U.S. Food and Drug Administration's Bacteriological Analytical Manual protocols; however, Salmonella spp., L. monocytogenes and STEC were co-enriched in universal pre-enrichment broth. Campylobacter jejuni were enriched in Bolton broth containing Bolton broth supplement. Pathogens were isolated on agar media, typed biochemically, and confirmed using multiplex polymerase chain reaction protocols. Campylobacter jejuni, Salmonella spp., L. monocytogenes, Sorbitol-negative (SN)-STEC O157:H7, and sorbitol-positive (SP)-STEC, respectively, were isolated from 5.06%, 3.76%, 6.51%, 0.72%, and 17.3% of samples evaluated. Whereas other pathogens were isolated from all four farms, SN-STEC O157:H7 were isolated from only two farms. Diverse serotypes of SP-STEC including O157:H7, O26:H11, O111, and O103 were isolated. None of the five pathogen groups studied were isolated from bulk tank milk (BTM). Most pathogens (44.2%) were isolated directly from fecal samples. Bovine fecal samples, lagoon water, bedding, bird droppings, and rat intestinal contents constituted areas of major concern on dairy farms. Although in-line milk filters from two farms tested positive for Salmonella or L. monocytogenes, none of the pathogens were detected in the corresponding BTM samples. Good manure management practices, including control of feral animals, are critical in assuring dairy farm hygiene. Identification of on-farm pathogen reservoirs could aid with implementation of farm-specific pathogen reduction programs.

  12. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay

    PubMed Central

    Augustine, Swinburne A. J.; Simmons, Kaneatra J.; Eason, Tarsha N.; Curioso, Clarissa L.; Griffin, Shannon M.; Wade, Timothy J.; Dufour, Alfred; Fout, G. Shay; Grimm, Ann C.; Oshima, Kevin H.; Sams, Elizabeth A.; See, Mary Jean; Wymer, Larry J.

    2017-01-01

    Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations. PMID:28507984

  13. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR.

    PubMed

    Alberer, Martin; Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus

    2017-01-01

    Purpose . Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods . Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results . The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni , 100% for E . histolytica , 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion . Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens.

  14. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  15. Intersubspecific Recombination in Xylella fastidiosa Strains Native to the United States: Infection of Novel Hosts Associated with an Unsuccessful Invasion

    PubMed Central

    Hopkins, Donald L.; Morano, Lisa D.; Russell, Stephanie E.; Stouthamer, Richard

    2014-01-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry. PMID:24296499

  16. Large-Scale Intersubspecific Recombination in the Plant-Pathogenic Bacterium Xylella fastidiosa Is Associated with the Host Shift to Mulberry

    PubMed Central

    Schuenzel, Erin L.; Scally, Mark; Bromley, Robin E.; Stouthamer, Richard

    2014-01-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry. PMID:24610840

  17. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry.

    PubMed

    Nunney, Leonard; Schuenzel, Erin L; Scally, Mark; Bromley, Robin E; Stouthamer, Richard

    2014-05-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.

  18. Intersubspecific recombination in Xylella fastidiosa Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion.

    PubMed

    Nunney, Leonard; Hopkins, Donald L; Morano, Lisa D; Russell, Stephanie E; Stouthamer, Richard

    2014-02-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.

  19. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR

    PubMed Central

    Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus

    2017-01-01

    Purpose. Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods. Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results. The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni, 100% for E. histolytica, 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion. Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens. PMID:28408937

  20. Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations.

    PubMed

    Bonnet, A; Thévenon, S; Maudet, F; Maillard, J C

    2002-10-01

    Thirty bovine and eight ovine microsatellite primer pairs were tested on four tropical deer species: Eld's and Swamp deer (highly threatened) and Rusa and Vietnamese Sika deer (economically important). Thirty markers gave an amplified product in all four species (78.9%). The number of polymorphic microsatellite markers varied among the species from 14 in Eld's deer (47%) to 20 in Swamp deer (67%). Among them, 11 microsatellite loci were multiplexed in three polymerase chain reactions (PCRs) and labelled with three different fluorochromes that can be loaded in one gel-lane. To test the efficiency of the multiplex, primary genetic studies (mean number of alleles, expected heterozygosities and Fis values) were carried out on four deer populations. Parentage exclusion probability and probability of identity were computed and discussed on a Swamp deer population. These multiplexes PCRs were also tested on several other deer species and subspecies. The aim of this study is to establish a tool useful for genetic studies of population structure and diversity in four tropical deer species which with few modifications can be applied to other species of the genus Cervus.

  1. Genome-Wide Analysis Provides Evidence on the Genetic Relatedness of the Emergent Xylella fastidiosa Genotype in Italy to Isolates from Central America.

    PubMed

    Giampetruzzi, Annalisa; Saponari, Maria; Loconsole, Giuliana; Boscia, Donato; Savino, Vito Nicola; Almeida, Rodrigo P P; Zicca, Stefania; Landa, Blanca B; Chacón-Diaz, Carlos; Saldarelli, Pasquale

    2017-07-01

    Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp. pauca.

  2. Fully integrated multiplexed lab-on-a-card assay for enteric pathogens

    NASA Astrophysics Data System (ADS)

    Weigl, B. H.; Gerdes, J.; Tarr, P.; Yager, P.; Dillman, L.; Peck, R.; Ramachandran, S.; Lemba, M.; Kokoris, M.; Nabavi, M.; Battrell, F.; Hoekstra, D.; Klein, E. J.; Denno, D. M.

    2006-01-01

    Under this NIH-funded project, we are developing a lab-on-a-card platform to identify enteric bacterial pathogens in patients presenting with acute diarrhea, with special reference to infections that might be encountered in developing countries. Component functions that are integrated on this platform include on-chip immunocapture of live or whole pathogens, multiplexed nucleic acid amplification and on-chip detection, sample processing to support direct use of clinical specimens, and dry reagent storage and handling. All microfluidic functions are contained on the lab card. This new diagnostic test will be able to rapidly identify and differentiate Shigella dysenteriae serotype 1, Shigella toxin-producing Escherichia coli, E. coli 0157, Campylobacter jejuni, and Salmonella and Shigella species. This presentation will report on progress to date on sample and bacteria processing methodologies, identification and validation of capture antibodies and strategy for organism immunocapture, identification and validation of specific polymerase chain reaction (PCR) primer sequences for over 200 clinical isolates of enteric pathogens, and implementation of on-chip nucleic acid extraction for a subset of those pathogens.

  3. Prevalence and Antibiotic Resistance against Tetracycline in Campylobacter jejuni and C. coli in Cattle and Beef Meat from Selangor, Malaysia.

    PubMed

    Premarathne, Jayasekara M K J K; Anuar, Aimi S; Thung, Tze Young; Satharasinghe, Dilan A; Jambari, Nuzul Noorahya; Abdul-Mutalib, Noor-Azira; Huat, John Tang Yew; Basri, Dayang F; Rukayadi, Yaya; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Radu, Son

    2017-01-01

    Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces ( n = 100), beef ( n = 120) from wet markets and beef ( n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni , 26% as C. coli , and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety.

  4. Prevalence and Antibiotic Resistance against Tetracycline in Campylobacter jejuni and C. coli in Cattle and Beef Meat from Selangor, Malaysia

    PubMed Central

    Premarathne, Jayasekara M. K. J. K.; Anuar, Aimi S.; Thung, Tze Young; Satharasinghe, Dilan A.; Jambari, Nuzul Noorahya; Abdul-Mutalib, Noor-Azira; Huat, John Tang Yew; Basri, Dayang F.; Rukayadi, Yaya; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Radu, Son

    2017-01-01

    Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces (n = 100), beef (n = 120) from wet markets and beef (n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni, 26% as C. coli, and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety. PMID:29255448

  5. Mosquitoes established in Lhasa city, Tibet, China

    PubMed Central

    2013-01-01

    Background In 2009, residents of Lhasa city, Tibet Autonomous Region (TAR), China reported large numbers of mosquitoes and bites from these insects. It is unclear whether this was a new phenomenon, which species were involved, and whether these mosquitoes had established themselves in the local circumstances. Methods The present study was undertaken in six urban sites of Chengguan district Lhasa city, Tibet. Adult mosquitoes were collected by bed net trap, labor hour method and light trap in August 2009 and August 2012. The trapped adult mosquitoes were initially counted and identified according to morphological criteria, and a proportion of mosquitoes were examined more closely using a multiplex PCR assay. Results 907 mosquitoes of the Culex pipiens complex were collected in this study. Among them, 595 were females and 312 were males. There was no significant difference in mosquito density monitored by bed net trap and labor hour method in 2009 and 2012. Of 105 mosquitoes identified by multiplex PCR, 36 were pure mosquitoes (34.29%) while 69 were hybrids (65.71%). The same subspecies of Culex pipiens complex were observed by bed net trap, labor hour method and light trap in 2009 and 2012. Conclusion The local Culex pipiens complex comprises the subspecies Cx. pipiens pipiens, Cx. pipiens pallens, Cx. pipiens quinquefasciatus and its hybrids. Mosquitoes in the Cx. pipiens complex, known to be, potentially, vectors of periodic filariasis and encephalitis, are now present from one season to the next, and appear to be established in Lhasa City, TAR. PMID:24060238

  6. Effects of antibiotic resistance (AR) and microbiota shifts on Campylobacter jejuni-mediated diseases.

    PubMed

    Brooks, Phillip T; Mansfield, Linda S

    2017-12-01

    Campylobacter jejuni is an important zoonotic pathogen recently designated a serious antimicrobial resistant (AR) threat. While most patients with C. jejuni experience hemorrhagic colitis, serious autoimmune conditions can follow including inflammatory bowel disease (IBD) and the acute neuropathy Guillain Barré Syndrome (GBS). This review examines inter-relationships among factors mediating C. jejuni diarrheal versus autoimmune disease especially AR C. jejuni and microbiome shifts. Because both susceptible and AR C. jejuni are acquired from animals or their products, we consider their role in harboring strains. Inter-relationships among factors mediating C. jejuni colonization, diarrheal and autoimmune disease include C. jejuni virulence factors and AR, the enteric microbiome, and host responses. Because AR C. jejuni have been suggested to affect the severity of disease, length of infections and propensity to develop GBS, it is important to understand how these interactions occur when strains are under selection by antimicrobials. More work is needed to elucidate host-pathogen interactions of AR C. jejuni compared with susceptible strains and how AR C. jejuni are maintained and evolve in animal reservoirs and the extent of transmission to humans. These knowledge gaps impair the development of effective strategies to prevent the emergence of AR C. jejuni in reservoir species and human populations.

  7. The interplay between Campylobacter and Helicobacter species and other gastrointestinal microbiota of commercial broiler chickens

    PubMed Central

    2014-01-01

    Background Poultry represent an important source of foodborne enteropathogens, in particular thermophilic Campylobacter species. Many of these organisms colonize the intestinal tract of broiler chickens as harmless commensals, and therefore, often remain undetected prior to slaughter. The exact reasons for the lack of clinical disease are unknown, but analysis of the gastrointestinal microbiota of broiler chickens may improve our understanding of the microbial interactions with the host. Methods In this study, the fecal microbiota of 31 market-age (56-day old) broiler chickens, from two different farms, was analyzed using high throughput sequencing. The samples were then screened for two emerging human pathogens, Campylobacter concisus and Helicobacter pullorum, using species-specific PCR. Results The gastrointestinal microbiota of chickens was classified into four potential enterotypes, similar to that of humans, where three enterotypes have been identified. The results indicated that variations between farms may have contributed to differences in the microbiota, though each of the four enterotypes were found in both farms suggesting that these groupings did not occur by chance. In addition to the identification of Campylobacter jejuni subspecies doylei and the emerging species, C. concisus, C. upsaliensis and H. pullorum, several differences in the prevalence of human pathogens within these enterotypes were observed. Further analysis revealed microbial taxa with the potential to increase the likelihood of colonization by a number of these pathogens, including C. jejuni. Conclusion Depletion of these taxa and the addition of taxa that compete with these pathogens, may form the basis of competitive exclusion strategies to eliminate them from the gastrointestinal tract of chickens. PMID:24940386

  8. Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies.

    PubMed

    Gill, Carson; Bahrndorff, Simon; Lowenberger, Carl

    2017-08-01

    The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen-induced gene expression in the intestinal tracts of adult house flies 4-24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni-infected and -uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect-pathogen interactions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  9. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

    PubMed Central

    Nyati, Kishan Kumar; Nyati, Roopanshi

    2013-01-01

    Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS. PMID:24000328

  11. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  12. Contamination of meat with Campylobacter jejuni in Saitama, Japan.

    PubMed

    Ono, K; Yamamoto, K

    1999-03-15

    To determine the source of food contamination with Campylobacter jejuni, we investigated retail meat, a chicken processing plant and a broiler farm. C. jejuni was found in domestic retailed poultry (45.8%) and imported poultry (3.7%), but not in beef or pork. In the poultry processing plant, there is significant contamination with C. jejuni in chicken carcasses, equipment and workers' hands. This contamination increases during the defeathering and evisceration processes. RAPD analysis shows that contamination with C. jejuni is of intestinal origin. In a broiler farm, C. jejuni was first isolated from a faecal sample of broiler chicken after the 20th day of age. Two weeks later, all birds in this farm became C. jejuni positive. RAPD analysis indicated that C. jejuni spread rapidly from one broiler flock to the other flocks on the farm.

  13. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    PubMed

    Heimesaat, M M; Plickert, R; Fischer, A; Göbel, U B; Bereswill, S

    2013-03-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.

  14. Culture-based indicators of fecal contamination and molecular microbial indicators rarely correlate with Campylobacter spp. in recreational waters.

    PubMed

    Hellein, Kristen N; Battie, Cynthia; Tauchman, Eric; Lund, Deanna; Oyarzabal, Omar A; Lepo, Joe Eugene

    2011-12-01

    Campylobacter spp. are the leading cause of gastroenteritis worldwide. Most human infections result from contaminated food; however, infections are also caused by recreational waterway contamination. Campylobacter culture is technically challenging and enumeration by culture-based methods is onerous. Thus, we employed qPCR to quantify Campylobacter spp. in fresh- and marine-water samples, raw sewage and animal feces. Multiplex PCR determined whether Campylobacter jejuni or C. coli, most commonly associated with human disease, were present in qPCR-positive samples. Campylobacters were detected in raw sewage, and in feces of all avian and mammalian species tested. Campylobacter-positive concentrations ranged from 68 to 2.3 × 10⁶ cells per 500 mL. Although C. jejuni and C. coli were rare in waterways, they were prevalent in sewage and feces. Campylobacter-specific qPCR screening of environmental waters did not correlate with the regulatory EPA method 1600 (Enterococcus culture), nor with culture-independent, molecular-based microbial source tracking indicators, such as human polyomavirus, human Bacteroidales and Methanobrevibacter smithii. Our results suggest that neither the standard EPA method nor the newly proposed culture-independent methods are appropriate surrogates for Campylobacter contamination in water. Thus, assays for specific pathogens may be necessary to protect human health, especially in waters that are contaminated with sewage and animal feces.

  15. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    PubMed

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  16. Prevalence and Antimicrobial Resistance of Campylobacter Isolated from Dressed Beef Carcasses and Raw Milk in Tanzania

    PubMed Central

    Kashoma, Isaac P.; Kassem, Issmat I.; John, Julius; Kessy, Beda M.; Gebreyes, Wondwossen; Kazwala, Rudovick R.

    2016-01-01

    Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter. PMID:26153978

  17. Prevalence and Antimicrobial Resistance of Campylobacter Isolated from Dressed Beef Carcasses and Raw Milk in Tanzania.

    PubMed

    Kashoma, Isaac P; Kassem, Issmat I; John, Julius; Kessy, Beda M; Gebreyes, Wondwossen; Kazwala, Rudovick R; Rajashekara, Gireesh

    2016-01-01

    Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter.

  18. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species

    PubMed Central

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun

    2017-01-01

    ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320

  19. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    PubMed

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  20. N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness

    PubMed Central

    Nothaft, Harald; Zheng, Jing

    2013-01-01

    Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522

  1. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive.

    PubMed

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9) CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.

  2. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive

    PubMed Central

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 109 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome. PMID:26161743

  3. Fate of Campylobacter jejuni in butter.

    PubMed

    Zhao, T; Doyle, M P; Berg, D E

    2000-01-01

    An outbreak of Campylobacter enteritis was associated with a restaurant in Louisiana during the summer of 1995. Thirty cases were identified, and four required hospitalization. Campylobacter jejuni was isolated from the patients, and epidemiologic studies revealed illness associated with eating garlic butter served at the restaurant. Three batches of garlic butter prepared by the restaurant associated with the outbreak and a C. jejuni isolate obtained from a patient involved in the outbreak were used for studies to determine the fate of C. jejuni in garlic butter. Studies also were done to determine the efficacy of the heat treatment used by the restaurant to prepare garlic bread to kill C. jejuni. Garlic butter was inoculated with approximately 10(4) and 10(6) CFU/g of C. jejuni and held at 5 or 21 degrees C. Results revealed that the survival of C. jejuni differed greatly, depending on the presence or absence of garlic. At 5 degrees C, C. jejuni populations decreased to an undetectable level (<10 CFU/g) within 3 h for two batches and within 24 h for another batch. In contrast, C. jejuni could survive at 5 degrees C for 13 days in butter with no garlic. At 21 degrees C, C. jejuni populations decreased to an undetectable level within 5 h for two batches and to 50 CFU/g in 5 h for another batch. In contrast, C. jejuni was detected at 500 CFU/g at 28 h after inoculation but was undetectable at 3 days in butter with no garlic held at 21 degrees C. The heating procedure (135 degrees C, 4 min) used to make garlic bread by the implicated restaurant was determined not to be sufficient for killing C. jejuni, with the internal temperature of the buttered bread after heating ranging from 19 to 22 degrees C. This study revealed that C. jejuni can survive for many days in refrigerated butter, but large populations (10(3) to 10(5) CFU/g) are killed within a few hours in butter that contains garlic. Furthermore, the heat treatment used by the restaurant to melt garlic butter in making garlic bread was not adequate to kill C. jejuni.

  4. Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing.

    PubMed

    Park, Hoon; Hung, Yen-Con; Brackett, Robert E

    2002-01-30

    The effectiveness of electrolyzed (EO) water for killing Campylobacter jejuni on poultry was evaluated. Complete inactivation of C. jejuni in pure culture occurred within 10 s after exposure to EO or chlorinated water, both of which contained 50 mg/l of residual chlorine. A strong bactericidal activity was also observed on the diluted EO water (containing 25 mg/l of residual chlorine) and the mean population of C. jejuni was reduced to less than 10 CFU/ml (detected only by enrichment for 48 h) after 10-s treatment. The diluted chlorine water (25 mg/l residual chlorine) was less effective than the diluted EO water for inactivation of C. jejuni. EO water was further evaluated for its effectiveness in reducing C. jejuni on chicken during washing. EO water treatment was equally effective as chlorinated water and both achieved reduction of C. jejuni by about 3 log10 CFU/g on chicken, whereas deionized water (control) treatment resulted in only 1 log10 CFU/g reduction. No viable cells of C. jejuni were recovered in EO and chlorinated water after washing treatment, whereas high populations of C. jejuni (4 log10 CFU/ml) were recovered in the wash solution after the control treatment. Our study demonstrated that EO water was very effective not only in reducing the populations of C. jejuni on chicken, but also could prevent cross-contamination of processing environments.

  5. Campylobacter jejuni inactivation in New Zealand soils.

    PubMed

    Ross, C M; Donnison, A M

    2006-11-01

    The study was undertaken to determine the inactivation rate of Campylobacter jejuni in New Zealand soils. Farm dairy effluent (FDE) inoculated at c. 10(5) ml(-1) with C. jejuni was applied to intact soil cores at a rate of 2 l m(-2). Four soils were used: Hamilton (granular); Taupo (pumice); Horotiu and Waihou (allophanic). After FDE application cores were incubated at 10 degrees C for up to 32 days. For all four soils all the FDE remained within the cores and at least 99% of C. jejuni were retained in the top 5 cm. Campylobacter jejuni had declined to the limit of detection (two C. jejuni 100 g(-1)) by 25 days in Hamilton and Taupo soils and by 32 days in Waihou soil. In contrast, in Horotiu soil the decline was only three orders of magnitude after 32 days. Simulated heavy rainfall was applied 4 and 11 days after FDE application and only about 1% of the applied C. jejuni were recovered in leachates. This study demonstrated that at least 99% of applied C. jejuni were retained in the top 5 cm of four soils where they survived for at least 25 days at 10 degrees C. Soil retention of C. jejuni is efficient at FDE application rates that prevent drainage losses. The low infectious dose of C. jejuni and its ability to survive up to 25 days have implications for stock management on dairy farms.

  6. Nutrient Acquisition and Metabolism by Campylobacter jejuni

    PubMed Central

    Stahl, Martin; Butcher, James; Stintzi, Alain

    2012-01-01

    The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar l-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron–sulfur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments. PMID:22919597

  7. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

    2014-01-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

  8. In-water supplementation of Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni colonization in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen colonizes the ceca thereby leading to contamination of the carcass during slaughter. Reducing C. jejuni cecal colonization could pot...

  9. Phytochemicals reduce biofilm formation and inactivates mature biofilm of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. However, little is known about the persistence of C. jejuni in the poultry processing environment. Several studies have shown that C. jejuni ca...

  10. Distinct Campylobacter jejuni capsular types are related to Guillain-Barré syndrome in The Netherlands and Bangladesh

    USDA-ARS?s Scientific Manuscript database

    An infection with the intestinal pathogen Campylobacter jejuni leads to Guillain-Barré syndrome (GBS) in around one in thousand cases. It is established that sialylated lipooligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sia...

  11. Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...

  12. Prevalence of Campylobacter jejuni in eggs and poultry meat in New York State.

    PubMed

    Baker, R C; Paredes, M D; Qureshi, R A

    1987-11-01

    The presence of Campylobacter jejuni was tested for but not isolated from any of 276 eggs sampled from 23 egg farms in New York State. The presence of C. jejuni was evaluated in broilers, kosher broilers, spent layers, Peking ducks, and turkeys. Four of five poultry dressing plants tested showed positive growth of C. jejuni on the 25-carcass samples at various stages of processing. Twenty to 100% of live birds sampled contained C. jejuni on the skin but 90 to 100% were contaminated after scalding and defeathering operations from contaminated birds and equipment. A three to four-fold increase in carcass contamination was observed after evisceration. The number of C. jejuni on the carcasses decreased after washing and chilling. The organisms did not survive the salting, rinsing, and chilling operations in a kosher processing plant. Several pieces of equipment, i.e., shackles, eviscerating troughs, and cooling tanks were contaminated with C. jejuni. This study illustrates how C. jejuni may be transmitted from the live bird to the final poultry product.

  13. Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial.

    PubMed

    Bishop-Hurley, Sharon L; Rea, Philippa J; McSweeney, Christopher S

    2010-10-01

    In developed countries, Campylobacter jejuni is a leading cause of zoonotic bacterial gastroenteritis in humans with chicken meat implicated as a source of infection. Campylobacter jejuni colonises the lower gastrointestinal tract of poultry and during processing is spread from the gastrointestinal tract onto the surface of dressed carcasses. Controlling or eliminating C.jejuni on-farm is considered to be one of the best strategies for reducing human infection. Molecules on the cell surface of C.jejuni interact with the host to facilitate its colonisation and persistence in the gastrointestinal tract of poultry. We used a subtractive phage-display protocol to affinity select for peptides binding to the cell surface of a poultry isolate of C.jejuni with the aim of finding peptides that could be used to control this microorganism in chickens. In total, 27 phage peptides, representing 11 unique clones, were found to inhibit the growth of C.jejuni by up to 99.9% in vitro. One clone was bactericidal, reducing the viability of C.jejuni by 87% in vitro. The phage peptides were highly specific. They completely inhibited the growth of two of the four poultry isolates of C.jejuni tested with no activity detected towards other Gram-negative and Gram-positive bacteria.

  14. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products

    PubMed Central

    Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun

    2016-01-01

    The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low. PMID:27294947

  15. Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth

    PubMed Central

    Vegge, Christina S.; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni. PMID:23049803

  16. PFGE, Lior serotype, and antimicrobial resistance patterns among Campylobacter jejuni isolated from travelers and US military personnel with acute diarrhea in Thailand, 1998-2003

    PubMed Central

    2010-01-01

    Background Campylobacter jejuni is a major cause of gastroenteritis worldwide. In Thailand, several strains of C. jejuni have been isolated and identified as major diarrheal pathogens among adult travelers. To study the epidemiology of C. jejuni in adult travelers and U.S. military personnel with acute diarrhea in Thailand from 1998-2003, strains of C. jejuni were isolated and phenotypically identified, serotyped, tested for antimicrobial susceptibility, and characterized using pulsed-field gel electrophoresis (PFGE). Results A total of 312 C. jejuni isolates were obtained from travelers (n = 46) and U.S. military personnel (n = 266) in Thailand who were experiencing acute diarrhea. Nalidixic acid and ciprofloxacin resistance was observed in 94.9% and 93.0% of the isolates, respectively. From 2001-2003, resistance to tetracycline (81.9%), trimethoprim-sulfamethoxazole (57.9%), ampicillin (28.9%), kanamycin (5.9%), sulfisoxazole (3.9%), neomycin (2.0%), and streptomycin (0.7%) was observed. Combined PFGE analysis showed considerable genetic diversity among the C. jejuni isolates; however, four PFGE clusters included isolates from the major Lior serotypes (HL: 36, HL: 11, HL: 5, and HL: 28). The PFGE analysis linked individual C. jejuni clones that were obtained at U.S. military exercises with specific antimicrobial resistance patterns. Conclusions In summary, most human C. jejuni isolates from Thailand were multi-resistant to quinolones and tetracycline. PFGE detected spatial and temporal C. jejuni clonality responsible for the common sources of Campylobacter gastroenteritis. PMID:21062505

  17. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains

    PubMed Central

    Zeng, Ximin; Ardeshna, Devarshi

    2015-01-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. PMID:25911489

  18. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    PubMed

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance.

    PubMed

    Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W; van Vliet, Arnoud H M; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB . In C. jejuni rrpB + strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification ( hsd ) system, whilst this variable genomic region in C. jejuni rrpB - strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB - strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB + strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB + strains, but not in rrpB - strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB - and rrpB + strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.

  20. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation.

    PubMed

    Feng, Jinsong; Ma, Lina; Nie, Jiatong; Konkel, Michael E; Lu, Xiaonan

    2018-03-01

    Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni , including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells. IMPORTANCE Campylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular DNA released by bacterial lysis as a major form of constitution material that mediates the formation of C. jejuni biofilm in response to environmental stress, which enhances our understanding of the formation mechanism of C. jejuni biofilm. This knowledge can aid the development of intervention strategies to limit the distribution of C. jejuni . Copyright © 2018 American Society for Microbiology.

  1. Molecular Differentiation of Treponema pallidum Subspecies in Skin Ulceration Clinically Suspected as Yaws in Vanuatu Using Real-Time Multiplex PCR and Serological Methods

    PubMed Central

    Chi, Kai-Hua; Danavall, Damien; Taleo, Fasihah; Pillay, Allan; Ye, Tun; Nachamkin, Eli; Kool, Jacob L.; Fegan, David; Asiedu, Kingsley; Vestergaard, Lasse S.; Ballard, Ronald C.; Chen, Cheng-Yen

    2015-01-01

    We developed a TaqMan-based real-time quadriplex polymerase chain reaction (PCR) to simultaneously detect Treponema pallidum subspecies pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum, the causative agents of venereal syphilis, yaws, and bejel, respectively. The PCR assay was applied to samples from skin ulcerations of clinically presumptive yaws cases among children on Tanna Island, Vanuatu. Another real-time triplex PCR was used to screen for the point mutations in the 23S rRNA genes that have previously been associated with azithromycin resistance in T. pallidum subsp. pallidum strains. Seropositivity by the classical syphilis serological tests was 35.5% among children with skin ulcerations clinically suspected with yaws, whereas the presence of T. pallidum subsp. pertenue DNA was only found in lesions from 15.5% of children. No evidence of T. pallidum subsp. pertenue infection, by either PCR or serology was found in ∼59% of cases indicating alternative causes of yaws-like lesions in this endemic area. PMID:25404075

  2. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  3. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    PubMed Central

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments. PMID:26217328

  4. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment.

    PubMed

    Brown, Helen L; Hanman, Kate; Reuter, Mark; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.

  5. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells.

    PubMed

    Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.

  6. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump.

    PubMed

    Klančnik, A; Šikić Pogačar, M; Trošt, K; Tušek Žnidarič, M; Mozetič Vodopivec, B; Smole Možina, S

    2017-01-01

    To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. Using gene-specific knock-out Camp. jejuni mutants and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition of adhesion of Camp. jejuni to these abiotic and biotic surfaces. Low doses of GSS extract can inhibit Camp. jejuni adhesion to polystyrene surfaces and to PSI and H4 cells, and can thus modulate Camp. jejuni invasion and intracellular survival. An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step towards the application of new innovative strategies to control Campylobacter contamination and infection via the food chain. © 2016 The Society for Applied Microbiology.

  7. Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni colonization of chickens is dependent upon surface exposed proteins termed adhesins. Putative C. jejuni adhesins include CadF, CapA, JlpA, MOMP, PEB1, Cj1279c, and Cj1349c. We examined the genetic relatedness of ninety-seven C. jejuni isolates recovered from human, poultry, bo...

  8. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 strain RM1285 that was isolated from packaged chicken

    USDA-ARS?s Scientific Manuscript database

    Poultry products serve as the main source of Campylobacter jejuni subsp. jejuni (Cjj) infections in humans. Cjj infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome (GBS). This study describes the genome of Cjj HS:19 strain RM1285 isol...

  9. MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania.

    PubMed

    Ramonaite, Sigita; Tamuleviciene, Egle; Alter, Thomas; Kasnauskyte, Neringa; Malakauskas, Mindaugas

    2017-06-15

    Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database ( http://pubmlst.org/campylobacter ). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database ( http://pubmlst.org/campylobacter ). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson's index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Our results suggest that broiler products are the most important source of human campylobacteriosis in Lithuania. The study provides information on MLST type distribution and genetic relatedness of C. jejuni strains from humans, broiler products and dairy cattle in Lithuania for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country.

  10. Reduction of Campylobacter jejuni on chicken wings by chemical treatments.

    PubMed

    Zhao, Tong; Doyle, Michael P

    2006-04-01

    Eight chemicals, including glycerol monolaurate, hydrogen peroxide, acetic acid, lactic acid, sodium benzoate, sodium chlorate, sodium carbonate, and sodium hydroxide, were tested individually or in combination for their ability to inactivate Campylobacter jejuni at 4 degrees C in suspension. Results showed that treatment for up to 20 min with 0.01% glycerol monolaurate, 0.1% sodium benzoate, 50 or 100 mM sodium chlorate, or 1% lactic acid did not substantially (< or = 0.5 log CFU/ml) reduce C. jejuni populations but that 0.1 and 0.2% hydrogen peroxide for 20 min reduced C. jejuni populations by ca. 2.0 and 4.5 log CFU/ml, respectively. By contrast, treatments with 0.5, 1.0, 1.5, and 2.0% acetic acid, 25, 50, and 100 mM sodium carbonate, and 0.05 and 0.1 N sodium hydroxide reduced C. jejuni populations by >5 log CFU/ml within 2 min. A combination of 0.5% acetic acid plus 0.05% potassium sorbate or 0.5% acetic acid plus 0.05% sodium benzoate reduced C. jejuni populations by >5 log CFU/ml within 1 min; however, substituting 0.5% lactic acid for 0.5% acetic acid was not effective, with a reduction of C. jejuni of <0.5 log CFU/ml. A combination of acidic calcium sulfate, lactic acid, ethanol, sodium dodecyl sulfate, and polypropylene glycol (ACS-LA) also reduced C. jejuni in suspension by >5 log CFU/ml within 1 min. All chemicals or chemical combinations for which there was a >5-log/ml reduction of C. jejuni in suspension were further evaluated for C. jejuni inactivation on chicken wings. Treatments at 4 degrees C of 2% acetic acid, 100 mM sodium carbonate, or 0.1 N sodium hydroxide for up to 45 s reduced C. jejuni populations by ca. 1.4, 1.6, or 3.5 log CFU/g, respectively. Treatment with ACS-LA at 4 degrees C for 15 s reduced C. jejuni by >5 log CFU/g to an undetectable level. The ACS-LA treatment was highly effective in chilled water at killing C. jejuni on chicken and, if recycled, may be a useful treatment in chill water tanks for poultry processors to reduce campylobacters on poultry skin after slaughter.

  11. Antibiotic susceptibility profiling and virulence potential of Campylobacter jejuni isolates from different sources in Pakistan.

    PubMed

    Siddiqui, Fariha Masood; Akram, Muhammad; Noureen, Nighat; Noreen, Zobia; Bokhari, Habib

    2015-03-01

    To determine antibiotic resistance patterns and virulence potential of Campylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Antibiotic sensitivity patterns of C. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection of mapA (membrane-associated protein), cadF (fibronectin binding protein), wlaN (beta-l,3-galactosyltransferase) and neuAB (sialic acid biosynthesis gene). Further C. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling. A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage of C. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultry C. jejuni isolates. CadF and mapA were present in all poultry, cattle and human C. jejuni isolates, wlaN was not detected in any isolate and neuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity of C. jejuni isolates. Detection of multidrug resistant C. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors, cadF and mapA (100% each) in C. jejuni isolates from all sources and neuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types of C. jejuni to humans. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  12. Antimicrobial Activities of Isothiocyanates Against Campylobacter jejuni Isolates

    PubMed Central

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25–5 μg mL−1) compared to AITC (MIC of 50–200 μg mL−1). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC. PMID:22919644

  13. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador.

    PubMed

    Graham, Jay P; Vasco, Karla; Trueba, Gabriel

    2016-06-01

    Domestic animals and animal products are the source of pathogenic Campylobacter jejuni and C. coli in industrialized countries, yet little is known about the transmission of these bacteria in developing countries. Guinea pigs (Cavia porcellus) are commonly raised for food in the Andean region of South America, however, limited research has characterized this rodent as a reservoir of zoonotic enteric pathogens. In this study, we examined the prevalence of Campylobacter spp. in 203 fecal samples from domestic animals of 59 households in a semi-rural parish of Quito, Ecuador. Of the twelve animal species studied, guinea pigs showed the highest prevalence of C. jejuni (n = 39/40; 97.5%). Multilocus sequence typing (MLST) was used to characterize the genetic relationship of C. jejuni from domestic animals and 21 sequence types (STs) were identified. The majority of STs from guinea pigs appeared to form new clonal complexes that were not related to STs of C. jejuni isolated from other animal species and shared only a few alleles with other C. jejuni previously characterized. The study identifies guinea pigs as a major reservoir of C. jejuni and suggests that some C. jejuni strains are adapted to this animal species. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Lactobacillus johnsonii ameliorates intestinal, extra-intestinal and systemic pro-inflammatory immune responses following murine Campylobacter jejuni infection.

    PubMed

    Bereswill, Stefan; Ekmekciu, Ira; Escher, Ulrike; Fiebiger, Ulrike; Stingl, Kerstin; Heimesaat, Markus M

    2017-05-18

    Campylobacter jejuni infections are progressively increasing worldwide. Probiotic treatment might open novel therapeutic or even prophylactic approaches to combat campylobacteriosis. In the present study secondary abiotic mice were generated by broad-spectrum antibiotic treatment and perorally reassociated with a commensal murine Lactobacillus johnsonii strain either 14 days before (i.e. prophylactic regimen) or 7 days after (i.e. therapeutic regimen) peroral C. jejuni strain 81-176 infection. Following peroral reassociation both C. jejuni and L. johnsonii were able to stably colonize the murine intestinal tract. Neither therapeutic nor prophylactic L. johnsonii application, however, could decrease intestinal C. jejuni burdens. Notably, C. jejuni induced colonic apoptosis could be ameliorated by prophylactic L. johnsonii treatment, whereas co-administration of L. johnsonii impacted adaptive (i.e. T and B lymphocytes, regulatory T cells), but not innate (i.e. macrophages and monocytes) immune cell responses in the intestinal tract. Strikingly, C. jejuni induced intestinal, extra-intestinal and systemic secretion of pro-inflammatory mediators (such as IL-6, MCP-1, TNF and nitric oxide) could be alleviated by peroral L. johnsonii challenge. In conclusion, immunomodulatory probiotic species might offer valuable strategies for prophylaxis and/or treatment of C. jejuni induced intestinal, extra-intestinal as well as systemic pro-inflammatory immune responses in vivo.

  15. Complete genome sequence of Campylobacter jejuni strain 12567 a livestock-associated clade representative

    USDA-ARS?s Scientific Manuscript database

    We report the complete genome sequence of the Campylobacter jejuni strain 12567, a member of a C. jejuni livestock-associated clade that expresses glycoconjugates linked to improved gastrointestinal tract persistence....

  16. High-Throughput Sequencing of Campylobacter jejuni Insertion Mutant Libraries Reveals mapA as a Fitness Factor for Chicken Colonization

    PubMed Central

    Johnson, Jeremiah G.; Livny, Jonathan

    2014-01-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture. PMID:24633877

  17. High-throughput sequencing of Campylobacter jejuni insertion mutant libraries reveals mapA as a fitness factor for chicken colonization.

    PubMed

    Johnson, Jeremiah G; Livny, Jonathan; Dirita, Victor J

    2014-06-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.

  18. Quinolone-resistant Campylobacter Infections: Risk Factors and Clinical Consequences1

    PubMed Central

    Neimann, Jakob; Nielsen, Eva Møller; Aarestrup, Frank Møller; Fussing, Vivian

    2004-01-01

    We integrated data on quinolone and macrolide susceptibility patterns with epidemiologic and typing data from Campylobacter jejuni and C. coli infections in two Danish counties. The mean duration of illness was longer for 86 patients with quinolone-resistant C. jejuni infections (median 13.2 days) than for 381 patients with quinolone-sensitive C. jejuni infections (median 10.3 days, p = 0.001). Foreign travel, eating fresh poultry other than chicken and turkey, and swimming were associated with increased risk for quinolone-resistant C. jejuni infection. Eating fresh chicken (of presumably Danish origin) was associated with a decreased risk. Typing data showed an association between strains from retail food products and broiler chickens and quinolone-sensitive domestically acquired C. jejuni infections. An association between treatment with a fluoroquinolone before stool-specimen collection and having a quinolone-resistant C. jejuni infection was not observed. PMID:15207057

  19. Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni

    PubMed Central

    Leveque, Rhiannon M.; Dawid, Suzanne; DiRita, Victor J.

    2017-01-01

    Campylobacter jejuni, a leading cause of bacterial gastroenteritis, is naturally competent. Like many competent organisms, C. jejuni restricts the DNA that can be used for transformation to minimize undesirable changes in the chromosome. Although C. jejuni can be transformed by C. jejuni-derived DNA, it is poorly transformed by the same DNA propagated in Escherichia coli or produced with PCR. Our work indicates that methylation plays an important role in marking DNA for transformation. We have identified a highly conserved DNA methyltransferase, which we term Campylobacter transformation system methyltransferase (ctsM), which methylates an overrepresented 6-bp sequence in the chromosome. DNA derived from a ctsM mutant transforms C. jejuni significantly less well than DNA derived from ctsM+ (parental) cells. The ctsM mutation itself does not affect transformation efficiency when parental DNA is used, suggesting that CtsM is important for marking transforming DNA, but not for transformation itself. The mutant has no growth defect, arguing against ongoing restriction of its own DNA. We further show that E. coli plasmid and PCR-derived DNA can efficiently transform C. jejuni when only a subset of the CtsM sites are methylated in vitro. A single methylation event 1 kb upstream of the DNA involved in homologous recombination is sufficient to transform C. jejuni, whereas otherwise identical unmethylated DNA is not. Methylation influences DNA uptake, with a slight effect also seen on DNA binding. This mechanism of DNA discrimination in C. jejuni is distinct from the DNA discrimination described in other competent bacteria. PMID:28855338

  20. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae

    PubMed Central

    2013-01-01

    Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni-induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner. PMID:24364863

  1. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples

    PubMed Central

    2011-01-01

    Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli), are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new diagnostic tool for studying the epidemiology of Campylobacter by, for instance, investigating the carriage and excretion of C. coli and C. jejuni by pigs from conventional herds. PMID:21600037

  2. [Isolation of Campylobacter jejuni ATCC 29428 from inoculated fried pork meat and roasted chicken].

    PubMed

    Castillo-Martínez, M L; Sánchez-Sánchez, S; Rodríguez-Montaño, R; Quiñones-Ramírez, E I; Lugo de la Fuente, G; Vázquez-Salinas, C

    1993-01-01

    The human gastroenteritis caused by Campylobacter jejuni in some industrialized countries is higher than gastroenteritis produced by Salmonella and Shigella. This has induced the development of techniques to demonstrate the presence of the microorganism in different foods using some culture media combinations. There is not a method to isolate C. jejuni from roasted chicken and fried pork meat, which are popular foods in México. The sensitivity of two culture media combinations was compared: Rama broth (RB)-Rama agar (RA) and Preston broth (PB)-Skirrow agar (SA) to isolate C. jejuni from these foods. The RB-RA combination demonstrated to be the best one to isolate C. jejuni.

  3. In Vivo Phase Variation and Serologic Response to Lipooligosaccharide of Campylobacter jejuni in Experimental Human Infection

    DTIC Science & Technology

    2004-02-01

    pregnancy, HLA B27 positivity, human im- munodeficiency virus seropositivity, or any disease or condition as determined by a study physician that would place...leukocyte antigen ( HLA ) types and the development of C. jejuni-associated GBS have been inconclusive (21). Thus, the requirements for an individual to be...susceptible to GBS development after C. jejuni infection remain to be identified since HLA type has not been consistently correlated with C. jejuni

  4. Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation.

    PubMed

    Bae, Junghee; Oh, Euna; Jeon, Byeonghwa

    2014-12-01

    Campylobacter jejuni is a leading food-borne pathogen, and its antibiotic resistance is of serious concern to public health worldwide. C. jejuni is naturally competent for DNA transformation and freely takes up foreign DNA harboring genetic information responsible for antibiotic resistance. In this study, we demonstrate that C. jejuni transfers antibiotic resistance genes more frequently in biofilms than in planktonic cells by natural transformation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Detection of Campylobacter jejuni in rectal swab samples from Rousettus amplexicaudatus in the Philippines.

    PubMed

    Hatta, Yuki; Omatsu, Tsutomu; Tsuchiaka, Shinobu; Katayama, Yukie; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Une, Yumi; Yoshikawa, Yasuhiro; Maeda, Ken; Kyuwa, Shigeru; Mizutani, Tetsuya

    2016-09-01

    Bats are the second diversity species of mammals and widely distributed in the world. They are thought to be reservoir and vectors of zoonotic pathogens. However, there is scarce report of the evidence of pathogenic bacteria kept in bats. The precise knowledge of the pathogenic bacteria in bat microbiota is important for zoonosis control. Thus, metagenomic analysis targeting the V3-V4 region of the 16S rRNA of the rectal microbiota in Rousettus amplexicaudatus was performed using high throughput sequencing. The results revealed that 103 genera of bacteria including Camplyobacter were detected. Campylobacter was second predominant genus, and Campylobacter coli and Campylobacter jejuni were identified in microbiome of R. amplexicaudatus. Campylobacteriosis is one of the serious bacterial diarrhea in human, and the most often implicated species as the causative agent of campylobacteriosis is C. jejuni. Therefore, we investigated the prevalence of C. jejuni in 91 wild bats with PCR. As a result of PCR assay targeted on 16S-23S intergenic spacer, partial genome of C. jejuni was detected only in five R. amplexicaudatus. This is the first report that C. jejuni was detected in bat rectal swab samples. C. jejuni is the most common cause of campylobacteriosis in humans, transmitted through water and contact with livestock animals. This result indicated that R. amplexicaudatus may be a carrier of C. jejuni.

  6. Antiadhesion activity of juniper (Juniperus communis L.) preparations against Campylobacter jejuni evaluated with PCR-based methods.

    PubMed

    Klančnik, Anja; Zorko, Špela; Toplak, Nataša; Kovač, Minka; Bucar, Franz; Jeršek, Barbara; Smole Možina, Sonja

    2018-03-01

    The food-borne pathogen Campylobacter jejuni can cause bacterial gastrointestinal infections. Biofilm formation amplifies the risk of human infection by improving survival and persistence of C. jejuni in food processing environments and its transmission through the food chain. We aimed to control C. jejuni using an alternative strategy of low doses of Juniperus communis fruit preparations to target bacterial adhesion properties in the first step of biofilm formation. First, we defined the anti-Campylobacter activity of a juniper fruit crude extract and its fractionated biflavonoids, flavone glycosides, and purified amentoflavone, of juniper fruit essential oil and of juniper fruit postdistillation waste material extract. For accurate quantification of adherent C. jejuni, we optimised digital Polymerase Chain Reaction (PCR) and quantitative real-time PCR for construction of standard curves and quantification. We show for the first time that juniper fruit formulations can effectively inhibit adhesion of C. jejuni to polystyrene. Furthermore, ≥94% of the antiadhesion activity of juniper fruit crude extract and juniper fruit essential oil remained under food-related conditions: modified culture medium with glucose, or a stainless steel surface, or mixed co-cultures of C. jejuni and Listeria monocytogenes. This study indicates that addition of juniper fruit formulations can control growth and adhesion of C. jejuni and thus limit food chain transmission of campylobacters. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  8. Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study.

    PubMed

    Lane, Jonathan A; Mariño, Karina; Naughton, Julie; Kavanaugh, Devon; Clyne, Marguerite; Carrington, Stephen D; Hickey, Rita M

    2012-07-02

    Campylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host. Heavily colonized chickens often fail to display intestinal disease, and no cellular attachment or invasion has been demonstrated in-vivo. Recently, researchers have shown that the reason for the attenuation of C. jejuni virulence may be attributed to the presence of chicken intestinal mucus and more specifically chicken mucin. Since mucins are heavily glycosylated molecules this observation would suggest that glycan-based compounds may act as anti-infectives against C. jejuni. Considering this, we have investigated naturally sourced foods for potential anti-infective glycans. Bovine colostrum rich in neutral and acidic oligosaccharides has been identified as a potential source of anti-infective glycans. In this study, we tested oligosaccharides isolated and purified from the colostrum of Holstein Friesian cows for anti-infective activity against a highly invasive strain of C. jejuni. During our initial studies we structurally defined 37 bovine colostrum oligosaccharides (BCO) by HILIC-HPLC coupled with exoglycosidase digests and off-line mass spectroscopy, and demonstrated the ability of C. jejuni to bind to some of these structures, in-vitro. We also examined the effect of BCO on C. jejuni adhesion to, invasion of and translocation of HT-29 cells. BCO dramatically reduced the cellular invasion and translocation of C. jejuni, in a concentration dependent manner. Periodate treatment of the BCO prior to inhibition studies resulted in a loss of the anti-infective activity of the glycans suggesting a direct oligosaccharide-bacterial interaction. This was confirmed when the BCO completely prevented C. jejuni binding to chicken intestinal mucin, in-vitro. This study builds a strong case for the inclusion of oligosaccharides sourced from cow's milk in functional foods. However, it is only through further understanding the structure and function of milk oligosaccharides that such compounds can reach their potential as food ingredients. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Occurrence of the invasion associated marker (iam) in Campylobacter jejuni isolated from cattle

    PubMed Central

    2011-01-01

    Background The invasion associated marker (iam) has been detected in the majority of invasive Campylobacter jejuni retrieved from humans. Furthermore, the detection of iam in C. jejuni isolated from two important hosts, humans and chickens, suggested a role for this marker in C. jejuni's colonization of multiple hosts. However, no data exist regarding the occurrence of this marker in C. jejuni isolated from non-poultry food-animals such as cattle, an increasingly important source for human infections. Since little is known about the genetics associated with C. jejuni's capability for colonizing physiologically disparate hosts, we investigated the occurrence of the iam in C. jejuni isolated from cattle and assessed the potential of iam-containing cattle and human isolates for chicken colonization and human cell invasion. Results Simultaneous RAPD typing and iam-specific PCR analysis of 129 C. jejuni isolated from 1171 cattle fecal samples showed that 8 (6.2%) of the isolates were iam-positive, while 7 (54%) of human-associated isolates were iam-positive. The iam sequences were mostly heterogeneous and occurred in diverse genetic backgrounds. All iam-positive isolates were motile and possessed important genes (cadF, ciaB, cdtB) associated with adhesion and virulence. Although certain iam-containing isolates invaded and survived in INT-407 cells in high numbers and successfully colonized live chickens, there was no clear association between the occurrence, allelic sequence, and expression levels of the iam and the aforementioned phenotypes. Conclusions We show that the prevalence of iam in cattle C. jejuni is relatively lower as compared to isolates occurring in humans and chickens. In addition, iam was polymorphic and certain alleles occur in cattle isolates that were capable of colonizing and invading chickens and human intestinal cells, respectively. However, the iam did not appear to contribute to the cattle-associated C. jejuni's potential for invasion and intracellular survival in human intestinal cells as well as chicken colonization. PMID:22208406

  10. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.

    PubMed

    Gaasbeek, Esther J; Wagenaar, Jaap A; Guilhabert, Magalie R; Wösten, Marc M S M; van Putten, Jos P M; van der Graaf-van Bloois, Linda; Parker, Craig T; van der Wal, Fimme J

    2009-04-01

    The species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C. jejuni strains was investigated. Comparative genome hybridization indicated that C. jejuni Mu-like prophage integrated element 1 (CJIE1) was more abundant in nonnaturally transformable C. jejuni strains than in naturally transformable strains. Analysis of CJIE1 indicated the presence of dns (CJE0256), which is annotated as a gene encoding an extracellular DNase. DNase assays using a defined dns mutant and a dns-negative strain expressing Dns from a plasmid indicated that Dns is an endogenous DNase. The DNA-hydrolyzing activity directly correlated with the natural transformability of the knockout mutant and the dns-negative strain expressing Dns from a plasmid. Analysis of a broader set of strains indicated that the majority of nonnaturally transformable strains expressed DNase activity, while all naturally competent strains lacked this activity. The inhibition of natural transformation in C. jejuni via endogenous DNase activity may contribute to the formation of stable lineages in the C. jejuni population.

  11. L-Fucose metabolism in camplobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a gastrointestinal pathogen once considered asaccharolytic, but now known to metabolize fucose. Strains with the fuc locus encode enzymes for fucose uptake and metabolism and show a competitive colonization advantage in the piglet disease model. C. jejuni NCTC11168 shows redu...

  12. Campylobacter jejuni--an emerging foodborne pathogen.

    PubMed

    Altekruse, S F; Stern, N J; Fields, P I; Swerdlow, D L

    1999-01-01

    Campylobacter jejuni is the most commonly reported bacterial cause of foodborne infection in the United States. Adding to the human and economic costs are chronic sequelae associated with C. jejuni infection--Guillian-Barré syndrome and reactive arthritis. In addition, an increasing proportion of human infections caused by C. jejuni are resistant to antimicrobial therapy. Mishandling of raw poultry and consumption of undercooked poultry are the major risk factors for human campylobacteriosis. Efforts to prevent human illness are needed throughout each link in the food chain.

  13. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions.

    PubMed

    Oh, Euna; McMullen, Lynn; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.

  14. Differences in the Fecal Concentrations and Genetic Diversities of Campylobacter jejuni Populations among Individual Cows in Two Dairy Herds

    PubMed Central

    Ross, Colleen M.; Pleydell, Eve J.; Muirhead, Richard W.

    2012-01-01

    Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P < 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · g−1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. PMID:22904055

  15. Insights into potential pathogenesis mechanisms associated with Campylobacter jejuni-induced abortion in ewes.

    PubMed

    Sanad, Yasser M; Jung, Kwonil; Kashoma, Isaac; Zhang, Xiaoli; Kassem, Issmat I; Saif, Yehia M; Rajashekara, Gireesh

    2014-11-25

    Campylobacter jejuni is commonly found in the gastrointestinal tract of many food-animals including sheep without causing visible clinical symptoms of disease. However, C. jejuni has been implicated in ovine abortion cases worldwide. Specifically, in the USA, the C. jejuni sheep abortion (SA) clone has been increasingly associated with sheep abortion. In vivo studies in sheep (the natural host) are needed to better characterize the virulence potential and pathogenesis of this clone. Pregnant ewes intravenously (IV) or orally inoculated with ovine or bovine abortion-associated C. jejuni SA clones exhibited partial or complete uterine prolapse with retained placenta, and abortion or stillbirth, whereas delivery of healthy lambs occurred in pregnant ewes inoculated with C. jejuni 81-176 or in the uninfected group. In sheep inoculated with the SA clone, histopathological lesions including suppurative necrotizing placentitis and/or endometritis coincided with: 1) increased apoptotic death of trophoblasts, 2) increased expression of the host genes (e.g. genes encoding interleukin IL-6 and IL-15) related to cellular necrosis and pro-inflammatory responses in uterus, and 3) decreased expression of the genes encoding GATA binding protein 6, chordin, and insulin-like 3 (INSL3) that account for embryonic development in uterus. Immunohistochemistry revealed localization of bacterial antigens in trophoblasts lining the chorioallantoic membrane of ewes inoculated with the C. jejuni SA clone. The results showed that C. jejuni SA clones are capable of causing abortion or stillbirth in experimentally infected sheep. Furthermore, down- or up-regulation of specific genes in the uterus of infected pregnant ewes might implicate host genes in facilitating the disease progression. Since the C. jejuni SA strains share genotypic similarities with clones that have been isolated from human clinical cases of gastroenteritis, these strains might represent a potential public health risk.

  16. An adapted in vitro assay to assess Campylobacter jejuni interaction with intestinal epithelial cells: Taking into stimulation with TNFα.

    PubMed

    Rodrigues, Ramila Cristiane; Pocheron, Anne-Lise; Cappelier, Jean-Michel; Tresse, Odile; Haddad, Nabila

    2018-06-01

    Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 10 8 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells. Copyright © 2018. Published by Elsevier B.V.

  17. Assays to Study the Interaction of Campylobacter jejuni with the Mucosal Surface.

    PubMed

    Clyne, Marguerite; Duggan, Gina; Dunne, Ciara; Dolan, Brendan; Alvarez, Luis; Bourke, Billy

    2017-01-01

    Mucosal colonization and overcoming the mucosal barrier are essential steps in the establishment of infection by Campylobacter jejuni. The interaction between C. jejuni and host cells, including binding and invasion, is thought to be the key virulence factor important for pathogenesis of C. jejuni infections in animals or humans. The intestinal mucosal barrier is composed of a polarized epithelium covered by a thick adherent mucus gel layer. There is a requirement for cell culture assays of infection to accurately represent the in vivo mucosal surface. In this chapter, we describe the use of a number of cell culture models and the use of polarized in vitro organ culture to examine the interaction of C. jejuni with mucosal surfaces.

  18. Morphology heterogeneity within a Campylobacter jejuni helical population

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni helical shape is an important factor in colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) led to the selection of C. jejuni 81-176 isolates with changes in morphology resulting in either a straight mo...

  19. Antimicrobial wash with Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni on chicken skin

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe enteritis in humans largely due to consumption of contaminated poultry products. Reducing C. jejuni contamination on chicken carcasses would reduce subsequent human infections. This study investigated the efficacy of Trans-cinnama...

  20. Campylobacter jejuni chromosomal sequences that hybridize to Vibrio cholerae and Escherichia coli LT enterotoxin genes.

    PubMed

    Calva, E; Torres, J; Vázquez, M; Angeles, V; de la Vega, H; Ruíz-Palacios, G M

    1989-02-20

    Campylobacter jejuni is one of the main etiologic agents of gastrointestinal illness in developing and developed areas throughout the world. Isolation of enterotoxin-producing C. jejuni has been associated with clinical symptoms of a watery-secretory type of diarrhea. Although physiological and immunological relatedness has been demonstrated between the C. jejuni enterotoxin (CJT), the Vibrio cholerae enterotoxin (CT), and the heat-labile cholera-like Escherichia coli enterotoxin (LT), nucleotide sequence similarity between C. jejuni DNA and either the toxA, toxB, eltA or eltB genes remained to be shown. We found that binding to ganglioside GM1 prevented recognition of CJT by monoclonal antibodies directed to either CT or LT. This indicates antigenic similarity between the three enterotoxins in the ganglioside GM1-binding site. Therefore we searched for corresponding similarities at the DNA level and found, by oligodeoxynucleotide hybridization, C. jejuni chromosomal nucleotide sequences similar to the coding region for a postulated ganglioside GM1-binding site on toxB and eltB.

  1. High frequency, spontaneous motA mutations in Campylobacter jejuni strain 81-176.

    PubMed

    Mohawk, Krystle L; Poly, Frédéric; Sahl, Jason W; Rasko, David A; Guerry, Patricia

    2014-01-01

    Campylobacter jejuni is an important cause of bacterial diarrhea worldwide. The pathogenesis of C. jejuni is poorly understood and complicated by phase variation of multiple surface structures including lipooligosaccharide, capsule, and flagellum. When C. jejuni strain 81-176 was plated on blood agar for single colonies, the presence of translucent, non-motile colonial variants was noted among the majority of opaque, motile colonies. High-throughput genomic sequencing of two flagellated translucent and two opaque variants as well as the parent strain revealed multiple genetic changes compared to the published genome. However, the only mutated open reading frame common between the two translucent variants and absent from the opaque variants and the parent was motA, encoding a flagellar motor protein. A total of 18 spontaneous motA mutations were found that mapped to four distinct sites in the gene, with only one class of mutation present in a phase variable region. This study exemplifies the mutative/adaptive properties of C. jejuni and demonstrates additional variability in C. jejuni beyond phase variation.

  2. Rapid and Accurate Diagnosis Based on Real-Time PCR Cycle Threshold Value for the Identification of Campylobacter jejuni, astA Gene-Positive Escherichia coli, and eae Gene-Positive E. coli.

    PubMed

    Kawase, Jun; Asakura, Hiroshi; Kurosaki, Morito; Oshiro, Hitoshi; Etoh, Yoshiki; Ikeda, Tetsuya; Watahiki, Masanori; Kameyama, Mitsuhiro; Hayashi, Fumi; Kawakami, Yuta; Murakami, Yoshiko; Tsunomori, Yoshie

    2018-01-23

    We previously developed a multiplex real-time PCR assay (Rapid Foodborne Bacterial Screening 24 ver.5, [RFBS24 ver.5]) for simultaneous detection of 24 foodborne bacterial targets. Here, to overcome the discrepancy of the results from RFBS24 ver.5 and bacterial culture methods (BC), we analyzed 246 human clinical samples from 49 gastroenteritis outbreaks using RFBS24 ver.5 and evaluated the correlation between the cycle threshold (CT) value of RFBS24 ver.5 and the BC results. The results showed that the RFBS24 ver.5 was more sensitive than BC for Campylobacter jejuni and Escherichia coli harboring astA or eae, with positive predictive values (PPV) of 45.5-87.0% and a kappa coefficient (KC) of 0.60-0.92, respectively. The CTs were significantly different between BC-positive and -negative samples (p < 0.01). All RFBS24 ver.5-positive samples were BC-positive under the lower confidence interval (CI) limit of 95% or 99% for the CT of the BC-negative samples. We set the 95% or 99% CI lower limit to the determination CT (d-CT) to discriminate for assured BC-positive results (d-CTs: 27.42-30.86), and subsequently the PPVs (94.7%-100.0%) and KCs (0.89-0.95) of the 3 targets were increased. Together, we concluded that the implication of a d-CT-based approach would be a valuable tool for rapid and accurate diagnoses using the RFBS24 ver.5 system.

  3. Influence of inoculation levels and processing parameters on the survival of Campylobacter jejuni in German style fermented turkey sausages.

    PubMed

    Alter, Thomas; Bori, Anouchka; Hamedi, Ahmad; Ellerbroek, Lüppo; Fehlhaber, Karsten

    2006-10-01

    This study investigated the influence of inoculum levels and manufacturing methods on the survival of Campylobacter (C.) jejuni in raw fermented turkey sausages. Sausages were prepared and inoculated with C. jejuni. After inoculation, these sausages were processed and ripened for 8 days. Samples were taken throughout the ripening process. The presence of C. jejuni was established bacteriologically. Additionally, lactic acid bacteria were enumerated, pH values and water activity were measured to verify the ripening process. To detect changes in genotype and verify the identity of the recovered clones, AFLP analysis was carried out on the re-isolated strains. Whereas no C. jejuni were detectable when inoculating the sausages with the lowest inoculum (0.08-0.44 log(10) cfu/g sausage emulsion), C. jejuni were detectable for 12-24h by enrichment when inoculated with approximately 2 log(10) cfu/g. After inoculation with 4 and 6 log(10) cfu/g respectively, C. jejuni were detectable without enrichment for 12-48 h and by enrichment for 144 h at the most. The greatest decrease of the C. jejuni population occurred during the first 4 h of ripening. Only a very high inoculum level allowed the survival of the organism during a fermentation process and during ripening to pose a potential risk for consumers. Lower initial Campylobacter inoculums will be eliminated during proper ripening of the sausages, if sufficient decrease in water activity and pH-value is ensured.

  4. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni

    PubMed Central

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host. PMID:25325018

  5. Comparison of Survival of Campylobacter jejuni in the Phyllosphere with That in the Rhizosphere of Spinach and Radish Plants

    PubMed Central

    Brandl, Maria T.; Haxo, Aileen F.; Bates, Anna H.; Mandrell, Robert E.

    2004-01-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33°C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10°C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16°C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10°C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  6. Simulation of cross-contamination and decontamination of Campylobacter jejuni during handling of contaminated raw vegetables in a domestic kitchen.

    PubMed

    Chai, Lay-Ching; Lee, Hai-Yen; Ghazali, Farinazleen Mohd; Abu Bakar, Fatimah; Malakar, Pradeep Kumar; Nishibuchi, Mitsuaki; Nakaguchi, Yoshitsugu; Radu, Son

    2008-12-01

    Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.

  7. Complete genome sequences of three Campylobacter jejuni phage-propagating strains

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage therapy has the potential to reduce Campylobacter jejuni numbers in livestock, but requires a detailed understanding of phage-host interactions. Some C. jejuni strains are readily infected by certain phages, and are thus designated as phage-propagating strains. Here we report the compl...

  8. Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens

    PubMed Central

    Perez-Muñoz, M. E.; Gouveia, G. J.; Wanford, J. J.; Lango-Scholey, L.; Panagos, C. G.; Srithayakumar, V.; Plastow, G. S.; Coros, C.; Bayliss, C. D.; Edison, A. S.; Walter, J.

    2017-01-01

    ABSTRACT Source attribution studies report that the consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimization of the vaccine for commercial broiler chickens has great potential to prevent the entry of the pathogen into the food chain. Here, we tested the same vaccination approach in broiler chickens and observed similar efficacies in pathogen load reduction, stimulation of the host IgY response, the lack of C. jejuni resistance development, uniformity in microbial gut composition, and the bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of Clostridiales cluster XIVa, Anaerosporobacter mobilis, that was significantly more abundant in responder birds. In broiler chickens, coadministration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody responses, and weight gain. To investigate whether the responder-nonresponder effect was due to the selection of a C. jejuni “supercolonizer mutant” with altered phase-variable genes, we analyzed all poly(G)-containing loci of the input strain compared to nonresponder colony isolates and found no evidence of phase state selection. However, untargeted nuclear magnetic resonance (NMR)-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels that is possibly linked to increased microbial diversity in this subgroup. The comprehensive methods used to examine the bimodality of the vaccine response provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy. IMPORTANCE Campylobacter jejuni is a common cause of human diarrheal disease worldwide and is listed by the World Health Organization as a high-priority pathogen. C. jejuni infection typically occurs through the ingestion of contaminated chicken meat, so many efforts are targeted at reducing C. jejuni levels at the source. We previously developed a vaccine that reduces C. jejuni levels in egg-laying chickens. In this study, we improved vaccine performance in meat birds by supplementing the vaccine with probiotics. In addition, we demonstrated that C. jejuni colonization levels in chickens are negatively correlated with the abundance of clostridia, another group of common gut microbes. We describe new methods for vaccine optimization that will assist in improving the C. jejuni vaccine and other vaccines under development. PMID:28939610

  9. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States.

    PubMed

    Randall, Jennifer J; Goldberg, Natalie P; Kemp, John D; Radionenko, Maxim; French, Jason M; Olsen, Mary W; Hanson, Stephen F

    2009-09-01

    Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.

  10. Nucleases Encoded by Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...

  11. The complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized, farm raised chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterially derived foodborne illness worldwide. Human illness is commonly associated with handling and consumption of contaminated poultry products. Three C. jejuni strains were isolated from cecal contents of three different naturally colonized, farm rais...

  12. Campylobacter jejuni: A rare agent in a child with peritoneal dialysis-related peritonitis.

    PubMed

    Tural Kara, Tugce; Yilmaz, Songul; Ozdemir, Halil; Birsin Ozcakar, Zeynep; Derya Aysev, Ahmet; Ciftci, Ergin; Ince, Erdal

    2016-10-01

    Peritonitis is a serious problem in children receiving peritoneal dialysis. Campylobacter jejuni is an unusual cause of peritonitis. A 10-year-old boy who had end stage renal failure due to atypical hemolytic uremic syndrome was admitted to our hospital with abdominal pain and fever. Peritoneal dialysis fluid was cloudy and microscopic examination showed abundant leukocytes. Intraperitoneal cefepime treatment was started. Campylobacter jejuni was isolated from peritoneal dialysis fluid culture and oral clarithromycin was added to the treatment. At the end of therapy, peritoneal fluid culture was negative. To our knowledge, C. jejuni peritonitis was not reported in children previously. Although C. jejuni peritonitis is rarely encountered in children, it should be considered as an etiologic factor for peritonitis. Sociedad Argentina de Pediatría.

  13. Occurrence and antimicrobial susceptibility of thermophilic Campylobacter species isolated from healthy children attending municipal care centers in Southern Ecuador

    PubMed Central

    Toledo, Zorayda; Simaluiza, Rosa Janneth; Astudillo, Xavier; Fernández, Heriberto

    2017-01-01

    ABSTRACT The prevalence and antimicrobial susceptibility of Campylobacter jejuni and C. coli strains in healthy, well-nourished children of middle socioeconomic level from Southern Ecuador were determined. Among the 127 children studied, 17 (13.4%) harbored Campylobacter sp. corresponding to C. jejuni (7.1%) and C. coli (6.3%) with a higher concentration of C. jejuni among boys (8.6%) and C. coli (8.8%) among girls. C. jejuni showed high resistance to nalidixic acid and ciprofloxacin (77.8%), but susceptibility to all other antimicrobials tested. C. coli strains showed resistance to more antibiotics than C. jejuni strains including resistance to nalidixic acid (75%), ciprofloxacin (75%), erythromycin (12.5%) and ampicillin (28.6), but susceptible to gentamicin and amoxicillin/clavulanic acid. PMID:29267585

  14. Occurrence and antimicrobial susceptibility of thermophilic Campylobacter species isolated from healthy children attending municipal care centers in Southern Ecuador.

    PubMed

    Toledo, Zorayda; Simaluiza, Rosa Janneth; Astudillo, Xavier; Fernández, Heriberto

    2017-12-21

    The prevalence and antimicrobial susceptibility of Campylobacter jejuni and C. coli strains in healthy, well-nourished children of middle socioeconomic level from Southern Ecuador were determined. Among the 127 children studied, 17 (13.4%) harbored Campylobacter sp. corresponding to C. jejuni (7.1%) and C. coli (6.3%) with a higher concentration of C. jejuni among boys (8.6%) and C. coli (8.8%) among girls. C. jejuni showed high resistance to nalidixic acid and ciprofloxacin (77.8%), but susceptibility to all other antimicrobials tested. C. coli strains showed resistance to more antibiotics than C. jejuni strains including resistance to nalidixic acid (75%), ciprofloxacin (75%), erythromycin (12.5%) and ampicillin (28.6), but susceptible to gentamicin and amoxicillin/clavulanic acid.

  15. The food-borne pathogen Campylobacter jejuni depends on the AddAB DNA repair system to defend against bile in the intestinal environment.

    PubMed

    Gourley, Christopher R; Negretti, Nicholas M; Konkel, Michael E

    2017-10-31

    Accurate repair of DNA damage is crucial to ensure genome stability and cell survival of all organisms. Bile functions as a defensive barrier against intestinal colonization by pathogenic microbes. Campylobacter jejuni, a leading bacterial cause of foodborne illness, possess strategies to mitigate the toxic components of bile. We recently found that growth of C. jejuni in medium with deoxycholate, a component of bile, caused DNA damage consistent with the exposure to reactive oxygen species. We hypothesized that C. jejuni must repair DNA damage caused by reactive oxygen species to restore chromosomal integrity. Our efforts focused on determining the importance of the putative AddAB DNA repair proteins. A C. jejuni addAB mutant demonstrated enhanced sensitivity to deoxycholate and was impaired in DNA double strand break repair. Complementation of the addAB mutant restored resistance to deoxycholate, as well as function of the DNA double strand break repair system. The importance of these findings translated to the natural host, where the AddAB system was found to be required for efficient C. jejuni colonization of the chicken intestine. This research provides new insight into the molecular mechanism utilized by C. jejuni, and possibly other intestinal pathogens, to survive in the presence of bile.

  16. Identification and differentiation of Campylobacter species by high-resolution melting curve analysis.

    PubMed

    Hoseinpour, Fatemeh; Foroughi, Azadeh; Nomanpour, Bizhan; Nasab, Rezvan Sobhani

    2017-07-01

    Campylobacter jejuni and Campylobacter coli are the important food-born zoonotic pathogen, also are leading causes of human food borne illnesses worldwide. cadF gene is expressed in all C. jejuni and C. coli strains and mediates cell binding to the cell matrix protein, Fibronectin. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The goal of this study was to apply HRM analysis to identification of C. jejuni and C. coli. A total of 100 samples were obtained from chicken in Kermanshah, Iran. HRM analysis based on cadF gene and Eva Green was developed to the identification of Campylobacter to the species level. Fifty-five of 100 samples were positive as campylobacter (7 C. jejuni, 29 C. coli, 16 mixes and 3 unknown). Minor variations were observed in melting point temperatures of C. coli or C. jejuni isolates and this variation can be used to the differentiation between C. coli or C. jejuni isolates. The results of this study indicated that HRM curve analysis can be a suitable technique and rapid technique for distinguishing between C. jejuni and C. coli isolates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Campylobacter jejuni Fatal Sepsis in a Patient with Non-Hodgkin’s Lymphoma: Case Report and Literature Review of a Difficult Diagnosis

    PubMed Central

    Gallo, Maria Teresa; Di Domenico, Enea Gino; Toma, Luigi; Marchesi, Francesco; Pelagalli, Lorella; Manghisi, Nicola; Ascenzioni, Fiorentina; Prignano, Grazia; Mengarelli, Andrea; Ensoli, Fabrizio

    2016-01-01

    Campylobacter jejuni (C. jejuni) bacteremia is difficult to diagnose in individuals with hematological disorders undergoing chemotherapy. The cause can be attributed to the rarity of this infection, to the variable clinical presentation, and to the partial overlapping symptoms underlying the disease. Here, we report a case of a fatal sepsis caused by C. jejuni in a 76-year-old Caucasian man with non-Hodgkin’s lymphoma. After chemotherapeutic treatment, the patient experienced fever associated with severe neutropenia and thrombocytopenia without hemodynamic instability, abdominal pain, and diarrhea. The slow growth of C. jejuni in the blood culture systems and the difficulty in identifying it with conventional biochemical phenotyping methods contributed to the delay of administering a targeted antimicrobial treatment, leading to a fatal outcome. Early recognition and timely intervention are critical for the successful management of C. jejuni infection. Symptoms may be difficult to recognize in immunocompromised patients undergoing chemotherapy. Thus, it is important to increase physician awareness regarding the clinical manifestations of C. jejuni to improve therapeutic efficacy. Moreover, the use of more aggressive empirical antimicrobial treatments with aminoglycosides and/or carbapenems should be considered in immunosuppressed patients, in comparison to those currently indicated in the guidelines for cancer-related infections supporting the use of cephalosporins as monotherapy. PMID:27077849

  18. Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota.

    PubMed

    Mañes-Lázaro, R; Van Diemen, P M; Pin, C; Mayer, M J; Stevens, M P; Narbad, A

    2017-08-01

    1. Campylobacter jejuni is the most common bacterial cause of human food-borne gastroenteritis in the world. A major source of human infection is the consumption of contaminated meat, particularly poultry. New control measures to reduce or eliminate this pathogen from the animal gastrointestinal tract are urgently required, and the use of probiotics as competitive exclusion agents is a promising biocontrol measure to reduce C. jejuni in the food chain. 2. In this study, we assessed the potential of Lactobacillus johnsonii FI9785, which has shown efficacy against Clostridium perfringens, to combat C. jejuni. The effect of prophylactic administration of L. johnsonii on the ability of C. jejuni to colonise chickens was determined. 3. Two doses of L. johnsonii given a week apart led to a reduction in C. jejuni colonisation in the caecal contents, but this biocontrol seemed reliant upon a high level of initial colonisation by the probiotic. 4. The microbial composition in the chicken gut was significantly altered by the probiotic treatment, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. 5. Together these results demonstrate the potential of this probiotic strain to be tested further as a competitive exclusion agent in poultry against C. jejuni.

  19. Gene Expression Profiling of the Local Cecal Response of Genetic Chicken Lines That Differ in Their Susceptibility to Campylobacter jejuni Colonization

    PubMed Central

    Kogut, Michael H.; Chiang, Hsin-I; Wang, Ying; Genovese, Kenneth J.; He, Haiqi; Zhou, Huaijun

    2010-01-01

    Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were characterized by an up-regulation lymphocyte activation, probably by regulatory T cells and an increased expression of the NLR recognition receptor NALP1. To our knowledge, this is the first time each of these responses has been observed in the avian response to an intestinal bacterial pathogen. PMID:20676366

  20. The other Campylobacters: Not innocent bystanders in endemic diarrhea and dysentery in children in low-income settings

    PubMed Central

    Yori, Pablo Peñataro; Rouhani, Saba; Siguas Salas, Mery; Paredes Olortegui, Maribel; Rengifo Trigoso, Dixner; Pisanic, Nora; Burga, Rosa; Meza, Rina; Meza Sanchez, Graciela; Gregory, Michael J.; Houpt, Eric R.; Platts-Mills, James A.; Kosek, Margaret N.

    2018-01-01

    Background Campylobacter is one of the main causes of gastroenteritis worldwide. Most of the current knowledge about the epidemiology of this food-borne infection concerns two species, C. coli and C. jejuni. Recent studies conducted in developing countries and using novel diagnostic techniques have generated evidence of the increasing burden and importance of other Campylobacter species, i.e. non-C. coli/jejuni. We performed a nested case-control study to compare the prevalence of C. coli/jejuni and other Campylobacter in children with clinical dysentery and severe diarrhea as well as without diarrhea to better understand the clinical importance of infections with Campylobacter species other than C. coli/jejuni. Methodology/Principal findings Our nested case-control study of 439 stool samples included dysenteric stools, stools collected during severe diarrhea episodes, and asymptomatic stools which were systematically selected to be representative of clinical phenotypes from 9,160 stools collected during a birth cohort study of 201 children followed until two years of age. Other Campylobacter accounted for 76.4% of the 216 Campylobacter detections by qPCR and were more prevalent than C. coli/jejuni across all clinical groups. Other Campylobacter were also more prevalent than C. coli/jejuni across all age groups, with older children bearing a higher burden of other Campylobacter. Biomarkers of intestinal inflammation and injury (methylene blue, fecal occult test, myeloperoxidase or MPO) showed a strong association with dysentery, but mixed results with infection. MPO levels were generally higher among children infected with C. coli/jejuni, but Shigella-infected children suffering from dysentery recorded the highest levels (26,224 ng/mL); the lowest levels (10,625 ng/mL) were among asymptomatic children infected with other Campylobacter. Adjusting for age, sex, and Shigella infection, dysentery was significantly associated with C. coli/jejuni but not with other Campylobacter, whereas severe diarrhea was significantly associated with both C. coli/jejuni and other Campylobacter. Compared to asymptomatic children, children suffering from dysentery had a 14.6 odds of C. coli/jejuni infection (p-value < 0.001, 95% CI 5.5–38.7) but were equally likely to have other Campylobacter infections–odds ratio of 1.3 (0.434, 0.7–2.4). Children suffering from severe diarrhea were more likely than asymptomatic children to test positive for both C. coli/jejuni and other Campylobacter–OR of 2.8 (0.034, 1.1–7.1) and 1.9 (0.018, 1.1–3.1), respectively. Compared to the Campylobacter-free group, the odds of all diarrhea given C. coli/jejuni infection and other Campylobacter infection were 8.8 (<0.001, 3.0–25.7) and 2.4 (0.002, 1.4–4.2), respectively. Eliminating other Campylobacter in this population would eliminate 24.9% of the diarrhea cases, which is almost twice the population attributable fraction of 15.1% due to C. coli/jejuni. Conclusions/Significance Eighty-seven percent of the dysentery and 59.5% of the severe diarrhea samples were positive for Campylobacter, Shigella, or both, emphasizing the importance of targeting these pathogens to limit the impact of dysentery and severe diarrhea in children. Notably, the higher prevalence of other Campylobacter compared to C. coli/jejuni, their increasing burden during early childhood, and their association with severe diarrhea highlight the importance of these non-C. coli/jejuni Campylobacter species and suggest a need to clarify their importance in the etiology of clinical disease across different epidemiological contexts. PMID:29415075

  1. The other Campylobacters: Not innocent bystanders in endemic diarrhea and dysentery in children in low-income settings.

    PubMed

    François, Ruthly; Yori, Pablo Peñataro; Rouhani, Saba; Siguas Salas, Mery; Paredes Olortegui, Maribel; Rengifo Trigoso, Dixner; Pisanic, Nora; Burga, Rosa; Meza, Rina; Meza Sanchez, Graciela; Gregory, Michael J; Houpt, Eric R; Platts-Mills, James A; Kosek, Margaret N

    2018-02-01

    Campylobacter is one of the main causes of gastroenteritis worldwide. Most of the current knowledge about the epidemiology of this food-borne infection concerns two species, C. coli and C. jejuni. Recent studies conducted in developing countries and using novel diagnostic techniques have generated evidence of the increasing burden and importance of other Campylobacter species, i.e. non-C. coli/jejuni. We performed a nested case-control study to compare the prevalence of C. coli/jejuni and other Campylobacter in children with clinical dysentery and severe diarrhea as well as without diarrhea to better understand the clinical importance of infections with Campylobacter species other than C. coli/jejuni. Our nested case-control study of 439 stool samples included dysenteric stools, stools collected during severe diarrhea episodes, and asymptomatic stools which were systematically selected to be representative of clinical phenotypes from 9,160 stools collected during a birth cohort study of 201 children followed until two years of age. Other Campylobacter accounted for 76.4% of the 216 Campylobacter detections by qPCR and were more prevalent than C. coli/jejuni across all clinical groups. Other Campylobacter were also more prevalent than C. coli/jejuni across all age groups, with older children bearing a higher burden of other Campylobacter. Biomarkers of intestinal inflammation and injury (methylene blue, fecal occult test, myeloperoxidase or MPO) showed a strong association with dysentery, but mixed results with infection. MPO levels were generally higher among children infected with C. coli/jejuni, but Shigella-infected children suffering from dysentery recorded the highest levels (26,224 ng/mL); the lowest levels (10,625 ng/mL) were among asymptomatic children infected with other Campylobacter. Adjusting for age, sex, and Shigella infection, dysentery was significantly associated with C. coli/jejuni but not with other Campylobacter, whereas severe diarrhea was significantly associated with both C. coli/jejuni and other Campylobacter. Compared to asymptomatic children, children suffering from dysentery had a 14.6 odds of C. coli/jejuni infection (p-value < 0.001, 95% CI 5.5-38.7) but were equally likely to have other Campylobacter infections-odds ratio of 1.3 (0.434, 0.7-2.4). Children suffering from severe diarrhea were more likely than asymptomatic children to test positive for both C. coli/jejuni and other Campylobacter-OR of 2.8 (0.034, 1.1-7.1) and 1.9 (0.018, 1.1-3.1), respectively. Compared to the Campylobacter-free group, the odds of all diarrhea given C. coli/jejuni infection and other Campylobacter infection were 8.8 (<0.001, 3.0-25.7) and 2.4 (0.002, 1.4-4.2), respectively. Eliminating other Campylobacter in this population would eliminate 24.9% of the diarrhea cases, which is almost twice the population attributable fraction of 15.1% due to C. coli/jejuni. Eighty-seven percent of the dysentery and 59.5% of the severe diarrhea samples were positive for Campylobacter, Shigella, or both, emphasizing the importance of targeting these pathogens to limit the impact of dysentery and severe diarrhea in children. Notably, the higher prevalence of other Campylobacter compared to C. coli/jejuni, their increasing burden during early childhood, and their association with severe diarrhea highlight the importance of these non-C. coli/jejuni Campylobacter species and suggest a need to clarify their importance in the etiology of clinical disease across different epidemiological contexts.

  2. Characterisation by multilocus sequence and porA and flaA typing of Campylobacter jejuni isolated from samples of dog faeces collected in one city in New Zealand.

    PubMed

    Mohan, V; Stevenson, M A; Marshall, J C; French, N P

    2017-07-01

    To investigate the prevalence of Campylobacter spp. and C. jejuni in dog faecal material collected from dog walkways in the city of Palmerston North, New Zealand, and to characterise the C. jejuni isolates by multilocus sequence typing (MLST) and porA and flaA antigen gene typing. A total of 355 fresh samples of dogs faeces were collected from bins provided for the disposal of dog faeces in 10 walkways in Palmerston North, New Zealand, between August 2008-July 2009. Presumptive Campylobacter colonies, cultured on modified charcoal cefoperazone deoxycholate plates, were screened for genus Campylobacter and C. jejuni by PCR. The C. jejuni isolates were subsequently characterised by MLST and porA and flaA typing, and C. jejuni sequence types (ST) were assigned. Of the 355 samples collected, 72 (20 (95% CI=16-25)%) were positive for Campylobacter spp. and 22 (6 (95% CI=4-9)%) were positive for C. jejuni. Of the 22 C. jejuni isolates, 19 were fully typed by MLST. Ten isolates were assigned to the clonal complex ST-45 and three to ST-52. The allelic combinations of ST-45/flaA 21/porA 44 (n=3), ST-45/flaA 22/porA 53 (n=3) and ST-52/ flaA 57/porA 905 (n=3) were most frequent. The successful isolation of C. jejuni from canine faecal samples collected from faecal bins provides evidence that Campylobacter spp. may survive outside the host for at least several hours despite requiring fastidious growth conditions in culture. The results show that dogs carry C. jejuni genotypes (ST-45, ST-50, ST-52 and ST-696) that have been reported in human clinical cases. Although these results do not provide any evidence either for the direction of infection or for dogs being a potential risk factor for human campylobacteriosis, dog owners are advised to practice good hygiene with respect to their pets to reduce potential exposure to infection.

  3. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization.

    PubMed

    Lertpiriyapong, Kvin; Gamazon, Eric R; Feng, Yan; Park, Danny S; Pang, Jassia; Botka, Georgina; Graffam, Michelle E; Ge, Zhongming; Fox, James G

    2012-01-01

    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn) mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA, providing new insights into the role of T6SS in C. jejuni pathogenesis.

  4. Accessory genetic content in Campylobacter jejuni ST21CC isolates from feces and blood.

    PubMed

    Skarp, C P A; Akinrinade, O; Kaden, R; Johansson, C; Rautelin, H

    2017-06-01

    Campylobacter jejuni is an important foodborne pathogen and the most commonly reported bacterial cause of gastroenteritis. C. jejuni is occasionally found in blood, although mechanisms important for invasiveness have remained unclear. C. jejuni is divided into many different lineages, of which the ST21 clonal complex (CC) is widely distributed. Here, we performed comparative genomic and in vitro analyses on 17C. jejuni ST21CC strains derived from human blood and feces in order to identify features associated with isolation site. The ST21CC lineage is divided into two large groups; centered around ST-21 and ST-50. Our clinical strains, typed as ST-50, showed further microevolution into two distinct clusters. These clusters were distinguished by major differences in their capsule loci and the distribution of accessory genetic content, including C. jejuni integrated elements (CJIEs) and plasmids. Accessory genetic content was more common among fecal than blood strains, whereas blood strains contained a hybrid capsule locus which partially consisted of C. jejuni subsp. doylei-like content. In vitro infection assays with human colon cell lines did not show significant differences in adherence and invasion between the blood and fecal strains. Our results showed that CJIEs and plasmid derived genetic material were less common among blood isolates than fecal isolates; in contrast, hybrid capsule loci, especially those containing C. jejuni subsp. doylei-like gene content, were found among many isolates derived from blood. The role of these findings requires more detailed investigation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat.

    PubMed

    Birk, Tina; Grønlund, Anne Christine; Christensen, Bjarke Bak; Knøchel, Susanne; Lohse, Kristin; Rosenquist, Hanne

    2010-02-01

    The aim of this study was to determine whether marination of chicken meat in different food ingredients can be used to reduce populations of Campylobacter jejuni. C. jejuni strains were exposed to different organic acids (tartaric, acetic, lactic, malic, and citric acids) and food marinating ingredients at 4 degrees C in broth and on chicken meat. The organic acids (0.5%) reduced populations of C. jejuni in broth (chicken juice and brain heart infusion broth) by 4 to 6 log units (after 24 h); tartaric acid was the most efficient treatment. Large strain variation was observed among 14 C. jejuni isolates inoculated in brain heart infusion broth containing 0.3% tartaric acid. On chicken meat medallions, reductions of C. jejuni were 0.5 to 2 log units when tartaric acid solutions (2, 4, 6, and 10%) were spread onto the meat. Analysis of acidic food ingredient (e.g., vinegar, lemon juice, pomegranate syrup, and soya sauce) revealed that such ingredients reduced counts of C. jejuni by at least 0.8 log units on meat medallions. Three low pH marinades (pH < 3) based on pomegranate syrup, lemon juice, and white wine vinegar were prepared. When applied to whole filets, these marinades resulted in a reduction of approximately 1.2 log units after 3 days of storage. Taste evaluations of chicken meat that had been marinated and then fried were graded positively for flavor and texture. Thus, success was achieved in creating a marinade with an acceptable taste that reduced the counts of C. jejuni.

  6. Draft Genome Sequences of 116 Campylobacter jejuni Strains Isolated from Humans, Animals, Food, and the Environment in Brazil.

    PubMed

    Frazão, Miliane Rodrigues; Cao, Guojie; Medeiros, Marta Inês Cazentini; Duque, Sheila da Silva; Leon, Maria Sanchez; Allard, Marc William; Falcão, Juliana Pfrimer

    2018-04-19

    Campylobacter jejuni is a major zoonotic pathogen that causes foodborne gastroenteritis worldwide. However, clinical cases of campylobacteriosis have been underreported and underdiagnosed in Brazil. Herein, we describe the draft genome sequences of 116 C. jejuni strains isolated from diverse sources in Brazil.

  7. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  8. Draft Genome Sequence of Campylobacter jejuni 11168H

    PubMed Central

    Macdonald, Sarah E.; Gundogdu, Ozan; Dorrell, Nick; Wren, Brendan W.; Blake, Damer

    2017-01-01

    ABSTRACT Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H. PMID:28153902

  9. Comparative quantification of Campylobacter jejuni from environmental samples using traditional and molecular biological techniques

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni (C. jejuni) is one of the most common causes of gastroenteritis in the world. Given the potential risks to human, animal and environmental health the development and optimization of methods to quantify this important pathogen in environmental samples is essential. Two of the mos...

  10. Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni effectively promotes commensalism in the intestinal tract of avian hosts and diarrheal disease in humans, yet components of intestinal environments sensed by the bacterium in either host to initiate interactions are mostly unknown. By analyzing a C. jejuni acetogenesis mutant th...

  11. [The occurrence of campylobacter fetus subsp. jejuni and Salmonella bacteria in some wild birds (author's transl)].

    PubMed

    Rosef, O

    1981-12-01

    An investigation was carried out into the occurrence of Campylobacter fetus subsp. jejuni and Salmonella species in some wild birds. A total of 129 birds was examined, consisting of 71 pigeons, 54 seagulls, three crows and one raven. Campylobacter bacteria were isolated from 32 birds (24.8%), of which three were pigeons, 27 seagulls and two were crows. Of the 27 Campylobacter strains isolated from seagulls, four had the biochemical characteristics of the NARTC biotype described by Skirrow and Benjamin, seven were grouped as Campylobacter coli biotype and 16 as the biotype of Campylobacter jejuni. All the strains isolated from crows and pigeons had the biochemical characteristics of Campylobacter jejuni biotypes. Salmonella bacteria were isolated from the intestinal contents of two of the 54 seagulls (3.7%), and were identified serologically as Salmonella indiana and Salmonella typhimurium. One seagull was found to be a carrier of both Campylobacter fetus subsp. jejuni and Salmonella typhimurium. A correlation could not be demonstrated between the occurrence of Salmonella bacteria and Campylobacter fetus subsp. jejuni.

  12. Survival of Campylobacter jejuni inoculated into ground beef.

    PubMed Central

    Stern, N J; Kotula, A W

    1982-01-01

    Ground beef was inoculated with mixed cultures of Campylobacter jejuni, and the samples were subjected to various cooking and cold-storage temperatures. When samples were heated in an oven at either 190 or 218 degrees C, approximately 10(7) cells of C. jejuni per g were inactivated (less than 30 cells per g) in less than 10 min after the ground beef reached an internal temperature of 70 degrees C. When the samples were held at -15 degrees C over 14 days of storage, the numbers of C. jejuni declined by 3 log10. When inoculated samples were stored with an equal amount of Cary-Blair diluent at 4 degrees C, no changes in viability were observed over 14 days of storage. Twenty-five times as much C. jejuni was recovered from inoculated ground beef when either 10% glycerol or 10% dimethyl sulfoxide was added to an equal amount of ground beef before freezing as was recovered from peptone-diluted ground beef. Twice as much inoculated C. jejuni was recovered from ground beef plus Cary-Blair diluent as was recovered from ground beef plus peptone diluent. PMID:7181502

  13. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA).

    PubMed Central

    Uyttendaele, M; Schukkink, R; van Gemen, B; Debevere, J

    1995-01-01

    An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples. PMID:7747955

  14. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice.

    PubMed

    Sun, Xiaolun; Winglee, Kathryn; Gharaibeh, Raad Z; Gauthier, Josee; He, Zhen; Tripathi, Prabhanshu; Avram, Dorina; Bruner, Steven; Fodor, Anthony; Jobin, Christian

    2018-05-01

    Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. Germ-free C57BL/6 Il10 -/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (10 9 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10 -/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10 -/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10 -/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. We identified a mechanism by which the microbiota controls susceptibility to C jejuni infection in mice, via bacteria-derived secondary bile acids. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Transfer of Campylobacter jejuni from raw to cooked chicken via wood and plastic cutting boards.

    PubMed

    Tang, J Y H; Nishibuchi, M; Nakaguchi, Y; Ghazali, F M; Saleha, A A; Son, R

    2011-06-01

    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE). RW and PE cutting boards (2.5 × 2.5 cm(2)) were constructed. RW surfaces were smooth and even, whereas PE was uneven. Scoring with scalpel blades produced crevices on RW and flaked patches on the PE boards. Raw chicken breast fillets or skin pieces (10 g) naturally contaminated with Camp. jejuni were used to contaminate the cutting boards (6.25 cm(2)). These were then briefly covered with pieces of cooked chicken. Campylobacter jejuni on raw chicken, the boards, and cooked chicken pieces were counted using a combined most-probable-number (MPN)-PCR method. The type of cutting board (RW, PE; unscored and scored) and temperature of cooked chicken fillets and skins were examined. Unscored PE and RW boards were not significantly different in regards to the mean transfer of Camp. jejuni from raw samples to the boards. The mean transfer of Camp. jejuni from scored RW was significantly higher than from scored PE. When the chicken fillets were held at room temperature, the mean transfer of Camp. jejuni from scored RW and PE was found to be 44.9 and 40.3%, respectively.   RW and PE cutting boards are potential vehicles for Camp. jejuni to contaminate cooked chicken. Although cooked chicken maintained at high temperatures reduced cross-contamination via contaminated boards, a risk was still present. Contamination of cooked chicken by Camp. jejuni from raw chicken via a cutting board is influenced by features of the board (material, changes caused by scoring) and chicken (types of chicken parts and temperature of the cooked chicken). © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  16. Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice

    PubMed Central

    Wilson, David L.; Rathinam, Vijay A. K.; Qi, Weihong; Wick, Lukas M.; Landgraf, Jeff; Bell, Julia A.; Plovanich-Jones, Anne; Parrish, Jodi; Finley, Russell L.; Mansfield, Linda S.; Linz, John E.

    2010-01-01

    Previous studies have demonstrated that Campylobacter jejuni, the leading causative agent of bacterial food-borne disease in the USA, exhibits high-frequency genetic variation that is associated with changes in cell-surface antigens and ability to colonize chickens. To expand our understanding of the role of genetic diversity in the disease process, we analysed the ability of three C. jejuni human disease isolates (strains 11168, 33292 and 81-176) and genetically marked derivatives to colonize Ross 308 broilers and C57BL/6J IL10-deficient mice. C. jejuni colonized broilers at much higher efficiency (all three strains, 23 of 24 broilers) than mice (11168 only, 8 of 24 mice). C. jejuni 11168 genetically marked strains colonized mice at very low efficiency (2 of 42 mice); however, C. jejuni reisolated from mice colonized both mice and broilers at high efficiency, suggesting that this pathogen can adapt genetically in the mouse. We compared the genome composition in the three wild-type C. jejuni strains and derivatives by microarray DNA/DNA hybridization analysis; the data demonstrated a high degree of genetic diversity in three gene clusters associated with synthesis and modification of the cell-surface structures capsule, flagella and lipo-oligosaccharide. Finally, we analysed the frequency of mutation in homopolymeric tracts associated with the contingency genes wlaN (GC tract) and flgR (AT tracts) in culture and after passage through broilers and mice. C. jejuni adapted genetically in culture at high frequency and the degree of genetic diversity was increased by passage through broilers but was nearly eliminated in the gastrointestinal tract of mice. The data suggest that the broiler gastrointestinal tract provides an environment which promotes outgrowth and genetic variation in C. jejuni; the enhancement of genetic diversity at this location may contribute to its importance as a human disease reservoir. PMID:20360176

  17. Sulfonamide Resistance in Clinical Isolates of Campylobacter jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase

    PubMed Central

    Gibreel, Amera; Sköld, Ola

    1999-01-01

    The characterization of the genetic basis of sulfonamide resistance in Campylobacter jejuni was attempted. The resistance determinant from a sulfonamide-resistant strain of C. jejuni was cloned and was found to show 42% identity with the folP gene (which codes for dihydropteroate synthase, the target of sulfonamides) of the related bacterium Helicobacter pylori. The sequences of the areas surrounding the folP gene in C. jejuni showed similarity to those of the areas surrounding the corresponding gene in H. pylori. The folP gene of C. jejuni, which mediates the resistance, was observed to show particular features when it was compared to other known folP genes. One of these features is the presence of two pairs of direct repeats (15 and 27 bp) within the coding sequence of the gene. Comparison of the C. jejuni folP genes that mediate susceptibility and resistance revealed the occurrence of mutations that changed four amino acid residues. Resistance of C. jejuni to sulfonamides could be associated with one or several of these four mutational substitutions, which all occurred in the five different resistant isolates studied. The codon for one of these changed amino acids was found to be located in the second direct repeat within the coding sequence of the gene. The change made the repeat perfect. The transformation of both the resistance and the susceptibility variants of the gene into an Escherichia coli folP knockout mutant was found to complement the dihydropteroate synthase deficiency, confirming that the characterized sulfonamide resistance determinant codes for the C. jejuni dihydropteroate synthase enzyme. Kinetic measurements established different affinities of sulfonamide for the dihydropteroate synthase enzyme isolated from the resistant and susceptible strains. In conclusion, sulfonamide resistance in C. jejuni was shown to be associated with mutational changes in the chromosomally located gene for dihydropteroate synthase, the target of sulfonamides. PMID:10471557

  18. Strain-dependent induction of epithelial cell oncosis by Campylobacter jejuni is correlated with invasion ability and is independent of cytolethal distending toxin.

    PubMed

    Kalischuk, Lisa D; Inglis, G Douglas; Buret, Andre G

    2007-09-01

    Induction of host cell death is thought to play an important role in bacterial pathogenesis. Campylobacter jejuni is a prevalent cause of bacterial enteritis; however, its effects on enterocytes remain unclear. The present study indicates for the first time that C. jejuni induces oncotic, rather than apoptotic death of T84 enterocytes. C. jejuni-treated enterocytes exhibited extensive cytoplasmic vacuolation, rapid (3-6 h) loss of plasma membrane integrity ('cytotoxicity'), loss of mitochondrial transmembrane potential, and ATP depletion. Enterocytes also exhibited increased oligonucleosomal DNA fragmentation, a feature characteristic of apoptosis. However, consistent with a non-apoptotic process, DNA fragmentation and cytotoxicity were not caspase dependent. During apoptosis, caspases mediate cleavage of poly(ADP-ribose) polymerase; however, cleavage was not observed in C. jejuni-treated monolayers. Cytotoxicity, ATP depletion and DNA fragmentation were not prevented by the deletion of the cytolethal distending toxin (CDT) gene, indicating that C. jejuni causes enterocyte oncosis via a mechanism that is CDT independent. The ability to cause oncosis was significantly decreased in a FlaAFlaB mutant (CDT(+)) that was defective in the ability to adhere and invade enterocytes. Analysis of clinical isolates revealed that oncosis was strain dependent and correlated with increased invasive ability. These observations offer new insights into the pathogenesis of C. jejuni infection.

  19. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  20. [Experimental study on the chitosan-DNA vaccines against campylobacter jejuni invasion].

    PubMed

    Zheng, Hui; Cai, Fang-cheng; Zhong, Min; Deng, Bing; Li, Xin; Zhang, Xiao-ping

    2007-09-01

    The immunogenicity and protective efficacy of an experimental Campylobacter jejuni (C. jejuni) chitosan-DNA vaccines were evaluated in mice. The chitosan-DNA vaccines were prepared by embedding pcDNA3.1(+)-cadF and pcDNA3.1(+)-peblA with chitosan respectively. BALB/c mice were intranasally immunized in a four-dose primary series (7 d intervals) at doses of 60 microg chitosan-DNA vaccines each time. The comparative immunogenicities of nine formulations were assessed on the basis of the generation of antigen-specific antibodies in serum and intestinal secretions. Mice were attacked repeatedly through intragastric administration of C. jejuni HS:19 at the 8th week after the immunization and protective efficacy was determined by detecting the degrees of protection afforded against C. jejuni invaded. The mice immunized with chitosan-DNA vaccines have generated high levels of IgA and IgG from the sera and IgA from the intestinal secretions and the P/N value went up to 20.58, 30.13 and 6.87 respectively. Meanwhile, the expression of intestinal SIgA increased correspondingly. Moreover the chitosan-DNA vaccines induced strongest level of protection in BALB/c mice against challenge with C. jejuni HS:19 strain and the protective efficacies was 93.70. The results of this study indicate that the chitosan-DNA vaccines could induce significant protective immunity against C. jejuni challenge in the mice model.

  1. Complete genome sequence of Campylobacter jejuni RM1246-ERRC that exhibits resistance to Quaternary Ammonium Compounds

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni strain RM1246-ERRC is a clinical isolate. In laboratory experiments RM1246-ERRC exhibited resistance to the antimicrobial effects of quaternary ammonium compounds (QACs) when compared to other C. jejuni strains. The chromosome of RM1246-ERRC was determined to be 1,659,694 bp w...

  2. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the united states

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a significant concern for ruminant health and food safety. Recently, a highly pathogenic C. jejuni clone (named SA) has emerged as the predominant cause of ruminant abortion and a significant cause of foodborne illnesses in the United States. Despite the recent advance in und...

  3. The complete genome sequence and annotation of a Campylobacter jejuni strain, MTVDSCj20, isolated from a naturally colonized farm-raised chicken

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major cause of human foodborne illness worldwide with contaminated poultry products serving as a main source of human infection. C. jejuni strain MTVDSCj20 was isolated from the cecal contents of a farm-raised chicken naturally colonized with Campylobacter. The complete,...

  4. Campylobacter jejuni host tissue tropism: a consequence of its low-carb lifestyle?

    PubMed

    Thompson, Stuart A; Gaynor, Erin C

    2008-11-13

    Mechanisms underlying virulence properties of Campylobacter jejuni have historically been difficult to identify. In this issue of Cell Host & Microbe, Hofreuter et al. (2008) show that C. jejuni's ability to metabolize glutamine, glutathione, and asparagine affects its ability to colonize specific host tissues. These findings reflect the emerging theme of bacterial physiology directly impacting pathogenesis.

  5. Autoinducer-2 Production in Campylobacter jejuni Contributes to Chicken Colonization ▿

    PubMed Central

    Quiñones, Beatriz; Miller, William G.; Bates, Anna H.; Mandrell, Robert E.

    2009-01-01

    Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells. PMID:19011073

  6. Evaluation of different Campylobacter jejuni isolates to colonize the intestinal tract of commercial turkey poults and selective media for enumeration

    USDA-ARS?s Scientific Manuscript database

    Consumption of contaminated poultry products is the main source of human campylobacteriosis, which Campylobacter jejuni is responsible for 90 percent of human cases. Although chickens are believed to be a main source of human exposure to C. jejuni, turkey also contributes to cases of human infection...

  7. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-ranking of 403 representativ...

  8. Analysis of the activity and regulon of the two-component regulatory system encoded by Cjj1484 and Cjj1483 of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...

  9. The civRT operon is important for Campylobacter jejuni strain 81-176 host cell interactions through regulation of the formate dehydrogenase operon

    USDA-ARS?s Scientific Manuscript database

    C. jejuni colonizes the intestinal mucosa, and the severity of disease in different strains is correlated with host cell interaction and invasion. A microarray screen to identify genes differentially regulated during C. jejuni interaction with tissue culture cells revealed the up-regulation of a two...

  10. Characterization of the Thermal Stress Response of Campylobacter jejuni

    PubMed Central

    Konkel, Michael E.; Kim, Bong J.; Klena, John D.; Young, Colin R.; Ziprin, Richard

    1998-01-01

    Campylobacter jejuni, a microaerophilic, gram-negative bacterium, is a common cause of gastrointestinal disease in humans. Heat shock proteins are a group of highly conserved, coregulated proteins that play important roles in enabling organisms to cope with physiological stresses. The primary aim of this study was to characterize the heat shock response of C. jejuni. Twenty-four proteins were preferentially synthesized by C. jejuni immediately following heat shock. Upon immunoscreening of Escherichia coli transformants harboring a Campylobacter genomic DNA library, one recombinant plasmid that encoded a heat shock protein was isolated. The recombinant plasmid, designated pMEK20, contained an open reading frame of 1,119 bp that was capable of encoding a protein of 372 amino acids with a calculated molecular mass of 41,436 Da. The deduced amino acid sequence of the open reading frame shared similarity with that of DnaJ, which belongs to the Hsp-40 family of molecular chaperones, from a number of bacteria. An E. coli dnaJ mutant was successfully complemented with the pMEK20 recombinant plasmid, as judged by the ability of bacteriophage λ to form plaques, indicating that the C. jejuni gene encoding the 41-kDa protein is a functional homolog of the dnaJ gene from E. coli. The ability of each of two C. jejuni dnaJ mutants to form colonies at 46°C was severely retarded, indicating that DnaJ plays an important role in C. jejuni thermotolerance. Experiments revealed that a C. jejuni DnaJ mutant was unable to colonize newly hatched Leghorn chickens, suggesting that heat shock proteins play a role in vivo. PMID:9673247

  11. Class 1 integrons and plasmid-mediated multiple resistance genes of the Campylobacter species from pediatric patient of a university hospital in Taiwan.

    PubMed

    Chang, Yi-Chih; Tien, Ni; Yang, Jai-Sing; Lu, Chi-Cheng; Tsai, Fuu-Jen; Huang, Tsurng-Juhn; Wang, I-Kuan

    2017-01-01

    The Campylobacter species usually causes infection between humans and livestock interaction via livestock breeding. The studies of the Campylobacter species thus far in all clinical isolates were to show the many kinds of antibiotic phenomenon that were produced. Their integrons cause the induction of antibiotic resistance between bacterial species in the Campylobacter species. The bacterial strains from the diarrhea of pediatric patient which isolated by China Medical University Hospital storage bank. These isolates were identified by MALDI-TOF mass spectrometry. The anti-microbial susceptibility test showed that Campylobacter species resistant to cefepime, streptomycin, tobramycin and trimethoprim/sulfamethoxazole (all C. jejuni and C. coli isolates), ampicillin (89% of C. jejuni ; 75% of C. coli ), cefotaxime (78% of C. jejuni ; 100% of C. coli ), nalidixic acid (78% of C. jejuni ; 100% of C. coli ), tetracycline (89% of C. jejuni ; 25% C. coli ), ciprofloxacin (67% of C. jejuni ; 50% C. coli ), kanamycin (33% of C. jejuni ; 75% C. coli ) and the C. fetus isolate resisted to ampicillin, cefotaxime, nalidixic acid, tetracycline, ciprofloxacin, kanamycin by disc-diffusion method. The effect for ciprofloxacin and tetracycline of the Campylobacter species was tested using an E-test. The tet, erm , and integron genes were detected by PCR assay. According to the sequencing analysis (type I: dfr12 - gcuF - aadA2 genes and type II: dfrA7 gene), the cassette type was identified. The most common gene cassette type (type I: 9 C. jejuni and 2 C. coli isolates; type II: 1 C. coli isolates) was found in 12 class I integrase-positive isolates. Our results suggested an important information in the latency of Campylobacter species with resistance genes, and irrational antimicrobial use should be concerned.

  12. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond

    PubMed Central

    Chandrashekhar, Kshipra; Kassem, Issmat I.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials. PMID:28080213

  13. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond.

    PubMed

    Chandrashekhar, Kshipra; Kassem, Issmat I; Rajashekara, Gireesh

    2017-07-04

    Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials.

  14. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs.

    PubMed

    Godlewska, Renata; Kuczkowski, Maciej; Wyszyńska, Agnieszka; Klim, Joanna; Derlatka, Katarzyna; Woźniak-Biel, Anna; Jagusztyn-Krynicka, Elżbieta K

    2016-10-01

    Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.

  15. Occurrence of Campylobacter spp. and Cryptosporidium spp. in seagulls (Larus spp.).

    PubMed

    Moore, John E; Gilpin, Deidre; Crothers, Elizabeth; Canney, Anne; Kaneko, Aki; Matsuda, Motoo

    2002-01-01

    An investigation was carried out into the prevalence of thermophilic Campylobacter subspecies (spp.) and Cryptosporidium spp. in fresh fecal specimens collected from members of the gull family (Larus spp.) from three coastal locations of Northern Ireland. A total of 205 fresh fecal specimens were collected from gulls, of which 28 of 205 (13.7%) were positive for Campylobacter spp. and none of 205 for Cryptosporidium spp. Of these campylobacters, 21 of 28 (75%) isolates obtained belonged to the urease-positive thermophilic Campylobacter (UPTC) taxon, followed by five of 28 (17.9%) Campylobacter lari and 2/28 (7.1%) Campylobacter jejuni. It is significant that seagulls are the sole warm-blooded animal host of this bacterial taxon in Northern Ireland. It is proposed that physiological adaptation to starvation by gulls may lead to increased concentrations of urea through energy production from protein, yielding increased levels of urea for metabolism by UPTC organisms. In general, the possibility exists that environmental contamination of surface waters with campylobacters might be mediated by wild birds (such as gulls), where such waters are used for recreational purposes or where such waters are consumed untreated, might represent a risk to public health.

  16. The application of food safety interventions in primary production of beef and lamb: a review.

    PubMed

    Adam, K; Brülisauer, F

    2010-07-31

    The production of safe red meat depends on effective control of pathogenic microorganisms at all stages of the "farm-to-fork" chain. Eight microorganisms have been selected as the focus of the PathogenCombat project: Shiga toxin producing Escherichia coli (STEC), Mycobacterium avium subspecies paratuberculosis (Map), Listeria monocytogenes, Campylobacter jejuni, Penicillium nordicum, invasive variants of Saccharomyces cerevisiae, hepatitis E virus and tick borne encephalitis virus. The need and potential for coordinated control of the selected food-borne pathogens by on-farm interventions is assessed using a decision tree and a review of the relevant scientific literature. Control measures to reduce the carriage of these pathogens in ruminants prior to slaughter are reviewed with reference to the current regulations and guidelines relating to the primary production. From the eight pathogens investigated, two (STEC and Map), are likely to be effectively controlled by interventions at farm level and the applicable interventions are described and discussed. Ruminants are the main reservoir for these two pathogens; hence a reduction of carriage in livestock should directly reduce human exposure through the consumption of beef and lamb. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-12-01

    Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the 'olive quick decline syndrome' in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.

  18. Draft Genome Sequences of Three Multiantibiotic-Resistant Campylobacter jejuni Strains (2865, 2868, and 2871) Isolated from Poultry at Retail Outlets in Malaysia

    PubMed Central

    Teh, Amy Huei Teen; Lee, Sui Mae

    2016-01-01

    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here. PMID:27151799

  19. Complete genomic sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) that were isolated from patients with Guillain-Barré Syndrome

    USDA-ARS?s Scientific Manuscript database

    An infection with Campylobacter jejuni subsp. jejuni (Cjj) is a leading cause of foodborne gastroenteritis in humans and also the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the complete genomic sequences of Cjj HS:41 strains RM3196 (233.94) and RM3197 (308...

  20. Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing

    PubMed Central

    Connell, Sarah; Meade, Kieran G.; Allan, Brenda; Lloyd, Andrew T.; Kenny, Elaine; Cormican, Paul; Morris, Derek W.; Bradley, Daniel G.; O'Farrelly, Cliona

    2012-01-01

    Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general within vertebrate populations. The results reported here illustrate how an exaggerated immune response may be elicited in a subset of the population, which alters host-microbe interactions and inhibits the commensal state, therefore having wider relevance with regard to inflammatory and autoimmune disease. PMID:22870198

  1. Effects of a Campylobacter jejuni infection on the development of the intestinal microflora of broiler chickens.

    PubMed

    Johansen, C H; Bjerrum, L; Finster, K; Pedersen, K

    2006-04-01

    The effect of a Campylobacter jejuni colonization on the development of the microflora of the cecum and the ileum of broiler chickens was studied using molecular methods. The infection did affect the development and complexity of the microbial communities of the ceca, but we found no permanent effect of a C. jejuni infection on the ileal microflora of the broilers. In addition, denaturant gradient gel electrophoresis (DGGE) profiles generated from cecal and ileal contents revealed several DGGE bands that were present in the control chickens, but not in the chickens colonized with C. jejuni. Some of these DGGE bands could be affiliated with Lactobacillus reuteri, Clostridium perfringens, and the genus Klebsiella.

  2. Waterborne Campylobacter jejuni epidemic in a Finnish hospital for rheumatic diseases.

    PubMed

    Rautelin, H; Koota, K; von Essen, R; Jahkola, M; Siitonen, A; Kosunen, T U

    1990-01-01

    A waterborne Campylobacter jejuni outbreak in the Rheumatism Foundation Hospital in Heinola, Finland, in November-December 1986 is described. 32 patients and 62 members of the staff developed gastrointestinal symptoms. C. jejuni heat-stable serotype 45 was isolated from the faeces of 32 enteritis patients and from none of the controls. No other enteropathogens were found. Positive serological responses to C. jejuni acid extract antigen were detected by enzyme immunoassay in 34% of the symptomatic hospital patients, in 40% of the symptomatic staff members, and in 10% of the controls. The clinical course of the illness was mostly mild and self-limited. No striking progress in the arthritis symptoms of the patients was found after the outbreak. The hospital has its own water supply. C. jejuni of the same serotype as the epidemic strain was isolated from the water of the pipeline system. After a careful examination some aged components of the waterworks were found to be responsible for leaks that resulted in the contamination of the water.

  3. L-fucose utilization provides Campylobacter jejuni with a competitive advantage.

    PubMed

    Stahl, Martin; Friis, Lorna M; Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M; Stintzi, Alain

    2011-04-26

    Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including L-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c-cj0490) that is up-regulated in the presence of both L-fucose and mucin and allows for the utilization of L-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of L-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle.

  4. l-Fucose utilization provides Campylobacter jejuni with a competitive advantage

    PubMed Central

    Stahl, Martin; Friis, Lorna M.; Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M.; Stintzi, Alain

    2011-01-01

    Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including l-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c–cj0490) that is up-regulated in the presence of both l-fucose and mucin and allows for the utilization of l-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of l-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle. PMID:21482772

  5. Draft Genome Sequences of Three Multiantibiotic-Resistant Campylobacter jejuni Strains (2865, 2868, and 2871) Isolated from Poultry at Retail Outlets in Malaysia.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-05-05

    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here. Copyright © 2016 Teh et al.

  6. Virulence characterization of Campylobacter jejuni isolated from resident wild birds in Tokachi area, Japan.

    PubMed

    Shyaka, Anselme; Kusumoto, Akiko; Chaisowwong, Warangkhana; Okouchi, Yoshiki; Fukumoto, Shinya; Yoshimura, Aya; Kawamoto, Keiko

    2015-08-01

    The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells.

  7. Inactivation of Campylobacter jejuni by chlorine and monochloramine.

    PubMed Central

    Blaser, M J; Smith, P F; Wang, W L; Hoff, J C

    1986-01-01

    Campylobacter jejuni and closely related organisms are important bacterial causes of acute diarrheal illness in the United States. Both endemic and epidemic infections have been associated with consuming untreated or improperly treated surface water. We compared susceptibility of three C. jejuni strains and Escherichia coli ATCC 11229 with standard procedures used to disinfect water. Inactivation of bacterial preparations with 0.1 mg of chlorine and 1.0 mg of monochloramine per liter was determined at pH 6 and 8 and at 4 and 25 degrees C. Under virtually every condition tested, each of the three C. jejuni strains was more susceptible than the E. coli control strain, with greater than 99% inactivation after 15 min of contact with 1.0 mg of monochloramine per liter or 5 min of contact with 0.1 mg of free chlorine per liter. Results of experiments in which an antibiotic-containing medium was used suggest that a high proportion of the remaining cells were injured. An animal-passaged C. jejuni strain was as susceptible to chlorine disinfection as were laboratory-passaged strains. These results suggest that disinfection procedures commonly used for treatment of drinking water to remove coliform bacteria are adequate to eliminate C. jejuni and further correlate with the absence of outbreaks associated with properly treated water. PMID:3954344

  8. Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni

    PubMed Central

    Gabriel, Edith; Leatherbarrow, Andrew J.H.; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Hart, C. Anthony; Diggle, Peter J.; Fearnhead, Paul

    2009-01-01

    Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue. PMID:19008526

  9. Virulence characterization of Campylobacter jejuni isolated from resident wild birds in Tokachi area, Japan

    PubMed Central

    SHYAKA, Anselme; KUSUMOTO, Akiko; CHAISOWWONG, Warangkhana; OKOUCHI, Yoshiki; FUKUMOTO, Shinya; YOSHIMURA, Aya; KAWAMOTO, Keiko

    2015-01-01

    The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells. PMID:25843040

  10. [Characterization of Campylobacter jejuni samples coming form poultry meat and feces].

    PubMed

    Gutiérrez, Sindy; Orellana, Daniel; Martínez, Claudio; García Mena, Verónica

    2017-12-01

    Background Campylobacter jejuni is one of the main causal agents of food borne diseases. Infections with this pathogen are mainly caused by chicken meat consumption. Aim To characterize antibiotic resistance and virulence factors in C. jejuni strains obtained from chicken meat and poultry feces in Central Chile. Material and Methods The presence of C. jejuni in 30 meat and 40 feces samples from poultry was studied. From these samples, we obtained 40 strains which were characterized at the molecular level for the presence of 16 genes involved in virulence using PCR. In parallel, antibiotic resistance for ciprofloxacin, nalidixic acid, tetracycline, erythromycin, azithromycin, chloramphenicol y ampicillin was analyzed. Results Twenty and 63% of feces and chicken meat samples were positive for C. jejuni, respectively. Moreover, a high percentage of strains showed antibiotic resistance, where 27% of strains were resistant to all tested antibiotics, except for azithromycin. Finally, 10% of the strains coming from feces contained 14 out of 16 virulence genes evaluated. Only 23% of the strains did not contain any of these genes. Conclusions A high percentage of feces and chicken meat samples are contaminated with C. jejuni. Moreover, these strains show a high genetic and phenotypic diversity represented by their antibiotic resistance profiles and the presence of virulence factors.

  11. A proteomics assay to detect eight CBRN-relevant toxins in food.

    PubMed

    Gilquin, Benoit; Jaquinod, Michel; Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Kraut, Alexandra; Ferro, Myriam; Becher, François; Brun, Virginie

    2017-01-01

    A proteomics assay was set up to analyze food substrates for eight toxins of the CBRN (chemical, biological, radiological and nuclear) threat, namely ricin, Clostridium perfringens epsilon toxin (ETX), Staphylococcus aureus enterotoxins (SEA, SEB and SED), shigatoxins from Shigella dysenteriae and entero-hemorragic Escherichia coli strains (STX1 and STX2) and Campylobacter jejuni cytolethal distending toxin (CDT). The assay developed was based on an antibody-free sample preparation followed by bottom-up LC-MS/MS analysis operated in targeted mode. Highly specific detection and absolute quantification were obtained using isotopically labeled proteins (PSAQ standards) spiked into the food matrix. The sensitivity of the assay for the eight toxins was lower than the oral LD50 which would likely be used in a criminal contamination of food supply. This assay should be useful in monitoring biological threats. In the public-health domain, it opens the way for multiplex investigation of food-borne toxins using targeted LC-MS/MS. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach.

    PubMed

    Mehla, Kusum; Ramana, Jayashree

    2017-01-01

    Campylobacter jejuni remains a major cause of human gastroenteritis with estimated annual incidence rate of 450 million infections worldwide. C. jejuni is a major burden to public health in both socioeconomically developing and industrialized nations. Virulence determinants involved in C. jejuni pathogenesis are multifactorial in nature and not yet fully understood. Despite the completion of the first C. jejuni genome project in 2000, there are currently no vaccines in the market against this pathogen. Traditional vaccinology approach is an arduous and time extensive task. Omics techniques coupled with sequencing data have engaged researcher's attention to reduce the time and resources applied in the process of vaccine development. Recently, there has been remarkable increase in development of in silico analysis tools for efficiently mining biological information obscured in the genome. In silico approaches have been crucial for combating infectious diseases by accelerating the pace of vaccine development. This study employed a range of bioinformatics approaches for proteome scale identification of peptide vaccine candidates. Whole proteome of C. jejuni was investigated for varied properties like antigenicity, allergenicity, major histocompatibility class (MHC)-peptide interaction, immune cell processivity, HLA distribution, conservancy, and population coverage. Predicted epitopes were further tested for binding in MHC groove using computational docking studies. The predicted epitopes were conserved; covered more than 80 % of the world population and were presented by MHC-I supertypes. We conclude by underscoring that the epitopes predicted are believed to expedite the development of successful vaccines to control or prevent C. jejuni infections albeit the results need to be experimentally validated.

  13. Flagella-Mediated Adhesion and Extracellular DNA Release Contribute to Biofilm Formation and Stress Tolerance of Campylobacter jejuni

    PubMed Central

    Svensson, Sarah L.; Pryjma, Mark; Gaynor, Erin C.

    2014-01-01

    Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ΔcprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ΔcprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ΔcprS and flagellar mutations (ΔflhA, ΔpflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms. PMID:25166748

  14. Gene expression profiling of chicken cecal tonsils and ileum following oral exposure to soluble and PLGA-encapsulated CpG ODN, and lysate of Campylobacter jejuni.

    PubMed

    Taha-Abdelaziz, Khaled; Alkie, Tamiru Negash; Hodgins, Douglas C; Yitbarek, Alexander; Shojadoost, Bahram; Sharif, Shayan

    2017-12-01

    Campylobacter jejuni (C. jejuni) is a leading bacterial cause of food-borne illness in humans. Contaminated chicken meat is an important source of infection for humans. Chickens are not clinically affected by colonization, and immune responses following natural infection have limited effects on bacterial load in the gut. Induction of intestinal immune responses may possibly lead to a breakdown of the commensal relationship of chickens with Campylobacter. We have recently shown that soluble and poly D, L-lactic-co-glycolic acid (PLGA)-encapsulated CpG oligodeoxynucleotide (ODN) as well as C. jejuni lysate, are effective in reducing the intestinal burden of C. jejuni in chickens; however, the mechanisms behind this protection have yet to be determined. The present study was undertaken to investigate the mechanisms of host responses conferred by these treatments. Chickens were treated orally with soluble CpG ODN, or PLGA-encapsulated CpG ODN, or C. jejuni lysate, and expression of cytokines and antimicrobial peptides was evaluated in cecal tonsils and ileum using quantitative RT-PCR. Oral administration of soluble CpG ODN upregulated the expression of interferon (IFN)-γ, interleukin (IL)-1β, CXCLi2, transforming growth factor (TGF)-β4/1, IL-10 and IL-13, while treatment with PLGA-encapsulated CpG ODN upregulated the expression of IL-1β, CXCLi2, TGF-β4/1, IL-13, avian β-defensin (AvBD) 1, AvBD2 and cathelicidin 3 (CATHL-3). C. jejuni lysate upregulated the expression of IFN-γ, IL-1β, TGF-β4/1, IL-13, AvBD1, and CATHL-3. In conclusion, induction of cytokine and antimicrobial peptides expression in intestinal microenvironments may provide a means of reducing C. jejuni colonization in broiler chickens, a key step in reducing the incidence of campylobacteriosis in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Recovery methods for detection and quantification of Campylobacter depend on meat matrices and bacteriological or PCR tools.

    PubMed

    Fosse, J; Laroche, M; Rossero, A; Fédérighi, M; Seegers, H; Magras, C

    2006-09-01

    Campylobacter is one of the main causes of human foodborne bacterial disease associated with meat consumption in developed countries. Therefore, the most effective approach for recovery and detection of Campylobacter from meat should be determined. Two hundred ninety pork skin and chine samples were inoculated with Campylobacter jejuni NCTC 11168 and two strains of Campylobacter coli. Campylobacter cells were then recovered from suspensions and enumerated by direct plating. Campylobacter recovery was evaluated by comparing results for two methods of sample collection (swabbing and mechanical pummeling) and three recovery fluids (peptone water, 5% glucose serum, and demineralized water). End-point multiplex PCR was performed to evaluate the compatibility of the recovery fluids with direct PCR detection techniques. Mean recovery ratios differed significantly between pork skin and chine samples. Ratios were higher for mechanical pummeling (0.53 for pork skin and 0.49 for chine) than for swabbing (0.31 and 0.13, respectively). For pork skin, ratios obtained with peptone water (0.50) and with glucose serum (0.55) were higher than those obtained with demineralized water (0.16). Significant differences were not observed for chine samples. Direct multiplex PCR detection of Campylobacter was possible with pork skin samples. The tools for Campylobacter recovery must be appropriate for the meat matrix to be evaluated. In this study, less than 66% of inoculated Campylobacter was recovered from meat. This underestimation must be taken into account for quantitative risk analysis of Campylobacter infection.

  16. Sensitivity of Direct Culture, Enrichment and PCR for Detection of Campylobacter jejuni and C. coli in Broiler Flocks at Slaughter.

    PubMed

    Rodgers, J D; Simpkin, E; Lee, R; Clifton-Hadley, F A; Vidal, A B

    2017-06-01

    Broiler chicken flocks are a significant source of Campylobacter jejuni and Campylobacter coli that result in the major public health problem of campylobacteriosis. Accurate estimates of the prevalence of both C. coli and C. jejuni in flocks would enhance epidemiological understanding, risk assessment and control options. This study combined results from a panel of 10 detection tests (direct culture, enrichment and PCR) on caecal samples from flocks at slaughter. A parallel interpretation approach was used to determine the presence of Campylobacter spp. and for C. jejuni and C. coli individually. The sample was considered positive if at least one method detected the target and this interpretation was taken to represent a 'proxy gold standard' for detection in the absence of a gold standard reference test. The sensitivity of each individual method to detect Campylobacter spp., C. jejuni and C. coli was then estimated relative to the proxy gold standard. Enrichment in adapted Exeter broth (deficient in polymyxin B) with a resuscitation step was 100% sensitive, whilst direct culture on modified charcoal cefoperazone deoxycholate agar (mCCDA) was highly sensitive (97.9%). Enrichment methods using Preston broth and Bolton broth were significantly less sensitive. Enrichment in Exeter broth promoted the recovery of C. jejuni, whilst enrichment in Bolton broth favoured C. coli. A RT-PCR detection test could identify 80% of flocks that were co-colonised with both species. This study found that 76.3% (n = 127) of flocks were colonised with Campylobacter spp. The majority (95.9%) of Campylobacter-positive flocks were colonised with C. jejuni; however, approximately one-third of positive flocks were simultaneously colonised with both C. jejuni and C. coli. The findings highlight the impact of different detection methodologies on the accuracy of the estimated incidence of both C. jejuni and C. coli entering the abattoir within broiler flocks and the associated public health risks. © 2016 Crown copyright. Zoonoses and Public Health published by Blackwell Verlag GmbH. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  17. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro

    PubMed Central

    Upadhyay, Abhinav; Arsi, Komala; Wagle, Basanta R.; Upadhyaya, Indu; Shrestha, Sandip; Donoghue, Ann M.; Donoghue, Dan J.

    2017-01-01

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT) production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth) of three GRAS (generally recognized as safe) status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%), carvacrol (CR; 0.001, 0.002%), and eugenol (EG; 0.005, 0.01%) in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2). Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81–176) of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P < 0.05. The majority of phytochemical treatments reduced C. jejuni adhesion, invasion, and translocation of Caco-2 cells (P < 0.05). In addition, the phytochemicals reduced pathogen motility and production of CDT in S-8 and NCTC 11168 (P < 0.05). Real-time quantitative PCR revealed that phytochemicals reduced the transcription of select C. jejuni genes critical for infection in humans (P < 0.05). Results suggest that TC, CR, and EG could potentially be used to control C. jejuni infection in humans. PMID:28487683

  18. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments

    PubMed Central

    Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  19. Occurrence of Thermotolerant Campylobacter in Raw Poultry Meat, Environmental and Pigeon Stools Collected in Open-Air Markets.

    PubMed

    Bellio, Alberto; Traversa, Amaranta; Adriano, Daniela; Bianchi, Daniela Manila; Colzani, Alberto; Gili, Stefano; Dondo, Alessandro; Gallina, Silvia; Grattarola, Carla; Maurella, Cristiana; Zoppi, Simona; Zuccon, Fabio; Decastelli, Lucia

    2014-08-28

    Campylobacteriosis was the most commonly reported zoonosis for confirmed human cases in European Union during 2011. Poultry meat was very often implicated in Campylobacter infections in humans. In Italy commerce of raw poultry meat is common in open-air markets: these areas can be considered at high risk of bacterial contamination due to the high presence birds like pigeons. The aim of this study was to collect data about the contamination by thermotolerant Campylobacter of raw poultry meat commercialised in open-air markets, of work-surfaces in contact with poultry meat and of pigeon stools sampled in the market areas in Turin, Northern Italy. Between September 2011 and December 2012, 86 raw poultry meat samples, 86 environmental swabs and 108 animal samples were collected in 38 open-air markets. Analysis were carried out according to ISO10272-1:2006 standard. C.coli was detected in 2.3% (2/86) of raw poultry meat samples, whereas no swab (0/86) resulted positive. Of pigeon stool 28% (30/107) was positive for C.jejuni (83.3% C.jejuni subsp . jejuni and 16.7% C.jejuni subsp . doylei ). C.jejuni subsp. jejuni was isolated from 1 dead pigeon . Our results showed lower rates of contamination than those reported at retail in Europe. Although samples were collected in areas at high risk of contamination, raw poultry meat and work surfaces reported a low level of presence of thermotolerant Campylobacter . The high percentage of C.jejuni isolated from pigeon stools showed the importance of a continuous application of preventive measures by the food business operators and the surveillance activity by the Competent Authority.

  20. High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat.

    PubMed

    Liu, Yang; Betti, Mirko; Gänzle, Michael G

    2012-03-01

    This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressuretreated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°C of E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin-producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.

  1. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni.

    PubMed

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst; Brøndsted, Lone

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-forming units on C. jejuni lawns using a spot assay; (3) isolation of single plaques; (4) consecutive purification procedures; and (5) propagation of purified phages from a plate lysate to prepare master stocks.

  2. The Polysaccharide Capsule of Campylobacter jejuni 81-176 Modulates the Host Immune Response

    DTIC Science & Technology

    2012-12-17

    in C. jejuni colonization of chickens (2, 16). 315 Following restimulation, IL-17 production by CD4+ LPLs was reduced in 316 mice colonized by C...produce anti-bacterial molecules (57). Recently, Th17 350 responses have been demonstrated to have protective roles against Salmonella 351 and...old 498 chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71:8031-8041. 499 17. Guerry, P., C. M. Szymanski, M. M. Prendergast, T. E. Hickey

  3. Evaluation and single-laboratory verification of a proposed modification to the U.S. Food and Drug Administration method for detection and identification of Campylobacter jejuni or Campylobacter coli from raw silo milk.

    PubMed

    Gharst, Greg; Bark, Don H; Newkirk, Robert; Guillen, Lacey; Wang, Qian; Abeyta, Carlos

    2013-01-01

    The current U.S. Food and Drug Administration (FDA) methodology for detection of Campylobacter, a leading source for foodborne illness, is outdated. The purpose of this study, therefore, was to improve and update the cultural and identification methods found in the FDA/Bacteriological Analytical Manual (BAM). Raw silo milk samples containing typical and atypical strains of Campylobacter jejuni and Campylobacter coli at different levels (5 CFU/25 g, 50 CFU/25 g, and 125 CFU/25 g) were analyzed. Valid results were obtained from 240 test portions. Six inoculated (at the levels described above) and two uninoculated samples were sent to a participating laboratory to mimic a "real-world" scenario. These combined data indicated that the use of sheep blood in combination with enrichment is not necessary. R & F Campylobacter jejuni/Campylobacter coli Chromogenic Plating Medium is significantly (P < 0.05) more sensitive for detection of C. jejuni or C. coli at low inoculation levels than the modified Cefoperazone Charcoal Deoxycholate Agar used in the BAM. The quantitative PCR method described demonstrated rapid confirmation and identification of C. jejuni or C. coli. It reduced the time to isolate C. jejuni or C. coli, and increased the sensitivity compared to the current BAM protocol.

  4. Alpinia katsumadai Extracts Inhibit Adhesion and Invasion of Campylobacter jejuni in Animal and Human Foetal Small Intestine Cell Lines.

    PubMed

    Pogačar, Maja Šikić; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Možina, Sonja Smole

    2015-10-01

    Alpinia katsumadai is used in traditional Chinese medicine for abdominal distention, pain, and diarrhoea. Campylobacter jejuni is the most common cause of bacterial food-borne diarrhoeal illnesses worldwide. Adhesion to gut epithelium is a prerequisite in its pathogenesis. The antimicrobial, cytotoxic, and anti-adhesive activities of a chemically characterised extract (SEE) and its residual material of hydrodistillation (hdSEE-R) from A. katsumadai seeds were evaluated against C. jejuni. Minimal inhibitory concentrations for SEE and hdSEE-R were 0.5 mg/mL and 0.25 mg/mL, respectively, and there was no cytotoxic influence in the anti-adhesion tests, as these were performed at much lower concentrations of these tested plant extracts. Adhesion of C. jejuni to pig (PSI) and human foetal (H4) small-intestine cell lines was significantly decreased at lower concentrations (0.2 to 50 µg/mL). In the same concentration range, the invasiveness of C. jejuni in PSI cells was reduced by 45% to 65% when they were treated with SEE or hdSEE-R. The hdSEE-R represents a bioactive waste with a high phenolic content and an anti-adhesive activity against C. jejuni and thus has the potential for use in pharmaceutical and food products. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Prevalence and Distribution of Campylobacter jejuni in Small-Scale Broiler Operations.

    PubMed

    Tangkham, Wannee; Janes, Marlene; LeMieux, Frederick

    2016-01-01

    Campylobacter jejuni has been recognized as one of the most prevalent causes of foodborne bacterial illnesses in humans. Previous studies have focused on the transmission routes of C. jejuni from commercial flock farms to the final retail product. The objective of this study was to determine the prevalence of C. jejuni and Campylobacter spp. in eggshells, live birds, feed, drinking water, and the rearing environment in a small-scale broiler operation. Broilers were raised under two different production systems: (i) environmentally controlled housing and (ii) open-air housing with two replications. Each week, samples were collected from eggshells, bird feces, feed, drinking water, enclosures (vertical walls of bird housing), and feed troughs for enumeration and isolation testing. All samples were plated on modified charcoal-cefoperazone-deoxycholate agar to determine the log CFU per gram and percent prevalence of Campylobacter spp. Isolation of C. jejuni was verified with latex agglutination and hippurate hydrolysis tests. The results from this study suggest that vertical transmission of these bacteria from egg surfaces to newly hatched chicks is not a significant risk factor. The results also suggest that the prevalence of C. jejuni at time of harvest (week 6) was significantly higher (P < 0.05) in the open-air housing broilers than in those in the environmentally controlled housing. Elevated levels of cross-contaminants, especially water and feed, may have played a role in this outcome.

  6. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    PubMed Central

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  7. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  8. Standing Genetic Variation in Contingency Loci Drives the Rapid Adaptation of Campylobacter jejuni to a Novel Host

    PubMed Central

    Jerome, John P.; Bell, Julia A.; Plovanich-Jones, Anne E.; Barrick, Jeffrey E.; Brown, C. Titus; Mansfield, Linda S.

    2011-01-01

    The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64Mb genome to 200-500X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host. PMID:21283682

  9. Development of an Immunoassay for Rapid Detection of Ganglioside GM1 Mimicry in Campylobacter jejuni Strains

    PubMed Central

    Prendergast, Martina M.; Kosunen, Timo U.; Moran, Anthony P.

    2001-01-01

    Mimicry of peripheral nerve gangliosides by Campylobacter jejuni lipopolysaccharides (LPSs) has been proposed to induce cross-reacting antiganglioside antibodies in Guillain-Barré syndrome (GBS). Because current methods for LPS characterization are labor-intensive and inhibit the screening of large numbers of strains, a rapid GM1 epitope screening assay was developed. Biomass from two agar plates of confluent growth yielded sufficient LPS using a novel phenol-water and ether extraction procedure. Extracts of LPS were reacted with cholera toxin (GM1 ligand), peanut agglutinin (Galβ1→3GalNAc ligand), and anti-GM1 antibodies. After the assay was validated, 12 of 59 (20%) C. jejuni serostrains, including four serotypes that have not previously been associated with GBS, reacted with two or more anti-GM1 ganglioside reagents. Subsequently, LPS extracts from 5 of 7 (71%) C. jejuni isolates and 2 of 3 (67%) C. jejuni culture collection strains bore GM1 structures. Overall, the assay system was reliable, efficient, and reproducible and may be adapted for large-scale epidemiological studies. PMID:11283076

  10. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets.

    PubMed

    Mughini Gras, L; Smid, J H; Wagenaar, J A; Koene, M G J; Havelaar, A H; Friesema, I H M; French, N P; Flemming, C; Galson, J D; Graziani, C; Busani, L; VAN Pelt, W

    2013-12-01

    We compared Campylobacter jejuni/coli multilocus sequence types (STs) from pets (dogs/cats) and their owners and investigated risk factors for pet-associated human campylobacteriosis using a combined source-attribution and case-control analysis. In total, 132/687 pet stools were Campylobacter-positive, resulting in 499 strains isolated (320 C. upsaliensis/helveticus, 100 C. jejuni, 33 C. hyointestinalis/fetus, 10 C. lari, 4 C. coli, 32 unidentified). There were 737 human and 104 pet C. jejuni/coli strains assigned to 154 and 49 STs, respectively. Dog, particularly puppy, owners were at increased risk of infection with pet-associated STs. In 2/68 cases vs. 0.134/68 expected by chance, a pet and its owner were infected with an identical ST (ST45, ST658). Although common sources of infection and directionality of transmission between pets and humans were unknown, dog ownership significantly increased the risk for pet-associated human C. jejuni/coli infection and isolation of identical strains in humans and their pets occurred significantly more often than expected.

  11. Serum antibodies against gangliosides and Campylobacter jejuni lipopolysaccharides in Miller Fisher syndrome.

    PubMed Central

    Neisser, A; Bernheimer, H; Berger, T; Moran, A P; Schwerer, B

    1997-01-01

    Seven patients with Miller Fisher syndrome (MFS), six in the acute phase and one in the recovery phase, were investigated for serum antibodies against gangliosides and purified lipopolysaccharides (LPS) from different strains of Campylobacter jejuni, including the MFS-associated serotypes O:2 and O:23. Immunoglobulin G antibodies against gangliosides GT1a and GQ1b were found in five of six patients in the acute phase of disease. Three of these patients also displayed antibodies to ganglioside GD2, a finding not previously reported for MFS. All anti-GT1a- and anti-GQ1b-seropositive patients showed antibody binding to C. jejuni LPS, predominantly to O:2 and O:23 LPS. Antibody cross-reactivity between gangliosides GT1a and GQ1b and O:2 and O:23 LPS was demonstrated by adsorption studies. This cross-reactivity between gangliosides and C.jejuni LPS, which is obviously due to oligosaccharide homologies, may be an important pathogenetic factor in the development of MFS after C. jejuni infection. PMID:9317004

  12. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.

    PubMed

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E

    2015-03-01

    Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.

  13. Detection of Campylobacter jejuni in Lizard Faeces from Central Australia Using Quantitative PCR

    PubMed Central

    Whiley, Harriet; McLean, Ryan; Ross, Kirstin

    2016-01-01

    Worldwide, Campylobacter is a significant cause of gastrointestinal illness. It is predominately considered a foodborne pathogen, with human exposure via non-food transmission routes generally overlooked. Current literature has been exploring environmental reservoirs of campylobacteriosis including potential wildlife reservoirs. Given the close proximity between lizards and human habitats in Central Australia, this study examined the presence of Campylobacter jejuni from lizard faeces collected from this region. Of the 51 samples collected, 17 (33%) (this included 14/46 (30%) wild and 3/5 (60%) captive lizard samples) were positive for C. jejuni using quantitative PCR (qPCR). This was the first study to investigate the presence of C. jejuni in Australian lizards. This has public health implications regarding the risk of campylobacteriosis from handling of pet reptiles and through cross-contamination or contact with wild lizard faeces. Additionally this has implication for horizontal transmission via lizards of C. jejuni to food production farms. Further research is needed on this environmental reservoir and potential transmission routes to reduce the risk to public health. PMID:28025556

  14. [Analysis of the swimming pattern and the velocity of bacteria using video tracking method].

    PubMed

    Shigematsu, M

    1997-04-01

    The swimming patterns and the velocities of several flagellated bacteria were measured by a computer assisted video tracking method. The moving path of the individual bacterium revealed that the bacterium frequently changed its swimming direction and velocity. The velocity among bacterial strains varies widely. In low viscous environment. Campylobacter jejuni has characteristic swimming pattern with frequent changes in their swimming direction. As the viscosity increase, C. jejuni increases its velocity at a little higher viscosity of 3 centipoise (cP) and secondly increases at about 40 cP. Different from other flagellated bacteria, the swimming pattern of C. jejuni in these two velocity peaks were changed. C. jejuni exhibited continuously forward moving path in the first peak, but in the second it repeated back and forth swimming pattern. We thus assumed that C. jejuni may use a different swimming mode in high viscous media from the original mode mediated by the propelling force of the flagella. This method is useful for a detail analysis of bacterial movement and moving patterns in different environmental conditions.

  15. Serotyping of Campylobacter jejuni from an outbreak of enteritis implicating chicken.

    PubMed

    Rosenfield, J A; Arnold, G J; Davey, G R; Archer, R S; Woods, W H

    1985-09-01

    An outbreak of campylobacter enteritis involving 7 of 17 people over a period of 5 days followed a dinner at a restaurant. A chicken casserole dish was implicated with a food-specific attack rate of 58%. Campylobacter jejuni Penner serotype 18/21/29, resistant to metronidazole, was isolated from 3 of 4 symptomatic patients and from three raw fresh chicken samples closely associated with the implicated chicken. Numbers of C. jejuni in the chicken ranged from 5.3 X 10(1) to 7.5 X 10(2) colony forming units per square centimeter of surface area. This is the first outbreak of campylobacter enteritis reported in Australia in which C. jejuni has been isolated from both human and food sources and the isolates serologically confirmed as identical.

  16. Competitive Exclusion of Heterologous Campylobacter spp. in Chicks

    PubMed Central

    Chen, Hui-Cheng; Stern, Norman J.

    2001-01-01

    Chicken and human isolates of Campylobacter jejuni were used to provide oral challenge of day-old broiler chicks. The isolation ratio of the competing challenge strains was monitored and varied, depending upon the isolates used. A PCR-restriction fragment length polymorphism assay of the flagellin gene (flaA) was used to discriminate between the chick-colonizing isolates. Our observations indicated that the selected C. jejuni colonizers dominated the niche provided by the chicken ceca. Chicken isolates from the flaA type 7 grouping generally had numerical superiority over the human isolates when they were administered in our 1-day-old chick model. Our results suggest that it is possible to use combinations of C. jejuni chicken isolates as a defined bacterial preparation for the competitive exclusion of human-pathogenic C. jejuni in poultry. PMID:11157253

  17. Campylobacter jejuni—An Emerging Foodborne Pathogen

    PubMed Central

    Stern, Norman J.; Fields, Patricia I.; Swerdlow, David L.

    1999-01-01

    Campylobacter jejuni is the most commonly reported bacterial cause of foodborne infection in the United States. Adding to the human and economic costs are chronic sequelae associated with C. jejuni infection—Guillian-Barré syndrome and reactive arthritis. In addition, an increasing proportion of human infections caused by C. jejuni are resistant to antimicrobial therapy. Mishandling of raw poultry and consumption of undercooked poultry are the major risk factors for human campylobacteriosis. Efforts to prevent human illness are needed throughout each link in the food chain. PMID:10081669

  18. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador

    PubMed Central

    Vasco, Karla; Graham, Jay P.

    2016-01-01

    ABSTRACT Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and aEPEC from domestic animals to humans in this region. We also found that the genotypes associated with C. jejuni from chickens were present more often in children than were those from other domestic animals. The potential environmental factors associated with transmission of these pathogens to humans then are discussed. PMID:27208122

  19. Survival of Campylobacter jejuni in naturally and artificially contaminated laying hen feces.

    PubMed

    Ahmed, M F M; Schulz, J; Hartung, J

    2013-02-01

    Infected laying hens regularly excrete large amounts of Campylobacter jejuni with their feces, which represent a reservoir of infection within the flock and for animals in the region. However, the knowledge about survival times of C. jejuni in these feces is still scarce. Therefore, orienting laboratory experiments were carried out under controlled conditions to estimate the survival times of C. jejuni both in artificially and naturally contaminated laying hen feces. In 6 different laying hen flocks (3 Campylobacter-free and 3 Campylobacter-positive flocks), fresh excreta were randomly collected and pooled in 20-g samples per flock. In the laboratory, each of the 3 pooled samples from the Campylobacter-free barns were homogenized and mixed with 10 mL of a freshly prepared C. jejuni suspension (3 × 10(8) cfu/mL). The other 3 samples were homogenized only. The 6 samples were stored at 20 ± 1°C and 40 to 60% RH in 2 different incubators. Specimens of 2 g were taken from all 6 samples 1 h after storage and daily at the same time during the next 10 consecutive days and investigated on culturable C. jejuni. The survival times of culturable C. jejuni ranged from 72 to 96 h in artificially inoculated feces and varied from 120 to 144 h in naturally colonized flocks. The flaA typing by RFLP confirmed that the isolates from the artificially contaminated feces were identical with the added strain. A total of 5 different flaA types were identified from the naturally contaminated feces, and survival of these isolates was dependent on flaA type. The demonstrated survival times indicate that contaminated fresh feces are an important reservoir of C. jejuni, representing a permanent source of infection over at least 6 d after excretion. It shows the considerable potential of fresh feces in transmitting the agent within and between flocks during that period. This 6-d span should be considered when poultry manure is applied to land as organic fertilizer.

  20. Methods for Initial Characterization of Campylobacter jejuni Bacteriophages.

    PubMed

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.

  1. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses

    PubMed Central

    Maziero, Maike T.; de Oliveira, Tereza Cristina R. M.

    2010-01-01

    Campylobacter jejuni is the most common thermophilic Campylobacter associated with human enteritis in many countries. Broilers and their by-products are the main sources for human enteritis. Refrigeration and freezing are used to control bacterial growth in foods. The effect of these interventions on survival of Campylobacter jejuni is yet not quite understood. This study evaluated the effect of storage temperature on the survival of C. jejuni in chicken meat stored for seven days at 4°C and for 28 days at -20°C. The influence of selective enrichment on recovery of Campylobacter was also evaluated. Thirty fresh chicken meat samples were analyzed and 93.3% was contaminated with termotolerant Campylobacter spp. with average count of 3.08 Log10 CFU/g on direct plating. After refrigeration, 53.3% of the analyzed samples tested positive for Campylobacter and the average count was 1.19 Log10 CFU/g. After storage at -20°C, 36.6% of the samples were positive with a verage count of 0.75 Log10 CFU/g. C. jejuni was detected after enrichment, respectively, in 50% of the fresh, 36.7% of the refrigerated and 33.3% of the frozen meat samples analyzed. No difference was detected for the recovery of C. jejuni from fresh, refrigerated or frozen samples after selective enrichment, showing that this microorganism can survive under the tested storage conditions. PMID:24031523

  2. Tracing the source of campylobacteriosis.

    PubMed

    Wilson, Daniel J; Gabriel, Edith; Leatherbarrow, Andrew J H; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Fearnhead, Paul; Hart, C Anthony; Diggle, Peter J

    2008-09-26

    Campylobacter jejuni is the leading cause of bacterial gastro-enteritis in the developed world. It is thought to infect 2-3 million people a year in the US alone, at a cost to the economy in excess of US $4 billion. C. jejuni is a widespread zoonotic pathogen that is carried by animals farmed for meat and poultry. A connection with contaminated food is recognized, but C. jejuni is also commonly found in wild animals and water sources. Phylogenetic studies have suggested that genotypes pathogenic to humans bear greatest resemblance to non-livestock isolates. Moreover, seasonal variation in campylobacteriosis bears the hallmarks of water-borne disease, and certain outbreaks have been attributed to contamination of drinking water. As a result, the relative importance of these reservoirs to human disease is controversial. We use multilocus sequence typing to genotype 1,231 cases of C. jejuni isolated from patients in Lancashire, England. By modeling the DNA sequence evolution and zoonotic transmission of C. jejuni between host species and the environment, we assign human cases probabilistically to source populations. Our novel population genetics approach reveals that the vast majority (97%) of sporadic disease can be attributed to animals farmed for meat and poultry. Chicken and cattle are the principal sources of C. jejuni pathogenic to humans, whereas wild animal and environmental sources are responsible for just 3% of disease. Our results imply that the primary transmission route is through the food chain, and suggest that incidence could be dramatically reduced by enhanced on-farm biosecurity or preventing food-borne transmission.

  3. Wide but Variable Distribution of a Hypervirulent Campylobacter jejuni Clone in Beef and Dairy Cattle in the United States

    PubMed Central

    Tang, Yizhi; Meinersmann, Richard J.; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee Lawrence, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T.

    2017-01-01

    ABSTRACT Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the United States and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) dairy studies in 2002, 2007, and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter organisms was 72.2%, 82.1% of which were C. jejuni. Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces, including clone SA, suggesting that these birds may play a role in the transmission of Campylobacter. In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole-genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O) in the chromosome. These findings indicate that clone SA is widely distributed in both beef and dairy cattle and provide new insights into the molecular epidemiology of clone SA in ruminants. IMPORTANCE C. jejuni clone SA is a major cause of small-ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appear to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, we found a wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of preharvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health, as it is a zoonotic pathogen causing disease in both ruminants and humans. PMID:28970227

  4. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States.

    PubMed

    Tang, Yizhi; Meinersmann, Richard J; Sahin, Orhan; Wu, Zuowei; Dai, Lei; Carlson, James; Plumblee, Jodie; Genzlinger, Linda; LeJeune, Jeffrey T; Zhang, Qijing

    2017-09-29

    Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here, we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the U.S. and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) Dairy Studies 2002, 2007 and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter was 72.2%, 82.1% of which were C. jejuni Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces including clone SA, suggesting it may play a role in the transmission of Campylobacter In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O ) in the chromosome. These findings indicate clone SA is widely distributed in both beef and dairy cattle, and provide new insights into the molecular epidemiology of clone SA in ruminants. Importance C. jejuni clone SA is a major cause of small ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appears to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, this manuscript describes wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of pre-harvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health as it is a zoonotic pathogen causing disease in both ruminants and humans. Copyright © 2017 Tang et al.

  5. Waterborne transmission ofCampylobacter enteritis.

    PubMed

    Taylor, D N; Brown, M; McDermott, K T

    1982-12-01

    Campylobacter jejuni is an important cause of human diarrheal disease throughout the world and likeSalmonella enteritidis, has a large animal reservoir which includes most of man's domestic animals. Until recently, it has been difficult to trace the chain of transmission from animals to man because of inadequate environmental sampling techniques and means to distinguish strains. Recent improvements in these techniques have made environmental studies more feasible in 2 water-related out-breaks.In 1 study,C. jejuni was found to be an important cause of sporadic, summertime diarrheal disease among hikers in national wilderness areas of Wyoming. In this setting, illness was significantly associated with drinking untreated surface water. SubsequentlyC. jejuni was isolated from surface water, including mountian streams, and from animals in the area. Some of the environmental isolates were serotypically identical to strains isolated from humans.A second study occurred as a result of an outbreak of Campylobacter enteritis in a community in northern Illinois which was epidemiologically associated with the community water system.Campylobacter jejuni was isolated from several surface water sources and from the implicated water system. These studies demonstrate that environmental isolation ofC. jejuni is now possible and may add to our understanding of disease transmission.

  6. Characterization of the biochemical properties of Campylobacter jejuni RNase III

    PubMed Central

    Haddad, Nabila; Saramago, Margarida; Matos, Rute G.; Prévost, Hervé; Arraiano, Cecília M.

    2013-01-01

    Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved. PMID:24073828

  7. Campylobacter jejuni survival in a poultry processing plant environment.

    PubMed

    García-Sánchez, Lourdes; Melero, Beatriz; Jaime, Isabel; Hänninen, Marja-Liisa; Rossi, Mirko; Rovira, Jordi

    2017-08-01

    Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of poultry, especially chicken's meat is considered the most common route for human infection. The aim of this study was to determine if Campylobacter spp. might persist in the poultry plant environment before and after cleaning and disinfection procedures and the distribution and their genetic relatedness. During one month from a poultry plant were analyzed a total of 494 samples -defeathering machine, evisceration machine, floor, sink, conveyor belt, shackles and broiler meat- in order to isolate C. jejuni and C. coli. Results showed that C. jejuni and C. coli prevalence was 94.5% and 5.5% respectively. Different typing techniques as PFGE, MLST established seven C. jejuni genotypes. Whole genome MLST strongly suggest that highly clonal populations of C. jejuni can survive in adverse environmental conditions, even after cleaning and disinfection, and persist for longer periods than previous thought (at least 21 days) in the poultry plant environment. Even so, it might act as a source of contamination independently of the contamination level of the flock entering the slaughter line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl.

    PubMed Central

    Luechtefeld, N A; Blaser, M J; Reller, L B; Wang, W L

    1980-01-01

    Since the sources from which humans acquire Campylobacter enteritis are only partially known, we studied the frequency of carriage of Campylobacter fetus subsp. jejuni in migratory waterfowl. Cecal contents of various species of wild ducks were cultured on selective media that contained antibiotics to inhibit normal flora. Thirty-five percent of the 445 ducks cultured harbored C. fetus subsp. jejuni. Migratory waterfowl are yet another reservoir for this enteric pathogen and may be of public health importance for humans in the contamination of water or when used as food. PMID:7217334

  9. Campylobacter fetus subsp. jejuni in poultry reared under different management systems in Nigeria.

    PubMed

    Adekeye, J O; Abdu, P A; Bawa, E K

    1989-01-01

    Cloacal swabs from 487 live birds in 36 flocks and 70 poultry carcasses were cultured for Campylobacter fetus subsp. jejuni. It was isolated from 12.3% of the birds in 19 flocks. Chickens, turkeys, and guinea fowl differed from one another in isolation rates of the organism. Management system affected its occurrence, and only 7.1% of eviscerated carcasses yielded it. It was concluded that bird species, management system, and immersing slaughtered poultry in boiling water before dressing affect recovery of C. fetus subsp. jejuni from live birds and carcasses.

  10. RNAseq Reveals Complex Response of Campylobacter jejuni to Ovine Bile and In vivo Gallbladder Environment

    PubMed Central

    Kreuder, Amanda J.; Schleining, Jennifer A.; Yaeger, Michael; Zhang, Qijing; Plummer, Paul J.

    2017-01-01

    Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in transmission and persistence of these important zoonotic agents; however, little is known about the molecular mechanisms that allow for bacterial survival within this harsh environment. Recently, a highly virulent C. jejuni sheep abortion (SA) clone represented by the clinical isolate IA3902 has emerged as the dominant cause for sheep abortion in the United States. Previous studies have indicated that the C. jejuni clone SA can frequently be isolated from the gallbladders of otherwise healthy sheep, suggesting that the gallbladder may serve as an important reservoir for infection. To begin to understand the molecular mechanisms associated with survival in the host gallbladder, C. jejuni IA3902 was exposed for up to 24 h to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in vitro. Following exposure, total RNA was isolated from the bile and high throughput deep sequencing of strand specific rRNA-depleted total RNA was used to characterize the transcriptome of IA3902 under these conditions. Our results demonstrated for the first time the complete transcriptome of C. jejuni IA3902 during exposure to an important host environment, the sheep gallbladder. Exposure to the host environment as compared to in vitro bile alone provided a more robust picture of the complexity of gene regulation required for survival in the host gallbladder. A subset of genes including a large number of protein coding genes as well as seven previously identified non-coding RNAs were confirmed to be differentially expressed within our data, suggesting that they may play a key role in adaptation upon exposure to these conditions. This research provides valuable insights into the molecular mechanisms that may be utilized by C. jejuni IA3902 to colonize and survive within the inhospitable gallbladder environment. PMID:28611744

  11. '1001' Campylobacters: cultural characteristics of intestinal campylobacters from man and animals.

    PubMed

    Skirrow, M B; Benjamin, J

    1980-12-01

    The cultural characteristics of 1220 Campylobacter strains from a variety of sources are described. Forty-two were identified as Campylobacter fetus ssp. fetus (Véron & Chatelain, 1973), 1120 as members of the C. jejuni/C. coli group, and 58 did not conform to any known description. Sixteen of the latter strains had the basic characteristics of C. fetus but were atypical in certain other respects. The other 42 strains had the thermophilic characteristics of the jejuni/coli group, but were resistant to nalidixic acid and had other features in common; it is possible that they represent a new species. They were isolated from 19% of locally caught wild seagulls but only occasionally from other animals and man.Growth at 25 degrees C clearly distinguished strains of C. fetus from those of the jejuni/coli and the nalidixic acid-resistant thermophilic (NARTC) groups. Maximum growth temperature was less reliable for this purpose, and 43 degrees C was found to be better than the traditional 42 degrees C. By arranging the results of three tests (tolerance to 2,3,5-triphenyltetrazolium chloride, growth at 30.5 and 45.5 degrees C) serially in the form of a schema comprising nine categories, the jejuni/coli strains fell into two main groups resembling the Institute Pasteur C. jejuni and C. coli type strains, but these groups could not be clearly defined owing to the existence of strains with intermediate characteristics.Most of the strains from cattle resembled C. jejuni, whereas those from pigs resembled C. coli; poultry strains occupied a more intermediate position. Strains from man and other animals were of mixed types, but most human strains resembled C. jejuni rather than C. coli. The type distribution pattern that most nearly matched that of human indigenous strains was given by a half-and-half mixture of strains from cattle and poultry.

  12. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    PubMed

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-02

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. '1001' Campylobacters: cultural characteristics of intestinal campylobacters from man and animals

    PubMed Central

    Skirrow, M. B.; Benjamin, J.

    1980-01-01

    The cultural characteristics of 1220 Campylobacter strains from a variety of sources are described. Forty-two were identified as Campylobacter fetus ssp. fetus (Véron & Chatelain, 1973), 1120 as members of the C. jejuni/C. coli group, and 58 did not conform to any known description. Sixteen of the latter strains had the basic characteristics of C. fetus but were atypical in certain other respects. The other 42 strains had the thermophilic characteristics of the jejuni/coli group, but were resistant to nalidixic acid and had other features in common; it is possible that they represent a new species. They were isolated from 19% of locally caught wild seagulls but only occasionally from other animals and man. Growth at 25 °C clearly distinguished strains of C. fetus from those of the jejuni/coli and the nalidixic acid-resistant thermophilic (NARTC) groups. Maximum growth temperature was less reliable for this purpose, and 43 °C was found to be better than the traditional 42 °C. By arranging the results of three tests (tolerance to 2,3,5-triphenyltetrazolium chloride, growth at 30·5 and 45·5 °C) serially in the form of a schema comprising nine categories, the jejuni/coli strains fell into two main groups resembling the Institute Pasteur C. jejuni and C. coli type strains, but these groups could not be clearly defined owing to the existence of strains with intermediate characteristics. Most of the strains from cattle resembled C. jejuni, whereas those from pigs resembled C. coli; poultry strains occupied a more intermediate position. Strains from man and other animals were of mixed types, but most human strains resembled C. jejuni rather than C. coli. The type distribution pattern that most nearly matched that of human indigenous strains was given by a half-and-half mixture of strains from cattle and poultry. PMID:7462593

  14. [Campylobacter jejuni O:19 serotype in Argentine poultry meat supply chain].

    PubMed

    Rossler, Eugenia; Fuhr, Estefanía M; Lorenzón, Guillermina; Romero-Scharpen, Analía; Berisvil, Ayelén P; Blajman, Jesica E; Astesana, Diego M; Zimmermann, Jorge A; Fusari, Marcia L; Signorini, Marcelo L; Soto, Lorena P; Frizzo, Laureano S; Zbrun, María V

    Thermotolerant species of Campylobacter have been focus of attention in the last years because they are the major agent causing zoonotic foodborne diseases. In addition, Campylobacter jejuni O:19 serotype was associated with Guillain Barré syndrome. The aim of this study was to determine the proportion of C. jejuni O:19 serotype isolated at different stages of three poultry meat supply chain in Santa Fe, Argentina. The analysis showed that 18% of isolated C. jejuni belong to serotype O:19. It was also determined that the presence of these strains is given in almost all production stages. These results reflect a significant risk to public health of consumers. Epidemiological studies of Campylobacter should be considered to establish a risk manager policy. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  16. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  17. The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings.

    PubMed

    Zakarienė, Gintarė; Rokaitytė, Anita; Ramonaitė, Sigita; Novoslavskij, Aleksandr; Mulkytė, Kristina; Zaborskienė, Gintarė; Malakauskas, Mindaugas

    2015-03-01

    The antimicrobial effect of spice-based marinades against Campylobacter jejuni on inoculated fresh broiler wings was investigated. Experiments were carried out with 1 strain of C. jejuni and 6 marinades. Four experimental marinades were composed for the study and contained spices (thyme, rosemary, basil, marjoram, and so on) and different combination of bioactive compounds. Two marinades were commercial and contained spices (black pepper, sweet red pepper, and so on) and chemical additives (monosodium glutamate, sodium diacetate, calcium lactate), 1 commercial marinade was also enriched with bioactive compounds (linalool, cinnamaldehyde, lactic acid). Total aerobic bacterial count was examined to estimate the possible effect of tested marinades on the shelf-life of marinated broiler wings. Study revealed that thyme-based marinade was the most effective against C. jejuni on broiler wings and reduced the numbers of campylobacters by 1.04 log colony forming unit (CFU)/g (P ≤ 0.05) during storage for 168 h at 4 °C temperature. Moreover, it was more effective against C. jejuni than commercial marinade with 0.47 log CFU/g (P ≤ 0.05) reduction effect. Both experimental and commercial marinades had very similar effect on the total aerobic bacterial count. Although experimental and commercial marinades had different effect on pH of broiler wings, this parameter did not show a major impact on the antimicrobial effect of tested marinades (P ≥ 0.05). Our study shows that experimental natural thyme-based marinade can reduce numbers of C. jejuni more effectively than tested commercial marinades. © 2015 Institute of Food Technologists®

  18. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  19. Microfluidics Meets Metabolomics to Reveal the Impact of Campylobacter jejuni Infection on Biochemical Pathways

    PubMed Central

    Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.

    2016-01-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  20. Influence of oral application of Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni.

    PubMed

    Letnická, Alica; Karaffová, Viera; Levkut, Mikuláš; Revajová, Viera; Herich, Róbert

    2017-09-01

    Campylobacteriosis is mainly caused by infection with Campylobacter jejuni following consumption or handling of Campylobacter-contaminated poultry meat. The aim of this study was to investigate the effect of probiotic Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and on immunocompetent cell distribution after C. jejuni infection in broiler chicken, as a second part of the previous study of Karaffová et al. (2017). Accordingly, day-old chicks were randomly divided into four experimental groups of 10 chicks each (n = 10): control (C), E. faecium AL41 (EFAL41), C. jejuni CCM6191 (CJ), and combined E. faecium AL41 + C. jejuni CCM6191 (EFAL41 + CJ). Samples from the caecum were collected on days 4 and 7 post Campylobacter infection (dpi), for the isolation of mRNA of TGF-β4, IL-17 and for immunohistochemistry. The relative mRNA expression of TGF-β4 was upregulated in the combined (EFAL41 + CJ) group compared to other groups during both samplings, but the expression of IL-17 was downregulated. Similarly, the highest density of CD3+ was detected in the combined group at 7 dpi, but the number of IgA+ cells was increased in both groups with EFAL41. It was concluded that the EFAL41 probiotic E. faecium strain can modulate the expression of selected cytokines (upregulation of TGF-β4 but downregulation of IL-17 relative expression), and activate IgA-producing cells in the caeca of chicks infected with C. jejuni CCM6191.

  1. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry.

    PubMed

    Zautner, Andreas Erich; Masanta, Wycliffe Omurwa; Tareen, Abdul Malik; Weig, Michael; Lugert, Raimond; Groß, Uwe; Bader, Oliver

    2013-11-07

    Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7(m+c). The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7(m+c)(+) and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

  2. Hyperosmotic Stress Response of Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Frirdich, Emilisa; Huynh, Steven; Parker, Craig T.

    2012-01-01

    The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter−1. C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely “bet-hedging” survival strategies relying on the presence of stress-fit individuals in a heterogeneous population. PMID:22961853

  3. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador.

    PubMed

    Vasco, Karla; Graham, Jay P; Trueba, Gabriel

    2016-07-15

    Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and aEPEC from domestic animals to humans in this region. We also found that the genotypes associated with C. jejuni from chickens were present more often in children than were those from other domestic animals. The potential environmental factors associated with transmission of these pathogens to humans then are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Sequence variability of Campylobacter temperate bacteriophages

    PubMed Central

    Clark, Clifford G; Ng, Lai-King

    2008-01-01

    Background Prophages integrated within the chromosomes of Campylobacter jejuni isolates have been demonstrated very recently. Prior work with Campylobacter temperate bacteriophages, as well as evidence from prophages in other enteric bacteria, suggests these prophages might have a role in the biology and virulence of the organism. However, very little is known about the genetic variability of Campylobacter prophages which, if present, could lead to differential phenotypes in isolates carrying the phages versus those that do not. As a first step in the characterization of C. jejuni prophages, we investigated the distribution of prophage DNA within a C. jejuni population assessed the DNA and protein sequence variability within a subset of the putative prophages found. Results Southern blotting of C. jejuni DNA using probes from genes within the three putative prophages of the C. jejuni sequenced strain RM 1221 demonstrated the presence of at least one prophage gene in a large proportion (27/35) of isolates tested. Of these, 15 were positive for 5 or more of the 7 Campylobacter Mu-like phage 1 (CMLP 1, also designated Campylobacter jejuni integrated element 1, or CJIE 1) genes tested. Twelve of these putative prophages were chosen for further analysis. DNA sequencing of a 9,000 to 11,000 nucleotide region of each prophage demonstrated a close homology with CMLP 1 in both gene order and nucleotide sequence. Structural and sequence variability, including short insertions, deletions, and allele replacements, were found within the prophage genomes, some of which would alter the protein products of the ORFs involved. No insertions of novel genes were detected within the sequenced regions. The 12 prophages and RM 1221 had a % G+C very similar to C. jejuni sequenced strains, as well as promoter regions characteristic of C. jejuni. None of the putative prophages were successfully induced and propagated, so it is not known if they were functional or if they represented remnant prophage DNA in the bacterial chromosomes. Conclusion These putative prophages form a family of phages with conserved sequences, and appear to be adapted to Campylobacter. There was evidence for recombination among groups of prophages, suggesting that the prophages had a mosaic structure. In many of these properties, the Mu-like CMLP 1 homologs characterized in this study resemble temperate bacteriophages of enteric bacteria that are responsible for contributions to virulence and host adaptation. PMID:18366706

  5. A Multi-Species TaqMan PCR Assay for the Identification of Asian Gypsy Moths (Lymantria spp.) and Other Invasive Lymantriines of Biosecurity Concern to North America.

    PubMed

    Stewart, Donald; Zahiri, Reza; Djoumad, Abdelmadjid; Freschi, Luca; Lamarche, Josyanne; Holden, Dave; Cervantes, Sandra; Ojeda, Dario I; Potvin, Amélie; Nisole, Audrey; Béliveau, Catherine; Capron, Arnaud; Kimoto, Troy; Day, Brittany; Yueh, Hesther; Duff, Cameron; Levesque, Roger C; Hamelin, Richard C; Cusson, Michel

    2016-01-01

    Preventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L. dispar asiatica, L. dispar japonica) and three closely related Lymantria species (L. umbrosa, L. albescens, L. postalba), all considered potential FIAS in North America. Ships entering Canadian ports are inspected for the presence of suspicious gypsy moth eggs, but those of AGM are impossible to distinguish from eggs of innocuous Lymantria species. To assist regulatory agencies in their identification of these insects, we designed a suite of TaqMan® assays that provide significant improvements over existing molecular assays targeting AGM. The assays presented here can identify all three L. dispar subspecies (including the European gypsy moth, L. dispar dispar), the three other Lymantria species comprising the AGM complex, plus five additional Lymantria species that pose a threat to forests in North America. The suite of assays is built as a "molecular key" (analogous to a taxonomic key) and involves several parallel singleplex and multiplex qPCR reactions. Each reaction uses a combination of primers and probes designed to separate taxa through discriminatory annealing. The success of these assays is based on the presence of single nucleotide polymorphisms (SNPs) in the 5' region of mitochondrial cytochrome c oxidase I (COI) or in its longer, 3' region, as well as on the presence of an indel in the "FS1" nuclear marker, generating North American and Asian alleles, used here to assess Asian introgression into L. dispar dispar. These assays have the advantage of providing rapid and accurate identification of ten Lymantria species and subspecies considered potential FIAS.

  6. PCR detection of four virulence-associated genes of Campylobacter jejuni isolates from Thai broilers and their abilities of adhesion to and invasion of INT-407 cells.

    PubMed

    Chansiripornchai, Niwat; Sasipreeyajan, Jiroj

    2009-06-01

    Campylobacter jejuni is a major cause of food borne pathogens in humans and a major reservoir for this pathogen is poultry. The C. jejuni in broilers was investigated from in the caeca of broilers. Twenty broiler/flock samples from 7 flocks were assessed. The average prevalence of C. jejuni was 65% in the broiler flocks. The adhesion and invasion ability of 48 strains of C. jejuni on INT 407 were studied. The adhesion and invasion ability of 48 Campylobacter isolates from caecal contents were analyzed with Human embryonic intestine (INT-407) cells being used as a gentamicin resistance assay. The caecal isolates exhibited a wide range of adherence and invasion ability. There was a significant correlation (p<0.01) between the adherence and the invasion ability of the Campylobacter isolates. Each of the virulence-associated genes: dnaJ, cadF, pldA and ciaB was detected by polymerase chain reaction from 100, 76, 31 and 41% of the Campylobacter strains, respectively. All of four virulence-associated genes were detected in 11 isolates. However, there was unclear association between the invasion ability and the presence of virulence-associated genes in this experiment, suggesting that more genes may be involved in the invasion process.

  7. Therapeutic administration of enrofloxacin in mice does not select for fluoroquinolone resistance in Campylobacter jejuni.

    PubMed

    Inglis, G Douglas; Zaytsoff, S J M; Selinger, L Brent; Taboada, Eduardo N; Uwiera, R R E

    2018-05-11

    Enrofloxacin is registered for therapeutic use in beef cattle to treat bovine respiratory disease in Canada. A murine model was used to experimentally examine the impact of therapeutic administration of enrofloxacin on fluoroquinolone resistance development in Campylobacter jejuni. Administration of enrofloxacin to mice via subcutaneous injection or per os routes resulted in equivalent levels of bioactive enrofloxacin within the intestine, but bioactivity was short-lived (<48 hr after cessation). Enrofloxacin administration did not affect densities of total bacteria, Firmicutes, or Bacteroidetes in digesta, and had modest impacts on densities of Enterobacteriaceae. All mice inoculated with C. jejuni NCTC 11168 became persistently colonized by the bacterium. Enrofloxacin reduced C. jejuni cell densities within the cecal and colonic digesta for all treatments, and densities shed in feces as a function of antibiotic duration. None of the C. jejuni isolates recovered from mice after administration of enrofloxacin (n=260) developed resistance to ciprofloxacin regardless of method or duration of administration. Furthermore, only modest shifts in the minimum inhibitory concentration of the isolates by treatment were noted. The study findings indicate that the risk posed by short-term subcutaneous administration of enrofloxacin for the development of fluoroquinolone resistance in mammals is low.

  8. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis

    PubMed Central

    Techaruvichit, Punnida; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2015-01-01

    Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni. PMID:26025899

  9. Absence of Nucleotide-Oligomerization-Domain-2 Is Associated with Less Distinct Disease in Campylobacter jejuni Infected Secondary Abiotic IL-10 Deficient Mice.

    PubMed

    Heimesaat, Markus M; Grundmann, Ursula; Alutis, Marie E; Fischer, André; Bereswill, Stefan

    2017-01-01

    Human Campylobacter jejuni -infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10 -/- (Nod2 -/- IL-10 -/- ) mice and IL-10 -/- counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81-176 infection, Nod2 mRNA was down-regulated in the colon of secondary abiotic IL-10 -/- and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and systemic translocation properties of C. jejuni . Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni -infection of both Nod2 -/- IL-10 -/- and IL-10 -/- mice, whereas expression levels were lower in infected, but also naive Nod2 -/- IL-10 -/- mice as compared to respective IL-10 -/- controls. Remarkably, C. jejuni -infected Nod2 -/- IL-10 -/- mice were less compromised than IL-10 -/- counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2 -/- IL-10 -/- as compared to IL-10 -/- mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2 -/- IL-10 -/- as compared to IL10 -/- counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels were up-regulated, IL-18 mRNA was down-regulated in large intestines of Nod2 -/- IL-10 -/- vs. IL-10 -/- mice. In summary, C. jejuni -infection induced less clinical signs and apoptosis, but more distinct colonic pro- and (of note) anti-inflammatory immune as well as regenerative cell responses in Nod2 deficient IL-10 -/- as compared to IL-10 -/- control mice. We conclude that, even though colonic Nod2 mRNA was down-regulated upon pathogenic challenge, Nod2-signaling is essentially involved in the well-balanced innate and adaptive immune responses upon C. jejuni -infection of secondary abiotic IL-10 -/- mice, but does neither impact pathogenic colonization nor translocation.

  10. Exposure assessment and process sensitivity analysis of the contamination of Campylobacter in poultry products.

    PubMed

    Osiriphun, S; Iamtaweejaloen, P; Kooprasertying, P; Koetsinchai, W; Tuitemwong, K; Erickson, L E; Tuitemwong, P

    2011-07-01

    Studies were conducted in a Thai poultry plant to identify the factors that affected numbers of Campylobacter jejuni in chicken carcasses. The concentrations of Campylobacter were determined using the SimPlate most probable number and modified charcoal cefoperazone deoxycholate plating methods. Results indicated that the mean concentrations of C. jejuni in carcasses after scalding, plucking, and chilling were 2.93 ± 0.31, 2.98 ± 0.38, 2.88 ± 0.31, and 0.85 ± 0.95 log cfu, whereas the concentrations of C. jejuni in the scalding tank water, plucked feathers, and chicken breast portion were 1.39 ± 0.70, 3.28 ± 0.52, and 0.50 ± 1.22 log cfu, respectively. Sensitivity analysis using tornado order correlation analysis showed that risk parameters affecting the contamination of C. jejuni in the chicken slaughter and processing plant could be ranked as chilling water pH, number of pathogens in the scald tank water, scalding water temperature, number of C. jejuni on plucked feathers, and residual chlorine in the chill water, respectively. The exposure assessment and analysis of process parameters indicated that some of the current critical control points were not effective. The suggested interventions included preventing fecal contamination during transportation; increasing the scalding temperature, giving the scalding water a higher countercurrent flow rate; reducing contamination of feathers in the scalding tank to decrease C. jejuni in the scalding water; spraying water to reduce contamination at the plucking step; monitoring and maintaining the chill water pH at 6.0 to 6.5; and increasing the residual chlorine in the chill water. These interventions were recommended for inclusion in the hazard analysis and critical control point plan of the plant.

  11. Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni.

    PubMed

    Flint, Annika; Sun, Yi-Qian; Stintzi, Alain

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.

  12. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  13. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.

    PubMed

    Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain

    2006-10-01

    To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.

  14. Potential virulence and antimicrobial susceptibility of Campylobacter jejuni isolates from food and companion animals.

    PubMed

    Lee, Michelle K; Billington, Stephen J; Joens, Lynn A

    2004-01-01

    Infection in humans with Campylobacter jejuni is commonly associated with exposure to food animal fecal material. In this study, we report on the recovery, potential for virulence and antimicrobial resistance levels of C. jejuni isolated from food and companion animals. Three hundred and seventy-eight fecal samples from food and companion animals and surface swabs from beef carcasses were tested for the presence of C. jejuni. C. jejuni was isolated from 13.8% (11/80) of dogs, 5% (1/20) of goats, 28.3% (17/60) of dairy cattle, 0% (0/65) of range cattle, 73.5% (36/49) of feedlot cattle, and 94.7% (18/19) of beef carcasses. Beef cattle from a single Arizona herd showed a considerable increase in fecal shedding of C. jejuni from pasture to feedlot and over time on the feedlot. Forty-two isolates were tested for susceptibility to four antimicrobial agents, each representing a class of antimicrobial drug approved for use in both humans and animals. None of the isolates were found to be resistant to erythromycin or gentamicin, whereas 2.4% of isolates were resistant to ciprofloxacin and 28.6% of isolates were resistant to tetracycline. The presence of virulence traits among the 42 isolates was assessed using in vitro macrophage survival and epithelial cell adherence and invasion assays. Of the isolates examined, 17 were able to survive within macrophages through 72 h at viable counts of >/=10(3)/well and 12 were capable of invading epithelial cells at viable counts of >/=10(3)/well. Data from these studies suggests that many of the isolates recovered from the non-poultry animal sources have the capacity to cause disease if transmitted to humans.

  15. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    PubMed Central

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  16. Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States

    PubMed Central

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  17. Effects of commercial marinade seasoning and a natural blend of cultured sugar and vinegar on Campylobacter jejuni and Salmonella Typhimurium and the texture of chicken breasts.

    PubMed

    Park, Na Yoon; Hong, Soo Hyeon; Yoon, Ki Sun

    2014-03-01

    Marination using various ingredients has been widely used to improve microbial safety and quality of chicken products at retail markets. The objective of this study was to investigate the effects of commercial marinade seasoning and cultured sugar/vinegar blend on Campylobacter jejuni and Salmonella Typhimurium populations during refrigerated storage. In addition, their effects on the texture of precooked chicken breasts during frozen and refrigerated storage was investigated. Chicken breasts inoculated with 4.5 to 5.0 log cfu/g of C. jejuni and Salmonella Typhimurium were treated with 3% cultured sugar/vinegar blend with and without 0.6% polish rub seasoning containing 32% herb content. Breasts were then vacuum-packaged and stored at 4 and 10°C. Survival and growth curves were fitted to the Baranyi equation to determine survival and growth kinetics of C. jejuni and Salmonella Typhimurium. In addition, the vacuum-packaged precooked chicken breasts with different marination treatments were subjected to 3 freeze-thaw cycles and shear force was measured. At 4°C, the populations of C. jejuni and Salmonella Typhimurium decreased, regardless of treatment group during storage. The greatest survival for C. jejuni was observed in untreated chicken breasts. At 10°C, the growth of Salmonella Typhimurium was completely prevented in precooked chicken breasts treated with 3% cultured sugar/vinegar blend, regardless of the presence of 0.6% seasoning. The 3% cultured sugar/vinegar blend also improved the tenderness of frozen chicken breasts and refrigerated, ready-to-eat chicken breast. Therefore, a natural blend of cultured sugar and vinegar can be used as antimicrobial and texture-modifying agents for poultry meat and poultry products.

  18. Analysis of the LIV System of Campylobacter jejuni Reveals Alternative Roles for LivJ and LivK in Commensalism beyond Branched-Chain Amino Acid Transport ▿

    PubMed Central

    Ribardo, Deborah A.; Hendrixson, David R.

    2011-01-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism. PMID:21949065

  19. Genotypic and Phenotypic Properties of Cattle-Associated Campylobacter and Their Implications to Public Health in the USA

    PubMed Central

    Sanad, Yasser M.; Kassem, Issmat I.; Abley, Melanie; Gebreyes, Wondwossen; LeJeune, Jeffrey T.; Rajashekara, Gireesh

    2011-01-01

    Since cattle are a major source of food and the cattle industry engages people from farms to processing plants and meat markets, it is conceivable that beef-products contaminated with Campylobacter spp. would pose a significant public health concern. To better understand the epidemiology of cattle-associated Campylobacter spp. in the USA, we characterized the prevalence, genotypic and phenotypic properties of these pathogens. Campylobacter were detected in 181 (19.2%) out of 944 fecal samples. Specifically, 71 C. jejuni, 132 C. coli, and 10 other Campylobacter spp. were identified. The prevalence of Campylobacter varied regionally and was significantly (P<0.05) higher in fecal samples collected from the South (32.8%) as compared to those from the North (14.8%), Midwest (15.83%), and East (12%). Pulsed Field Gel Electrophoresis (PFGE) analysis showed that C. jejuni and C. coli isolates were genotypically diverse and certain genotypes were shared across two or more of the geographic locations. In addition, 13 new C. jejuni and two C. coli sequence types (STs) were detected by Multi Locus Sequence Typing (MLST). C. jejuni associated with clinically human health important sequence type, ST-61 which was not previously reported in the USA, was identified in the present study. Most frequently observed clonal complexes (CC) were CC ST-21, CC ST-42, and CC ST-61, which are also common in humans. Further, the cattle associated C. jejuni strains showed varying invasion and intracellular survival capacity; however, C. coli strains showed a lower invasion and intracellular survival potential compared to C. jejuni strains. Furthermore, many cattle associated Campylobacter isolates showed resistance to several antimicrobials including ciprofloxacin, erythromycin, and gentamicin. Taken together, our results highlight the importance of cattle as a potential reservoir for clinically important Campylobacter. PMID:22046247

  20. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. PMID:24419344

  1. Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age

    PubMed Central

    Vinueza-Burgos, Christian; Wautier, Magali; Martiny, Delphine; Cisneros, Marco; Van Damme, Inge; De Zutter, Lieven

    2017-01-01

    Abstract Thermotolerant Campylobacter spp. are a major cause of foodborne gastrointestinal infections worldwide. The linkage of human campylobacteriosis and poultry has been widely described. In this study we aimed to investigate the prevalence, antimicrobial resistance and genetic diversity of C. coli and C. jejuni in broilers from Ecuador. Caecal content from 379 randomly selected broiler batches originating from 115 farms were collected from 6 slaughterhouses located in the province of Pichincha during 1 year. Microbiological isolation was performed by direct plating on mCCDA agar. Identification of Campylobacter species was done by PCR. Minimum inhibitory concentration (MIC) values for gentamicin, ciprofloxacin, nalidixic acid, tetracycline, streptomycin, and erythromycin were obtained. Genetic variation was assessed by RFLP-flaA typing and Multilocus Sequence Typing (MLST) of selected isolates. Prevalence at batch level was 64.1%. Of the positive batches 68.7% were positive for C. coli, 18.9% for C. jejuni, and 12.4% for C. coli and C. jejuni. Resistance rates above 67% were shown for tetracycline, ciprofloxacin, and nalidixic acid. The resistance pattern tetracycline, ciprofloxin, and nalidixic acid was the dominant one in both Campylobacter species. RFLP-flaA typing analysis showed that C. coli and C. jejuni strains belonged to 38 and 26 profiles respectively. On the other hand MLST typing revealed that C. coli except one strain belonged to CC-828, while C. jejuni except 2 strains belonged to 12 assigned clonal complexes (CCs). Furthermore 4 new sequence types (STs) for both species were described, whereby 2 new STs for C. coli were based on new allele sequences. Further research is necessary to estimate the impact of the slaughter of Campylobacter positive broiler batches on the contamination level of carcasses in slaughterhouses and at retail in Ecuador. PMID:28339716

  2. Functional Analysis of the RdxA and RdxB Nitroreductases of Campylobacter jejuni Reveals that Mutations in rdxA Confer Metronidazole Resistance▿ †

    PubMed Central

    Ribardo, Deborah A.; Bingham-Ramos, Lacey K.; Hendrixson, David R.

    2010-01-01

    Campylobacter jejuni is a leading cause of gastroenteritis in humans and a commensal bacterium of the intestinal tracts of many wild and agriculturally significant animals. We identified and characterized a locus, which we annotated as rdxAB, encoding two nitroreductases. RdxA was found to be responsible for sensitivity to metronidazole (Mtz), a common therapeutic agent for another epsilonproteobacterium, Helicobacter pylori. Multiple, independently derived mutations in rdxA but not rdxB resulted in resistance to Mtz (Mtzr), suggesting that, unlike the case in H. pylori, Mtzr might not be a polygenic trait. Similarly, Mtzr C. jejuni was isolated after both in vitro and in vivo growth in the absence of selection that contained frameshift, point, insertion, or deletion mutations within rdxA, possibly revealing genetic variability of this trait in C. jejuni due to spontaneous DNA replication errors occurring during normal growth of the bacterium. Similar to previous findings with H. pylori RdxA, biochemical analysis of C. jejuni RdxA showed strong oxidase activity, with reduction of Mtz occurring only under anaerobic conditions. RdxB showed similar characteristics but at levels lower than those for RdxA. Genetic analysis confirmed that rdxA and rdxB are cotranscribed and induced during in vivo growth in the chick intestinal tract, but an absence of these genes did not strongly impair C. jejuni for commensal colonization. Further studies indicate that rdxA is a convenient locus for complementation of mutants in cis. Our work contributes to the growing knowledge of determinants contributing to susceptibility to Mtz (Mtzs) and supports previous observations of the fundamental differences in the activities of nitroreductases from epsilonproteobacteria. PMID:20118248

  3. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.

    PubMed

    Xie, Yanping; He, Yiping; Irwin, Peter L; Jin, Tony; Shi, Xianming

    2011-04-01

    The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.

  4. Detection of gyrA mutation among clinical isolates of Campylobacter jejuni isolated in Egypt by MAMA-PCR.

    PubMed

    Said, Mayar M; El-Mohamady, Hanan; El-Beih, Fawkia M; Rockabrand, David M; Ismail, Tharwat F; Monteville, Marshall R; Ahmed, Salwa F; Klena, John D; Salama, Mohamed S

    2010-10-04

    Campylobacter spp are the major cause of enteritis in humans and more than 90% of reported infections are caused by Campylobacter jejuni. Fluoroquinolones such as ciprofloxacin are the antibiotics of choice for treatment. An increase in the frequency of ciprofloxacin-resistant Campylobacter has been reported globally due to a single base mutation (C-257 to T) in codon 86 of the quinolone resistance determining region (QRDR) of the gyrA gene altering the amino acid sequence from threonine at position 86 to isoleucine (Thr-86 to Ile). Campylobacter spp (n = 118) were selected from a collection of Egyptian isolates spanning 1998 to 2005. The presence of C. jejuni gyrA gene was confirmed in each isolate by a PCR assay amplifying 368 bp portion of the gyrA gene. C to T alteration was detected by the mismatch amplification mutation assay MAMA PCR. The MIC of nalidixic acid (NA) and ciprofloxacin (CIP) was determined by E-test. C. jejuni gyrA gene was detected in 100 of the Campylobacter spp studied; the other 18 isolates were found to be Campylobacter coli by lpxA PCR. The mutation was detected in 89 C. jejuni resistant isolates with MIC values (NA; 8 - >256 μg/ml) and (CIP; 4 - >32 μg/ml). The other 11 sensitive C. jejuni isolates with MIC values (NA; 0.38 - 3 µg/ml) and (CIP; 0.03 - 0.125 µg/ml) were not amplified by the MAMA primers. There was 100% congruence with MAMA PCR, MIC results and gyrA gene sequence analysis. In Egypt the main mechanism for resistance to fluoroquinolones is an alteration in the gyrA QRDR. MAMA PCR provides an economical and rapid means for screening fluoroquinolone resistance.

  5. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro

    USDA-ARS?s Scientific Manuscript database

    Strategies are sought to reduce intestinal colonization of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry, chestnut tannin extracts, and conden...

  6. Development of a loop-mediated isothermal amplification method for rapid campylobacter jejuni detection

    USDA-ARS?s Scientific Manuscript database

    Introduction: Campylobacter jejuni is the leading foodborne pathogen that causes human bacterial gastroenteritis worldwide. Poultry products are regarded as a major source for human infection. Early, rapid detection of this microorganism in poultry products is necessary for contamination control ...

  7. Screening for several potential pathogens in feral pigeons (Columba livia) in Madrid

    PubMed Central

    2010-01-01

    Background Pathogens with the zoonotic potential to infect humans, such as Campylobacter jejuni, Campylobacter coli and Chlamydophila psittaci, can be found in feral pigeons (Columba livia). Given the high density of these birds in the public parks and gardens of most cities, they may pose a direct threat to public health. Methods A total of 118 pigeons were captured in three samplings carried out in 2006-2007 in public parks and gardens in Madrid, Spain. Standard haematological and morphological analyses were carried out on the pigeons. PCR was used to screen for the presence of Campylobacter jejuni, C. coli and Chlamydophila psittaci. Positive samples were confirmed by DNA sequencing. Results The analyses demonstrated a high prevalence of Chlamydophila psittaci (52.6%) and Campylobacter jejuni (69.1%) among the birds captured. In contrast, Campylobacter coli was rarely detected (1.1%). Conclusions Pigeons in Madrid can carry Chlamydophila psittaci and Campylobacter jejuni. They may be asymptomatic or subclinical carriers of both pathogens. PMID:20569487

  8. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling

    PubMed Central

    Corcionivoschi, Nicolae; Alvarez, Luis A.; Sharp, Thomas H.; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G.; Bourke, Billy

    2013-01-01

    Summary Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer membrane / periplasmic proteins including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987

  9. [Campylobacter jejuni infections in slaughterhouse workers].

    PubMed

    Mancinelli, S; Riccardi, F; Santi, A L; Palombi, L; Marazzi, M C

    1988-01-01

    Complement fixing (C.F.) antibodies to Campylobacter jejuni were detected in 83 slaughterhouse workers and 83 blood donors. Workers were aged 18-65 years (mean, 41.7 +/- 12.3) and had worked in the slaughterhouse for 2-40 years (mean, 17.5 +/- 5.1). C.F. antibodies were detected according to Mosimann's method and by including five antigens: Campylobacter jejuni, Yersinia enterocolitica types 03 and 09, Yersinia pseudotuberculosis and Brucella. Positive titers were found in 12.1% of workers and in 2.4% of control subjects (p less than 0.01); values ranged from 1:10 to 1:40. Frequent and close contact with animals or their products was significantly associated with seropositivity. No association was found with the time of employment. Sixty per cent of seropositive workers referred rheumatological symptoms. These findings confirm that slaughterhouse workers exposed to potential sources of C. jejuni have elevated titers of antibodies. Attention has, therefore, to be focused on breaking the chain of transmission as a means of control.

  10. Campylobacter Antimicrobial Drug Resistance among Humans, Broiler Chickens, and Pigs, France

    PubMed Central

    Prouzet-Mauléon, Valérie; Kempf, Isabelle; Lehours, Philippe; Labadi, Leila; Camou, Christine; Denis, Martine; de Valk, Henriette; Desenclos, Jean-Claude; Mégraud, Francis

    2007-01-01

    We describe isolates from human Campylobacter infection in the French population and the isolates' antimicrobial drug resistance patterns since 1986 and compare the trends with those of isolates from broiler chickens and pigs from 1999 to 2004. Among 5,685 human Campylobacter isolates, 76.2% were C. jejuni, 17.2% C. coli, and 5.0% C. fetus. Resistance to nalidixic acid increased from 8.2% in 1990 to 26.3% in 2004 (p<10-3), and resistance to ampicillin was high over time. Nalidixic acid resistance was greater for C. coli (21.3%) than for C. jejuni (14.9%, p<10-3). C. jejuni resistance to ciprofloxacin in broilers decreased from 31.7% in 2002 to 9.0% in 2004 (p = 0.02). The patterns of resistance to quinolones and fluoroquinolones were similar between 1999 and 2004 in human and broiler isolates for C. jejuni. These results suggest a potential benefit of a regulation policy limiting use of antimicrobial drugs in food animals. PMID:17479889

  11. γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni

    PubMed Central

    Barnes, If H.A.; Bagnall, Mary C.; Browning, Darren D.; Thompson, Stuart A.; Manning, Georgina; Newell, Diane G.

    2009-01-01

    The contribution of γ-glutamyl transpeptidase (GGT) to Campylobacter jejuni virulence and colonization of the avian gut has been investigated. The presence of the ggt gene in C. jejuni strains directly correlated with the expression of GGT activity as measured by cleavage and transfer of the γ-glutamyl moiety. Inactivation of the monocistronic ggt gene in C. jejuni strain 81116 resulted in isogenic mutants with undetectable GGT activity; nevertheless, these mutants grew normally in vitro. However, the mutants had increased motility, a 5.4-fold higher invasion efficiency into INT407 cells in vitro and increased resistance to hydrogen peroxide stress. Moreover, the apoptosis-inducing activity of the ggt mutant was significantly lower than that of the parental strain. In vivo studies showed that, although GGT activity was not required for initial colonization of 1-day-old chicks, the enzyme was required for persistant colonization of the avian gut. PMID:17600669

  12. [Campylobacter jejuni in poultry processed in slaughterhouses].

    PubMed

    Mícková, V

    1987-09-01

    The frequency of occurrence of Campylobacter jejuni germs in dressed poultry was studied for a year. The samples--smears from the body cavities of chickens--were collected during the technological dressing of the chickens; 101 strains of Campylobacter jejuni (i. e. 28.69%) were isolated from the 352 samples analyzed. The occurrence of the germs exhibited a considerable seasonal variance with peak rates in spring and summer. The use of a suitable culture medium, the technique of cultivation and the properties of the isolated strains were studied at the same time. The culture medium (Agar no. 3 IMUNA enriched with supplement C, horse blood and ingredients increasing the aerotolerance of the germs--sodium pyruvate and iron sulphate) used during the investigation was found to be suitable. The technique of cultivation by means of an anaerostat manufactured by the Development Station in Brno, atmosphere regulation (5% CO2) and with a pre-set cultivation temperature (43 degrees C) was found to be suitable for the screening of the Campylobacter jejuni germs.

  13. Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization.

    PubMed

    Awad, Wageha A; Smorodchenko, Alina; Hess, Claudia; Aschenbach, Jörg R; Molnár, Andor; Dublecz, Károly; Khayal, Basel; Pohl, Elena E; Hess, Michael

    2015-08-01

    Although a high number of chickens carry Campylobacter jejuni, the mechanistic action of colonization in the intestine is still poorly understood. The current study was therefore designed to investigate the effects of C. jejuni on glucose uptake, amino acids availability in digesta, and intracellular calcium [Ca(2+)]i signaling in the intestines of broiler chickens. For this, we compared: control birds (n = 60) and C. jejuni-infected birds (n = 60; infected orally with 1 × 10(8) CFU of C. jejuni NCTC 12744 at 14 days of age). Our results showed that glucose uptake was reduced due to C. jejuni infection in isolated jejunal, but not in cecal mucosa at 14 days postinfection (dpi). The decrease in intestinal glucose absorption coincided with a decrease in body weight gain during the 2-week post-infectious period. A reduction in the amount of the amino acids (serine, proline, valine, leucine, phenylalanine, arginine, histidine, and lysine) in ileal digesta of the infected birds at 2 and/or 7 dpi was found, indicating that Campylobacter utilizes amino acids as a carbon source for their multiplication. Applying the cell-permeable Ca(2+) indicator Fluo-4 and two-photon microscopy, we revealed that [Ca(2+)]i was increased in the jejunal and cecal mucosa of infected birds. The muscarinic agonist carbachol induced an increase in [Ca(2+)]i in jejunum and cecum mucosa of control chickens, a response absent in the mucosa of infected chickens, demonstrating that the modulation of [Ca(2+)]i by Campylobacter might be involved in facilitating the necessary cytoskeletal rearrangements that occur during the bacterial invasion of epithelial cells. In conclusion, this study demonstrates the multifaceted interactions of C. jejuni with the gastrointestinal mucosa of broiler chickens. For the first time, it could be shown that a Campylobacter infection could interfere with intracellular Ca(2+) signaling and nutrient absorption in the small intestine with consequences on intestinal function, performance, and Campylobacter colonization. Altogether, these findings indicate that Campylobacter is not entirely a commensal and can be recognized as an important factor contributing to an impaired chicken gut health.

  14. Efficacy of Peracetic acid and Zinc in reducing Campylobacter jejuni on chicken skin

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterial foodborne disease in humans worldwide, largely associated with the consumption of contaminated poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe status antimicrobia...

  15. Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion

    PubMed Central

    Zhang, Ji; Vehkala, Minna; Välimäki, Niko; Hakkinen, Marjaana; Hänninen, Marja-Liisa; Roasto, Mati; Mäesaar, Mihkel; Taboada, Eduardo; Barker, Dillon; Garofolo, Giuliano; Cammà, Cesare; Di Giannatale, Elisabetta; Corander, Jukka; Rossi, Mirko

    2016-01-01

    The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni. PMID:28348829

  16. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives.

    PubMed

    Gunther, Nereus W; Sites, Joseph; Sommers, Christopher

    2015-09-01

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Presence and characterization of Campylobacter jejuni in organically raised chickens in Quebec

    PubMed Central

    Thibodeau, Alexandre; Fravalo, Philippe; Laurent-Lewandowski, Sylvette; Guévremont, Evelyne; Quessy, Sylvain; Letellier, Ann

    2011-01-01

    The objective of this study was to estimate the presence of the important foodborne pathogen Campylobacter jejuni in organically raised chickens in the province of Quebec. The recovered isolates were further characterized for their antimicrobial resistance profile, autoagglutination property and chemotaxis. Antimicrobial resistance was evaluated using agar dilution for: tetracycline, erythromycin, chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, clindamycin, ampicillin, azithromycin, bacitracin, and ceftiofur. Autoagglutination was measured by monitoring optical density changes in a bacterial suspension after 3 h of incubation at room temperature. Chemotaxis was evaluated after a contact time of 3 h between isolates and mucin, using a quantitative protocol. A total of 10 lots of chickens was sampled in August and September 2009; half of them were positive for the presence of C. jejuni. Antimicrobial resistance was found only for tetracycline (44%), erythromycin (6%), azithromycin (6%) and clindamycin (2%). Variation was observed in the minimum inhibitory concentrations (MICs) for ceftiofur and bacitracin, for which C. jejuni possess intrinsic resistance. Autoagglutination and chemotaxis varied among isolates and lot-level differences in these were observed. Autoagglutination and chemotaxis levels appeared as independent isolate properties. Further monitoring and characterization of isolates originating from organic chickens is of interest since this type of production might represent another source of exposure of consumers to a variety of the foodborne pathogen C. jejuni. PMID:22468028

  18. A carvacrol wash and/or a chitosan based coating reduced Campylobacter jejuni on chicken wingettes

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of foodborne disease in humans, largely associated with consumption of contaminated poultry and poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe (GRAS) status plant derived com...

  19. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  20. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Background: Campylobacter jejuni clone SA recently emerged as the predominant cause of sheep abortion in the U.S. and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the path...

  1. Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteri...

  2. The complete genome sequences of 65 Campylobacter jejuni and C. coli strains

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni (Cj) and C. coli (Cc) are genetically highly diverse based on various molecular methods including MLST, microarray-based comparisons and the whole genome sequences of a few strains. Cj and Cc diversity is also exhibited by variable capsular polysaccharides (CPS) that are the maj...

  3. Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223-Cj1222) of Campylobacter jejuni is important for the colonization of chickens. Here w...

  4. Plant-derived antimicrobial eugenol modulates C. jejuni proteome and virulence critical for colonization in chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is an important foodborne pathogen that causes severe diarrhea in humans. Chickens act as the reservoir host for Campylobacter, wherein the pathogen colonizes the ceca leading to contaminated poultry products during slaughter. The potential of natural intervention strategies, in...

  5. Characterization and Reactivity of Broiler Chicken Sera to Selected Recombinant Campylobacter jejuni Chemotactic Proteins

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to c...

  6. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Campylobacter spp. are the second leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of nearly $2 billion per year. Most human illness associated with campylobacteriosis is due to infection by C. jejuni and chickens are recognized as a reservoir, which could le...

  7. Analysis of evolutionary patterns of genes in campylobacter jejuni and C. coli

    USDA-ARS?s Scientific Manuscript database

    Background: In order to investigate the population genetics structure of thermophilic Campylobacter spp., we extracted a set of 1029 core gene families (CGF) from 25 sequenced genomes of C. jejuni, C. coli and C. lari. Based on these CGFs we employed different approaches to reveal the evolutionary ...

  8. Effective application of multiple locus variable number of tandem repeats analysis to tracing Staphylococcus aureus in food-processing environment.

    PubMed

    Rešková, Z; Koreňová, J; Kuchta, T

    2014-04-01

    A total of 256 isolates of Staphylococcus aureus were isolated from 98 samples (34 swabs and 64 food samples) obtained from small or medium meat- and cheese-processing plants in Slovakia. The strains were genotypically characterized by multiple locus variable number of tandem repeats analysis (MLVA), involving multiplex polymerase chain reaction (PCR) with subsequent separation of the amplified DNA fragments by an automated flow-through gel electrophoresis. With the panel of isolates, MLVA produced 31 profile types, which was a sufficient discrimination to facilitate the description of spatial and temporal aspects of contamination. Further data on MLVA discrimination were obtained by typing a subpanel of strains by multiple locus sequence typing (MLST). MLVA coupled to automated electrophoresis proved to be an effective, comparatively fast and inexpensive method for tracing S. aureus contamination of food-processing factories. Subspecies genotyping of microbial contaminants in food-processing factories may facilitate identification of spatial and temporal aspects of the contamination. This may help to properly manage the process hygiene. With S. aureus, multiple locus variable number of tandem repeats analysis (MLVA) proved to be an effective method for the purpose, being sufficiently discriminative, yet comparatively fast and inexpensive. The application of automated flow-through gel electrophoresis to separation of DNA fragments produced by multiplex PCR helped to improve the accuracy and speed of the method. © 2013 The Society for Applied Microbiology.

  9. Mechanisms underlying zoonotic success of Campylobacter jejuni: the CprRS two-component regulatory system influences essential processes, biofilm formation, and pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of food- and waterbourne bacterial gastroenteritis in the developed world. Although illness is usually self-limiting, immunocompromised individuals are at risk for infections recalcitrant to antibiotic treatment, and prior campylobacter infection correlates wi...

  10. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The generation of an electrical membrane potential (''), the major constituent of the proton motive force (pmf) is crucial for the ATP synthesis, bacterial growth and motility. The pmf drives the rotation of flagella and is vital for the microaerophilic human pathogen Campylobacter jejuni to coloniz...

  11. Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to investigate the population structure and antimicrobial resistance profiles of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium, and to further analyze the molecular mechanisms responsible for the resistance phenotypes. Minimum inhibitory c...

  12. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    USDA-ARS?s Scientific Manuscript database

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  13. Discriminative power of Campylobacter phenotypic and genotypic typing methods.

    PubMed

    Duarte, Alexandra; Seliwiorstow, Tomasz; Miller, William G; De Zutter, Lieven; Uyttendaele, Mieke; Dierick, Katelijne; Botteldoorn, Nadine

    2016-06-01

    The aim of this study was to compare different typing methods, individually and combined, for use in the monitoring of Campylobacter in food. Campylobacter jejuni (n=94) and Campylobacter coli (n=52) isolated from different broiler meat carcasses were characterized using multilocus sequence typing (MLST), flagellin gene A restriction fragment length polymorphism typing (flaA-RFLP), antimicrobial resistance profiling (AMRp), the presence/absence of 5 putative virulence genes; and, exclusively for C. jejuni, the determination of lipooligosaccharide (LOS) class. Discriminatory power was calculated by the Simpson's index of diversity (SID) and the congruence was measured by the adjusted Rand index and adjusted Wallace coefficient. MLST was individually the most discriminative typing method for both C. jejuni (SID=0.981) and C. coli (SID=0.957). The most discriminative combination with a SID of 0.992 for both C. jejuni and C. coli was obtained by combining MLST with flaA-RFLP. The combination of MLST with flaA-RFLP is an easy and feasible typing method for short-term monitoring of Campylobacter in broiler meat carcass. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The RNase R from Campylobacter jejuni Has Unique Features and Is Involved in the First Steps of Infection*

    PubMed Central

    Haddad, Nabila; Matos, Rute G.; Pinto, Teresa; Rannou, Pauline; Cappelier, Jean-Michel; Prévost, Hervé; Arraiano, Cecília M.

    2014-01-01

    Bacterial pathogens must adapt/respond rapidly to changing environmental conditions. Ribonucleases (RNases) can be crucial factors contributing to the fast adaptation of RNA levels to different environmental demands. It has been demonstrated that the exoribonuclease polynucleotide phosphorylase (PNPase) facilitates survival of Campylobacter jejuni in low temperatures and favors swimming, chick colonization, and cell adhesion/invasion. However, little is known about the mechanism of action of other ribonucleases in this microorganism. Members of the RNB family of enzymes have been shown to be involved in virulence of several pathogens. We have searched C. jejuni genome for homologues and found one candidate that displayed properties more similar to RNase R (Cj-RNR). We show here that Cj-RNR is important for the first steps of infection, the adhesion and invasion of C. jejuni to eukaryotic cells. Moreover, Cj-RNR proved to be active in a wide range of conditions. The results obtained lead us to conclude that Cj-RNR has an important role in the biology of this foodborne pathogen. PMID:25100732

  15. Gene Loss and Lineage-Specific Restriction-Modification Systems Associated with Niche Differentiation in the Campylobacter jejuni Sequence Type 403 Clonal Complex

    PubMed Central

    Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K.; Blom, Jochen

    2015-01-01

    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation. PMID:25795671

  16. Binational outbreak of Guillain-Barré syndrome associated with Campylobacter jejuni infection, Mexico and USA, 2011.

    PubMed

    Jackson, B R; Zegarra, J Alomía; López-Gatell, H; Sejvar, J; Arzate, F; Waterman, S; Núñez, A Sánchez; López, B; Weiss, J; Cruz, R Quintero; Murrieta, D Y López; Luna-Gierke, R; Heiman, K; Vieira, A R; Fitzgerald, C; Kwan, P; Zárate-Bermúdez, M; Talkington, D; Hill, V R; Mahon, B

    2014-05-01

    In June 2011, a cluster of suspected cases of Guillain-Barré syndrome (GBS), which can follow Campylobacter jejuni infection, was identified in San Luis Río Colorado (SLRC), Sonora, Mexico and Yuma County, Arizona, USA. An outbreak investigation identified 26 patients (18 from Sonora, eight from Arizona) with onset of GBS 4 May-21 July 2011, exceeding the expected number of cases (n = 1-2). Twenty-one (81%) patients reported antecedent diarrhoea, and 61% of 18 patients tested were seropositive for C. jejuni IgM antibodies. In a case-control study matched on age group, sex, ethnicity, and neighbourhood of residence, all Arizona GBS patients travelled to SLRC during the exposure period vs. 45% of matched controls (matched odds ratio 8·1, 95% confidence interval 1·5-∞). Exposure information and an environmental assessment suggested that GBS cases resulted from a large outbreak of C. jejuni infection from inadequately disinfected tap water in SLRC. Binational collaboration was essential in investigating this cross-border GBS outbreak, the first in mainland North America since 1976.

  17. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU

    PubMed Central

    CABALLERO, Moisés; RIVERA, Isabel; JARA, Luis M.; ULLOA-STANOJLOVIC, Francisco M.; SHIVA, Carlos

    2015-01-01

    SUMMARY Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coliwere isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents. PMID:26603225

  18. Matrix metalloproteinases-2 and -9 in Campylobacter jejuni-induced paralytic neuropathy resembling Guillain-Barré syndrome in chickens.

    PubMed

    Nyati, Kishan Kumar; Prasad, Kashi Nath; Agrawal, Vinita; Husain, Nuzhat

    2017-10-01

    Inflammation in Guillain-Barré syndrome (GBS) is manifested by changes in matrix metalloproteinase (MMP) and pro-inflammatory cytokine expression. We investigated the expression of MMP-2, -9 and TNF-α and correlated it with pathological changes in sciatic nerve tissue from Campylobacter jejuni-induced chicken model for GBS. Campylobacter jejuni and placebo were fed to chickens and assessed for disease symptoms. Sciatic nerves were examined by histopathology and immunohistochemistry. Expressions of MMPs and TNF-α, were determined by real-time PCR, and activities of MMPs by zymography. Diarrhea developed in 73.3% chickens after infection and 60.0% of them developed GBS like neuropathy. Pathology in sciatic nerves showed perinodal and/or patchy demyelination, perivascular focal lymphocytic infiltration and myelin swelling on 10th- 20th post infection day (PID). MMP-2, -9 and TNF-α were up-regulated in progressive phase of the disease. Enhanced MMP-2, -9 and TNF-α production in progressive phase correlated with sciatic nerve pathology in C. jejuni-induced GBS chicken model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Survival of Escherichia coli, enterococci and Campylobacter jejuni in Canada goose faeces on pasture.

    PubMed

    Moriarty, E M; Weaver, L; Sinton, L W; Gilpin, B

    2012-11-01

    Freshly excreted Canada goose faeces pose a public health risk as they contain pathogenic microorganisms. Accordingly, a study was carried out on the growth and survival of resident indicator bacteria (enterococci and Escherichia coli) and inoculated Campylobacter jejuni in freshly excreted faeces over summer and winter. Canada goose faeces were collected, mixed thoroughly and inoculated with 10⁸ g⁻¹ C. jejuni. The faeces were mixed again before making the Canada goose dropping. The simulated goose droppings (N = 70) were placed on pasture, and the concentrations of E. coli, enterococci and the pathogen, C. jejuni, were monitored. In summer only, the molecular marker of E. coli LacZ and the avian-associated bacteria E2 was also monitored. Results of the survival study indicated that significant growth of enterococci and E. coli occurred in summer, before concentrations decreased to less than 15% of the original concentration (day 77) for enterococci and 0.01% for E. coli. LacZ followed a similar pattern to E. coli, while the E2 marker dropped to below 0.1% of the original concentration within 4 days. In winter, enterococci grew slightly, while no growth of E. coli occurred. In both summer and winter, C. jejuni was rapidly inactivated. This research highlights the ability of bacterial indicators to replicate and survive in the environment when harboured by avian faeces, and the limited risk aged Canada goose faeces pose as an environmental source of Campylobacter spp. © 2012 Blackwell Verlag GmbH.

  20. Mutation in the peb1A Locus of Campylobacter jejuni Reduces Interactions with Epithelial Cells and Intestinal Colonization of Mice

    PubMed Central

    Pei, Zhiheng; Burucoa, Christophe; Grignon, Bernadette; Baqar, Shahida; Huang, Xiao-Zhe; Kopecko, Dennis J.; Bourgeois, A. L.; Fauchere, Jean-Louis; Blaser, Martin J.

    1998-01-01

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea throughout the world. We previously found that PEB1 is a homolog of cluster 3 binding proteins of bacterial ABC transporters and that a C. jejuni adhesin, cell-binding factor 1 (CBF1), if not identical to, contains PEB1. A single protein migrating at approximately 27 to 28 kDa was recognized by anti-CBF1 and anti-PEB1. To determine the role that the operon encoding PEB1 plays in C. jejuni adherence, peb1A, the gene encoding PEB1, was disrupted in strain 81-176 by insertion of a kanamycin resistance gene through homologous recombination. Inactivation of this operon completely abolished expression of CBF1, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. In comparison to the wild-type strain, the mutant strain showed 50- to 100-fold less adherence to and 15-fold less invasion of epithelial cells in culture. Mouse challenge studies showed that the rate and duration of intestinal colonization by the mutant were significantly lower and shorter than with the wild-type strain. In summary, PEB1 is identical to a previously identified cell-binding factor, CBF1, in C. jejuni, and the peb1A locus plays an important role in epithelial cell interactions and in intestinal colonization in a mouse model. PMID:9488379

  1. Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells.

    PubMed

    Šikić Pogačar, Maja; Klančnik, Anja; Bucar, Franz; Langerholc, Tomaž; Smole Možina, Sonja

    2016-06-01

    In order to survive in food-processing environments and cause disease, Campylobacter jejuni requires specific survival mechanisms, such as biofilms, which contribute to its transmission through the food chain to the human host and present a critical form of resistance to a wide variety of antimicrobials. Phytochemical analysis of thyme ethanolic extract (TE), thyme post-hydrodistillation residue (TE-R), and olive leaf extract (OE) using high-performance liquid chromatography with photodiode array indicates that the major compounds in TE and TE-R are flavone glucuronides and rosmarinic acid derivatives, and in OE verbascoside, luteolin 7-O-glucoside and oleuroside. TE and TE-R reduced C. jejuni adhesion to abiotic surfaces by up to 30% at 0.2-12.5 µg mL(-1) , with TE-R showing a greater effect. OE from 3.125 to 200 µg mL(-1) reduced C. jejuni adhesion to polystyrene by 10-23%. On the other hand, C. jejuni adhesion to PSI cl1 cells was inhibited by almost 30% over a large concentration range of these extracts. Our findings suggest that TE, the agro-food waste material TE-R, and the by-product OE represent sources of bioactive phytochemicals that are effective at low concentrations and can be used as therapeutic agents to prevent bacterial adhesion. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni

    PubMed Central

    Kovács, Judit K.; Felső, Péter; Makszin, Lilla; Pápai, Zoltán; Horváth, Györgyi; Ábrahám, Hajnalka; Palkovics, Tamás; Böszörményi, Andrea; Emődy, Levente

    2016-01-01

    ABSTRACT Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni. After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni. Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni. IMPORTANCE This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen. PMID:27520816

  3. A large outbreak of Campylobacter jejuni infection in a university college caused by chicken liver pâté, Australia, 2013.

    PubMed

    Moffatt, C R M; Greig, A; Valcanis, M; Gao, W; Seemann, T; Howden, B P; Kirk, M D

    2016-10-01

    In October 2013, public health authorities were notified of a suspected outbreak of gastroenteritis in students and guests following a catered function at a university residential college. A retrospective cohort study was undertaken to examine whether foods served at the function caused illness. A total of 56 cases of gastroenteritis, including seven laboratory-confirmed cases of Campylobacter jejuni infection, were identified in 235 eligible respondents. Univariate analysis showed a significant association with a chicken liver pâté entrée [relative risk (RR) 3·64, 95% confidence interval (CI) 2·03-6·52, P < 0·001], which retained significance after adjustment for confounding via multivariable analysis (adjusted RR 2·80, 95% CI 1·26-6·19, P = 0·01). C. jejuni and C. coli were also isolated in chicken liver pâté recovered from the college's kitchen. Subsequent whole genome multilocus sequence typing (wgMLST) of clinical and food-derived C. jejuni isolates showed three genetically distinct sequence types (STs) comprising ST528, ST535 (both clinically derived) and ST991 (food derived). The study demonstrates the value of utilizing complementary sources of evidence, including genomic data, to support public health investigations. The use of wgMLST highlights the potential for significant C. jejuni diversity in epidemiologically related human and food isolates recovered during outbreaks linked to poultry liver.

  4. Prevalence of three campylobacter species, C. jejuni, C. coli, and C. lari, using multilocus sequence typing in wild birds of the Mid-Atlantic region, USA.

    PubMed

    Keller, Judith I; Shriver, W Gregory

    2014-01-01

    Campylobacter jejuni is responsible for the majority of bacterial foodborne gastroenteritis in the US, usually due to the consumption of undercooked poultry. Research on which avian species transmit the bacterium is limited, especially in the US. We sampled wild birds in three families-Anatidae, Scolopacidae, and Laridae-in eastern North America to determine the prevalence and specific strains of Campylobacter. The overall prevalence of Campylobacter spp. was 9.2% for all wild birds sampled (n = 781). Campylobacter jejuni was the most prevalent species (8.1%), while Campylobacter coli and Campylobacter lari prevalence estimates were low (1.4% and 0.3%, respectively). We used multilocus sequence typing PCR specific to C. jejuni to characterize clonal complexes and sequence types isolated from wild bird samples and detected 13 novel sequence types, along with a clonal complex previously only associated with human disease (ST-658). Wild birds share an increasing amount of habitat with humans as more landscapes become fragmented and developed for human needs. Wild birds are and will remain an important aspect of public health due to their ability to carry and disperse emerging zoonotic pathogens or their arthropod vectors. As basic information such as prevalence is limited or lacking from a majority of wild birds in the US, this study provides further insight into Campylobacter epidemiology, host preference, and strain characterization of C. jejuni.

  5. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand

    PubMed Central

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-01-01

    Abstract A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST, and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. We applied molecular epidemiology and population genetics to obtain insights in to the population structure, host-species relationships, gene flow and evolution of Campylobacter jejuni in urban ducks and starlings. PMID:23873654

  6. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration.

    PubMed

    Baffoni, Loredana; Gaggìa, Francesca; Garofolo, Giuliano; Di Serafino, Gabriella; Buglione, Enrico; Di Giannatale, Elisabetta; Di Gioia, Diana

    2017-06-19

    C. jejuni is considered a food safety concern to both public health authorities and consumers since it is the leading bacterial cause of food-borne gastroenteritis in humans. A high incidence of C. jejuni in broiler flocks is often correlated to pathogen recovery in retail poultry meat, which is the main source of human infection. In this work broiler chickens were fed with a synbiotic product mixed with conventional feed using two different administration strategies. The synbiotic was formulated with the microencapsulated probiotic Bifidobacterium longum PCB133 and a xylo-oligosaccharide (XOS). 1-day old chicks were infected with C. jejuni strain M1 (10 5 cells) and the synbiotic mixture was then administered starting from the first and the 14th day of chicken life (for animal groups GrpC and GrpB respectively). The goal of this study was to monitor C. jejuni load at caecum level at different sampling time by real-time PCR, identifying the best administration strategy. The microbiological analysis of the caecal content also considered the quantification of Campylobacter spp., Bifidobacterium spp. and B. longum. The supplemented synbiotic was more successful in reducing C. jejuni and Campylobacter spp. when administered lifelong, compared to the shorter supplementation (GrpB). Bifidobacterium spp. quantification did not show significant differences among treatments and B. longum PCB133 was detected in both supplemented groups evidencing the successful colonization of the strain. Moreover, the samples of the control group (GrpA) and GrpC were analysed with PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to compare the caecal microbial community profiles at the beginning and at the end of the trial. Pattern analysis evidenced the strong influence of the early synbiotic supplementation, although a physiological change in the microbial community, occurring during growth, could be observed. Experimental results demonstrate that the synbiotic approach at farm level can be an effective strategy, combined with biosecurity measures, to improve the safety of poultry meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A seventeen-year observation of the antimicrobial susceptibility of clinical Campylobacter jejuni and the molecular mechanisms of erythromycin-resistant isolates in Beijing, China.

    PubMed

    Zhou, Jiyuan; Zhang, Maojun; Yang, Wanna; Fang, Yuqing; Wang, Guiqiang; Hou, Fengqin

    2016-01-01

    To investigate the dynamic development of the antimicrobial resistance of Campylobacter jejuni isolated from human diarrhea in Beijing, China, between 1994 and 2010, and to further analyze the molecular mechanisms of erythromycin-resistant strains. Susceptibility tests were performed on 203 non-duplicate clinical C. jejuni strains against eight common antibiotics using the standard agar dilution method. The molecular determinants were further studied in the erythromycin (ERY) non-susceptible strains. The analysis focused on the 23S rRNA gene, the rplD and rplV ribosomal genes, the ermB gene, and the regulatory region of the CmeABC efflux pump. The rates of resistance of C. jejuni to ciprofloxacin (CIP), nalidixic acid (NAL), doxycycline (DOX), tetracycline (TET), florfenicol (FFC), and chloramphenicol (CHL) increased significantly over the period studied (all p<0.05). Similarly, the proportions of resistant patterns (CIP-NAL-DOX-TET, CIP-NAL-DOX-TET-FFC, and CIP-NAL-DOX-TET-CHL) increased remarkably. In this study, 4.4% (9/203) of C. jejuni strains were ERY non-susceptible. The A2075G mutation in the 23S rRNA was found in all of the resistant strains except cj8091, which harbored the ermB gene. Interestingly, the ermB gene was also detected in intermediately resistant isolates, and the earliest ermB-positive strain cj94473 was derived in 1994. Moreover, none of the ribosomal rplD or rplV genes harbored mutations that have been described to confer resistance to macrolides. Different mutations affecting the regulatory region of the CmeABC efflux pump were also found. This is the first comprehensive study on the recent trend in antimicrobial resistance and the molecular mechanisms of macrolide resistance in clinical C. jejuni strains isolated in China. More stringent monitoring and regulation of human and animal antimicrobial use are warranted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter.

    PubMed

    Smith, Shaun; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul

    2016-01-01

    Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter and faeces under various environmental conditions has implications for farm litter management, hygiene, and disinfection practices.

  9. Antimicrobial resistance of Campylobacter jejuni and Campylobacter coli from poultry in Italy.

    PubMed

    Giacomelli, Martina; Salata, Cristiano; Martini, Marco; Montesissa, Clara; Piccirillo, Alessandra

    2014-04-01

    This study was aimed at assessing the antimicrobial resistance (AMR) of Campylobacter isolates from broilers and turkeys reared in industrial farms in Northern Italy, given the public health concern represented by resistant campylobacters in food-producing animals and the paucity of data about this topic in our country. Thirty-six Campylobacter jejuni and 24 Campylobacter coli isolated from broilers and 68 C. jejuni and 32 C. coli from turkeys were tested by disk diffusion for their susceptibility to apramycin, gentamicin, streptomycin, cephalothin, cefotaxime, ceftiofur, cefuroxime, ampicillin, amoxicillin+clavulanic acid, nalidixic acid, flumequine, enrofloxacin, ciprofloxacin, erythromycin, tilmicosin, tylosin, tiamulin, clindamycin, tetracycline, sulfamethoxazole+trimethoprim, chloramphenicol. Depending on the drug, breakpoints provided by Comité de l'antibiogramme de la Société Française de Microbiologie, Clinical and Laboratory Standards Institute, and the manufacturer were followed. All broiler strains and 92% turkey strains were multidrug resistant. Very high resistance rates were detected for quinolones, tetracycline, and sulfamethoxazole+trimethoprim, ranging from 65% to 100% in broilers and from 74% to 96% in turkeys. Prevalence of resistance was observed also against ampicillin (97% in broilers, 88% in turkeys) and at least three cephalosporins (93-100% in broilers, 100% in turkeys). Conversely, no isolates showed resistance to chloramphenicol and tiamulin. Susceptibility prevailed for amoxicillin+clavulanic acid and aminoglycosides in both poultry species, and for macrolides and clindamycin among turkey strains and among C. jejuni from broilers, whereas most C. coli strains from broilers (87.5%) were resistant. Other differences between C. jejuni and C. coli were observed markedly in broiler isolates, with the overall predominance of resistance in C. coli compared to C. jejuni. This study provides updates and novel data on the AMR of broiler and turkey campylobacters in Italy, revealing the occurrence of high resistance to several antimicrobials, especially key drugs for the treatment of human campylobacteriosis, representing a potential risk for public health.

  10. Cluster Analysis of Campylobacter jejuni Genotypes Isolated from Small and Medium-Sized Mammalian Wildlife and Bovine Livestock from Ontario Farms.

    PubMed

    Viswanathan, M; Pearl, D L; Taboada, E N; Parmley, E J; Mutschall, S K; Jardine, C M

    2017-05-01

    Using data collected from a cross-sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter-specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair-group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two-dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife transmit Campylobacter jejuni directly to humans. © 2016 Blackwell Verlag GmbH.

  11. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    PubMed

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  12. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity.

    PubMed

    Méndez-Olvera, Estela T; Bustos-Martínez, Jaime A; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-10-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). The results obtained showed that the eight strains of C. jejuni , including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA , cdtB and cdtC genes.

  13. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity

    PubMed Central

    Méndez-Olvera, Estela T.; Bustos-Martínez, Jaime A.; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-01-01

    Background Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. Objectives The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Methods Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). Results The results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. Conclusions This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes. PMID:27942359

  14. Campylobacter jejuni transcriptome changes during loss of culturability in water

    PubMed Central

    Bronowski, Christina; Mustafa, Kasem; Goodhead, Ian; James, Chloe E.; Nelson, Charlotte; Lucaci, Anita; Wigley, Paul; Humphrey, Tom J.; Williams, Nicola J.; Winstanley, Craig

    2017-01-01

    Background Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three, strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression. PMID:29190673

  15. Phenotypic and Transcriptomic Responses of Campylobacter jejuni Suspended in an Artificial Freshwater Medium

    PubMed Central

    Trigui, Hana; Lee, Kristen; Thibodeau, Alexandre; Lévesque, Simon; Mendis, Nilmini; Fravalo, Philippe; Letellier, Ann; Faucher, Sébastien P.

    2017-01-01

    Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is linked to ingestion of contaminated water. The differences between C. jejuni strains originating from food products and those isolated from water are poorly understood. Working under the hypothesis that water-borne C. jejuni strains are better equipped at surviving the nutrient-poor aquatic environment than food-borne strains, the present study aims to characterize these differences using outbreak strains 81116 and 81-176. Strain 81116 caused a campylobacteriosis outbreak linked to consumption of water, while strain 81-176 was linked to consumption of raw milk. CFU counts and viability assays showed that 81116 survives better than 81-176 at 4°C in a defined freshwater medium (Fraquil). Moreover, 81116 was significantly more resistant to oxidative stress and bile salt than strain 81-176 in Fraquil. To better understand the genetic response of 81116 to water, a transcriptomic profiling study was undertaken using microarrays. Compared to rich broth, strain 81116 represses genes involved in amino acid uptake and metabolism, as well as genes involved in costly biosynthetic processes such as replication, translation, flagellum synthesis and virulence in response to Fraquil. In accordance with the observed increase in stress resistance in Fraquil, 81116 induces genes involved in resistance to oxidative stress and bile salt. Interestingly, genes responsible for cell wall synthesis were also induced upon Fraquil exposure. Finally, twelve unique genes were expressed in Fraquil; however, analysis of their distribution in animal and water isolates showed that they are not uniquely and ubiquitously present in water isolates, and thus, unlikely to play a major role in adaptation to water. Our results show that some C. jejuni strains are more resilient than others, thereby challenging current water management practices. The response of 81116 to Fraquil serves as a starting point to understand the adaptation of C. jejuni to water and its subsequent transmission. PMID:28979243

  16. Effect of Feed Form and Whole Grain Feeding on Gastrointestinal Weight and the Prevalence of Campylobacter jejuni in Broilers Orally Infected

    PubMed Central

    Gracia, Marta Isabel; Sánchez, Jaime; Millán, Carlos; Casabuena, Óscar; Vesseur, Peter; Martín, Ángel; García-Peña, Francisco Javier; Medel, Pedro

    2016-01-01

    Two independent trials were carried out to evaluate the effect of feed form, whole wheat (WW) and oat hulls (OH) addition on gastrointestinal (GIT) weight and Campylobacter jejuni colonization in orally infected birds. In Trial 1, there were six treatments factorially arranged with two feed forms (mash vs pellets), and three levels of WW from 1-21/22-42d: 0/0, 7.5/15%, 15/30%. Broilers were allocated in cages (3 birds/cage, 12 cages/treatment). In Trial 2, there were three treatments: a mash diet, a mash diet including WW (7.5% from 1–21 and 15% from 22-42d), and a third treatment including also 5%OH. Broilers were allocated in floor pens (1 pen with 30 birds/treatment). At 14d, all broilers in Trial 1 or 3 broilers/pen in Trial 2 were orally challenged with 1.5 x 105 cfu of C. jejuni ST-45 /. In Trial 1, birds fed pelleted diets consumed 13.5% more feed, gained 31% more weight, and presented 12.9% better feed conversion for the whole trial (P<0.05). Pelleting decreased the relative weight of GIT and gizzard and increased the relative weight of proventriculus (P<0.05). Mash diets decreased pH in the gizzard (P<0.05). Inclusion of WW decreased the relative weight of proventriculus, increased gizzard weight, and reduced pH in the gizzard (P<0.05). At 21d of age, mash tended to reduce C. jejuni compared to pellets (7.85 vs 8.27 log10cfu/g; P = 0.091) and WW inclusion at 7.5/15% reduced C. jejuni colonization when compared to lower and higher inclusion (P<0.05). In Trial 2, birds fed T3 (WW+OH) showed 1.38 log10cfu/g less than birds fed Control diet (P<0.05). In conclusion, despite of the clear morphological changes in the GIT derived of FF and WW inclusion, no clear reductions in C. jejuni populations in the ceca were observed. However, WW and OH inclusion to mash diets significantly reduced cecal C. jejuni colonization at 42 days. PMID:27500730

  17. Serum proteins of Canada goose (Branta canadensis) subspecies

    USGS Publications Warehouse

    Morgan, R.P.; Sulkin, S.T.; Henny, C.J.

    1977-01-01

    Serum proteins from nine subspecies of Canada Geese (Brunta canadensis) were analyzed through the use of column and slab acrylamide electrophoresis. Variation was minimal within a subspecies, although all the subspecies were closely related. B. c. leucopareia appeared to be the most distinct subspecies, while maxima and moffitti were the most similar. Our preliminary findings suggest that the electrophoresis techniques are sensitive enough to identify some of the subspecies; however, baseline data from breeding ranges of all subspecies are required.

  18. Using MOMP typing as an epidemiological tool to investigate outbreaks caused by milkborne Campylobacter jejuni isolates in California

    USDA-ARS?s Scientific Manuscript database

    We describe using major outer membrane protein (MOMP) typing as a screen to compare the C. jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milkborne campylobacteriosis outbreak investigations in California. Th...

  19. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  20. Red List of vascular plants of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Wind, P.; van der Ende, M.; Garve, E.; Schacherer, A.; Thissen, J. B. M.

    1996-10-01

    In the Wadden Sea area, a total of 248 (sub)species of vascular plants are threatened in at least one subregion. Of these, 216 (sub)species are threatened in the entire area and are therefore placed on the trialteral Red List. 17 (sub)species of the listed vascular plants are (probably) extinct in the entire Wadden Sea area. The status of 47 (sub)species of vascular plants is (probably) critical; 61 (sub)species are (probably) endangered; the status of 65 (sub)species is (probably) vulnerable and that of 26 (sub)species susceptible.

  1. Characterization of Two Campylobacter jejuni Strains for Use in Volunteer Experimental-Infection Studies▿ †

    PubMed Central

    Poly, Frédéric; Read, Timothy D.; Chen, Yu-Han; Monteiro, Mario A.; Serichantalergs, Oralak; Pootong, Piyarat; Bodhidatta, Ladaporn; Mason, Carl J.; Rockabrand, David; Baqar, Shahida; Porter, Chad K.; Tribble, David; Darsley, Michael; Guerry, Patricia

    2008-01-01

    The development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome. Clinical isolates of C. jejuni that appeared to lack genes for the synthesis of ganglioside mimics were identified by DNA probe analyses. Two clinical isolates from Southeast Asia (strains BH-01-0142 and CG8421) were determined to express the LOS type containing N-acetyl quinovosamine. No ganglioside structures were observed to be present in the LOSs of these strains, and pyrosequence analyses of the genomes of both strains confirmed the absence of genes involved in ganglioside mimicry. The capsule polysaccharide (CPS) of BH-01-0142 was determined to be composed of galactose (Gal), 6-deoxy-ido-heptose, and, in smaller amounts, d-glycero-d-ido-heptose, and the CPS of CG8421 was observed to contain Gal, 6-deoxy-altro-heptose, N-acetyl-glucosamine, and minor amounts of 6-deoxy-3-O-Me-altro-heptose. Both CPSs were shown to carry O-methyl-phosphoramidate. The two genomes contained strain-specific zones, some of which could be traced to a plasmid origin, and both contained a large chromosomal insertion related to the CJEI3 element of C. jejuni RM1221. The genomes of both strains shared a high degree of similarity to each other and, with the exception of the capsule locus of CG8421, to the type strain of the HS3 serotype, TGH9011. PMID:18809665

  2. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni.

    PubMed

    Kovács, Judit K; Felső, Péter; Makszin, Lilla; Pápai, Zoltán; Horváth, Györgyi; Ábrahám, Hajnalka; Palkovics, Tamás; Böszörményi, Andrea; Emődy, Levente; Schneider, György

    2016-10-15

    Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni IMPORTANCE: This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15.

    PubMed

    Bertolo, Lisa; Ewing, Cheryl P; Maue, Alexander; Poly, Frederic; Guerry, Patricia; Monteiro, Mario A

    2013-01-25

    Campylobacter jejuni infection is now the main cause of diarrhea-related illnesses in humans. An efficacious vaccine for the traveler and developing world market would be welcomed. We are engaged in the discovery and characterization of serotype-specific C. jejuni capsule polysaccharides (CPSs) to study their role in virulence and as protective vaccine antigens. Our prototype conjugate vaccine with serotype HS23 CPS (strain 81-176) has been shown to fully protect non-human primates against diarrhea inflicted by C. jejuni HS23, but ultimately, a useful CPS-based vaccine will have to be multivalent. To this end, we describe here the creation of a CPS-conjugate vaccine against C. jejuni serotype HS15. Structural analysis revealed that a repeating block consisting of L-α-arabinofuranose (Ara) and 6-deoxy-L-α-gulo-heptopyranose (6d-gulo-Hep) comprised the CPS of serotype HS15 type strain ATCC 43442 [→3)-α-L-Araf-(1→3)-6d-L-α-gulo-Hepp(1→](n). Strategically, the non-reducing end of the CPS was activated and used in the attachment of CPS to CRM₁₉₇ to yield a conjugate vaccine. A serological assessment of the CPS(HS15)-CRM₁₉₇ conjugate with an anti-HS15 polyclonal antibody confirmed the conservation of antigenic epitopes, and subsequent inoculation of mice with CPS(HS15)-CRM₁₉₇ revealed that this conjugate was indeed capable of raising anti-CPS(HS15) antibodies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Analysis of Campylobacter spp. contamination in broilers from the farm to the final meat cuts by using restriction fragment length polymorphism of the polymerase chain reaction products.

    PubMed

    Takahashi, Ryouta; Shahada, Francis; Chuma, Takehisa; Okamoto, Karoku

    2006-08-01

    We investigated the genotype diversity and dynamics of Campylobacter jejuni and Campylobacter coli in six commercial broiler farms during rearing and abattoir processing. In total, 223 C. jejuni and 36 C. coli strains isolated (on farm, transportation crates, carcasses after defeathering, and chicken wing meat at the end of the processing line) were subtyped by PCR-RFLP based on flagellin (fla typing) gene. Eleven (C. jejuni) and four (C. coli) different RFLP patterns were found. Multiple C. jejuni genotypes were identified in five out of six farms (except Farm 5). Furthermore, a clear tendency for dominance of particular genotypes was observed in almost all farms except Farm 3. Although diverse C. jejuni genotypes were isolated on the farms and transport crates, they were not detected in chicken wing cuts at the end of the processing line. We also observed varied distribution of types in different sampling stages both at the farm level and the processing environment. However, the interpretation of such fluctuations is precarious as new types occurred on some occasions, particularly during processing. Our results show that chicken wing meat contamination resulted mainly from farm strain carryover, and that the carcasses were probably contaminated during processing. In addition, the new strain types observed were isolated more frequently after defeathering as compared to other processing steps. Therefore, this stage, in addition to evisceration, is one of the critical control points in the processing line to prevent cross-contamination and for controlling the spread of campylobacters.

  5. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract.

    PubMed

    Ramirez-Hernandez, Alejandra; Rupnow, John; Hutkins, Robert W

    2015-08-01

    Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen.

  6. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed Central

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-01-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents. Images PMID:2543277

  7. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility.

    PubMed

    Page, W J; Huyer, G; Huyer, M; Worobec, E A

    1989-03-01

    The major outer membrane protein was extracted from Campylobacter coli by Triton X-100/EDTA fractionation of cell envelopes. This heat-modifiable protein was shown to have pore-forming activity in black lipid bilayers. The C. coli porin formed a relatively small cation-selective pore with a mean single-channel conductance of 0.53 +/- 0.16 nS in 1.0 M KCl. There was no evidence of oligomer formation, which suggested that each protein monomer formed a pore. Pore-forming activity of the C. coli porin and similarly prepared Campylobacter jejuni porin was also measured in liposome-swelling assays. These results confirmed the cation selectivity of both pores. The C. coli porin formed a small pore, which hindered the penetration of solutes with a molecular weight of 262, and a larger pore, which hindered the penetration of solutes with a molecular weight of 340, in a protein-concentration-dependent manner. C. jejuni formed one size of pore that was slightly larger than the C. coli pore and just permitted the passage of solutes, with a molecular weight of 340. A review of the literature concerning in vitro screening of antimicrobial agents tended to confirm the low permeability of the C. jejuni outer membrane to hydrophilic antimicrobial agents except when the molecules had molecular weights of less than 360. The porins of C. jejuni and C. coli may contribute to intrinsic resistance to antimicrobial agents, whereas alternative (nonporin) routes of antimicrobial agent uptake may be more important determinants of susceptibility to antimicrobial agents.

  8. Serologic Evidence of Previous Campylobacter jejuni Infection in Patients with the Guillain-Barre Syndrome

    DTIC Science & Technology

    1993-06-15

    chronic inflammatory demyelinating polyneuropathy , and polyneuropathy associated with IgM paraproteinemia. creased the sensitivity but improved the...paraproteine- were employees of or visitors to the Infectious Diseases Divi- ,,i- hronic inflammatory demyelinating polyneuropathy , sion of Vanderbilt... polyneuropathy ," is an inflammatory de- jejuni infection before onset of neurologic symptoms. myelinating disease of peripheral nerves characterized

  9. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    DTIC Science & Technology

    2009-11-01

    absorption coefficients (260nm) of 173,100 M cm–1. Desired stock solutions were freshly prepared with tris- borate ethylenediaminetetraacetic acid (EDTA... McMasters , and Paul M. Pellegrino ARL-TR-5015 November 2009 Approved for public release...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters , and Paul M. Pellegrino Sensors and Electron Devices

  10. Virulence characteristics of five new Campylobacter jejuni chicken isolates.

    PubMed

    Stef, Lavinia; Cean, Ada; Vasile, Aida; Julean, Calin; Drinceanu, Dan; Corcionivoschi, Nicolae

    2013-12-13

    Campylobacter enteritis has emerged as one of the most common forms of human diarrheal illness. In this study we have investigated the virulence potential of five new C. jejuni chicken isolates (RO14, RO19, RO24, RO29 and RO37) originated from private households in the rural regions of Banat and Transylvania in Romania. Following isolation and in vitro virulence assay, on HCT-8 cells, our results show that all the C. jejuni chicken isolates overcome the virulence abilities of the highly virulent strain C. jejuni 81-176. Motility, an important virulence factor was significantly improved in all the new chicken isolates. The ability to survive to the antimicrobial activity of the human serum, to resist to the violent attack of bile acids and to survive in the presence of synthetic antibiotics was increased in all the chicken isolates. However, these were statistically significant only for isolates RO29 and RO37. In conclusion our study shows, based on invasiveness and motility, and also on the data provided by the serum and bile resistance experiments that all the new chicken isolates are able to infect human cells, in vitro, and could potentially represent a health hazard for humans.

  11. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    PubMed

    Rogers, Elizabeth E; Stenger, Drake C

    2012-01-01

    A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.

  12. A Conjugative 38 kB Plasmid Is Present in Multiple Subspecies of Xylella fastidiosa

    PubMed Central

    Rogers, Elizabeth E.; Stenger, Drake C.

    2012-01-01

    A ∼38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19th century. PMID:23251694

  13. Domestic pigs as potential reservoirs of human and animal trypanosomiasis in Northern Tanzania

    PubMed Central

    2013-01-01

    Background Pig keeping is becoming increasingly common across sub-Saharan Africa. Domestic pigs from the Arusha region of northern Tanzania were screened for trypanosomes using PCR-based methods to examine the role of pigs as a reservoir of human and animal trypanosomiasis. Methods A total of 168 blood samples were obtained from domestic pigs opportunistically sampled across four districts in Tanzania (Babati, Mbulu, Arumeru and Dodoma) during December 2004. A suite of PCR-based methods was used to identify the species and sub-species of trypanosomes including: Internally Transcribed Sequence to identify multiple species; species specific PCR to identify T. brucei s. l. and T. godfreyi and a multiplex PCR reaction to distinguish T. b. rhodesiense from T. brucei s. l. Results Of the 168 domestic pigs screened for animal and human infective trypanosome DNA, 28 (16.7%) were infected with one or more species of trypanosome; these included: six pigs infected with Trypanosoma vivax (3.6%); three with Trypanosoma simiae (1.8%); two with Trypanosoma congolense (Forest) (1%) and four with Trypanosoma godfreyi (2.4%). Nineteen pigs were infected with Trypanosoma brucei s. l. (10.1%) of which eight were identified as carrying the human infective sub-species Trypanosoma brucei rhodesiense (4.8%). Conclusion These results show that in Tanzania domestic pigs may act as a significant reservoir for animal trypanosomiasis including the cattle pathogens T. vivax and T. congolense, the pig pathogen T. simiae, and provide a significant reservoir for T. b. rhodesiense, the causative agent of acute Rhodesian sleeping sickness. PMID:24499540

  14. Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry.

    PubMed

    Hanning, Irene; Biswas, Debabrata; Herrera, Paul; Roesler, Mary; Ricke, Steven C

    2010-09-01

    The growing interest in organic and natural foods warrants a greater need for information on the food safety of these products. In this study, samples were taken from 2 pasture flock farms (N = 178; feed, water, drag swabs, and insect traps), pasture flock retail carcasses (N = 48) and 1 pasture flock processing facility (N = 16) over a period of 8 mo. A total of 105 Campylobacter isolates were obtained from 53 (30%), 36 (75%), and 16 (100%) samples from the farms, retail carcasses, and processing facility, respectively. Of the 105 isolates collected, 65 were C. jejuni, 31 were C. coli, and 9 were other Campylobacter spp. Using PCR, the C. jejuni isolates were further analyzed for virulence genes involved in colonization and survival (flaA, flaC, cadF, dnaJ, racR, cbrR), invasion (virB11, ciaB, pldA), protection against harsh conditions (sodB, htrA, clpA), toxin production (cdtA, cdtB, cdtC), siderophore transport (ceuE), and ganglioside mimicry (wlaN). In addition, the short variable region of the flaA locus (flaA SVR) was sequenced to determine the genetic diversity of the C. jejuni isolates. The flaA SVR diversity indices increased along the farm to carcass continuum. PCR-based analysis indicated a low prevalence of 5 genes involved in colonization (dnaJ, ciaB, pldA, racR, virB11). The results of this survey indicate that the prevalence of Campylobacter on organic retail carcasses is similar to prevalence reports of Campylobacter on conventional retail carcasses. However, the genetic diversity of the flaA SVR genotypes increased along the farm to carcass continuum that contrasted with conventional poultry studies. Campylobacter jejuni is a leading cause of foodborne illness with poultry and poultry products being leading sources of infection. Free-range and pasture flock chickens are becoming more popular; however, there is an inherent biosecurity risk that can increase the prevalence of foodborne pathogens in these flocks. This study aimed to determine sources and characterize C. jejuni isolated from pasture flocks.

  15. Genetic Basis and Clonal Population Structure of Antibiotic Resistance in Campylobacter jejuni Isolated From Broiler Carcasses in Belgium.

    PubMed

    Elhadidy, Mohamed; Miller, William G; Arguello, Hector; Álvarez-Ordóñez, Avelino; Duarte, Alexandra; Dierick, Katelijne; Botteldoorn, Nadine

    2018-01-01

    Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries. This study characterized the clonal population structure, antimicrobial resistance profiles and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations (MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O) gene. These resistance determinants were observed in most but not all resistant isolates. Regarding resistance to erythromycin, different mutations occurred in diverse genetic loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the intergenic region between cmeR and cmeABC . Interestingly, and contrary to previous reports, the A2075G transition mutation in the 23S rRNA gene was only found in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular typing by multilocus sequence typing revealed that two sequence types (ST-824 and ST-2274) were associated to quinolones resistance by the presence of mutations in the gene gyrA ( p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR multidrug resistant phenotype. In contrast, clonal complex CC-45 was linked to increased susceptibility to the tested antibiotics. The results obtained in this study provide better understanding of the phenotypic and the molecular basis of antibiotic resistance in C. jejuni , unraveling some the mechanisms which confer antimicrobial resistance and particular clones associated to the carriage and spread of resistance genes.

  16. Genomic insights from whole genome sequencing of four clonal outbreak Campylobacter jejuni assessed within the global C. jejuni population.

    PubMed

    Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N

    2016-12-03

    Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.

  17. In vivo and in silico determination of essential genes of Campylobacter jejuni.

    PubMed

    Metris, Aline; Reuter, Mark; Gaskin, Duncan J H; Baranyi, Jozsef; van Vliet, Arnoud H M

    2011-11-01

    In the United Kingdom, the thermophilic Campylobacter species C. jejuni and C. coli are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate C. jejuni and C. coli from the food chain. A metabolic model of C. jejuni was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium Helicobacter pylori, and extensive literature mining. Using this model, we have used in silico Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this in silico approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published Campylobacter protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy. We have constructed the first curated metabolic model for the food-borne pathogen Campylobacter jejuni and have presented the resulting metabolic insights. We have shown that the combination of in silico and in vivo approaches could point to non-redundant, indispensable genes associated with the well characterised shikimate pathway, and also genes of unknown function specific to C. jejuni, which are all potential novel Campylobacter intervention targets.

  18. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand.

    PubMed

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-08-01

    A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST , and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  20. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers.

    PubMed

    van Bunnik, Bram A D; Hagenaars, Thomas J; Bolder, Nico M; Nodelijk, Gonnie; de Jong, Mart C M

    2012-07-25

    Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious "sender" excretes the agent, after which (2) the agent is transported via some route to a susceptible "receiver", and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side.

  1. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms.

    PubMed

    Melo, Roberta T; Mendonça, Eliane P; Monteiro, Guilherme P; Siqueira, Mariana C; Pereira, Clara B; Peres, Phelipe A B M; Fernandez, Heriberto; Rossi, Daise A

    2017-01-01

    Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA , and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa , which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature biofilms.

  2. Selenium-Dependent Biogenesis of Formate Dehydrogenase in Campylobacter jejuni Is Controlled by the fdhTU Accessory Genes

    PubMed Central

    Shaw, Frances L.; Mulholland, Francis; Le Gall, Gwénaëlle; Porcelli, Ida; Hart, Dave J.; Pearson, Bruce M.

    2012-01-01

    The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C. jejuni, demonstrate that they are involved in selenium-controlled production of FDH, and propose the names fdhT and fdhU, respectively. Insertional inactivation of fdhT or fdhU in C. jejuni resulted in the absence of FdhA and FdhB protein expression, reduced fdhABC RNA levels, the absence of FDH enzyme activity, and the lack of formate utilization, as assessed by 1H nuclear magnetic resonance. The fdhABC genes are transcribed from a single promoter located two genes upstream of fdhA, and the decrease in fdhABC RNA levels in the fdhU mutant is mediated at the posttranscriptional level. FDH activity and the ability to utilize formate were restored by genetic complementation with fdhU and by supplementation of the growth media with selenium dioxide. Disruption of SeC synthesis by inactivation of the selA and selB genes also resulted in the absence of FDH activity, which could not be restored by selenium supplementation. Comparative genomic analysis suggests a link between the presence of selA and fdhTU orthologs and the predicted presence of SeC in FdhA. The fdhTU genes encode accessory proteins required for FDH expression and activity in C. jejuni, possibly by contributing to acquisition or utilization of selenium. PMID:22609917

  3. The EmulSiv filter removes microbial contamination from propofol but is not a substitute for aseptic technique.

    PubMed

    Hall, Wendy C E; Jolly, Donald T; Hrazdil, Jiri; Galbraith, John C; Greacen, Maria; Clanachan, Alexander S

    2003-01-01

    To evaluate the ability of the EmulSiv filter (EF) to remove extrinsic microbial contaminants from propofol. Aliquots of Staphylococcus aureus (S. aureus), Candida albicans (C. albicans), Klebsiella pneumoniae (K. pneumoniae), Moraxella osloensis (M. osloensis), Enterobacter agglomerans (E. agglomerans), Escherichia coli (E. coli), Serratia marcescens (S. marcescens), Moraxella catarrhalis (M. catarrhalis), Haemophilus influenzae (H. influenzae) and Campylobacter jejuni (C. jejuni) were inoculated into vials containing 20 mL of sterile propofol. The unfiltered inoculated propofol solutions served as controls. Ten millilitres and 20 mL samples of the inoculated propofol were filtered through the EF. All solutions were then subplated onto three culture plates using a precision 1 micro L calibrated platinum loop and incubated. The number of colony forming units (CFU) were counted. Data were analyzed using a one-sample t test, and a P value of less than 0.05 was selected as the level of statistical significance. The EF was able to completely remove CFU of S. aureus, C. albicans, K. pneumoniae, M. osloensis, E. agglomerans, E. coli, S. marcescens, and M. catarrhalis (P < 0.05). A small number of H. influenzae CFU were able to evade filtration in both the 10 mL and 20 mL samples. C. jejuni CFU were able to evade filtration in only the 10 mL sample. The EF removes the majority of microbial contaminates from propofol with the exception of H. influenzae and C. jejuni. Although the EF is capable of removing most of the microbial contamination produced by H. influenzae and C. jejuni, a few CFU are capable of evading filtration. Consequently, even the use of a filter capable of removing microbial contaminants is not a substitute for meticulous aseptic technique and prompt administration when propofol is used.

  4. Key Role of Capsular Polysaccharide in the Induction of Systemic Infection and Abortion by Hypervirulent Campylobacter jejuni

    PubMed Central

    Sahin, Orhan; Terhorst, Samantha A.; Burrough, Eric R.; Shen, Zhangqi; Wu, Zuowei; Dai, Lei; Tang, Yizhi; Plummer, Paul J.; Ji, Ju; Yaeger, Michael J.

    2017-01-01

    ABSTRACT Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni. PMID:28373351

  5. Genetic diversity and clonal characteristics of ciprofloxacin-resistant Campylobacter jejuni isolated from Chilean patients with gastroenteritis.

    PubMed

    Collado, Luis; Muñoz, Nataly; Porte, Lorena; Ochoa, Sofía; Varela, Carmen; Muñoz, Ivo

    2018-03-01

    Campylobacter jejuni is a major cause of acute gastroenteritis worldwide. However, it has also been associated with other diseases such as bacteremia and with several post-infection sequelae. Although campylobacteriosis is usually a self-limited infection, antibiotics are indicated for severe and chronic conditions. Unfortunately, several industrialised nations have reported a substantial increase in antibiotic resistance of C. jejuni. However, there is still a lack of knowledge about the epidemiology of resistance developed by this pathogen in the developing world. For this reason, our objective was to determine the resistance of clinical C. jejuni strains to ciprofloxacin and erythromycin in Chile and their associated genotypes. Fifty C. jejuni isolates recovered from fecal samples of people with acute gastroenteritis, in central and southern Chile between 2006 and 2015, were analysed. Resistance to erythromycin and ciprofloxacin was assessed by disk diffusion and agar dilution methods. Furthermore, these strains were genotyped by Multilocus Sequence Typing (MLST). Only one of the isolates was resistant to erythromycin. However, 48% of them were resistant to ciprofloxacin. The minimal inhibitory concentration of these ciprofloxacin-resistant isolates was in the range between 4 and 32 μg/ml. Moreover, MLST analyses showed that most ciprofloxacin-resistant strains were grouped into three dominant clonal complexes (ST-21, ST-48 and ST-353), while the unique strain resistant to both antibiotics belonged to the ST-45 complex. Our results evidence a high ciprofloxacin resistance and suggest that there is a dissemination of resistant clonal lineages responsible for cases of campylobacteriosis in Chile. Further studies should elucidate the origin of these resistant genotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent.

    PubMed

    Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J

    2012-06-01

    Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.

  7. Co-Infection Dynamics of a Major Food-Borne Zoonotic Pathogen in Chicken

    PubMed Central

    Skånseng, Beate; Trosvik, Pål; Zimonja, Monika; Johnsen, Gro; Bjerrum, Lotte; Pedersen, Karl; Wallin, Nina; Rudi, Knut

    2007-01-01

    A major bottleneck in understanding zoonotic pathogens has been the analysis of pathogen co-infection dynamics. We have addressed this challenge using a novel direct sequencing approach for pathogen quantification in mixed infections. The major zoonotic food-borne pathogen Campylobacter jejuni, with an important reservoir in the gastrointestinal (GI) tract of chickens, was used as a model. We investigated the co-colonisation dynamics of seven C. jejuni strains in a chicken GI infection trial. The seven strains were isolated from an epidemiological study showing multiple strain infections at the farm level. We analysed time-series data, following the Campylobacter colonisation, as well as the dominant background flora of chickens. Data were collected from the infection at day 16 until the last sampling point at day 36. Chickens with two different background floras were studied, mature (treated with Broilact, which is a product consisting of bacteria from the intestinal flora of healthy hens) and spontaneous. The two treatments resulted in completely different background floras, yet similar Campylobacter colonisation patterns were detected in both groups. This suggests that it is the chicken host and not the background flora that is important in determining the Campylobacter colonisation pattern. Our results showed that mainly two of the seven C. jejuni strains dominated the Campylobacter flora in the chickens, with a shift of the dominating strain during the infection period. We propose a model in which multiple C. jejuni strains can colonise a single host, with the dominant strains being replaced as a consequence of strain-specific immune responses. This model represents a new understanding of C. jejuni epidemiology, with future implications for the development of novel intervention strategies. PMID:18020703

  8. Distribution of Campylobacter jejuni isolates from turkey farms and different stages at slaughter using pulsed-field gel electrophoresis and flaA-short variable region sequencing.

    PubMed

    Perko-Mäkelä, P; Alter, T; Isohanni, P; Zimmermann, S; Lyhs, U

    2011-09-01

    The aim of this study was to assess the diversity of thermotolerant Campylobacter spp. isolated from turkey flocks at six rearing farms 1-2 weeks prior to slaughter (360 faecal swab samples) and from 11 different stages at the slaughterhouse (636 caecal, environmental, neck skin and meat samples). A total of 121 Campylobacter isolates were identified to species level using a multiplex PCR assay and were typed by pulsed-field gel electrophoresis (PFGE) and flaA-short variable region (SVR) sequencing. All Campylobacter isolates were identified as Campylobacter jejuni. PFGE analysis with KpnI restriction enzyme resulted in 11 PFGE types (I-XI) and flaA SVR typing yielded in nine flaA-SVR alleles. The Campylobacter-positive turkey flocks A, C and E were colonized by a limited number of Campylobacter clones at the farm and slaughter. The present study confirms the traceability of flock-specific strains (PFGE types I, V and IX; flaA types 21, 36 and 161) from the farm along the entire processing line to meat cuts. It seems that stress factors such as high temperature of the defeathering water (54-56 °C), drying of the carcass skin during air chilling (24 h at 2 °C), and oxygen in the air could not eliminate Campylobacter completely. Campylobacter-negative flocks became contaminated during processing by the same subtypes of Campylobacter introduced into the slaughter house by preceeding positive flocks even if they were slaughtered on subsequent days. Proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination, especially in countries with a low prevalence of Campylobacter spp. The majority of flaA SVR alleles displayed a distinct association with a specific PFGE type. However, a linear relationship for all strains among both typing methods could not be established. To specify genetic relatedness of strains, a combination of different genotyping methods, is needed. © 2011 Blackwell Verlag GmbH.

  9. Complete genome sequences of multidrug-resistant Campylobacter jejuni 14980A (turkey feces) and Campylobacter coli 14983A (housefly from turkey farm), harboring a novel gentamicin resistance mobile element.

    USDA-ARS?s Scientific Manuscript database

    Multidrug resistance (MDR) in foodborne pathogens is a major food safety and public health issue. Here we describe whole-genome sequences of two MDR strains of Campylobacter jejuni and Campylobacter coli from turkey feces and a housefly in a turkey farm. Both strains harbor a novel chromosomal genta...

  10. The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negretti, Nicholas M.; Gourley, Christopher R.; Clair, Geremy

    In this study, bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygenmore » stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: induce the production of reactive oxygen species (ROS); decrease succinate dehydrogenase activity (complex II of the electron transport chain); increase catalase activity that is involved in H 2O 2 breakdown; and result in DNA strand breaks. Congruently, by adding 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic, that reacts with superoxide to cultures under deoxycholate-mediated ROS stress, C. jejuni growth in the presence of deoxycholate was rescued. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.« less

  11. Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis

    PubMed Central

    Heimesaat, Markus M.; Bereswill, Stefan; Tareen, Abdul Malik; Lugert, Raimond; Groß, Uwe; Zautner, Andreas E.

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. PMID:24324507

  12. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Progressive genome-wide introgression in agricultural Campylobacter coli

    PubMed Central

    Sheppard, Samuel K; Didelot, Xavier; Jolley, Keith A; Darling, Aaron E; Pascoe, Ben; Meric, Guillaume; Kelly, David J; Cody, Alison; Colles, Frances M; Strachan, Norval J C; Ogden, Iain D; Forbes, Ken; French, Nigel P; Carter, Philip; Miller, William G; McCarthy, Noel D; Owen, Robert; Litrup, Eva; Egholm, Michael; Affourtit, Jason P; Bentley, Stephen D; Parkhill, Julian; Maiden, Martin C J; Falush, Daniel

    2013-01-01

    Hybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein-coding gene. Using whole genome sequencing, we show that a single C. coli lineage, which has successfully colonized an agricultural niche, has been progressively accumulating C. jejuni DNA. Members of this lineage belong to two groups, the ST-828 and ST-1150 clonal complexes. The ST-1150 complex is less frequently isolated and has undergone a substantially greater amount of introgression leading to replacement of up to 23% of the C. coli core genome as well as import of novel DNA. By contrast, the more commonly isolated ST-828 complex bacteria have 10–11% introgressed DNA, and C. jejuni and nonagricultural C. coli lineages each have <2%. Thus, the C. coli that colonize agriculture, and consequently cause most human disease, have hybrid origin, but this cross-species exchange has so far not had a substantial impact on the gene pools of either C. jejuni or nonagricultural C. coli. These findings also indicate remarkable interchangeability of basic cellular machinery after a prolonged period of independent evolution. PMID:23279096

  14. The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species

    DOE PAGES

    Negretti, Nicholas M.; Gourley, Christopher R.; Clair, Geremy; ...

    2017-11-13

    In this study, bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygenmore » stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: induce the production of reactive oxygen species (ROS); decrease succinate dehydrogenase activity (complex II of the electron transport chain); increase catalase activity that is involved in H 2O 2 breakdown; and result in DNA strand breaks. Congruently, by adding 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic, that reacts with superoxide to cultures under deoxycholate-mediated ROS stress, C. jejuni growth in the presence of deoxycholate was rescued. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.« less

  15. The significance of Campylobacter jejuni infection in poultry: a review.

    PubMed

    Shane, S M

    1992-01-01

    Campylobacter is a significant cause of enterocolitis in consumers of undercooked poultry meat. Campylobacter jejuni is the most significant of the three thermophilic Campylobacter species, and is responsible for intestinal colonization in poultry and food-borne enteritis in humans. Generally, C. jejuni is apathogenic in poultry, although newly hatched chicks and turkeys may develop a transient diarrhoea following infection. Modern intensive poultry production favours the introduction of infection into commercial growing units, resulting in intestinal colonization during the second to fourth weeks inclusive. Routes of infection include contaminated fomites, infected water supply, rodents, insects, and free-living birds. Vertical transmission is considered unlikely. Contamination of poultry meat is enhanced by deficiencies in transport and processing of broilers and turkeys. Scalding, defeathering and evisceration represent the significant points of cross-contamination during processing. Epidemiological correlation has been established between consumption of contaminated chicken and outbreaks of human campylobacteriosis. Amelioration of infection by application of improved standards of hygiene and decontamination is possible in the context of commercial poultry production. Improvement in washing of carcasses, and the application of chemical disinfectants and gamma irradiation have the potential to reduce the prevalence of C. jejuni contamination in poultry meat. These innovations, together with improved storage and handling of meat products, will reduce the risk of campylobacteriosis to consumers.

  16. Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene

    PubMed Central

    Hitchen, Paul; Brzostek, Joanna; Panico, Maria; Butler, Jonathan A.; Morris, Howard R.; Dell, Anne; Linton, Dennis

    2010-01-01

    The Campylobacter jejuni flagellin protein is O-glycosylated with structural analogues of the nine-carbon sugar pseudaminic acid. The most common modifications in the C. jejuni 81-176 strain are the 5,7-di-N-acetylated derivative (Pse5Ac7Ac) and an acetamidino-substituted version (Pse5Am7Ac). Other structures detected include O-acetylated and N-acetylglutamine-substituted derivatives (Pse5Am7Ac8OAc and Pse5Am7Ac8GlnNAc, respectively). Recently, a derivative of pseudaminic acid modified with a di-O-methylglyceroyl group was detected in C. jejuni NCTC 11168 strain. The gene products required for Pse5Ac7Ac biosynthesis have been characterized, but those genes involved in generating other structures have not. We have demonstrated that the mobility of the NCTC 11168 flagellin protein in SDS-PAGE gels can vary spontaneously and we investigated the role of single nucleotide repeats or homopolymeric-tract-containing genes from the flagellin glycosylation locus in this process. One such gene, Cj1295, was shown to be responsible for structural changes in the flagellin glycoprotein. Mass spectrometry demonstrated that the Cj1295 gene is required for glycosylation with the di-O-methylglyceroyl-modified version of pseudaminic acid. PMID:20338909

  17. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    PubMed Central

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  18. Shedding subspecies: The influence of genetics on reptile subspecies taxonomy.

    PubMed

    Torstrom, Shannon M; Pangle, Kevin L; Swanson, Bradley J

    2014-07-01

    The subspecies concept influences multiple aspects of biology and management. The 'molecular revolution' altered traditional methods (morphological traits) of subspecies classification by applying genetic analyses resulting in alternative or contradictory classifications. We evaluated recent reptile literature for bias in the recommendations regarding subspecies status when genetic data were included. Reviewing characteristics of the study, genetic variables, genetic distance values and noting the species concepts, we found that subspecies were more likely elevated to species when using genetic analysis. However, there was no predictive relationship between variables used and taxonomic recommendation. There was a significant difference between the median genetic distance values when researchers elevated or collapsed a subspecies. Our review found nine different concepts of species used when recommending taxonomic change, and studies incorporating multiple species concepts were more likely to recommend a taxonomic change. Since using genetic techniques significantly alter reptile taxonomy there is a need to establish a standard method to determine the species-subspecies boundary in order to effectively use the subspecies classification for research and conservation purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Natural epigenetic variation within and among six subspecies of the house sparrow, Passer domesticus.

    PubMed

    Riyahi, Sepand; Vilatersana, Roser; Schrey, Aaron W; Ghorbani Node, Hassan; Aliabadian, Mansour; Senar, Juan Carlos

    2017-11-01

    Epigenetic modifications can respond rapidly to environmental changes and can shape phenotypic variation in accordance with environmental stimuli. One of the most studied epigenetic marks is DNA methylation. In the present study, we used the methylation-sensitive amplified polymorphism (MSAP) technique to investigate the natural variation in DNA methylation within and among subspecies of the house sparrow, Passer domesticus We focused on five subspecies from the Middle East because they show great variation in many ecological traits and because this region is the probable origin for the house sparrow's commensal relationship with humans. We analysed house sparrows from Spain as an outgroup. The level of variation in DNA methylation was similar among the five house sparrow subspecies from the Middle East despite high phenotypic and environmental variation, but the non-commensal subspecies was differentiated from the other four (commensal) Middle Eastern subspecies. Further, the European subspecies was differentiated from all other subspecies in DNA methylation. Our results indicate that variation in DNA methylation does not strictly follow subspecies designations. We detected a correlation between methylation level and some morphological traits, such as standardized bill length, and we suggest that part of the high morphological variation in the native populations of the house sparrow is influenced by differentially methylated regions in specific loci throughout the genome. We also detected 10 differentially methylated loci among subspecies and three loci that differentiated between commensal or non-commensal status. Therefore, the MSAP technique detected larger scale differences among the European and non-commensal subspecies, but did not detect finer scale differences among the other Middle Eastern subspecies. © 2017. Published by The Company of Biologists Ltd.

  20. The Epidemiology of Guillain-Barre Syndrome in U.S. Military Personnel: A Case-Control Study

    DTIC Science & Technology

    2009-08-26

    CMV), and Epstein - Barr virus (EBV) commonly identified and C. jejuni being by far the most frequent [6-11]. Interestingly, C. jejuni-associated GBS... Barre syndrome and preceding infection with campylobacter, influenza and Epstein - Barr virus in the gen- eral practice research database. PLoS ONE...tionally, military personnel are exposed to numerous deployment-related vaccinations [17], which have also been linked to several autoimmune diseases

  1. Medical Surveillance Monthly Report (MSMR). Volume 21, Number 11, November 2014

    DTIC Science & Technology

    2014-11-01

    enzyme -linked immu- nosorbent assay (ELISA) utilizing an outer membrane protein antigen from C. jejuni Penner serotypes 1, 2, and 3.20 Acute and...Human serum antibody response to Campylobacter jejuni infection as measured in an enzyme -linked immunosorbent assay. Infect Immun. 1984;44: 292–298...Georgia: USD, Inc., 1990. 23. Coates D, Hutchinson DN, Bolton FJ. Survival of thermophilic Campylobacters on fi ngertips and their elimination by

  2. Antimicrobial activity of commercial Olea europaea (olive) leaf extract.

    PubMed

    Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A

    2009-05-01

    The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.

  3. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    NASA Astrophysics Data System (ADS)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-10-01

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.

  4. Impact of Built-up-Litter and Commercial Antimicrobials on Salmonella and Campylobacter Contamination of Broiler Carcasses Processed at a Pilot Mobile Poultry-Processing Unit

    PubMed Central

    Li, KaWang; Lemonakis, Lacey; Glover, Brian; Moritz, Joseph; Shen, Cangliang

    2017-01-01

    The small-scale mobile poultry-processing unit (MPPU) produced raw poultry products are of particular food safety concern due to exemption of USDA poultry products inspection act. Limited studies reported the microbial quality and safety of MPPU-processed poultry carcasses. This study evaluated the Salmonella and Campylobacter prevalence in broiler ceca and on MPPU-processed carcasses and efficacy of commercial antimicrobials against Campylobacter jejuni on broilers. In study I, straight-run Hubbard × Cobb broilers (147) were reared for 38 days on clean-shavings (CS, 75) or built-up-litter (BUL, 72) and processed at an MPPU. Aerobic plate counts (APCs), coliforms, Escherichia coli, and yeast/molds (Y/M) of carcasses were analyzed on petrifilms. Ceca and carcass samples underwent microbial analyses for Salmonella and Campylobacter spp. using the modified USDA method and confirmed by API-20e test (Salmonella), latex agglutination immunoassay (Campylobacter), and Gram staining (Campylobacter). Quantitative polymerase chain reaction (CadF gene) identified the prevalence of C. jejuni and Campylobacter coli in ceca and on carcasses. In study II, fresh chilled broiler carcasses were spot inoculated with C. jejuni (4.5 log10 CFU/mL) and then undipped, or dipped into peroxyacetic acid (PAA) (1,000 ppm), lactic acid (5%), lactic and citric acid blend (2.5%), sodium hypochlorite (69 ppm), or a H2O2–PAA mix (SaniDate® 5.0, 0.25%) for 30 s. Surviving C. jejuni was recovered onto Brucella agar. APCs, coliforms, and E. coli populations were similar (P > 0.05) on CS and BUL carcasses. Carcasses of broilers raised on BUL contained a greater (P < 0.05) Y/M population (2.2 log10 CFU/mL) than those reared on CS (1.8 log10 CFU/mL). Salmonella was not detected in any ceca samples, whereas 2.8% of the carcasses from BUL were present with Salmonella. Prevalence of Campylobacter spp., C. jejuni was lower (P < 0.05), and C. coli was similar (P > 0.05) in CS-treated ceca than BUL samples. Prevalence of Campylobacter spp., C. jejuni, and C. coli was not different (P > 0.05) on CS- and BUL-treated carcasses. All antimicrobials reduced C. jejuni by 1.2–2.0 log CFU/mL on carcasses compared with controls. Hence, raising broilers on CS and applying post-chilling antimicrobial treatment can reduce Salmonella and Campylobacter on MPPU-processed broiler carcasses. PMID:28649571

  5. Impact of Built-up-Litter and Commercial Antimicrobials on Salmonella and Campylobacter Contamination of Broiler Carcasses Processed at a Pilot Mobile Poultry-Processing Unit.

    PubMed

    Li, KaWang; Lemonakis, Lacey; Glover, Brian; Moritz, Joseph; Shen, Cangliang

    2017-01-01

    The small-scale mobile poultry-processing unit (MPPU) produced raw poultry products are of particular food safety concern due to exemption of USDA poultry products inspection act. Limited studies reported the microbial quality and safety of MPPU-processed poultry carcasses. This study evaluated the Salmonella and Campylobacter prevalence in broiler ceca and on MPPU-processed carcasses and efficacy of commercial antimicrobials against Campylobacter jejuni on broilers. In study I, straight-run Hubbard × Cobb broilers (147) were reared for 38 days on clean-shavings (CS, 75) or built-up-litter (BUL, 72) and processed at an MPPU. Aerobic plate counts (APCs), coliforms, Escherichia coli , and yeast/molds (Y/M) of carcasses were analyzed on petrifilms. Ceca and carcass samples underwent microbial analyses for Salmonella and Campylobacter spp. using the modified USDA method and confirmed by API-20e test ( Salmonella ), latex agglutination immunoassay ( Campylobacter ), and Gram staining ( Campylobacter ). Quantitative polymerase chain reaction (CadF gene) identified the prevalence of C. jejuni and Campylobacter coli in ceca and on carcasses. In study II, fresh chilled broiler carcasses were spot inoculated with C. jejuni (4.5 log 10  CFU/mL) and then undipped, or dipped into peroxyacetic acid (PAA) (1,000 ppm), lactic acid (5%), lactic and citric acid blend (2.5%), sodium hypochlorite (69 ppm), or a H 2 O 2 -PAA mix (SaniDate ® 5.0, 0.25%) for 30 s. Surviving C. jejuni was recovered onto Brucella agar. APCs, coliforms, and E. coli populations were similar ( P  > 0.05) on CS and BUL carcasses. Carcasses of broilers raised on BUL contained a greater ( P  < 0.05) Y/M population (2.2 log 10  CFU/mL) than those reared on CS (1.8 log 10  CFU/mL). Salmonella was not detected in any ceca samples, whereas 2.8% of the carcasses from BUL were present with Salmonella . Prevalence of Campylobacter spp., C. jejuni was lower ( P  < 0.05), and C. coli was similar ( P  > 0.05) in CS-treated ceca than BUL samples. Prevalence of Campylobacter spp., C. jejuni , and C. coli was not different ( P  > 0.05) on CS- and BUL-treated carcasses. All antimicrobials reduced C. jejuni by 1.2-2.0 log CFU/mL on carcasses compared with controls. Hence, raising broilers on CS and applying post-chilling antimicrobial treatment can reduce Salmonella and Campylobacter on MPPU-processed broiler carcasses.

  6. A comprehensive review of non-enterica subspecies of Salmonella enterica.

    PubMed

    Lamas, Alexandre; Miranda, José Manuel; Regal, Patricia; Vázquez, Beatriz; Franco, Carlos Manuel; Cepeda, Alberto

    2018-01-01

    Salmonella is a major foodborne pathogen with a complex nomenclature. This genus is composed of two species, S. enterica and S. bongori. S. enterica is divided into six subspecies. S. enterica subspecies enterica is composed of more than 1500 serotypes with some of great importance, such as S. Typhimurium and S. Enteritidis. S. enterica subsp. enterica is responsible of more than 99% of human salmonellosis and therefore it is widely studied. However, the non-enterica subspecies of S. enterica have been little studied. These subspecies are considered to be related to cold-blooded animals and their pathogenicity is very limited. Phenotype and genotype information generated from different studies of non-enterica subspecies reveal poor ability to invade host cells and the absence or modification of important virulence factors. Also, the great majority of human infections due to non-enterica subspecies are related to a previous depressed immune system. Therefore, we propose to treat these subspecies only as opportunistic pathogens. For establish this premise, the present review evaluated, among other things, the genomic characteristics, prevalence, antimicrobial resistance and reported human cases of the non-enterica subspecies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act.

    PubMed

    Haig, Susan M; Beever, Erik A; Chambers, Steven M; Draheim, Hope M; Dugger, Bruce D; Dunham, Susie; Elliott-Smith, Elise; Fontaine, Joseph B; Kesler, Dylan C; Knaus, Brian J; Lopes, Iara F; Loschl, Pete; Mullins, Thomas D; Sheffield, Lisa M

    2006-12-01

    The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.

  8. Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act

    USGS Publications Warehouse

    Beever, E.A.; Haig, S.M.; Chambers, Steven M.; Draheim, Hope M.; Dugger, Bruce D.; Dunham, Susie; Elliott-Smith, Elise; Fontaine, Joseph B.; Kesler, Dylan C.; Knaus, Brian J.; Lopes, Iara F.; Loschl, Peter J.; Mullins, Thomas D.; Sheffield, Lisa M.

    2006-01-01

    The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.

  9. Genome-Wide Identification of Host-Segregating Epidemiological Markers for Source Attribution in Campylobacter jejuni

    PubMed Central

    Thépault, Amandine; Méric, Guillaume; Rivoal, Katell; Pascoe, Ben; Mageiros, Leonardos; Touzain, Fabrice; Rose, Valérie; Béven, Véronique; Chemaly, Marianne

    2017-01-01

    ABSTRACT Campylobacter is among the most common worldwide causes of bacterial gastroenteritis. This organism is part of the commensal microbiota of numerous host species, including livestock, and these animals constitute potential sources of human infection. Molecular typing approaches, especially multilocus sequence typing (MLST), have been used to attribute the source of human campylobacteriosis by quantifying the relative abundance of alleles at seven MLST loci among isolates from animal reservoirs and human infection, implicating chicken as a major infection source. The increasing availability of bacterial genomes provides data on allelic variation at loci across the genome, providing the potential to improve the discriminatory power of data for source attribution. Here we present a source attribution approach based on the identification of novel epidemiological markers among a reference pan-genome list of 1,810 genes identified by gene-by-gene comparison of 884 genomes of Campylobacter jejuni isolates from animal reservoirs, the environment, and clinical cases. Fifteen loci involved in metabolic activities, protein modification, signal transduction, and stress response or coding for hypothetical proteins were selected as host-segregating markers and used to attribute the source of 42 French and 281 United Kingdom clinical C. jejuni isolates. Consistent with previous studies of British campylobacteriosis, analyses performed using STRUCTURE software attributed 56.8% of British clinical cases to chicken, emphasizing the importance of this host reservoir as an infection source in the United Kingdom. However, among French clinical isolates, approximately equal proportions of isolates were attributed to chicken and ruminant reservoirs, suggesting possible differences in the relative importance of animal host reservoirs and indicating a benefit for further national-scale attribution modeling to account for differences in production, behavior, and food consumption. IMPORTANCE Accurately quantifying the relative contribution of different host reservoirs to human Campylobacter infection is an ongoing challenge. This study, based on the development of a novel source attribution approach, provides the first results of source attribution in Campylobacter jejuni in France. A systematic analysis using gene-by-gene comparison of 884 genomes of C. jejuni isolates, with a pan-genome list of genes, identified 15 novel epidemiological markers for source attribution. The different proportions of French and United Kingdom clinical isolates attributed to each host reservoir illustrate a potential role for local/national variations in C. jejuni transmission dynamics. PMID:28115376

  10. Detecting Genetic Introgression: High Levels of Intersubspecific Recombination Found in Xylella fastidiosa in Brazil

    PubMed Central

    Yuan, Xiaoli; Bromley, Robin E.; Stouthamer, Richard

    2012-01-01

    Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee. PMID:22544234

  11. Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil.

    PubMed

    Nunney, Leonard; Yuan, Xiaoli; Bromley, Robin E; Stouthamer, Richard

    2012-07-01

    Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.

  12. Distribution and Genetic Profiles of Campylobacter in Commercial Broiler Production from Breeder to Slaughter in Thailand.

    PubMed

    Prachantasena, Sakaoporn; Charununtakorn, Petcharatt; Muangnoicharoen, Suthida; Hankla, Luck; Techawal, Natthaporn; Chaveerach, Prapansak; Tuitemwong, Pravate; Chokesajjawatee, Nipa; Williams, Nicola; Humphrey, Tom; Luangtongkum, Taradon

    2016-01-01

    Poultry and poultry products are commonly considered as the major vehicle of Campylobacter infection in humans worldwide. To reduce the number of human cases, the epidemiology of Campylobacter in poultry must be better understood. Therefore, the objective of the present study was to determine the distribution and genetic relatedness of Campylobacter in the Thai chicken production industry. During June to October 2012, entire broiler production processes (i.e., breeder flock, hatchery, broiler farm and slaughterhouse) of five broiler production chains were investigated chronologically. Representative isolates of C. jejuni from each production stage were characterized by flaA SVR sequencing and multilocus sequence typing (MLST). Amongst 311 selected isolates, 29 flaA SVR alleles and 17 sequence types (STs) were identified. The common clonal complexes (CCs) found in this study were CC-45, CC-353, CC-354 and CC-574. C. jejuni isolated from breeders were distantly related to those isolated from broilers and chicken carcasses, while C. jejuni isolates from the slaughterhouse environment and meat products were similar to those isolated from broiler flocks. Genotypic identification of C. jejuni in slaughterhouses indicated that broilers were the main source of Campylobacter contamination of chicken meat during processing. To effectively reduce Campylobacter in poultry meat products, control and prevention strategies should be aimed at both farm and slaughterhouse levels.

  13. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization.

    PubMed

    Fields, Joshua A; Li, Jiaqi; Gulbronson, Connor J; Hendrixson, David R; Thompson, Stuart A

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.

  14. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization

    PubMed Central

    Fields, Joshua A.; Li, Jiaqi; Gulbronson, Connor J.; Hendrixson, David R.

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5’ end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis. PMID:27257952

  15. So close and yet so far – Molecular Microbiology of Campylobacter fetus subspecies

    PubMed Central

    Sprenger, H.; Zechner, E. L.; Gorkiewicz, G.

    2012-01-01

    Campylobacter fetus comprises two subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis, which are considered emerging pathogens in humans and animals. Comparisons at the genome level have revealed modest subspecies-specific variation; nevertheless, these two subspecies show distinct host and niche preferences. C. fetus subsp. fetus is a commensal and pathogen of domesticated animals that can be transmitted to humans via contaminated food. The clinical features of human infection can be severe, especially in impaired hosts. In contrast, C. fetus subsp. venerealis is a sexually transmitted pathogen essentially restricted to cattle. Infections leading to bovine venereal campylobacteriosis cause substantial economic losses due to abortion and infertility. Recent genome sequencing of the two subspecies has advanced our understanding of C. fetus adaptations through comparative genomics and the identification of subspecies-specific gene regions predicted to be involved in pathogenesis. The most striking difference between the subspecies is the highly subspecies-specific association of a pathogenicity island in the C. fetus subsp. venerealis chromosome. The inserted region encodes a Type 4 secretion system, which contributes to virulence properties of this organism in vitro. This review describes the main differences in epidemiological, phenotypic, and molecular characteristics of the two subspecies and summarizes recent advances towards understanding the molecular mechanisms of C. fetus pathogenesis. PMID:24611123

  16. Differentiation of subspecies and sexes of Beringian Dunlins using morphometric measures

    USGS Publications Warehouse

    Gates, H. River; Yezerinac, Stephen; Powell, Abby N.; Tomkovich, Pavel S.; Valchuk, Olga P.; Lanctot, Richard B.

    2013-01-01

    Five subspecies of Dunlins (Calidris alpina) that breed in Beringia are potentially sympatric during the non-breeding season. Studying their ecology during this period requires techniques to distinguish individuals by subspecies. Our objectives were to determine (1) if five morphometric measures (body mass, culmen, head, tarsus, and wing chord) differed between sexes and among subspecies (C. a. actites, arcticola, kistchinski, pacifica, and sakhalina), and (2) if these differences were sufficient to allow for correct classification of individuals using equations derived from discriminant function analyses. We conducted analyses using morphometric data from 10 Dunlin populations breeding in northern Russia and Alaska, USA. Univariate tests revealed significant differences between sexes in most morphometric traits of all subspecies, and discriminant function equations predicted the sex of individuals with an accuracy of 83–100% for each subspecies. We provide equations to determine sex and subspecies of individuals in mixed subspecies groups, including the (1) Western Alaska group of arcticola and pacifica (known to stage together in western Alaska) and (2) East Asia group of arcticola, actites, kistchinski, and sakhalina (known to winter together in East Asia). Equations that predict the sex of individuals in mixed groups had classification accuracies between 75% and 87%, yielding reliable classification equations. We also provide equations that predict the subspecies of individuals with an accuracy of 22–96% for different mixed subspecies groups. When the sex of individuals can be predetermined, the accuracy of these equations is increased substantially. Investigators are cautioned to consider limitations due to age and feather wear when using these equations during the non-breeding season. These equations will allow determination of sexual and subspecies segregation in non-breeding areas, allowing implementation of taxonomic-specific conservation actions.

  17. Antimicrobial Activity of a Neem Cake Extract in a Broth Model Meat System

    PubMed Central

    Del Serrone, Paola; Nicoletti, Marcello

    2013-01-01

    This work reports on the antimicrobial activity of an ethyl acetate extract of neem (Azadirachta indica) cake (NCE) against bacteria affecting the quality of retail fresh meat in a broth model meat system. NCE (100 µg) was also tested by the agar disc diffusion method. It inhibited the growth of all tested microorganisms. The NCE growth inhibition zone (IZ) ranged 11.33–22.67 mm while the ciprofloxacin (10 µg) IZ ranged from 23.41–32.67 mm. There was no significant difference (p ≤ 0.05) between the antimicrobial activity of NCE and ciprofloxacin vs. C. jejuni and Leuconostoc spp. The NCE antibacterial activity was moreover determined at lower concentrations (1:10–1:100,000) in micro-assays. The percent growth reduction ranged from 61 ± 2.08–92 ± 3.21. The higher bacterial growth reduction was obtained at 10 µg concentration of NCE. Species-specific PCR and multiplex PCR with the DNA dye propidium monoazide were used to directly detect viable bacterial cells from experimentally contaminated meat samples. The numbers of bacterial cells never significantly (p ≤ 0.05) exceeded the inocula concentration used to experimentally contaminate the NCE treated meat. This report represents a screening methodology to evaluate the antimicrobial capability of a herbal extract to preserve meat. PMID:23917814

  18. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N

    2017-08-01

    We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.

  19. Developing a Salivary Antibody Multiplex Immunoassay to ...

    EPA Pesticide Factsheets

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to develop an immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using the Luminex xMAP solution-phase assay. Beads were coupled to antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary detection antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen coupled and control beads were then incubated with prospectively-collected human saliva samples, analyzed on a Luminex 100 platform, and the presence

  20. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    PubMed Central

    Melo, Roberta T.; Mendonça, Eliane P.; Monteiro, Guilherme P.; Siqueira, Mariana C.; Pereira, Clara B.; Peres, Phelipe A. B. M.; Fernandez, Heriberto; Rossi, Daise A.

    2017-01-01

    Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature biofilms. PMID:28769900

  1. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers

    PubMed Central

    2012-01-01

    Background Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious “sender” excretes the agent, after which (2) the agent is transported via some route to a susceptible “receiver”, and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. Results In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. Conclusions The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side. PMID:22831274

  2. Genotyping of Campylobacter jejuni from broiler carcasses and slaughterhouse environment by amplified fragment length polymorphism.

    PubMed

    Johnsen, G; Kruse, H; Hofshagen, M

    2006-12-01

    We examined the occurrence and diversity of Campylobacter jejuni on broiler carcasses during slaughter of an infected flock and in the slaughterhouse environment during slaughter and postdisinfection before a new production run. During the slaughter of a known C. jejuni infected broiler flock, samples were taken from broiler carcasses at 7 different stages during the process. Thirty-seven sites in the slaughterhouse environment were sampled both during process and postdisinfection. The samples were analyzed for C. jejuni, and genetic fingerprinting was performed using amplified fragment length polymorphism. All carcass samples were positive. Of the environmental samples collected during slaughter, 89% were positive; 100% of those from the arrival, stunning, scalding, defeathering, and evisceration facilities and 67% of those from the cooling and sorting facilities. Postdisinfection, 41% of the samples were positive; 71% of those from the arrival and stunning area, 60% of those from the scalding and defeathering area, and 20% of those from the evisceration, cooling, and sorting area. The C. jejuni isolates (n = 60) recovered were grouped into 4 different amplified fragment length polymorphism clones with a similarity index of 95% or greater. All isolates obtained from the flock and 94% of the isolates obtained from the environment during slaughtering belonged to clone A, whereas 1 environmental isolate belonged to each of the clones B and C. Isolates from clones A, B, and D were present postdisinfection. Only clone B was detected on flocks slaughtered during the previous week. The high level and continuous presence of Campylobacter in the environment constitutes a risk for transmission to negative carcasses. In Norway, where above 96% of the broiler flocks are Campylobacter-negative, this aspect is of special importance. The ability of Campylobacter to remain in the slaughterhouse environment through washing and disinfection is associated with constructional conditions of equipment and buildings, complicating cleaning and providing sufficient moisture. To reduce the probability of the workers acquiring campylobacteriosis, precautions should be taken when slaughtering Campylobacter-positive flocks.

  3. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water.

    PubMed

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2012-10-15

    Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni.

    PubMed

    Ha, Reuben; Frirdich, Emilisa; Sychantha, David; Biboy, Jacob; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Vollmer, Waldemar; Clarke, Anthony J; Gaynor, Erin C

    2016-10-21

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage.

    PubMed

    Bhaduri, Saumya; Cottrell, Bryan

    2004-12-01

    Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4 degrees C, freezing at -20 degrees C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and -20 degrees C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry.

  6. Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model

    PubMed Central

    Kim, Joo-Sung; Artymovich, Katherine A.; Hall, David F.; Smith, Eric J.; Fulton, Richard; Bell, Julia; Dybas, Leslie; Mansfield, Linda S.; Tempelman, Robert; Wilson, David L.

    2012-01-01

    Human illness due to Camplyobacter jejuni infection is closely associated with consumption of poultry products. We previously demonstrated a 50 % shift in allele frequency (phase variation) in contingency gene Cj1139 (wlaN) during passage of C. jejuni NCTC11168 populations through Ross 308 broiler chickens. We hypothesized that phase variation in contingency genes during chicken passage could promote subsequent colonization and disease in humans. To test this hypothesis, we passaged C. jejuni strains NCTC11168, 33292, 81-176, KanR4 and CamR2 through broiler chickens and analysed the ability of passaged and non-passaged populations to colonize C57BL6 IL-10-deficient mice, our model for human colonization and disease. We utilized fragment analysis and nucleotide sequence analysis to measure phase variation in contingency genes. Passage through the chicken reservoir promoted phase variation in five specific contingency genes, and these ‘successful’ populations colonized mice. When phase variation did not occur in these same five contingency genes during chicken passage, these ‘unsuccessful’ populations failed to colonize mice. Phase variation during chicken passage generated small insertions or deletions (indels) in the homopolymeric tract (HT) in contingency genes. Single-colony isolates of C. jejuni strain KanR4 carrying an allele of contingency gene Cj0170 with a10G HT colonized mice at high frequency and caused disease symptoms, whereas single-colony isolates carrying the 9G allele failed to colonize mice. Supporting results were observed for the successful 9G allele of Cj0045 in strain 33292. These data suggest that phase variation in Cj0170 and Cj0045 is strongly associated with mouse colonization and disease, and that the chicken reservoir can play an active role in natural selection, phase variation and disease. PMID:22343355

  7. Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model.

    PubMed

    Kim, Joo-Sung; Artymovich, Katherine A; Hall, David F; Smith, Eric J; Fulton, Richard; Bell, Julia; Dybas, Leslie; Mansfield, Linda S; Tempelman, Robert; Wilson, David L; Linz, John E

    2012-05-01

    Human illness due to Camplyobacter jejuni infection is closely associated with consumption of poultry products. We previously demonstrated a 50 % shift in allele frequency (phase variation) in contingency gene Cj1139 (wlaN) during passage of C. jejuni NCTC11168 populations through Ross 308 broiler chickens. We hypothesized that phase variation in contingency genes during chicken passage could promote subsequent colonization and disease in humans. To test this hypothesis, we passaged C. jejuni strains NCTC11168, 33292, 81-176, KanR4 and CamR2 through broiler chickens and analysed the ability of passaged and non-passaged populations to colonize C57BL6 IL-10-deficient mice, our model for human colonization and disease. We utilized fragment analysis and nucleotide sequence analysis to measure phase variation in contingency genes. Passage through the chicken reservoir promoted phase variation in five specific contingency genes, and these 'successful' populations colonized mice. When phase variation did not occur in these same five contingency genes during chicken passage, these 'unsuccessful' populations failed to colonize mice. Phase variation during chicken passage generated small insertions or deletions (indels) in the homopolymeric tract (HT) in contingency genes. Single-colony isolates of C. jejuni strain KanR4 carrying an allele of contingency gene Cj0170 with a10G HT colonized mice at high frequency and caused disease symptoms, whereas single-colony isolates carrying the 9G allele failed to colonize mice. Supporting results were observed for the successful 9G allele of Cj0045 in strain 33292. These data suggest that phase variation in Cj0170 and Cj0045 is strongly associated with mouse colonization and disease, and that the chicken reservoir can play an active role in natural selection, phase variation and disease.

  8. 77 FR 56858 - Endangered and Threatened Wildlife and Plants; Draft Recovery Plan for Four Subspecies of Island Fox

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ...] Endangered and Threatened Wildlife and Plants; Draft Recovery Plan for Four Subspecies of Island Fox AGENCY... Plan for Four Subspecies of Island Fox (Urocyon littoralis) under the Endangered Species Act of 1973, as amended (Act). Each of the four subspecies, San Miguel Island fox (Urocyon littoralis littoralis...

  9. Methods to Assess the Direct Interaction of C. jejuni with Mucins.

    PubMed

    Clyne, Marguerite; Duggan, Gina; Naughton, Julie; Bourke, Billy

    2017-01-01

    Studies of the interaction of bacteria with mucus-secreting cells can be complemented at a more mechanistic level by exploring the interaction of bacteria with purified mucins. Here we describe a far Western blotting approach to show how C. jejuni proteins separated by SDS PAGE and transferred to a membrane or slot blotted directly onto a membrane can be probed using biotinylated mucin. In addition we describe the use of novel mucin microarrays to assess bacterial interactions with mucins in a high-throughput manner.

  10. PFGE, Lior Serotype, and Antimicrobial Resistance Patterns Among Campylobacter jejuni Isolated from Travelers and US Military Personnel with Acute Diarrhea in Thailand, 1998-2003

    DTIC Science & Technology

    2010-01-01

    subtyping Salmonella spp., Shigella spp., and Vibrio spp., in addition to C. jejttni 112,13]. Unlike other enteric bacteria, Campylobacter is a...Campylobacter jejuni and Campylobacter col/Isolated from raw chicken meat and human stools in Korea. J Food Prot 2006, 69:2915-2923. 7. Harvey SM...coli 01 57:H7, non-typhoidal Salmonella serotypes, and Shigella sonnei by pulsed-field gel electrophoresis (PFGE). PulseNet 8th Annual Update

  11. Bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus is associated with digestive tract malignancies and resistance to macrolides and clindamycin.

    PubMed

    Sheng, Wang-Huei; Chuang, Yu-Chung; Teng, Lee-Jene; Hsueh, Po-Ren

    2014-08-01

    This study was intended to delineate the association between digestive tract malignancies and bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus. We reviewed the medical records and microbiological results of patients with bacteraemia due to Streptococcus bovis during the period 2000-2012. Species and subspecies identification of isolates originally classified as S. bovis was confirmed by 16S rRNA sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) assays. Minimum inhibitory concentrations of antimicrobial agents were determined by the broth microdilution method. Of the 172 S. bovis complex isolates obtained from 172 patients (age range, <1-94 years, median age, 66) with bacteraemia, 31 isolates were identified to be S. gallolyticus subspecies gallolyticus, 126 were S. gallolyticus subspecies pasteurianus, and 15 were shown to be Streptococcus infantarius. The majority (n = 104, 60%) of patients were male and had underlying malignancies (n = 87, 51%). Bacteraemia due to S. gallolyticus subspecies gallolyticus was significantly associated with endocarditis while S. gallolyticus subspecies pasteurianus was more likely to be associated with malignancies of the digestive tract, including gastric, pancreatic, hepatobiliary and colorectal cancers. Septic shock at presentation was the only factor associated with mortality among patients with bacteraemia due to either subspecies of S. bovis. Isolates of S. gallolyticus subspecies pasteurianus had higher rates of resistance to macrolides and clindamycin than isolates of S. gallolyticus subspecies gallolyticus. Extensive diagnostic work-up for digestive tract malignancies and trans-esophageal echocardiogram should be investigated in patients with bacteraemia caused by S. gallolyticus. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. The original descriptions of reptiles and their subspecies.

    PubMed

    Uetz, Peter; Stylianou, Alexandrea

    2018-01-24

    By August 2017 an estimated 13,047 species and subspecies of extant reptiles have been described by a total of 6,454 papers and books which are listed in a supplementary file. For 1,052 species a total of 2,452 subspecies (excluding nominate subspecies) had been described by 2017, down from 1,295 species and 4,411 subspecies in 2009, due to the elevation of many subspecies to species. Here we summarize the history of these taxon description beginning with Linnaeus in 1758. While it took 80 years to reach the first 1,000 species in 1838, new species and subspecies descriptions since then have been added at a roughly constant rate of 1000 new taxa every 12-17 years. The only exception were the decades during World Wars I and II and the beginning of this millennium when the rate of descriptions increased to now about 7 years for the last 1,000 taxa. The top 101 most productive herpetologists (in terms of "taxon output") have described more than 8,000 species and subspecies, amounting to over 60% of all currently valid taxa. More than 90% of all species were described in either English (68.2%), German (12.7%) or French (9.3%).

  13. A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies.

    PubMed

    Bach, H-J; Jessen, I; Schloter, M; Munch, J C

    2003-01-01

    Real-time TaqMan-PCR assays were developed for detection, differentiation and absolute quantification of the pathogenic subspecies of Clavibacter michiganensis (Cm) in one single PCR run. The designed primer pair, targeting intergenic sequences of the rRNA operon (ITS) common in all subspecies, was suitable for the amplification of the expected 223-nt DNA fragments of all subspecies. Closely related bacteria were completely discriminated, except of Rathayibacter iranicus, from which weak PCR product bands appeared on agarose gel after 35 PCR cycles. Sufficient specificity of PCR detection was reached by introduction of the additional subspecies specific probes used in TaqMan-PCR. Only Cm species were detected and there was clear differentiation among the subspecies C. michiganensis sepedonicus (Cms), C. michiganensis michiganensis (Cmm), C. michiganensis nebraskensis (Cmn), C. michiganensis insidiosus (Cmi) and C. michiganensis tessellarius (Cmt). The TaqMan assays were optimized to enable a simultaneous quantification of each subspecies. Validity is shown by comparison with cell counts.

  14. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome

    PubMed Central

    Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.

    2011-01-01

    Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880

  15. Further characterization and independent validation of a DNA aptamer-quantum dot-based magnetic sandwich assay for Campylobacter.

    PubMed

    Bruno, John G; Sivils, Jeffrey C

    2017-11-01

    Previously reported DNA aptamers developed against surface proteins extracted from Campylobacter jejuni were further characterized by aptamer-based Western blotting and shown to bind epitopes on proteins weighing ~16 and 60 kD from reduced C. jejuni and Campylobacter coli lysates. Proteins of these approximate weights have also been identified in traditional antibody-based Western blots of Campylobacter spp. Specificity of the capture and reporter aptamers from the previous report was further validated by aptamer-based ELISA-like (ELASA) colorimetric microplate assay. Finally, the limit of detection of the previously reported plastic-adherent aptamer-magnetic bead and aptamer-quantum dot sandwich assay (PASA) was validated by an independent food safety testing laboratory to lie between 5 and 10 C. jejuni cells per milliliter in phosphate buffered saline and repeatedly frozen and thawed chicken rinsate. Such ultrasensitive and rapid (30 min) aptamer-based assays could provide alternative or additional screening tools to enhance food safety testing for Campylobacter and other foodborne pathogens.

  16. Dynamic of Campylobacter Species Contamination Along a Poultry Slaughtering Chain

    PubMed Central

    Dib, Hussein; Mrad, Rachelle; Chami, Christelle; Jalkh, Rita

    2014-01-01

    The prevalence of Campylobacters was studied in a poultry farm and along the slaughtering chain. Fifteen swabs from a farm and 75 samples (swabs and rinsates) from its slaughterhouse were collected. All the faecal and cloacal farm swabs were contaminated by Campylobacter jejuni and C. coli against 50% for breast swabs. C. jejuni had a concentration of 6.26, 6.34 and 5.38 Log10 CFU/mL in faecal, cloacal and breast swabs respectively. Rinsates showed an almost constant concentration of Campylobacters (6 Log10 CFU/mL) with a predominance of the presumptive C. jejuni. C. lari was found in 22% of eviscerated samples. Faecal coliforms and E. coli, used as indicators, were detected in all samples (5.46 and 5.15 Log10 CFU/mL, respectively). Final chilling and chlorine (50 ppm) treatments decreased them to acceptable levels, unlike for Campylobacters. Further investigation of the dynamics of Campylobacters and their response to prevention and treatment measures is required. PMID:27800361

  17. Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.

    PubMed

    Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin

    2015-09-01

    Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.

  18. Thermophilic Campylobacter spp. in salad vegetables in Malaysia.

    PubMed

    Chai, Lay Ching; Robin, Tunung; Ragavan, Usha Menon; Gunsalam, Jurin Wolmon; Bakar, Fatimah Abu; Ghazali, Farinazleen Mohamad; Radu, Son; Kumar, Malakar Pradeep

    2007-06-10

    The main aim of this study was to combine the techniques of most probable number (MPN) and polymerase chain reaction (PCR) for quantifying the prevalence and numbers of Campylobacter spp. in ulam, a popular Malaysian salad dish, from a traditional wet market and two modern supermarkets in Selangor, Malaysia. A total of 309 samples of raw vegetables which are used in ulam were examined in the study. The prevalences of campylobacters in raw vegetables were, for supermarket I, Campylobacter spp., 51.9%; Campylobacter jejuni, 40.7%; and Campylobacter coli, 35.2%: for supermarket II, Campylobacter spp., 67.7%; C. jejuni, 67.7%; and C. coli, 65.7%: and for the wet market, Campylobacter spp., 29.4%; C. jejuni, 25.5%; and C. coli, 22.6%. In addition Campylobacter fetus was detected in 1.9% of raw vegetables from supermarket I. The maximum numbers of Campylobacter spp. in raw vegetables from supermarkets and the wet market were >2400 and 460 MPN/g, respectively.

  19. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE PAGES

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; ...

    2016-10-20

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  20. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensorsmore » in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. Lastly, we propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.« less

  1. Geographic variation in the plumage coloration of willow flycatchers Empidonax traillii

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Koronkiewicz, Thomas J.; McLeod, Mary Anne; Theimer, Tad C.

    2010-01-01

    The ability to identify distinct taxonomic groups of birds (species, subspecies, geographic races) can advance ecological research efforts by determining connectivity between the non-breeding and breeding grounds for migrant species, identifying the origin of migrants, and helping to refine boundaries between subspecies or geographic races. Multiple methods are available to identify taxonomic groups (e.g., morphology, genetics), and one that has played an important role for avian taxonomists over the years is plumage coloration. With the advent of electronic devices that can quickly and accurately quantify plumage coloration, the potential of using coloration as an identifier for distinct taxonomic groups, even when differences are subtle, becomes possible. In this study, we evaluated the degree to which plumage coloration differs among the four subspecies of the willow flycatcher Empidonax traillii, evaluated sources of variation, and considered the utility of plumage coloration to assign subspecies membership for individuals of unknown origin. We used a colorimeter to measure plumage coloration of 374 adult willow flycatchers from 29 locations across their breeding range in 2004 and 2005. We found strong statistical differences among the mean plumage coloration values of the four subspecies; however, while individuals tended to group around their respective subspecies' mean color value, the dispersion of individuals around such means overlapped. Mean color values for each breeding site of the three western subspecies clustered together, but the eastern subspecies' color values were dispersed among the other subspecies, rather than distinctly clustered. Additionally, sites along boundaries showed evidence of intergradation and intermediate coloration patterns. We evaluated the predictive power of colorimeter measurements on flycatchers by constructing a canonical discriminant model to predict subspecies origin of migrants passing through the southwestern U.S. Considering only western subspecies, we found that individuals can be assigned with reasonable certainty. Applying the model to migrants sampled along the Colorado River in Mexico and the U.S. suggests different migration patterns for the three western subspecies. We believe that the use of plumage coloration, as measured by electronic devices, can provide a powerful tool to look at ecological questions in a wide range of avian species.

  2. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  3. The Evolution of Campylobacter jejuni and Campylobacter coli

    PubMed Central

    Sheppard, Samuel K.; Maiden, Martin C.J.

    2015-01-01

    The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure. PMID:26101080

  4. The influence of feeding crimped kernel maize silage on growth performance and intestinal colonization with Campylobacter jejuni of broilers.

    PubMed

    Ranjitkar, Samir; Engberg, Ricarda Margarete

    2016-01-01

    An infection trial and a production trial over 35 days were conducted in parallel to study the influence of feeding crimped kernel maize silage (CKMS) on the intestinal Campylobacter jejuni colonization and broiler performance, respectively. The CKMS was used at dietary inclusion levels of 15% and 30% in maize-based diets. Broilers were orally inoculated with 2 × 10(5) log cfu/ml C. jejuni on day 14. Four birds from each pen were randomly selected and killed by cervical dislocation on days 3, 6, 9, 14 and 21 post infection and intestinal contents from ileum, caeca and rectum as well as liver samples were taken. Body weight and feed consumption of broilers were registered on days 13, 22 and 35. On day 35, litter dry matter (DM) was measured and the condition of the foot pads was evaluated. There was no significant effect of CKMS on the colonization of C. jejuni. Body weight of the broilers supplemented with 15% CKMS was comparable with the control maize-based feed, whereas addition of 30% CKMS reduced broiler body weight (P < 0.001). However, DM intake and feed conversion ratio were the same in all three dietary treatments. Furthermore, the foot pad condition of broilers significantly improved with the inclusion of CKMS on broiler diets as a result of a higher DM content in the litter material. It is concluded that CKMS did not influence intestinal Campylobacter colonization, but improved the foot pad health of broilers.

  5. Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion.

    PubMed

    Plummer, Paul; Sahin, Orhan; Burrough, Eric; Sippy, Rachel; Mou, Kathy; Rabenold, Jessica; Yaeger, Mike; Zhang, Qijing

    2012-02-01

    Previous studies on Campylobacter jejuni have demonstrated the role of LuxS in motility, cytolethal distending toxin production, agglutination, and intestinal colonization; however, its direct involvement in virulence has not been reported. In this study, we demonstrate a direct role of luxS in the virulence of C. jejuni in two different animal hosts. The IA3902 strain, a highly virulent sheep abortion strain recently described by our laboratory, along with its isogenic luxS mutant and luxS complement strains, was inoculated by the oral route into both a pregnant guinea pig virulence model and a chicken colonization model. In both cases, the IA3902 luxS mutant demonstrated a complete loss of ability to colonize the intestinal tract. In the pregnant model, the mutant also failed to induce abortion, while the wild-type strain was highly abortifacient. Genetic complementation of the luxS gene fully restored the virulent phenotype in both models. Interestingly, when the organism was inoculated into guinea pigs by the intraperitoneal route, no difference in virulence (abortion induction) was observed between the luxS mutant and the wild-type strain, suggesting that the defect in virulence following oral inoculation is likely associated with a defect in colonization and/or translocation of the organism out of the intestine. These studies provide the first direct evidence that LuxS plays an important role in the virulence of C. jejuni using an in vivo model of natural disease.

  6. Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni.

    PubMed

    Al-Haideri, Halah; White, Michael A; Kelly, David J

    2016-02-01

    Campylobacter jejuni, the leading cause of human bacterial gastroenteritis, requires low environmental oxygen and high carbon dioxide for optimum growth, but the molecular basis for the carbon dioxide requirement is unclear. One factor may be inefficient conversion of gaseous CO2 to bicarbonate, the required substrate of various carboxylases. Two putative carbonic anhydrases (CAs) are encoded in the genome of C. jejuni strain NCTC 11168 (Cj0229 and Cj0237). Here, we show that the deletion of the cj0237 (canB) gene alone prevents growth in complex media at low (1% v/v) CO2 and significantly reduces the growth rate at high (5% v/v) CO2. In minimal media incubated under high CO2, the canB mutant grew on L-aspartate but not on the key C3 compounds L-serine, pyruvate and L-lactate, showing that CanB is crucial in bicarbonate provision for pyruvate carboxylase-mediated oxaloacetate synthesis. Nevertheless, purified CanB (a dimeric, anion and acetazolamide sensitive, zinc-containing type II beta-class enzyme) hydrates CO2 actively only above pH 8 and with a high Km (∼ 34 mM). At typical cytoplasmic pH values and low CO2, these kinetic properties might limit intracellular bicarbonate availability. Taken together, our data suggest CanB is a major contributor to the capnophilic growth phenotype of C. jejuni. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies

    PubMed Central

    Tan, Joon L.; Ng, Kee P.; Ong, Chia S.; Ngeow, Yun F.

    2017-01-01

    Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification among members in this complex. PMID:29109707

  8. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies.

    PubMed

    Tan, Joon L; Ng, Kee P; Ong, Chia S; Ngeow, Yun F

    2017-01-01

    Mycobacterium abscessus , a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex ( M. abscessus, M. massiliense , and M. bolletii ) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification among members in this complex.

  9. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    PubMed Central

    2011-01-01

    Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK)-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker molecule between Cdc42 and activated EGFR/PDGFR/PI3-kinase. Using C. jejuni mutant strains we further demonstrated that the fibronectin-binding protein CadF and intact flagella are involved in Cdc42-GTP induction, indicating that the bacteria may directly target the fibronectin/integrin complex for inducing signaling leading to its host cell entry. Conclusion Collectively, our findings led us propose that C. jejuni infection triggers a novel fibronectin→integrin-beta1→FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2 signaling cascade, which plays a crucial role for Cdc42 GTPase activity associated with filopodia formation and enhances bacterial invasion. PMID:22204307

  10. Guillain Barré Syndrome is induced in Non-Obese Diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics.

    PubMed

    St Charles, J L; Bell, J A; Gadsden, B J; Malik, A; Cooke, H; Van de Grift, L K; Kim, H Y; Smith, E J; Mansfield, L S

    2017-02-01

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis linked to several serious autoimmune sequelae such as the peripheral neuropathies Guillain Barré syndrome (GBS) and Miller Fisher syndrome (MFS). We hypothesized that GBS and MFS can result in NOD wild type (WT) mice or their congenic interleukin (IL)-10 or B7-2 knockouts secondary to C. jejuni infection. Mice were gavaged orally with C. jejuni strains HB93-13 and 260.94 from patients with GBS or CF93-6 from a patient with MFS and assessed for clinical neurological signs and phenotypes, anti-ganglioside antibodies, and cellular infiltrates and lesions in gut and peripheral nerve tissues. Significant increases in autoantibodies against single gangliosides (GM1, GQ1b, GD1a) occurred in infected NOD mice of all genotypes, although the isotypes varied (NOD WT had IgG1, IgG3; NOD B7-2 -/- had IgG3; NOD IL-10 -/- had IgG1, IgG3, IgG2a). Infected NOD WT and NOD IL-10 -/- mice also produced anti-ganglioside antibodies of the IgG1 isotype directed against a mixture of GM1/GQ1b gangliosides. Phenotypic tests showed significant differences between treatment groups of all mouse genotypes. Peripheral nerve lesions with macrophage infiltrates were significantly increased in infected mice of NOD WT and IL-10 -/- genotypes compared to sham-inoculated controls, while lesions with T cell infiltrates were significantly increased in infected mice of the NOD B7-2 -/- genotype compared to sham-inoculated controls. In both infected and sham inoculated NOD IL-10 -/- mice, antibiotic treatment exacerbated neurological signs, lesions and the amount and number of different isotypes of antiganglioside autoantibodies produced. Thus, inducible mouse models of post-C. jejuni GBS are feasible and can be characterized based on evaluation of three factors-onset of GBS clinical signs/phenotypes, anti-ganglioside autoantibodies and nerve lesions. Based on these factors we characterized 1) NOD B-7 -/- mice as an acute inflammatory demyelinating polyneuropathy (AIDP)-like model, 2) NOD IL-10 -/- mice as an acute motor axonal neuropathy (AMAN)-like model best employed over a limited time frame, and 3) NOD WT mice as an AMAN model with mild clinical signs and lesions. Taken together these data demonstrate that C. jejuni strain genotype, host genotype and antibiotic treatment affect GBS disease outcomes in mice and that many disease phenotypes are possible. Copyright © 2016. Published by Elsevier Ltd.

  11. A Molecular Method for the Identification of Honey Bee Subspecies Used by Beekeepers in Russia

    PubMed Central

    Syromyatnikov, Mikhail Y.; Borodachev, Anatoly V.; Kokina, Anastasia V.; Popov, Vasily N.

    2018-01-01

    Apis mellifera L. includes several recognized subspecies that differ in their biological properties and agricultural characteristics. Distinguishing between honey bee subspecies is complicated. We analyzed the Folmer region of the COX1 gene in honey bee subspecies cultivated at bee farms in Russia and identified subspecies-specific SNPs. DNA analysis revealed two clearly distinct haplogroups in A. mellifera mellifera. The first one was characterized by multiple cytosine-thymine (thymine–cytosine) transitions, one adenine-guanine substitution, and one thymine–adenine substitution. The nucleotide sequence of the second haplogroup coincided with sequences from other subspecies, except the unique C/A SNP at position 421 of the 658-bp Folmer region. A. mellifera carnica and A. mellifera carpatica could be distinguished from A. mellifera mellifera and A. mellifera caucasica by the presence of the A/G SNP at position 99 of the 658-bp Folmer region. The G/A SNP at position 448 was typical for A. mellifera carnica. A. mellifera caucasica COX1 sequence lacked all the above-mentioned sites. We developed a procedure for rapid identification of honey bee subspecies by PCR with restriction fragment length polymorphism (RFLP) using mutagenic primers. The developed molecular method for honey bee subspecies identification is fast and inexpensive. PMID:29382048

  12. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert

    USGS Publications Warehouse

    Klimova, Anastasia; Munguia-Vega, Adrian; Hoffman, Joseph I.; Culver, Melanie

    2014-01-01

    Species that have experienced population reduction provide valuable case studies for understanding genetic responses to demographic change. Pronghorn (Antilocapra americana) were once widespread across the North American plains but were subject to drastic population reductions due to overexploitation and habitat fragmentation during the late 19th and early 20th centuries. A. a. peninsularis and A. a. sonoriensis, 2 pronghorn subspecies that inhabit the southern edge of the species' distribution, are almost extinct and now breed almost exclusively in captivity. We therefore sequenced the complete mitochondrial control region and genotyped 18 microsatellite loci in 109 individuals to evaluate the impact of population bottlenecks, captive breeding, small population sizes, and isolation on the genetic composition of captive populations of these 2 subspecies. We found extremely low levels of genetic diversity in both subspecies. The 2 subspecies showed high and significant genetic differentiation, indicating the absence of historic and recent gene flow despite their geographic proximity within the Sonoran Desert. Historical effective population size estimates for the 2 subspecies were inferred to be similar, whereas the Sonoran pronghorn has a contemporary effective size (Ne) more than twice as high as the Peninsular subspecies. Our findings suggest the need for careful genetic management of both subspecies in order to minimize the further loss of genetic variability.

  13. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.

    PubMed

    Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi

    2015-06-01

    To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies.

  14. Mosaic Structure of a Multiple-Drug-Resistant, Conjugative Plasmid from Campylobacter jejuni

    DTIC Science & Technology

    2005-01-30

    allele of each gene in the respective clones. There were three genes predicted to encode alleles of strep- tomycin-inactivating enzymes from Enterococcus ...aminoglycoside 6-adenyltransferase/E. faecium /NP_863159 3 cpp50 2599–2811 26.3 473 70 100/100 (70) Unknown of pTet plasmid/C. jejuni strain 81-176/YP_063493 4... faecium /NP_863159 24 sat4 17692–18222 37.7 180 176 94/94 (176) Streptothricin acetyltransferase/E. faecium /AAM77897 25 aphA-3 18315–19109 44.9 264

  15. Morphometric and molecular differentiation between quetzal subspecies of Pharomachrus mocinno (Trogoniformes: Trogonidae).

    PubMed

    Solórzano, Sofía; Oyama, Ken

    2010-03-01

    The resplendent Quetzal (Pharomachrus mocinno) is an endemic Mesoamerican bird species of conservation concern. Within this species, the subspecies P. m. costaricensis and P. m. mocinno, have been recognized by apparent morphometric differences; however, presently there is no sufficient data for confirmation. We analyzed eight morphometric attributes of the body from 41 quetzals: body length, tarsus and cord wing, as well as the length, wide and depth of the bill, body weight; and in the case of the males, the length of the long upper-tail cover feathers. We used multivariate analyses to discriminate morphometric differences between subspecies and contrasted each morphometric attribute between and within subspecies with paired non-parametric Wilcoxon test. In order to review the intraspecific taxonomic status of this bird, we added phylogenetic analysis, and genetic divergence and differentiation based on nucleotide variations in four sequences of mtDNA. The nucleotide variation was estimated in control region, subunit NDH6, and tRNAGlu and tRNAPhe in 26 quetzals from eight localities distributed in five countries. We estimated the genetic divergence and differentiation between subspecies according to a mutation-drift equilibrium model. We obtained the best mutation nucleotide model following the procedure implemented in model test program. We constructed the phylogenetic relationships between subspecies by maximum parsimony and maximum likelihood using PAUP, as well as with Bayesian statistics. The multivariate analyses showed two different morphometric groups, and individuals clustered according to the subspecies that they belong. The paired comparisons between subspecies showed strong differences in most of the attributes analyzed. Along the four mtDNA sequences, we identified 32 nucleotide positions that have a particular nucleotide according to the quetzals subspecies. The genetic divergence and the differentiation was strong and markedly showed two groups within P. mocinno that corresponded to the quetzals subspecies. The model selected for our data was TVM+G. The three phylogenetic methods here used recovered two clear monophyletic clades corresponding to each subspecies, and evidenced a significant and true partition of P. mocinno species into two different genetic, morphometric and ecologic groups. Additionally, according to our calculations, the gene flow between subspecies is interrupted at least from three million years ago. Thus we propose that P. mocinno be divided in two independent species: P. mocinno (Northern species, from Mexico to Nicaragua) and in P. costaricensis (Southern species, Costa Rica and Panama). This new taxonomic classification of the quetzal subspecies allows us to get well conservation achievements because the evaluation about the kind and magnitude of the threats could be more precise.

  16. Morphological traits of Pacific Flyway Canada Geese as an aid to subspecies identification and management

    USGS Publications Warehouse

    Pearce, John M.; Bollinger, Karen S.

    2003-01-01

    Subspecies of Canada Geese (Branta canadensis) exhibit wide variation in body size across their range. To monitor harvest levels in the Pacific Flyway, biologists commonly use culmen length and plumage color to differentiate among subspecies on sympatric wintering grounds. Among the four large-bodied Pacific subspecies (B. c. parvipes, B. c. occidentalis, B. c. fulva, and B. c. moffitti), overlap in culmen length and subjectivity of visually assessing color results in misclassification and inaccurate harvest estimates. We examined the morphology of Pacific large-bodied Canada Geese to characterize body size variation among subspecies and provide more discriminatory measures for harvest assessments. We found that culmen length, one of the most commonly used field measures, overlapped widely among subspecies, and it had little support for inclusion in discriminatory models. Morphological measures with greater explanatory power included bill width at nail, bill width at base, head length, and mid wing. If culmen length and plumage color continue to be used to assess winter harvest, we recommend the addition of at least one sex-specific measurement to reduce levels of misclassification among subspecies. If an additional morphological measure is included, further evaluation on the wintering grounds should be conducted as this measure's effectiveness may vary depending upon observer bias, temporal and spatial variation in subspecies abundance, and the proportion of birds accurately sexed by cloacal examination.

  17. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.

    PubMed

    Anderson, Jill T; Eckhart, Vincent M; Geber, Monica A

    2015-09-01

    Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors "native phenotypes" in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies' exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator-scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator-rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen-supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  18. [The study of the contamination and the levels of Campylobacter spp. during the processing of selected types of foods].

    PubMed

    Efimochkina, N R; Bykova, I B; Stetsenko, V V; Minaeva, L P; Pichugina, T V; Markova, Yu M; Korotkevich, Yu V; Kozak, S S; Sheveleva, S A

    2016-01-01

    The purpose of the work was to study the nature of the Campylobacter spp. contamination during the processing of food products of plant and animal origin (raw poultry and beef meat, raw milk, leafy salads, sliced raw vegetables). In the study of 148 samples 50 strains of Campylobacter spp. (33.8%) were found. For the main phenotypic characteristics they were identified as C. jejuni spp. jejuni and C. jejuni spp. doylei (over 75%). The highest level of detection of campylobacteria (over 45%) was set for raw poultry, including the carcasses of chickens broilers, quails, turkeys and their semi-finished products. 19 of the 27 strains from poultry were identified as C. jejuni. Among the strains isolated from the environment, including swabs from equipment surfaces, 91% of the isolates were also presented by C. jejuni. It was found that the investigated foodstuffs were characterized by high levels of contamination with bacteria of the family Enterobacteriaceae, the content of which was comparable with the identified values of total viable bacteria (cfu). Salmonella was detected in 19% of the investigated poultry samples and in 14.3% of raw cow milk. In the study of swabs from surfaces of poultry processing equipment, the frequency of detection of Campylobacter strains was 38.7%, Salmonella - 12.9%. Most commonly Campylobacter and Salmonella were detected in the zones of primary processing of poultry: the frequency of isolation of Salmonella in slaughter corner was 25%, Campylobacter - 43%. When testing the swabs taken in the cooking zone of «fast food» restaurants Campylobacter and Salmonella were not detected. For studying the swabs from equipment surfaces and the environment for the presence of Campylobacter spp. a modified technique of sampling was developed. The method includes a comprehensive analysis in the test area with the use of three types of media for transportation and incubation of Campylobacter spp. (Preston broth with blood, Brucella broth, Cary-Blair medium), that increase the probability of detection of these pathogens.

  19. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness.

    PubMed

    Elhadidy, Mohamed; Arguello, Hector; Álvarez-Ordóñez, Avelino; Miller, William G; Duarte, Alexandra; Martiny, Delphine; Hallin, Marie; Vandenberg, Olivier; Dierick, Katelijne; Botteldoorn, Nadine

    2018-06-20

    Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection. Copyright © 2018. Published by Elsevier B.V.

  20. Cleaning and disinfection programs against Campylobacter jejuni for broiler chickens: productive performance, microbiological assessment and characterization1

    PubMed Central

    Deliberali Lelis, Karoline; Granghelli, Carlos Alexandre; Carão de Pinho, Agatha Cristina; Ribeiro Almeida Queiroz, Sabrina; Fernandes, Andrezza Maria; Moro de Souza, Ricardo Luiz; Gaglianone Moro, Maria Estela; de Andrade Bordin, Roberto; de Albuquerque, Ricardo

    2017-01-01

    Abstract Detailed cleaning and disinfection programs aims to reduce infection pressure from microorganisms from one flock to the next. However, studies evaluating the benefits to poultry performance, the sanitary status of the facilities, and the sanitary quality of the meat are rarely found. Thus, this study was designed to evaluate 2 cleaning and disinfecting programs regarding their influence on productive performance, elimination of Campylobacter, and characterization of Campylobacter jejuni strains when applied to broiler chickens’ facilities. Two subsequent flocks with 960 birds each were distributed into 32 pens containing 30 birds each. In the first, the whole flock was inoculated with a known strain of Campylobacter jejuni in order to contaminate the environment. In the second flock, performance and microbiological evaluations were done, characterizing an observational study between 2 cleaning and disinfection programs, regular and proposed. The regular program consisted of sweeping facilities, washing equipment and environment with water and neutral detergent. The proposed cleaning program consisted of dry and wet cleaning, application of 2 detergents (one acid and one basic) and 2 disinfectants (250 g/L glutaraldehyde and 185 g/L formaldehyde at 0.5% and 210 g/L para-chloro-meta-cresol at 4%). Total microorganism count in the environment and Campylobacter spp. identification were done for the microbiological assessment of the environment and carcasses. The positive samples were submitted to molecular identification of Campylobacter spp. and posterior genetic sequencing of the species identified as Campylobacter jejuni. The birds housed in the facilities and submitted to the proposed treatment had better performance when compared to the ones in the regular treatment, most likely because there was a smaller total microorganism count on the floor, walls, feeders and drinkers. The proposed program also resulted in a reduction of Campylobacter spp. on floors, drinkers and birds. Moreover, it was possible to identify 6 different Campylobacter jejuni strains in the facilities. The proposed treatment resulted in a positive influence on the birds’ performance and reduction of environment contamination for broiler chickens. PMID:28854757

  1. Cleaning and disinfection programs against Campylobacter jejuni for broiler chickens: productive performance, microbiological assessment and characterization.

    PubMed

    Castro Burbarelli, Maria Fernanda de; do Valle Polycarpo, Gustavo; Deliberali Lelis, Karoline; Granghelli, Carlos Alexandre; Carão de Pinho, Agatha Cristina; Ribeiro Almeida Queiroz, Sabrina; Fernandes, Andrezza Maria; Moro de Souza, Ricardo Luiz; Gaglianone Moro, Maria Estela; de Andrade Bordin, Roberto; de Albuquerque, Ricardo

    2017-09-01

    Detailed cleaning and disinfection programs aims to reduce infection pressure from microorganisms from one flock to the next. However, studies evaluating the benefits to poultry performance, the sanitary status of the facilities, and the sanitary quality of the meat are rarely found. Thus, this study was designed to evaluate 2 cleaning and disinfecting programs regarding their influence on productive performance, elimination of Campylobacter, and characterization of Campylobacter jejuni strains when applied to broiler chickens' facilities. Two subsequent flocks with 960 birds each were distributed into 32 pens containing 30 birds each. In the first, the whole flock was inoculated with a known strain of Campylobacter jejuni in order to contaminate the environment. In the second flock, performance and microbiological evaluations were done, characterizing an observational study between 2 cleaning and disinfection programs, regular and proposed. The regular program consisted of sweeping facilities, washing equipment and environment with water and neutral detergent. The proposed cleaning program consisted of dry and wet cleaning, application of 2 detergents (one acid and one basic) and 2 disinfectants (250 g/L glutaraldehyde and 185 g/L formaldehyde at 0.5% and 210 g/L para-chloro-meta-cresol at 4%). Total microorganism count in the environment and Campylobacter spp. identification were done for the microbiological assessment of the environment and carcasses. The positive samples were submitted to molecular identification of Campylobacter spp. and posterior genetic sequencing of the species identified as Campylobacter jejuni. The birds housed in the facilities and submitted to the proposed treatment had better performance when compared to the ones in the regular treatment, most likely because there was a smaller total microorganism count on the floor, walls, feeders and drinkers. The proposed program also resulted in a reduction of Campylobacter spp. on floors, drinkers and birds. Moreover, it was possible to identify 6 different Campylobacter jejuni strains in the facilities. The proposed treatment resulted in a positive influence on the birds' performance and reduction of environment contamination for broiler chickens. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  2. Complete genome sequence of Campylobacter fetus subsp. testudinum type strain 03-427T

    USDA-ARS?s Scientific Manuscript database

    Campylobacter fetus subsp. testudinum has been isolated from reptiles and humans. This Campylobacter subspecies is genetically distinct from other C. fetus subspecies. Here we present the first whole genome sequence for this C. fetus subspecies....

  3. Newer diagnostic approaches to intestinal protozoa.

    PubMed

    van Lieshout, Lisette; Verweij, Jaco J

    2010-10-01

    To update the reader on the latest developments in the laboratory diagnosis of intestinal protozoa. Correct identification of a diarrhoea causing pathogens is essential for the choice of treatment in an individual patient as well as to map the aetiology of diarrhoea in a variety of patient populations. Classical diagnosis of diarrhoea causing protozoa by microscopic examination of a stool sample lacks both sensitivity and specificity. Alternative diagnostic platforms are discussed. Recent literature on the diagnosis of intestinal protozoa has focused mainly on nucleic acid-based assays, in particular the specific detection of parasite DNA in stool samples using real-time PCR. In addition, the trend has been moving from single pathogen detection to a multiplex approach, allowing simultaneous identification of multiple parasites. Different combinations of targets can be used within a routine diagnostic setting, depending on the patient population, such as children, immunocompromised individuals and those who have been travelling to tropical regions. Large-scale monitoring and evaluation of control strategies become feasible due to automation and high-throughput facilities. Improved technology also has become available for differentiating protozoa subspecies, which facilitates outbreak investigations and extensive research in molecular epidemiology.

  4. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation.

    PubMed

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol; Yoon, Sung-il

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Outbreak of gastroenteritis caused by Campylobacter jejuni transmitted through drinking water].

    PubMed

    Godoy, Pere; Artigues, Antoni; Nuín, Carmen; Aramburu, Jesús; Pérez, Montse; Domínguez, Angela; Salleras, Lluís

    2002-11-23

    The aim of this study was to conduct a clinical-epidemiological and microbiological investigation into an outbreak of waterborne disease caused by Campylobacter jejuni due to the consumption of drinking water. A historical cohort study was carried out among 237 residents of Torres de Segre (Lleida, Spain) who were selected using a systematic sample. We conducted a telephone interview about water consumption, symptoms and the onset of disease. We investigated samples of drinking water and stools from 14 patients. The risk associated with each water source was assessed by applying relative risk (RR) analysis at 95% confidence (CI) intervals. The overall attack rate was 18.3% (43/237). The symptoms were: diarrhoea, 93.0% (18/43); abdominal pain, 80.9% (34/42); nausea; 56,1% (23/41); vomits, 42.9% (18/42), and fever, 11.9% (5/42). Only 5.8% of patients contact with his physician. The consumption of drinking water was statistically associated with the disease (RR = 3.0; 95% CI, 1.7-5.3), while the consumption of bottled water (RR = 0.6; 95% CI 0.3-1.0) and water from other villages (RR = 0.3; 95% CI, 0.1-1.1) were a protection factor. The day of outbreak notification we did not detect any residual chlorine in the drinking water: it was qualified as no potable and we isolated Campylobacter jejuni in 8 samples stools. This research highlights the potential importance of waterborne outbreaks of gastroenteritis due to Campylobacter jejuni transmitted through untreated drinking water and suggests to need systematic controls over drinking water and the proper register of their results.

  6. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  7. Application of ozonated dry ice (ALIGAL™ Blue Ice) for packaging and transport in the food industry.

    PubMed

    Fratamico, Pina M; Juneja, Vijay; Annous, Bassam A; Rasanayagam, Vasuhi; Sundar, M; Braithwaite, David; Fisher, Steven

    2012-05-01

    Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P < 0.05) microbial reduction during bioaerosol contamination (up to 5-log reduction of E. coli and Listeria), on chicken breast (approximately 1.3-log reduction of C. jejuni), on contact surfaces (approximately 3.9 log reduction of C. jejuni), and in liquid (2-log reduction of C. jejuni). Considering the stability of O(3), ease of use, and antimicrobial efficacy against foodborne pathogens, our results suggest that ABI is a better alternative, especially for meat and poultry processors, as compared to dry ice. Further, ABI can potentially serve as an additional processing hurdle to guard against pathogens during processing, transportation, distribution, and/or storage. © 2012 Institute of Food Technologists®

  8. Detection of Small Numbers of Campylobacter jejuni and Campylobacter coli Cells in Environmental Water, Sewage, and Food Samples by a Seminested PCR Assay

    PubMed Central

    Waage, Astrid S.; Vardund, Traute; Lund, Vidar; Kapperud, Georg

    1999-01-01

    A rapid and sensitive assay was developed for detection of small numbers of Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food samples. Water and sewage samples were filtered, and the filters were enriched overnight in a nonselective medium. The enrichment cultures were prepared for PCR by a rapid and simple procedure consisting of centrifugation, proteinase K treatment, and boiling. A seminested PCR based on specific amplification of the intergenic sequence between the two Campylobacter flagellin genes, flaA and flaB, was performed, and the PCR products were visualized by agarose gel electrophoresis. The assay allowed us to detect 3 to 15 CFU of C. jejuni per 100 ml in water samples containing a background flora consisting of up to 8,700 heterotrophic organisms per ml and 10,000 CFU of coliform bacteria per 100 ml. Dilution of the enriched cultures 1:10 with sterile broth prior to the PCR was sometimes necessary to obtain positive results. The assay was also conducted with food samples analyzed with or without overnight enrichment. As few as ≤3 CFU per g of food could be detected with samples subjected to overnight enrichment, while variable results were obtained for samples analyzed without prior enrichment. This rapid and sensitive nested PCR assay provides a useful tool for specific detection of C. jejuni or C. coli in drinking water, as well as environmental water, sewage, and food samples containing high levels of background organisms. PMID:10103261

  9. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    PubMed Central

    de Jong, Aarieke E. I.; van Asselt, Esther D.; Zwietering, Marcel H.; Nauta, Maarten J.; de Jonge, Rob

    2012-01-01

    The aim of this research was to determine the decimal reduction times of bacteria present on chicken fillet in boiling water. The experiments were conducted with Campylobacter jejuni, Salmonella, and Escherichia coli. Whole chicken breast fillets were inoculated with the pathogens, stored overnight (4°C), and subsequently cooked. The surface temperature reached 70°C within 30 sec and 85°C within one minute. Extremely high decimal reduction times of 1.90, 1.97, and 2.20 min were obtained for C. jejuni, E. coli, and S. typhimurium, respectively. Chicken meat and refrigerated storage before cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis) due to consumption of chicken fillet as a function of cooking time. The data revealed that cooking time may be far more critical than previously assumed. PMID:22389647

  10. Biosynthesis of Nucleoside Diphosphoramidates in Campylobacter jejuni.

    PubMed

    Taylor, Zane W; Brown, Haley A; Holden, Hazel M; Raushel, Frank M

    2017-11-21

    Campylobacter jejuni is a pathogenic Gram-negative bacterium and a leading cause of food-borne gastroenteritis. C. jejuni produces a capsular polysaccharide (CPS) that contains a unique O-methyl phosphoramidate modification (MeOPN). Recently, the first step in the biosynthetic pathway for the assembly of the MeOPN modification to the CPS was elucidated. It was shown that the enzyme Cj1418 catalyzes the phosphorylation of the amide nitrogen of l-glutamine to form l-glutamine phosphate. In this investigation, the metabolic fate of l-glutamine phosphate was determined. The enzyme Cj1416 catalyzes the displacement of pyrophosphate from MgCTP by l-glutamine phosphate to form CDP-l-glutamine. The enzyme Cj1417 subsequently catalyzes the hydrolysis of CDP-l-glutamine to generate cytidine diphosphoramidate and l-glutamate. The structures of the two novel intermediates, CDP-l-glutamine and cytidine diphosphoramidate, were confirmed by 31 P nuclear magnetic resonance spectroscopy and mass spectrometry. It is proposed that the enzyme Cj1416 be named CTP:phosphoglutamine cytidylyltransferase and that the enzyme Cj1417 be named γ-glutamyl-CDP-amidate hydrolase.

  11. The extent of surface contamination of retailed chickens with Campylobacter jejuni serogroups.

    PubMed Central

    Hood, A. M.; Pearson, A. D.; Shahamat, M.

    1988-01-01

    Eighty-two chickens purchased at 11 retailers (supplied by 12 wholesalers) in the south of England were cultured for Campylobacter jejuni by a method involving total immersion. The organism was isolated from 22 (48%) of 46 fresh birds, 12 of 12 uneviscerated (New York dressed) birds, but only 1 of 24 frozen birds. Viable counts of up to 1.5 x 10(6)/chicken were obtained from fresh birds and 2.4 x 10(7)/chicken from uneviscerated birds. Surface swabbing of breasts, thighs, wings and vents of fresh chickens showed that contamination was generally distributed over the carcasses. Salmonellas were found in only 2 of 69 of the fresh chickens. The prevalence of several Lior and Penner C. jejuni serogroups was similar in chickens and sporadic human cases of enteritis. Penner serogroup 4 (mostly of Lior serogroup 1) was found in 26% of human isolates and 14% of chicken isolates. The rising incidence of campylobacter enteritis during the last 6 years could well be a reflection of the increasing proportion of fresh chickens consumed over that period (32% higher in 1986 than in 1981). PMID:3338503

  12. Guillian-Barre syndrome.

    PubMed

    Talukder, R K; Sutradhar, S R; Rahman, K M; Uddin, M J; Akhter, H

    2011-10-01

    Guillian-Barre syndrome (GBS) is the most common cause of acute flaccid paralysis. All age groups can be affected, more common in elderly. Campylobacter jejuni, a major cause of bacterial gastroenteritis worldwide has become recognized as a most frequent antecedent pathogen for GBS. A prospective case-controlled study showed, positive C. Jejuni serology was found in an unprecedented high frequency of 57% as compared to 8% in family controls and 3% in control patients with other neurological diseases. In GBS there is molecular mimicry between epitops found in the cell walls of some micro-organisms and gangliosides in schwann cell membrane. Diagnosis is mainly clinical. The mainstay of treatment of GBS is supportive care and prevention of complications. Respiratory failure and autonomic dysfunction are the common causes of death from GBS. Plasma exchange and intravenous immunoglobulin therapy shorten the duration of ventilation and improve prognosis. Overall, prognosis of GBS is good. Eighty percent of patients recover completely within 3-6 months, 4% die, and the remainder suffers residual neurological disability. GBS may be prevented by development of a vaccine against C. Jejuni. Early and specific diagnosis is important to ensure a favourable outcome.

  13. Demographic and growth responses of a guerrilla and a phalanx perennial grass in competitive mixtures

    USGS Publications Warehouse

    Humphrey, L. David; Pyke, David A.

    1998-01-01

    The advantages of guerrilla and phalanx growth for the guerrilla Elymus lanceolatus ssp. lanceolatus and phalanx E. l. ssp. wawawaiensis were evaluated over 2 years in two taxon mixtures with a range of densities of each subspecies and under two levels of watering. Ramet numbers and biomass of the guerrilla subspecies were higher than those of the phalanx grass in the first year but in the second year declined greatly, while the phalanx grass showed no change in biomass and an increase in ramet numbers. High neighbour densities affected the phalanx subspecies more strongly than the guerrilla subspecies in the first year, but in the second year there were few differences between subspecies. Biomass of the guerrilla grass remained greater than that of the phalanx grass but ramet numbers were similar in the second year. For both subspecies in both years, probability of flowering decreased at higher neighbour densities, indicating adaptation for competitive ability. In the first year, biomass was more strongly reduced by densities than flowering was, but in the second year, when crowding was apparently greater, flowering was more severely affected. Genet survival was high and similar for both subspecies. The presumed advantage of guerrilla subspecies in exploiting open space was supported. The guerrilla grass exploited resources more quickly in the first year by faster growth and greater ramet production, but its biomass, ramet numbers and rhizome growth, and thus its advantage, were reduced in the second year. The phalanx subspecies had slower growth, produced more ramets in later years, and delayed flowering until later years. Although less able to exploit open resources, it appeared adapted to more stressful conditions, and may be able to exploit temporal resource pulses more effectively.

  14. Subspecies composition of sandhill crane harvest in North Dakota, 1968-94

    USGS Publications Warehouse

    Kendall, W.L.; Johnson, D.H.; Kohn, S.C.; Urbanek, R.P.; Stahlecker, D.W.

    1997-01-01

    North Dakota is a major fall staging area for the Midcontinent Population of sandhill cranes (Grus canadensis), which is composed of three subspecies: the greater (G. c. tabida), Canadian (G. c. rowani), and lesser (G. c. canadensis). The number of cranes killed by hunters in North Dakota averaged 6,793 during 1990-94 seasons, ranking second highest among crane-hunting states. The distribution of harvest among subspecies is important, due to concerns about the poorly known status of these subspecies, especially the greater. We estimated subspecies composition of the harvest in North Dakota using morphometric data collected from field samples of birds harvested since 1968. Subspecies composition varied both spatially (across counties from east to west) and temporally (among 3 periods of distinct harvest regulations and within season). Lessers predominated in the west and Canadians and greaters in the east. For the 1990-94 period we estimated that mortality due to hunting in North Dakota averaged at least 1,085 (18%) greaters, 2,138 (36%) Canadians, and 2,716 (46%) lessers.

  15. Available data support protection of the Southwestern Willow Flycatcher under the Endangered Species Act

    USGS Publications Warehouse

    Theimer, Tad C.; Smith, Aaron D.; Mahoney, Sean M.; Ironside, Kirsten E.

    2016-01-01

    Zink (2015) argued there was no evidence for genetic, morphological, or ecological differentiation between the federally endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) and other Willow Flycatcher subspecies. Using the same data, we show there is a step-cline in both the frequency of a mtDNA haplotype and in plumage variation roughly concordant with the currently recognized boundary between E. t. extimus and E. t adastus, the subspecies with which it shares the longest common boundary. The geographical pattern of plumage variation is also concordant with previous song analyses differentiating those 2 subspecies and identified birds in one low-latitude, high-elevation site in Arizona as the northern subspecies. We also demonstrate that the ecological niche modeling approach used by Zink yields the same result whether applied to the 2 flycatcher subspecies or to 2 unrelated species, E. t. extimus and Yellow Warbler (Setophaga petechia). As a result, any interpretation of those results as evidence for lack of ecological niche differentiation among Willow Flycatcher subspecies would also indicate no differentiation among recognized species and would therefore be an inappropriate standard for delineating subspecies. We agree that many analytical techniques now available to examine genetic, morphological, and ecological differentiation would improve our understanding of the distinctness (or lack thereof) of Willow Flycatcher subspecies, but we argue that currently available evidence supports protection of the Southwestern Willow Flycatcher under the Endangered Species Act.

  16. Cranial morphological homogeneity in two subspecies of water deer in China and Korea.

    PubMed

    Kim, Yung Kun; Koyabu, Daisuke; Lee, Hang; Kimura, Junpei

    2015-11-01

    The water deer (Hydropotes inermis) has conventionally been classified into two subspecies according to geographic distribution and pelage color pattern: H. i. inermis from China and H. i. argyropus from Korea. However, the results of a recent molecular study have called this into question. To further reappraise this classification, we examined morphological variation in craniodental measurements of these 2 subspecies. Results of univariate and multivariate analyses demonstrated that these 2 subspecies are not well-differentiated, suggesting that individuals of the 2 populations share common morphological traits. Despite the distribution of the subspecies at different latitudes, no clear morphocline was detected, suggesting that Bergmann's rule does not apply in this case. Discriminant analysis indicated that the characteristics of individuals are shared by both populations, suggesting that not all individuals can be assigned to their original population. Results of principal component analysis showed that the two populations shared more than 75% of individuals, congruent with the "75% rule" of subspecies classification. In both the neighbor-joining and unweighted pair group methods with arithmetic mean cluster analyses, specimens of H. i. argyropus and H. i. inermis were highly mixed within the cladograms. These results suggest that the overall morphological variation in the 2 subspecies overlaps considerably and that there is no coherent craniofacial difference between the 2 groups. The present findings combined with prior observations from molecular biogeography point out that the taxonomic division of water deer into 2 subspecies should be revisited.

  17. Probing the Extent of Randomness in Protein Interaction Networks

    DTIC Science & Technology

    2008-07-11

    other [54]. This characteristic is exemplified in Video S1, which contains a three-dimensional animation of the HT E . coli PPI network determined by...experiment using either yeast two-hybrid (Y2H) or tandem affinity purification (TAP) methodology: C. jejuni [18], E . coli (HT1) [12], E . coli (HT2...DCDWa C. jejuni [18] 1331 11664 0.095 0.095 2.91 2.85 E . coli (HT1) [12] 1289 5420 0.083 0.089 3.60 3.29 (HT2) [13] 3047 11477 0.064 0.085 3.37 3.27 C

  18. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.

    PubMed

    Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi

    2006-12-15

    We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.

  19. Introgression and dispersal among spotted owl (Strix occidentatlis) subspecies.

    Treesearch

    W.Chris Funk; Eric D. Forsman; Thomas D. Mullins; Susan M. Haig

    2008-01-01

    Population genetics plays an increasingly important role in the conservation and management of declining species, particularly for defining taxonomic units. Subspecies are recognized by several conservation organizations and countries and receive legal protection under the US Endangered Species Act (ESA). Two subspecies of spotted owls, northern (Strix...

  20. Genotyping-by-sequencing provides the discriminating power to investigate the subspecies of Daucus carota (Apiaceae)

    USDA-ARS?s Scientific Manuscript database

    Premise of study: Premise of study: The taxonomic classification of the subspecies of Daucus carota is unresolved. Intercrosses among traditionally recognized subspecies has been well-documented, as have intercrosses with other Daucus species containing 2n = 18 chromosomes (D. sahariensis and D. syr...

  1. Building a DNA barcode reference library for the true butterflies (Lepidoptera) of Peninsula Malaysia: what about the subspecies?

    PubMed

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.

  2. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    PubMed Central

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  3. Detection of quantitative trait loci in Bos indicus and Bos taurus cattle using genome-wide association studies

    PubMed Central

    2013-01-01

    Background The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor. Methods Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin. Results Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies. Conclusions The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight. PMID:24168700

  4. Comprehensive genetic analyses reveal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act.

    PubMed

    King, Tim L; Switzer, John F; Morrison, Cheryl L; Eackles, Michael S; Young, Colleen C; Lubinski, Barbara A; Cryan, Paul

    2006-12-01

    Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius.

  5. Threatened and Endangered Subspecies with Vulnerable Ecological Traits Also Have High Susceptibility to Sea Level Rise and Habitat Fragmentation

    PubMed Central

    Benscoter, Allison M.; Reece, Joshua S.; Noss, Reed F.; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.; Watling, James I.

    2013-01-01

    The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success. PMID:23940614

  6. Comprehensive genetic analyses reveal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act

    USGS Publications Warehouse

    King, Timothy L.; Switzer, John F.; Morrison, Cheryl L.; Eackles, Michael S.; Young, Colleen C.; Lubinski, Barbara A.; Cryan, Paul M.

    2006-01-01

    Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius. ?? 2006 The Authors.

  7. Threatened and endangered subspecies with vulnerable ecological traits also have high susceptibility to sea level rise and habitat fragmentation.

    PubMed

    Benscoter, Allison M; Reece, Joshua S; Noss, Reed F; Brandt, Laura A; Mazzotti, Frank J; Romañach, Stephanie S; Watling, James I

    2013-01-01

    The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success.

  8. Threatened and endangered subspecies with vulnerable ecological traits Also have high susceptibility to sea level rise and habitat fragmentation

    USGS Publications Warehouse

    Benscoter, Allison M.; Reece, Joshua S.; Noss, Reed F.; Brandt, Laura B.; Mazzotti, Frank J.; Romañach, Stephanie S.; Watling, James I.

    2013-01-01

    The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success.

  9. A craniometric study of the black and white Colobus Illiger 1811 (Primates: Ceropithecoidea).

    PubMed

    Hull, D B

    1979-08-01

    This study examines the craniometry of Black and White Colobus monkeys using 1072 specimens representing all the recognized subspecies (after Rahm, '70) of the genus. Seventy-six measurements were taken on each individual, and examined using canonical variates analysis and clustering by Ward's Error Sum method. The assumptions of the analytical techniques are shown to be met, and the results demonstrated to be stable. Examination of the populations for statistical difference and taxonomic distinctiveness using a multivariate extension of Mayr's Rule indicates that the taxonomy presented by Rahm ('70) is essentially correct, except that the subspecies of guereza across the northern part of Central Africa should be lumped into a single group--C. g. occidentalis--and the subspecies of montane angolan colobus in Eastern Zaire should all be lumped into C. a. ruwenzorii. The systematic patterns of the genus illustrate the whole range of the process of speciation, from barely distinct subspecies, to subspecies almost as distinct as allopatric species of the genus, and on the fully sympatric species Three major zoogeographic areas may be delineated: an East African area dominated by the effects of the Rift Valley, with a large number of subspecies isolated in forest islands; a Central African area with little subspeciation and sympatric overlap of the major species of Colobus; and a West African area with a clinal pattern of distribution of subspecies, and secondary intergradation. The arbitrary nature of Mary's Rule is also apparent. Lastly, the CVA indicated major differences across the genus to be located in the teeth and jaws, suggesting diet might be an important distinguishing feature in Colobus.

  10. Variation in the limit-of-detection of the ProSpecT Campylobacter microplate enzyme immunoassay in stools spiked with emerging Campylobacter species.

    PubMed

    Bojanić, Krunoslav; Midwinter, Anne Camilla; Marshall, Jonathan Craig; Rogers, Lynn Elizabeth; Biggs, Patrick Jon; Acke, Els

    2016-08-01

    Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. The impact of other Campylobacter spp. is likely to be underestimated due to the bias of culture methods towards Campylobacter jejuni/coli diagnosis. Stool antigen tests are becoming increasingly popular and appear generally less species-specific. A review of independent studies of the ProSpecT® Campylobacter Microplate enzyme immunoassay (EIA) developed for C. jejuni/coli showed comparable diagnostic results to culture methods but the examination of non-jejuni/coli Campylobacter spp. was limited and the limit-of-detection (LOD), where reported, varied between studies. This study investigated LOD of EIA for Campylobacter upsaliensis, Campylobacter hyointestinalis and Campylobacter helveticus spiked in human stools. Multiple stools and Campylobacter isolates were used in three different concentrations (10(4)-10(9)CFU/ml) to reflect sample heterogeneity. All Campylobacter species evaluated were detectable by EIA. Multivariate analysis showed LOD varied between Campylobacter spp. and faecal consistency as fixed effects and individual faecal samples as random effects. EIA showed excellent performance in replicate testing for both within and between batches of reagents, in agreement between visual and spectrophotometric reading of results, and returned no discordance between the bacterial concentrations within independent dilution test runs (positive results with lower but not higher concentrations). This study shows how limitations in experimental procedures lead to an overestimation of consistency and uniformity of LOD for EIA that may not hold under routine use in diagnostic laboratories. Benefits and limitations for clinical practice and the influence on estimates of performance characteristics from detection of multiple Campylobacter spp. by EIA are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter spp. in bulk tank milk and milk filters from US dairies.

    PubMed

    Del Collo, Laura P; Karns, Jeffrey S; Biswas, Debabrata; Lombard, Jason E; Haley, Bradd J; Kristensen, R Camilla; Kopral, Christine A; Fossler, Charles P; Van Kessel, Jo Ann S

    2017-05-01

    Campylobacter spp. are frequently isolated from dairy cows as commensal organisms. Sporadic Campylobacter infections in humans in the United States are generally attributed to poultry, but outbreaks are also commonly associated with dairy products, particularly unpasteurized or raw milk. Bulk tank milk samples and milk filters from US dairy operations were collected during the National Animal Health Monitoring System Dairy 2014 study and analyzed using real-time PCR and traditional culture techniques for the presence of thermophilic Campylobacter species. The weighted prevalence of operations from which we detected Campylobacter spp. in either bulk tank milk or milk filters was 24.9%. We detected Campylobacter spp. in a higher percentage of operations with 100-499 cows (42.8%) and 500 or more cows (47.5%) than in operations with 30-99 cows (6.5%). Campylobacter spp. were also more frequently detected in operations in the west than the east (45.9 and 22.6%, respectively). We isolated Campylobacter spp. from approximately half of PCR-positive samples, representing 12.5% (weighted prevalence) of operations. The majority (91.8%) of isolates were C. jejuni, but C. lari and C. coli were also isolated. We detected resistance to tetracycline in 68.4% of C. jejuni isolates, and resistance to ciprofloxacin and nalidixic acid in 13.2% of C. jejuni isolates. Based on pulsed-field gel electrophoresis, we found that dairy-associated C. jejuni were genotypically diverse, although clonal strains were isolated from different geographic regions. These results suggest that bulk tank milk can be contaminated with pathogenic Campylobacter spp., and that the consumption of unpasteurized or raw milk presents a potential human health risk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry

    PubMed Central

    Saint-Cyr, Manuel J.; Guyard-Nicodème, Muriel; Messaoudi, Soumaya; Chemaly, Marianne; Cappelier, Jean-Michel; Dousset, Xavier; Haddad, Nabila

    2016-01-01

    Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized. PMID:27303366

  13. Detection, Isolation, and Molecular Subtyping of Escherichia coli O157:H7 and Campylobacter jejuni Associated with a Large Waterborne Outbreak

    PubMed Central

    Bopp, Dianna J.; Sauders, Brian D.; Waring, Alfred L.; Ackelsberg, Joel; Dumas, Nellie; Braun-Howland, Ellen; Dziewulski, David; Wallace, Barbara J.; Kelly, Molly; Halse, Tanya; Musser, Kimberlee Aruda; Smith, Perry F.; Morse, Dale L.; Limberger, Ronald J.

    2003-01-01

    The largest reported outbreak of waterborne Escherichia coli O157:H7 in the United States occurred in upstate New York following a county fair in August 1999. Culture methods were used to isolate E. coli O157:H7 from specimens from 128 of 775 patients with suspected infections. Campylobacter jejuni was also isolated from stools of 44 persons who developed diarrheal illness after attending this fair. There was one case of a confirmed coinfection with E. coli O157:H7 and C. jejuni. Molecular detection of stx1 and stx2 Shiga toxin genes, immunomagnetic separation (IMS), and selective culture enrichment were utilized to detect and isolate E. coli O157:H7 from an unchlorinated well and its distribution points, a dry well, and a nearby septic tank. PCR for stx1 and stx2 was shown to provide a useful screen for toxin-producing E. coli O157:H7, and IMS subculture improved recovery. Pulsed-field gel electrophoresis (PFGE) was used to compare patient and environmental E. coli O157:H7 isolates. Among patient isolates, 117 of 128 (91.5%) were type 1 or 1a (three or fewer bands different). Among the water distribution system isolates, 13 of 19 (68%) were type 1 or 1a. Additionally, PFGE of C. jejuni isolates revealed that 29 of 35 (83%) had indistinguishable PFGE patterns. The PFGE results implicated the water distribution system as the main source of the E. coli O157:H7 outbreak. This investigation demonstrates the potential for outbreaks involving more than one pathogen and the importance of analyzing isolates from multiple patients and environmental samples to develop a better understanding of bacterial transmission during an outbreak. PMID:12517844

  14. Stable Concentrated Emulsions of the 1-Monoglyceride of Capric Acid (Monocaprin) with Microbicidal Activities against the Food-Borne Bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli

    PubMed Central

    Thormar, Halldor; Hilmarsson, Hilmar; Bergsson, Gudmundur

    2006-01-01

    Of 11 fatty acids and monoglycerides tested against Campylobacter jejuni, the 1-monoglyceride of capric acid (monocaprin) was the most active in killing the bacterium. Various monocaprin-in-water emulsions were prepared which were stable after storage at room temperature for many months and which retained their microbicidal activity. A procedure was developed to manufacture up to 500 ml of 200 mM preconcentrated emulsions of monocaprin in tap water. The concentrates were clear and remained stable for at least 12 months. They were active against C. jejuni upon 160- to 200-fold dilution in tap water and caused a >6- to 7-log10 reduction in viable bacterial count in 1 min at room temperature. The addition of 0.8% Tween 40 to the concentrates as an emulsifying agent did not change the microbicidal activity. Emulsions of monocaprin killed a variety of Campylobacter isolates from humans and poultry and also killed strains of Campylobacter coli and Campylobacter lari, indicating a broad anticampylobacter activity. Emulsions of 1.25 mM monocaprin in citrate-lactate buffer at pH 4 to 5 caused a >6- to 7-log10 reduction in viable bacterial counts of Salmonella spp. and Escherichia coli in 10 min. C. jejuni was also more susceptible to monocaprin emulsions at low pH. The addition of 5 and 10 mM monocaprin emulsions to Campylobacter-spiked chicken feed significantly reduced the bacterial contamination. These results are discussed in view of the possible utilization of monocaprin emulsions in controlling the spread of food-borne bacteria from poultry to humans. PMID:16391087

  15. Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy ▿ †

    PubMed Central

    Lu, Xiaonan; Rasco, Barbara A.; Jabal, Jamie M. F.; Aston, D. Eric; Lin, Mengshi; Konkel, Michael E.

    2011-01-01

    Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, “whole-organism fingerprint” with the aid of chemometrics and electron microscopy. PMID:21642409

  16. Drug resistance in Campylobacter jejuni, C coli, and C lari isolated from humans in north west England and Wales, 1997.

    PubMed Central

    Thwaites, R T; Frost, J A

    1999-01-01

    AIMS: To test the sensitivity of strains of Campylobacter species isolated from humans in England and Wales against a range of antimicrobial agents for the purpose of monitoring therapeutic efficacy and as an epidemiological marker. METHODS: An agar dilution breakpoint technique was used to screen isolates against ampicillin, chloramphenicol, gentamicin, kanamycin, neomycin, tetracycline, nalidixic acid, ciprofloxacin, and erythromycin. Minimal inhibitory concentrations (MIC) were also determined for a sample of quinolone resistant strains. RESULTS: Approximately 50% of strains tested were resistant to at least one drug. Strains which were resistant to four or more of the drugs tested were classified as multiresistant; this occurred in 11.3% of C jejuni, 19.9% of C coli, and 63.6% of C lari. Resistance to erythromycin occurred in 1.0% of C jejuni and 12.8% of C coli. Resistance to quinolones occurred in 12% of strains, with a ciprofloxacin MIC of > 8 mg/l and a nalidixic acid MIC of > 256 mg/l; a further 4% of strains had intermediate resistance with a ciprofloxacin MIC of between 0.5 and 2 mg/l (fully sensitive strains, 0.25 mg/l or less) and a nalidixic acid MIC of between 32 and 64 mg/l (fully sensitive strains, 8 mg/l or less). CONCLUSIONS: Resistance to quinolones in campylobacters from human infection may relate to clinical overuse or use of fluoroquinolones in animal husbandry. Both veterinary and clinical use should be reconsidered and fluoroquinolone drugs used only as a treatment for serious infections requiring hospital admission. Erythromycin resistance is still rare in C jejuni but much more common in C coli. PMID:10690169

  17. Epidemiology, Relative Invasive Ability, Molecular Characterization, and Competitive Performance of Campylobacter jejuni Strains in the Chicken Gut▿

    PubMed Central

    Pope, Christopher; Wilson, Janet; Taboada, Eduardo N.; MacKinnon, Joanne; Felipe Alves, Cristiano A.; Nash, John H. E.; Rahn, Kris; Tannock, Gerald W.

    2007-01-01

    One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans (∼30% of isolates). This strain was of low prevalence (5% of isolates) among poultry isolates. flaA-15 strains were five to six times more invasive of HEp2 cells in an in vitro assay than a flaA type (flaA-3) that was commonly encountered on poultry meat (23% of isolates) but was seldom associated with human illness (5%). Competitive-exclusion experiments with chickens, utilizing real-time quantitative PCR to measure the population sizes of specific strains representing flaA-15 (T1016) and flaA-3 (Pstau) in digesta, were carried out. These experiments showed that T1016 always outcompeted Pstau in the chicken intestine. Genomic comparisons of T1016 and Pstau were made using DNA microarrays representing the genome of C. jejuni NCTC 11168. These comparisons revealed differences between the strains in the gene content of the Cj1417c-to-Cj1442c region of the genome, which is associated with the formation of capsular polysaccharide. The strains differed in Penner type (T1016, O42; Pstau, O53). It was concluded that poultry meat was at least one source of human infection with C. jejuni, that some Campylobacter strains detected in poultry meat are of higher virulence for humans than others, and that bacterial attributes affecting strain virulence and commensal colonization ability may be linked. PMID:17921281

  18. Guillain–Barré syndrome and anti-ganglioside antibodies: a clinician-scientist’s journey

    PubMed Central

    YUKI, Nobuhiro

    2012-01-01

    Guillain–Barré syndrome (GBS) is the most frequent cause of acute flaccid paralysis. Having seen my first GBS patient in 1989, I have since then dedicated my time in research towards understanding the pathogenesis of GBS. Along with several colleagues, we identified IgG autoantibodies against ganglioside GM1 in two patients with GBS subsequent to Campylobacter jejuni enteritis. We proceeded to demonstrate molecular mimicry between GM1 and bacterial lipo-oligosaccharide of C. jejuni isolated from a patient with GBS. Our group then established a disease model for GBS by sensitization with GM1 or GM1-like lipo-oligosaccharide. With this, a new paradigm that carbohydrate mimicry can cause autoimmune disorders was demonstrated, making GBS the first proof of molecular mimicry in autoimmune disease. Patients with Fisher syndrome, characterized by ophthalmoplegia and ataxia, can develop the disease after an infection by C. jejuni. We showed that the genetic polymorphism of C. jejuni sialyltransferase, an enzyme essential to the biosynthesis of ganglioside-like lipo-oligosaccharides determines whether patients develop GBS or Fisher syndrome. This introduces another paradigm that microbial genetic polymorphism can determine the clinical phenotype of human autoimmune diseases. Similarities between the clinical presentation of Fisher syndrome and Bickerstaff brainstem encephalitis have caused debate as to whether they are in fact the same disease. We demonstrated that IgG anti-GQ1b antibodies were common to both, suggesting that they are part of the same disease spectrum. We followed this work by clarifying the nosological relationship between the various clinical presentations within the anti-GQ1b antibody syndrome. In this review, I wanted to share my journey from being a clinician to a clinician-scientist in the hopes of inspiring younger clinicians to follow a similar path. PMID:22850724

  19. 77 FR 20773 - Endangered and Threatened Species; Proposed Threatened Status for Subspecies of the Ringed Seal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ...-XZ59 Endangered and Threatened Species; Proposed Threatened Status for Subspecies of the Ringed Seal... conducted special independent peer review of the December 2010 status review report of the ringed seal... ochotensis), and Ladoga (Phoca hispida ladogensis) subspecies of ringed seals as threatened (75 FR 77476). On...

  20. Conservation assessment for inland cutthroat trout

    Treesearch

    Michael K. Young

    1995-01-01

    This document focuses on the state of the science for five subspecies of cutthroat trout found largely on public lands in the Rocky Mountain and Intermountain West. These subspecies are restricted to a fragment of their former range, and primarily occupy small, high-elevation streams. Little is known about the three rarest subspecies (Bonneville, Colorado River, and...

  1. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    PubMed

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea subspecies. These results promote efforts to develop genotypes of B. oleracea and other species with enhanced levels of desired glucosinolates.

  2. Comparative genomics of Clavibacter michiganensis subspecies, pathogens of important agricultural crops.

    PubMed

    Tambong, James T

    2017-01-01

    Subspecies of Clavibacter michiganensis are important phytobacterial pathogens causing devastating diseases in several agricultural crops. The genome organizations of these pathogens are poorly understood. Here, the complete genomes of 5 subspecies (C. michiganensis subsp. michiganensis, Cmi; C. michiganensis subsp. sepedonicus, Cms; C. michiganensis subsp. nebraskensis, Cmn; C. michiganensis subsp. insidiosus, Cmi and C. michiganensis subsp. capsici, Cmc) were analyzed. This study assessed the taxonomic position of the subspecies based on 16S rRNA and genome-based DNA homology and concludes that there is ample evidence to elevate some of the subspecies to species-level. Comparative genomics analysis indicated distinct genomic features evident on the DNA structural atlases and annotation features. Based on orthologous gene analysis, about 2300 CDSs are shared across all the subspecies; and Cms showed the highest number of subspecies-specific CDS, most of which are mobile elements suggesting that Cms could be more prone to translocation of foreign genes. Cms and Cmi had the highest number of pseudogenes, an indication of potential degenerating genomes. The stress response factors that may be involved in cold/heat shock, detoxification, oxidative stress, osmoregulation, and carbon utilization are outlined. For example, the wco-cluster encoding for extracellular polysaccharide II is highly conserved while the sucrose-6-phosphate hydrolase that catalyzes the hydrolysis of sucrose-6-phosphate yielding glucose-6-phosphate and fructose is highly divergent. A unique second form of the enzyme is only present in Cmn NCPPB 2581. Also, twenty-eight plasmid-borne CDSs in the other subspecies were found to have homologues in the chromosomal genome of Cmn which is known not to carry plasmids. These CDSs include pathogenesis-related factors such as Endocellulases E1 and Beta-glucosidase. The results presented here provide an insight of the functional organization of the genomes of five core C. michiganensis subspecies, enabling a better understanding of these phytobacteria.

  3. Comparative genomics of Clavibacter michiganensis subspecies, pathogens of important agricultural crops

    PubMed Central

    2017-01-01

    Subspecies of Clavibacter michiganensis are important phytobacterial pathogens causing devastating diseases in several agricultural crops. The genome organizations of these pathogens are poorly understood. Here, the complete genomes of 5 subspecies (C. michiganensis subsp. michiganensis, Cmi; C. michiganensis subsp. sepedonicus, Cms; C. michiganensis subsp. nebraskensis, Cmn; C. michiganensis subsp. insidiosus, Cmi and C. michiganensis subsp. capsici, Cmc) were analyzed. This study assessed the taxonomic position of the subspecies based on 16S rRNA and genome-based DNA homology and concludes that there is ample evidence to elevate some of the subspecies to species-level. Comparative genomics analysis indicated distinct genomic features evident on the DNA structural atlases and annotation features. Based on orthologous gene analysis, about 2300 CDSs are shared across all the subspecies; and Cms showed the highest number of subspecies-specific CDS, most of which are mobile elements suggesting that Cms could be more prone to translocation of foreign genes. Cms and Cmi had the highest number of pseudogenes, an indication of potential degenerating genomes. The stress response factors that may be involved in cold/heat shock, detoxification, oxidative stress, osmoregulation, and carbon utilization are outlined. For example, the wco-cluster encoding for extracellular polysaccharide II is highly conserved while the sucrose-6-phosphate hydrolase that catalyzes the hydrolysis of sucrose-6-phosphate yielding glucose-6-phosphate and fructose is highly divergent. A unique second form of the enzyme is only present in Cmn NCPPB 2581. Also, twenty-eight plasmid-borne CDSs in the other subspecies were found to have homologues in the chromosomal genome of Cmn which is known not to carry plasmids. These CDSs include pathogenesis-related factors such as Endocellulases E1 and Beta-glucosidase. The results presented here provide an insight of the functional organization of the genomes of five core C. michiganensis subspecies, enabling a better understanding of these phytobacteria. PMID:28319117

  4. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly immunogenic without adverse effect in mice and both attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection and conferred protection against subsequent challenge. Further studies of the present vaccine in naturally infected animals and humans are indicated.

  5. A distinctive new subspecies of Scytalopus griseicollis (Aves, Passeriformes, Rhinocryptidae) from the northern Eastern Cordillera of Colombia and Venezuela

    PubMed Central

    Avendaño, Jorge Enrique; Donegan, Thomas M.

    2015-01-01

    Abstract We describe a new subspecies of Pale-bellied Tapaculo Scytalopus griseicollis from the northern Eastern Cordillera of Colombia and Venezuela. This form differs diagnosably in plumage from described subspecies Scytalopus griseicollis griseicollis and Scytalopus griseicollis gilesi and from the latter in tail length. It is also differentiated non-diagnosably in voice from both these populations. Ecological niche modelling analysis suggests that the new subspecies is restricted to the Andean montane forest and páramo north of both the arid Chicamocha valley and the Sierra Nevada del Cocuy. PMID:26085800

  6. A comparative study evaluating the efficacy of IS_MAP04 with IS900 and IS_MAP02 as a new diagnostic target for the detection of Mycobacterium avium subspecies paratuberculosis from bovine faeces.

    PubMed

    de Kruijf, Marcel; Govender, Rodney; Yearsley, Dermot; Coffey, Aidan; O'Mahony, Jim

    2017-05-01

    The aim of this study was to investigate the efficacy of IS_MAP04 as a potential new diagnostic quantitative PCR (qPCR) target for the detection of Mycobacterium avium subspecies paratuberculosis from bovine faeces. IS_MAP04 primers were designed and tested negative against non-MAP strains. The detection limit of IS_MAP04 qPCR was evaluated on different MAP K-10 DNA concentrations and on faecal samples spiked with different MAP K-10 cell dilutions. A collection of 106 faecal samples was analysed and the efficacy of IS_MAP04 was statistically compared with IS900 and IS_MAP02. The detection limits observed for IS_MAP04 and IS900 on MAP DNA was 34 fg and 3.4 fg respectively. The detection limit of MAP from inoculated faecal samples was 10 2 CFU/g for both IS_MAP04 and IS900 targets and a detection limit of 10 2 CFU/g was also achieved with a TaqMan qPCR targeting IS_MAP04. The efficacy of IS_MAP04 to detect positive MAP faecal samples was 83.0% compared to 85.8% and 83.9% for IS900 and IS_MAP02 respectively. Strong kappa agreements were observed between IS_MAP04 and IS900 (κ=0.892) and between IS_MAP04 and IS_MAP02 (κ=0.897). As a new molecular target, IS_MAP04 showed that the detection limit was comparable to IS900 to detect MAP from inoculated faecal material. The MAP detection efficacy of IS_MAP04 from naturally infected faecal samples proved to be relatively comparable to IS_MAP02, but yielded efficacy results slightly less than IS900. Moreover, IS_MAP04 could be of significant value when used in duplex or multiplex qPCR assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Trends in extramural consultation: comparison between subspecialized and general surgical pathology service models.

    PubMed

    Liu, Yong-Jun; Kessler, Meghan; Zander, Dani S; Karamchandani, Dipti M

    2016-10-01

    Academic and community hospital pathology groups are increasingly adopting subspecialized service models for surgical pathology (SP) practice. Reasons cited include improvements in sign-out efficiency, quality and accuracy, enhancement of clinician-pathologist communications, and augmentation of resident training quality. However, there is a paucity of published quantitative data regarding the outcomes of transitioning from general to subspecialized SP service coverage. Retrospective assessment of the frequencies and outcomes of SP extramural consultations requested by faculty at our institution was performed, encompassing 2 consecutive years each of subspecialized and general SP service models. The frequencies of extramural consultations between the 2 practice models were not significantly different (0.25% vs 0.21%, P = .142). Although more pathology cases were sent out in gastrointestinal (0.29% vs 0.14%, P = .007), gynecologic (0.16% vs 0.02%, P = .009), and pulmonary (1.73% vs 0.28%, P = .008) services during the "subspecialization" era, fewer pediatric cases were sent out (0.48% vs 1.69%, P = .008). Importantly, the transition to the subspecialized model was associated with a marked reduction in the frequency of major disagreements between the original diagnosis and the consultant's diagnosis (1.8% vs 9.3%, P = .018). Our study supports the value of the subspecialized SP sign-out model for increasing diagnostic accuracy and enhancing the quality of patient care. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.

    PubMed

    Tanigawa, Kana; Watanabe, Koichi

    2011-03-01

    Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.

  9. Phylogenetic Position and Subspecies Divergence of the Endangered New Zealand Dotterel (Charadrius obscurus)

    PubMed Central

    Barth, Julia M. I.; Matschiner, Michael; Robertson, Bruce C.

    2013-01-01

    The New Zealand Dotterel (Charadrius obscurus), an endangered shorebird of the family Charadriidae, is endemic to New Zealand where two subspecies are recognized. These subspecies are not only separated geographically, with C. o. aquilonius being distributed in the New Zealand North Island and C. o. obscurus mostly restricted to Stewart Island, but also differ substantially in morphology and behavior. Despite these divergent traits, previous work has failed to detect genetic differentiation between the subspecies, and the question of when and where the two populations separated is still open. Here, we use mitochondrial and nuclear markers to address molecular divergence between the subspecies, and apply maximum likelihood and Bayesian methods to place C. obscurus within the non-monophyletic genus Charadrius. Despite very little overall differentiation, distinct haplotypes for the subspecies were detected, thus supporting molecular separation of the northern and southern populations. Phylogenetic analysis recovers a monophyletic clade combining the New Zealand Dotterel with two other New Zealand endemic shorebirds, the Wrybill and the Double-Banded Plover, thus suggesting a single dispersal event as the origin of this group. Divergence dates within Charadriidae were estimated with BEAST 2, and our results indicate a Middle Miocene origin of New Zealand endemic Charadriidae, a Late Miocene emergence of the lineage leading to the New Zealand Dotterel, and a Middle to Late Pleistocene divergence of the two New Zealand Dotterel subspecies. PMID:24205094

  10. 76 FR 30082 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List the Spot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... laceratasubcaudalis as subspecies of the petitioned species, H. lacerata, because they were properly described in peer-reviewed literature and are recognized as subspecies by knowledgeable herpetologists: H. l. lacerata since 1880, and H. l. subcaudata since 1956 (ITIS 2009, p. 1). In addition to the two subspecies having...

  11. Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens.

    PubMed

    Lasica, A M; Wyszynska, A; Szymanek, K; Majewski, P; Jagusztyn-Krynicka, E K

    2010-01-01

    The Dsb family of redox proteins catalyzes disulfide bond formation and isomerization. Since mutations in dsb genes change the conformation and stability of many extracytoplasmic proteins, and since many virulence factors of pathogenic bacteria are extracytoplasmic, inactivation of dsb genes often results in pathogen attenuation. This study investigated the role of 2 membrane-bound oxidoreductases, DsbB and DsbI, in the Campylobacter jejuni oxidative Dsb pathway. Campylobacter mutants, lacking DsbB or DsbI or both, were constructed by allelic replacement and used in the human intestinal epithelial T84 cell line for the gentamicin protection assay (invasion assay) and chicken colonization experiments. In C. coli strain 23/1, the inactivation of the dsbB or dsbI gene separately did not significantly affect the colonization process. However, simultaneous disruption of both membrane-bound oxidoreductase genes significantly decreased the strain’s ability to colonize chicken intestines. Moreover, C. jejuni strain 81-176 with mutated dsbB or dsbI genes showed reduced invasion/intracellular survival abilities. No cells of the double mutants (dsbB⁻ dsbI⁻) of C. jejuni 81-176 were recovered from human cells after 3 h of invasion.

  12. Campylobacters: the most common bacterial enteropathogens in the Nordic countries.

    PubMed

    Rautelin, H; Hänninen, M L

    2000-10-01

    Campylobacters have been known as important human pathogens since the late 1970s. Campylobacter jejuni and coli are the most common bacterial enteropathogens in the developed countries. During the past years an increasing incidence of campylobacteriosis has been reported in many developed countries. C. jejuni is the most common Campylobacter species while C. coli accounts for about 5-10% of the cases. Although the genome of C. jejuni NCTC 11168 strain was sequenced recently, the exact pathogenetic mechanisms are still not known. Furthermore, there are no reliable animal models available. The epidemiology of this common infection is not well understood; however, eating and handling poultry, contaminated drinking water, and contact with pet animals have been recognized as important risk factors. Most of the cases are sporadic although large water-borne outbreaks have also been reported. Discriminatory typing methods are helpful in tracing the sources and transmission routes. In addition to traditional serotyping, genotyping methods, such as pulsed-field gel electrophoresis, have been developed. As Campylobacter infections probably precede Guillan-Barré syndrome in many cases, a great interest has lately been focused on the possible triggering mechanisms underlying this phenomenon.

  13. Faecal contamination of a municipal drinking water distribution system in association with Campylobacter jejuni infections.

    PubMed

    Pitkänen, Tarja; Miettinen, Ilkka T; Nakari, Ulla-Maija; Takkinen, Johanna; Nieminen, Kalle; Siitonen, Anja; Kuusi, Markku; Holopainen, Arja; Hänninen, Marja-Liisa

    2008-09-01

    After heavy rains Campylobacter jejuni together with high counts of Escherichia coli, other coliforms and intestinal enterococci were detected from drinking water of a municipal distribution system in eastern Finland in August 2004. Three patients with a positive C. jejuni finding, who had drunk the contaminated water, were identified and interviewed. The pulsed-field gel electrophoresis (PFGE) genotypes from the patient samples were identical to some of the genotypes isolated from the water of the suspected contamination source. In addition, repetitive DNA element analysis (rep-PCR) revealed identical patterns of E. coli and other coliform isolates along the distribution line. Further on-site technical investigations revealed that one of the two rainwater gutters on the roof of the water storage tower had been in an incorrect position and rainwater had flushed a large amount of faecal material from wild birds into the drinking water. The findings required close co-operation between civil authorities, and application of cultivation and genotyping techniques strongly suggested that the municipal drinking water was the source of the infections. The faecal contamination associated with failures in cleaning and technical management stress the importance of instructions for waterworks personnel to perform maintenance work properly.

  14. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism

    PubMed Central

    2011-01-01

    Background Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. Results In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. Conclusions The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows that synthesis of the DsbI membrane oxidoreductase is controlled by a translational coupling mechanism. The dba expression is not only essential for the translation of the downstream dsbI gene, but also Dba protein that is produced might regulate the activity and/or stability of DsbI. PMID:21787430

  15. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism.

    PubMed

    Grabowska, Anna D; Wandel, Michał P; Łasica, Anna M; Nesteruk, Monika; Roszczenko, Paula; Wyszyńska, Agnieszka; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta K

    2011-07-25

    Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows that synthesis of the DsbI membrane oxidoreductase is controlled by a translational coupling mechanism. The dba expression is not only essential for the translation of the downstream dsbI gene, but also Dba protein that is produced might regulate the activity and/or stability of DsbI.

  16. Epidemiology and RAPD-PCR typing of thermophilic campylobacters from children under five years and chickens in Morogoro Municipality, Tanzania.

    PubMed

    Chuma, Idrissa S; Nonga, Hezron E; Mdegela, Robinson H; Kazwala, Rudovick R

    2016-11-21

    Campylobacter species are gram negative and flagellated bacteria under the genus Campylobacter, family Campylobacteriaceae. These pathogens cause zoonotic infections among human and animal populations. This study was undertaken between December 2006 and May 2007 to determine prevalence, risk factors and genetic diversity of thermophilic Campylobacter isolates from children less than 5 years and chickens in Morogoro Municipality, Tanzania. The Skirrow's protocol was used for isolation and identification of Campylobacter from 268 human stool specimens and 419 chicken cloacal swabs. Patient biodata and risk factors associated with human infection were also collected. Genetic diversity of Campylobacter isolates was determined by a RAPD-PCR technique using OPA 11 primer (5'-CAA TCG CCG T-3'). Phylogenetic analysis and band pattern comparison were done by Bionumerics software and visual inspection. Stool samples from 268 children and 419 cloacal swabs from chickens were analyzed. Prevalence of thermophilic Campylobacters in children was 19% with higher isolation frequency (p = 0.046) in males (23.5%) than females (13.8%). Campylobacter jejuni (78.4%) was more isolated (p = 0.000) than C. coli (19.6%) and 2% were unidentified isolates. In chickens, the prevalence was 42.5% with higher isolation rate (p = 0.000) of C. jejuni (87%) than C. coli (13%). Campylobacters were more frequently recovered (p = 0.000) from indigenous/ local chickens (75.0%) followed by cockerels (52.2%), broilers (50.0%) and lowest in layers (22.7%). Keeping chickens without other domestic animals concurrently (p = 0.000), chicken types (p = 0.000) and flock size (p = 0.007) were risk factors for infection in chickens. One hundred and fifty two (152) thermophillic Campylobacter isolates were genotyped by RAPD-PCR of which 114 were C. jejuni (74 from chickens and 40 humans) and 38 C. coli (28 from chickens and 10 humans). Comparison of Campylobacter isolates from children and chickens revealed high diversity with only 6.1% of C. jejuni and 5.3% of C. coli being 100% genetically similar. This study has recorded high prevalence of thermophilic Campylobacter in children less than 5 years and chickens in Morogoro municipality. The observed genetic similarity among few C. jejuni and C. coli isolates from children and chicken suggests existence of cross transmission of these pathogens between children under 5 years and chickens.

  17. Wild Griffon Vultures (Gyps fulvus) as a Source of Salmonella and Campylobacter in Eastern Spain

    PubMed Central

    Marin, Clara; Palomeque, Maria-Dolores; Marco-Jiménez, Francisco; Vega, Santiago

    2014-01-01

    The existence of Campylobacter and Salmonella reservoirs in wildlife is a potential hazard to animal and human health; however, the prevalence of these species is largely unknown. Until now, only a few studies have evaluated the presence of Campylobacter and Salmonella in wild griffon vultures and based on a small number of birds. The aim of this study was to evaluate the presence of Campylobacter and Salmonella in wild griffon vultures (n = 97) during the normal ringing programme at the Cinctorres Observatory in Eastern Spain. In addition, the effect of ages of individuals (juveniles, subadult and adult) on the presence were compared. Campylobacter was isolated from 1 of 97 (1.0%) griffon vultures and identified as C. jejuni. Salmonella was isolated from 51 of 97 (52.6%) griffon vultures. No significant differences were found between the ages of individuals for the presence of Salmonella. Serotyping revealed 6 different serovars among two Salmonella enterica subspecies; S. enterica subsp. enterica (n = 49, 96.1%) and S. enterica subsp. salamae (n = 2, 3.9%). No more than one serovar was isolated per individual. The serovars isolated were S. Typhimurium (n = 42, 82.3%), S. Rissen (n = 4, 7.8%), S. Senftenberg (n = 3, 5.9%) and S. 4,12:b[-] (n = 2, 3.9%). Our results imply that wild griffon vultures are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out vultures as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results. PMID:24710464

  18. The Sampling Scheme Matters: Pan troglodytes troglodytes and P. t. schweinfurthii Are Characterized by Clinal Genetic Variation Rather Than a Strong Subspecies Break

    PubMed Central

    Fünfstück, Tillmann; Arandjelovic, Mimi; Morgan, David B.; Sanz, Crickette; Reed, Patricia; Olson, Sarah H.; Cameron, Ken; Ondzie, Alain; Peeters, Martine; Vigilant, Linda

    2015-01-01

    Populations of an organism living in marked geographical or evolutionary isolation from other populations of the same species are often termed subspecies and expected to show some degree of genetic distinctiveness. The common chimpanzee (Pan troglodytes) is currently described as four geographically delimited subspecies: the western (P. t. verus), the nigerian-cameroonian (P. t. ellioti), the central (P. t. troglodytes) and the eastern (P. t. schweinfurthii) chimpanzees. Although these taxa would be expected to be reciprocally monophyletic, studies have not always consistently resolved the central and eastern chimpanzee taxa. Most studies, however, used data from individuals of unknown or approximate geographic provenance. Thus, genetic data from samples of known origin may shed light on the evolutionary relationship of these subspecies. We generated microsatellite genotypes from noninvasively collected fecal samples of 185 central chimpanzees that were sampled across large parts of their range and analyzed them together with 283 published eastern chimpanzee genotypes from known localities. We observed a clear signal of isolation by distance across both subspecies. Further, we found that a large proportion of comparisons between groups taken from the same subspecies showed higher genetic differentiation than the least differentiated between-subspecies comparison. This proportion decreased substantially when we simulated a more clumped sampling scheme by including fewer groups. Our results support the general concept that the distribution of the sampled individuals can dramatically affect the inference of genetic population structure. With regard to chimpanzees, our results emphasize the close relationship of equatorial chimpanzees from central and eastern equatorial Africa and the difficult nature of subspecies definitions. PMID:25330245

  19. Do mitochondrial properties explain intraspecific variation in thermal tolerance?

    PubMed

    Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M

    2009-02-01

    As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.

  20. Spectrophotometry of Artemisia tridentata to quantitatively determine subspecies

    USGS Publications Warehouse

    Richardson, Bryce; Boyd, Alicia; Tobiasson, Tanner; Germino, Matthew

    2018-01-01

    Ecological restoration is predicated on our abilities to discern plant taxa. Taxonomic identification is a first step in ensuring that plants are appropriately adapted to the site. An example of the need to identify taxonomic differences comes from big sagebrush (Artemisia tridentata). This species is composed of three predominant subspecies occupying distinct environmental niches, but overlap and hybridization are common in ecotones. Restoration of A. tridentata largely occurs using wildland collected seed, but there is uncertainty in the identification of subspecies or mix of subspecies from seed collections. Laboratory techniques that can determine subspecies composition would be desirable to ensure that subspecies match the restoration site environment. In this study, we use spectrophotometry to quantify chemical differences in the water-soluble compound, coumarin. Ultraviolet (UV) absorbance of A. tridentata subsp. vaseyana showed distinct differences among A.t. tridentata and wyomingensis. No UV absorbance differences were detected between A.t. tridentata and wyomingensis. Analyses of samples from > 600 plants growing in two common gardens showed that UV absorbance was unaffected by environment. Moreover, plant tissues (leaves and seed chaff) explained only a small amount of the variance. UV fluorescence of water-eluted plant tissue has been used for many years to indicate A.t. vaseyana; however, interpretation has been subjective. Use of spectrophotometry to acquire UV absorbance provides empirical results that can be used in seed testing laboratories using the seed chaff present with the seed to certify A. tridentata subspecies composition. On the basis of our methods, UV absorbance values 3.1 would indicate either A.t. tridentata or wyomingensis. UV absorbance values between 2.7 and 3.1 would indicate a mixture of A.t. vaseyana and the other two subspecies.

  1. The sampling scheme matters: Pan troglodytes troglodytes and P. t. schweinfurthii are characterized by clinal genetic variation rather than a strong subspecies break.

    PubMed

    Fünfstück, Tillmann; Arandjelovic, Mimi; Morgan, David B; Sanz, Crickette; Reed, Patricia; Olson, Sarah H; Cameron, Ken; Ondzie, Alain; Peeters, Martine; Vigilant, Linda

    2015-02-01

    Populations of an organism living in marked geographical or evolutionary isolation from other populations of the same species are often termed subspecies and expected to show some degree of genetic distinctiveness. The common chimpanzee (Pan troglodytes) is currently described as four geographically delimited subspecies: the western (P. t. verus), the nigerian-cameroonian (P. t. ellioti), the central (P. t. troglodytes) and the eastern (P. t. schweinfurthii) chimpanzees. Although these taxa would be expected to be reciprocally monophyletic, studies have not always consistently resolved the central and eastern chimpanzee taxa. Most studies, however, used data from individuals of unknown or approximate geographic provenance. Thus, genetic data from samples of known origin may shed light on the evolutionary relationship of these subspecies. We generated microsatellite genotypes from noninvasively collected fecal samples of 185 central chimpanzees that were sampled across large parts of their range and analyzed them together with 283 published eastern chimpanzee genotypes from known localities. We observed a clear signal of isolation by distance across both subspecies. Further, we found that a large proportion of comparisons between groups taken from the same subspecies showed higher genetic differentiation than the least differentiated between-subspecies comparison. This proportion decreased substantially when we simulated a more clumped sampling scheme by including fewer groups. Our results support the general concept that the distribution of the sampled individuals can dramatically affect the inference of genetic population structure. With regard to chimpanzees, our results emphasize the close relationship of equatorial chimpanzees from central and eastern equatorial Africa and the difficult nature of subspecies definitions. Copyright © 2014 Wiley Periodicals, Inc.

  2. Mating-Type Inheritance and Maturity Times in Crosses between Subspecies of TETRAHYMENA PIGMENTOSA

    PubMed Central

    Simon, Ellen M.

    1980-01-01

    Subspecies 6 and 8 of T. pigmentosa (formerly syngens 6 and 8 of T. pyriformis) share a mating-type system controlled by three alleles with "peck-order" dominance at a single locus. The system is apparently closed and limited to three mating types that are homologous, but not identical, in the subspecies. These relationships are reflected in new mating-type designations.—The viability in some intersyngenic crosses is excellent, and the inheritance of major mating types in first-generation hybrids and their progeny follows the pattern of subspecies 8.—The period of immaturity is shorter than that previously reported for subspecies 8, with 50% of the subclones maturing between 46 and 100 fissions after conjugation. Maturity curves are generally sigmoid, but some are apparently biphasic. The onset of maturity in triplicate sublines from the same synclone is usually highly correlated. PMID:17248998

  3. Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies.

    PubMed

    Cronin, Matthew A; MacNeil, Michael D; Vu, Ninh; Leesburg, Vicki; Blackburn, Harvey D; Derr, James N

    2013-01-01

    The genetic relationship of American plains bison (Bison bison bison) and wood bison (Bison bison athabascae) was quantified and compared with that among breeds and subspecies of cattle. Plains bison from 9 herds (N = 136), wood bison from 3 herds (N = 65), taurine cattle (Bos taurus taurus) from 14 breeds (N = 244), and indicine cattle (Bos taurus indicus) from 2 breeds (N = 53) were genotyped for 29 polymorphic microsatellite loci. Bayesian cluster analyses indicate 3 groups, 2 of which are plains bison and 1 of which is wood bison with some admixture, and genetic distances do not show plains bison and wood bison as distinct groups. Differentiation of wood bison and plains bison is also significantly less than that of cattle breeds and subspecies. These and other genetic data and historical interbreeding of bison do not support recognition of extant plains bison and wood bison as phylogenetically distinct subspecies.

  4. Molecular and antimicrobial susceptibility profiling of Streptococcus dysgalactiae isolated from swine.

    PubMed

    Moreno, Luisa Z; da Costa, Barbara L P; Matajira, Carlos E C; Gomes, Vasco T M; Mesquita, Renan E; Silva, Ana Paula S; Moreno, Andrea M

    2016-10-01

    Streptococcus dysgalactiae subspecies equisimilis and dysgalactiae were isolated from swine clinical specimens. The subspecies equisimilis presented 2 clonal patterns with 85% genetic similarity, whereas subspecies dysgalactiae presented distinct band pattern with less than 80% similarity with equisimilis genotypes. Isolates presented high MIC values to tetracyclines, danofloxacin, spectinomycin, tiamulin, and clindamycin. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Novel molecular markers differentiate Oncorhynchus mykiss (rainbow trout and steelhead) and the O. clarki (cutthroat trout) subspecies

    USGS Publications Warehouse

    Ostberg, C.O.; Rodriguez, R.J.

    2002-01-01

    A suite of 26 PCR-based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species-specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies.

  6. Evolution of Compatibility Range in the Rice-Magnaporthe oryzae System: An Uneven Distribution of R Genes Between Rice Subspecies.

    PubMed

    Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier

    2016-04-01

    Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.

  7. Fertility and reproductive rate of Varroa mite, Varroa destructor, in native and exotic honeybee, Apis mellifera L., colonies under Saudi Arabia conditions.

    PubMed

    Alattal, Yehya; AlGhamdi, Ahmad; Single, Arif; Ansari, Mohammad Javed; Alkathiri, Hussien

    2017-07-01

    Varroa mite is the most destructive pest to bee colonies worldwide. In Saudi Arabia, preliminary data indicated high infestation levels in the exotic honeybee colonies; such as Apis mellifera carnica and Apis mellifera ligustica , compared to native honeybee subspecies Apis mellifera jemenitica , which may imply higher tolerance to Varroasis . In this study, fertility and reproductive rate of Varroa mite, Varroa destructor , in capped brood cells of the native honeybee subspecies were investigated and compared with an exotic honeybee subspecies, A. m . carnica . Mite fertility was almost alike (87.5% and 89.4%) in the native and craniolan colonies respectively. Similarly, results did not show significant differences in reproduction rate between both subspecies ( F  = 0.66, Pr >  F  = 0.42). Number of adult Varroa daughters per fertile mother mite was 2.0 and 2.1 for native and craniolan honeybee subspecies respectively. This may indicate that mechanisms of keeping low infestation rates in the native honeybee colonies are not associated with Varroa reproduction. Therefore, potential factors of keeping lower Varroa infestation rates in native honey bee subspecies should be further investigated.

  8. Leopard (Panthera pardus) status, distribution, and the research efforts across its range.

    PubMed

    Jacobson, Andrew P; Gerngross, Peter; Lemeris, Joseph R; Schoonover, Rebecca F; Anco, Corey; Breitenmoser-Würsten, Christine; Durant, Sarah M; Farhadinia, Mohammad S; Henschel, Philipp; Kamler, Jan F; Laguardia, Alice; Rostro-García, Susana; Stein, Andrew B; Dollar, Luke

    2016-01-01

    The leopard's (Panthera pardus) broad geographic range, remarkable adaptability, and secretive nature have contributed to a misconception that this species might not be severely threatened across its range. We find that not only are several subspecies and regional populations critically endangered but also the overall range loss is greater than the average for terrestrial large carnivores. To assess the leopard's status, we compile 6,000 records at 2,500 locations from over 1,300 sources on its historic (post 1750) and current distribution. We map the species across Africa and Asia, delineating areas where the species is confirmed present, is possibly present, is possibly extinct or is almost certainly extinct. The leopard now occupies 25-37% of its historic range, but this obscures important differences between subspecies. Of the nine recognized subspecies, three (P. p. pardus, fusca, and saxicolor) account for 97% of the leopard's extant range while another three (P. p. orientalis, nimr, and japonensis) have each lost as much as 98% of their historic range. Isolation, small patch sizes, and few remaining patches further threaten the six subspecies that each have less than 100,000 km(2) of extant range. Approximately 17% of extant leopard range is protected, although some endangered subspecies have far less. We found that while leopard research was increasing, research effort was primarily on the subspecies with the most remaining range whereas subspecies that are most in need of urgent attention were neglected.

  9. Genetic characterization of wild swamp deer populations: ex situ conservation and forensics implications.

    PubMed

    Kumar, Ved Prakash; Shrivastwa, Anupam; Nigam, Parag; Kumar, Dhyanendra; Goyal, Surendra Prakash

    2017-11-01

    Swamp deer (Rucervus duvaucelii) is an endemic, Scheduled I species under the Wildlife (Protection) Act 1972, India. According to variations in antler size, it has been classified into three subspecies, namely Western (R. duvaucelii duvaucelii), Central (R. duvaucelii branderi), and Eastern (R. duvaucelii ranjitsinhii). For planning effective ex situ and in situ conservation of a wide-ranging species in different bioclimatic regions and in wildlife forensic, the use of genetic characterization in defining morpho/ecotypes has been suggested because of the geographic clines and reproductive isolation. In spite of these morphotypes, very little is known about the genetic characteristics of the three subspecies, hence no strict subspecies-based breeding plan for retaining the evolutionary characteristics in captive populations for subsequent re-introduction is available except for a few studies. We describe the genetic characteristics of these three subspecies using cytochrome b of the mtDNA genome (400 bp). The DNA sequence data indicated 11 variable sites within the three subspecies. Two paraphyletic clades, namely the Central India and Western-Eastern populations were found, whereas the Western and Eastern populations are monophyletic with a bootstrap value of 69% within the clade. We suggest the need of sorting these three subspecies using different molecular mtDNA markers in zoos for captive breeding purposes so as to retain the genetic diversity of the separate geographic clines and to use a subspecies-specific fixed-state nucleotide to assess the extent of poaching to avoid any population demography stochastically in India.

  10. Subspecies composition and founder contribution of the captive U.S. chimpanzee (Pan troglodytes) population.

    PubMed

    Ely, John J; Dye, Brent; Frels, William I; Fritz, Jo; Gagneux, Pascal; Khun, Henry H; Switzer, William M; Lee, D Rick

    2005-10-01

    Chimpanzees are presently classified into three subspecies: Pan troglodytes verus from west Africa, P.t. troglodytes from central Africa, and P.t. schweinfurthii from east Africa. A fourth subspecies (P.t. vellerosus), from Cameroon and northern Nigeria, has been proposed. These taxonomic designations are based on geographical origins and are reflected in sequence variation in the first hypervariable region (HVR-I) of the mtDNA D-loop. Although advances have been made in our understanding of chimpanzee phylogenetics, little has been known regarding the subspecies composition of captive chimpanzees. We sequenced part of the mtDNA HVR-I region in 218 African-born population founders and performed a phylogenetic analysis with previously characterized African sequences of known provenance to infer subspecies affiliations. Most founders were P.t. verus (95.0%), distantly followed by the troglodytes schweinfurthii clade (4.6%), and a single P.t. vellerosus (0.4%). Pedigree-based estimates of genomic representation in the descendant population revealed that troglodytes schweinfurthii founder representation was reduced in captivity, vellerosus representation increased due to prolific breeding by a single male, and reproductive variance resulted in uneven representation among male P.t.verus founders. No increase in mortality was evident from between-subspecies interbreeding, indicating a lack of outbreeding depression. Knowledge of subspecies and their genomic representation can form the basis for phylogenetically informed genetic management of extant chimpanzees to preserve rare genetic variation for research, conservation, or possible future breeding. Copyright 2005 Wiley-Liss, Inc.

  11. Leopard (Panthera pardus) status, distribution, and the research efforts across its range

    PubMed Central

    Gerngross, Peter; Lemeris Jr., Joseph R.; Schoonover, Rebecca F.; Anco, Corey; Breitenmoser-Würsten, Christine; Durant, Sarah M.; Farhadinia, Mohammad S.; Henschel, Philipp; Kamler, Jan F.; Laguardia, Alice; Rostro-García, Susana; Stein, Andrew B.; Dollar, Luke

    2016-01-01

    The leopard’s (Panthera pardus) broad geographic range, remarkable adaptability, and secretive nature have contributed to a misconception that this species might not be severely threatened across its range. We find that not only are several subspecies and regional populations critically endangered but also the overall range loss is greater than the average for terrestrial large carnivores. To assess the leopard’s status, we compile 6,000 records at 2,500 locations from over 1,300 sources on its historic (post 1750) and current distribution. We map the species across Africa and Asia, delineating areas where the species is confirmed present, is possibly present, is possibly extinct or is almost certainly extinct. The leopard now occupies 25–37% of its historic range, but this obscures important differences between subspecies. Of the nine recognized subspecies, three (P. p. pardus, fusca, and saxicolor) account for 97% of the leopard’s extant range while another three (P. p. orientalis, nimr, and japonensis) have each lost as much as 98% of their historic range. Isolation, small patch sizes, and few remaining patches further threaten the six subspecies that each have less than 100,000 km2 of extant range. Approximately 17% of extant leopard range is protected, although some endangered subspecies have far less. We found that while leopard research was increasing, research effort was primarily on the subspecies with the most remaining range whereas subspecies that are most in need of urgent attention were neglected. PMID:27168983

  12. Evolutionary history of Ichthyosaura alpestris (Caudata, Salamandridae) inferred from the combined analysis of nuclear and mitochondrial markers.

    PubMed

    Recuero, Ernesto; Buckley, David; García-París, Mario; Arntzen, Jan W; Cogălniceanu, Dan; Martínez-Solano, Iñigo

    2014-12-01

    Widespread species with morphologically and ecologically differentiated populations are key to understand speciation because they allow investigating the different stages of the continuous process of population divergence. The alpine newt, Ichthyosaura alpestris, with a range that covers a large part of Central Europe as well as isolated regions in all three European Mediterranean peninsulas, and with strong ecological and life-history differences among populations, is an excellent system for such studies. We sampled individuals across most of the range of the species, and analyzed mitochondrial (1442 bp) and nuclear (two nuclear genes -1554 bp- and 35 allozyme loci) markers to produce a time-calibrated phylogeny and reconstruct the historical biogeography of the species. Phylogenetic analyses of mtDNA data produced a fully resolved topology, with an endemic, Balkan clade (Vlasina) which is sister to a clade comprising an eastern and a western group. Within the former, one clade (subspecies I. a. veluchiensis) is sister to a clade containing subspecies I. a. montenegrina and I. a. serdara as well as samples from southern Romania, Bosnia-Herzegovina, Serbia and Bulgaria (subspecies I. a. reiseri and part of I. a. alpestris). Within the western group, populations from the Italian peninsula (subspecies I. a. apuana and I. a. inexpectata) are sister to a clade containing samples from the Iberian Peninsula (subspecies I. a. cyreni) and the remainder of the samples from subspecies I. a. alpestris (populations from Hungary, Austria, Poland, France, Germany and the larger part of Romania). Results of (∗)BEAST analyses on a combined mtDNA and nDNA dataset consistently recovered with high statistical support four lineages with unresolved inter-relationships: (1) subspecies I. a. veluchiensis; (2) subspecies I. a. apuana+I. a. inexpectata; (3) subspecies I. a. cyreni+part of subspecies I. a. alpestris (the westernmost populations, plus most Romanian populations); and (4) the remaining populations, including subspecies I. a. serdara, I. a. reiseri and I. a. montenegrina and part of subspecies I. a. alpestris, plus samples from Vlasina. Our time estimates are consistent with ages based on the fossil record and suggest a widespread distribution for the I. alpestris ancestor, with the split of the major eastern and western lineages during the Miocene, in the Tortonian. Our study provides a solid, comprehensive background on the evolutionary history of the species based on the most complete combined (mtDNA+nDNA+allozymes) dataset to date. The combination of the historical perspective provided by coalescent-based analyses of mitochondrial and nuclear DNA variation with individual-based multilocus assignment methods based on multiple nuclear markers (allozymes) also allowed identification of instances of discordance across markers that highlight the complexity and dynamism of past and ongoing evolutionary processes in the species. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Single nucleotide polymorphism discovery in cutthroat trout subspecies using genome reduction, barcoding, and 454 pyro-sequencing

    PubMed Central

    2012-01-01

    Background Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. Results Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. Conclusions Genomic and bioinformatic protocols were successfully implemented to identify 125 nuclear SNPs that are capable of differentiating most subspecies of cutthroat trout from one another. The ability to use this suite of SNPs to identify individuals of unknown genetic background to subspecies can be a valuable tool for management agencies in their efforts to evaluate the genetic structure of cutthroat trout populations prior to constructing and implementing conservation plans. PMID:23259499

  14. Stable hydrogen isotope analysis as a method to identify illegally trapped songbirds.

    PubMed

    Kelly, Andrew; Thompson, Richard; Newton, Jason

    2008-06-01

    We measured stable hydrogen isotope ratios in the primary feathers of two subspecies of goldfinches, confiscated by the Police and the Royal Society for the Prevention of Cruelty to Animals (RSPCA) on suspicion that they had been illegally taken from the wild. We found significant differences in the delta2H values of the two subspecies indicating that they were sourced from different geographical regions. Our results correlated with isotopic precipitation maps and with the known distribution of the two subspecies of goldfinch. We believe that this technique could be used by law enforcement agencies to determine the origin of birds in cases where the species or subspecies involved are geographically distinct.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide amore » framework for investigation on roles of FAS II in C. jejuni virulence« less

  16. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  17. Diversity of Lactic Acid Bacteria Associated with Banana Fruits in Taiwan.

    PubMed

    Chen, Yi-Sheng; Liao, Yu-Jou; Lan, Yi-Shan; Wu, Hui-Chung; Yanagida, Fujitoshi

    2017-04-01

    Banana is a popular fruit worldwide. The lactic acid bacteria (LAB) microflora in banana fruits has not been studied in detail. A total of 164 LAB were isolated from banana fruits in Taiwan. These isolates were initially divided into nine groups (r1 to r9) using restriction fragment length polymorphism analysis and 16S ribosomal DNA sequencing. Isolates belonging to Lactobacillus plantarum group were further divided into three additional groups using multiplex PCR assay targeting the recA gene. The most common bacterial genera found in banana fruits were Lactobacillus and Weissella. The distribution of LAB indicated that, in most cases, neighboring regions shared common strains, but there were still some differences between regions. On the basis of phylogenetic analysis of 16S rRNA, rpoA, and pheS gene sequences, two strains included in the genera Lactobacillus were identified as potential novel species or subspecies. In addition, a total 36 isolates were found to have bacteriocin-producing abilities. These results suggest that various LAB are associated with banana fruits in Taiwan. This is the first report describing the distribution and varieties of LAB associated with banana fruits. In addition, one potential novel LAB species was also found in this study.

  18. Complex Population Patterns of Eunica tatila Herrich-Schäffer (Lepidoptera: Nymphalidae), with Special Emphasis on Sexual Dimorphism.

    PubMed

    Cavanzón-Medrano, L; Pozo, C; Hénaut, Y; Legal, L; Salas-Suárez, N; Machkour-M'Rabet, S

    2016-04-01

    The species Eunica tatila (Herrich-Schäffer) is present in the Neotropical region and comprises three subspecies. In Mexico, only one subspecies is reported: E. t. tatila (Herrich-Schäffer). The Yucatan Peninsula, in southeastern Mexico, is located in a transitional geographical position, between southern Florida, the West Indies and Central America. It is part of a transitional region, important for the dispersion of insects from southern Florida via Cuba and the Yucatan Peninsula. Considering the possibility of the overlapping and delimitation of described subspecies, we sampled different populations in the Yucatan Peninsula to possibly assign a subspecies name and evaluate the magnitude of sexual dimorphism. We collected 591 individuals (♀284, ♂307) in conserved areas. The study of male genitalia led to the identification of Eunica tatila tatilista (Kaye) as a subspecies; however, hypandrium structure and wing pattern analysis suggest a mix of E. t. tatila and E. t. tatilista characteristics. The analysis of sexual dimorphism provided evidence of more complex wing morphs for females, with 12 patterns instead of four as previously described. Our results demonstrate the complexity of characterizing E. tatila and suggest that the Yucatan Peninsula is a transitional zone for subspecies of some butterflies.

  19. A new subspecies of Nitokra affinis Gurney, 1927 (Copepoda, Harpacticoida) from the Caribbean coast of Colombia

    PubMed Central

    Fuentes-Reinés, Juan M.; Suárez-Morales, Eduardo

    2014-01-01

    Abstract Plankton samples from Laguna Navio Quebrado, La Guajira, northern Colombia, yielded male and female specimens of an harpacticoid copepod that was first identified as the widely distributed species Nitokra affinis Gurney, 1927 for which at least four subspecies have been described from different geographic areas. A more detailed examination of the Colombian specimens revealed that it differs from the other morphs so far considered as subspecies. The Colombian specimens differ from the other four known subspecies in the following aspects: (1) rostrum with long projection, (2) relatively long exopod of P1, almost as long as first endopodal segment, (3) endopodal and exopodal rami of P2 equally long, (4) a reduced number of endopodal setal elements of the male P5. It also differs from N. a. californica Lang in details of the ornamentation of the urosomites. Descriptions and illustrations of this new subspecies, the first one described from the Neotropical region, are presented together with a key to the five known subspecies of Nitokra affinis. As in many other cases of presumedly widespread species of harpacticoids, it is possible that N. affinis represents a species complex with more restricted distributional patterns, a notion that certainly deserves further study. PMID:24574850

  20. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa)

    PubMed Central

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-01-01

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. PMID:27797952

Top