Science.gov

Sample records for jen-upm pwr fuel

  1. Physics of hydride fueled PWR

    NASA Astrophysics Data System (ADS)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  2. PWR fuel behavior: lessons learned from LOFT. [PWR

    SciTech Connect

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior.

  3. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    This report discusses research conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PF1/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design burnup. Using peaking factors commensurate with actual burnups would result in longer intervals for both reactor designs. This document provides appendices K and L of this report which provide plots for the timing analysis of PWR fuel pin failures for Oconee and Seabrook respectively.

  4. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    SciTech Connect

    P.M. O'Leary; Dr. M.L. Pitts

    2000-08-21

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers.

  5. A comprehensive in-pile test of PWR fuel bundle

    NASA Astrophysics Data System (ADS)

    Kang, Rixin; Zhang, Shucheng; Chen, Dianshan

    1991-02-01

    An in-pile test of PWR fuel bundle has been conducted in HWRR at IAE of China. This paper describes the structure of the test bundle (3 × 3-2), fabrication process and quality control of the fuel rod, irradiation conditions and the main Post Irradiation Examination (PIE) results. The test fuel bundle was irradiated under the PWR operation and water chemistry conditions with an average linear power of 381 W/cm and reached an average burnup of 25010 MWd/tU of the fuel bundle. After the test, destructive and non-destructive examination of the fuel rods was conducted at hot laboratories. The fission gas release was 10.4-23%. The ridge height of cladding was 3 to 8 μm. The hydrogen content of the cladding was 80 to 140 ppm. The fuel stack height was increased by 2.9 to 3.3 mm. The relative irradiation growth was about 0.11 to 0.17% of the fuel rod length. During the irradiation test, no fuel rod failure or other abnormal phenomena had been found by the on-line fuel failure monitoring system of the test loop and water sampling analysis. The structure of the test fuel assembly was left undamaged without twist and detectable deformation.

  6. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report.

  7. Experience in PWR and BWR mixed-oxide fuel management

    SciTech Connect

    Schlosser, G.J.; Krebs, W.; Urban, P. )

    1993-04-01

    Germany has adopted the strategy of a closed fuel cycle using reprocessing and recycling. The central issue today is plutonium recycling by the use of U-Pu mixed oxide (MOX) in pressurized water reactors (PWRs) and boiling water reactors (BWRs). The design of MOX fuel assemblies and fuel management in MOX-containing cores are strongly influenced by the nuclear properties of the plutonium isotopes. Optimized MOX fuel assembly designs for PWRs currently use up to three types of MOX fuel rods having different plutonium contents with natural uranium or uranium tailings as carrier material but without burnable absorbers. The MOX fuel assembly designs for BWRs use four to six rod types with different plutonium contents and Gd[sub 2]O[sub 3]/UO[sub 2] burnable absorber rods. Both the PWR and the BWR designs attain good burnup equivalence and compatibility with uranium fuel assemblies. High flexibility exists in the loading schemes relative to the position and number of MOX fuel assemblies in the reloads and in the core as a whole. The Siemens experience with MOX fuel assemblies is based on the insertion of 318 MOX fuel assemblies in eight PWRs and 168 in BWRs and pressurized heavy water reactors so far. The primary operating results include information on the cycle length, power distribution, reactivity coefficients, and control rod worth of cores containing MOX fuel assemblies.

  8. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  9. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGESBeta

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  10. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  11. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  12. WG-MOX Fuel Zr-tube Neutron Spectrum Comparison in ATR and PWR

    SciTech Connect

    Gray S. Chang

    2005-02-01

    An experiment containing WG-MOX fuel has been designed and irradiated from 1998 to 2004 in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Important neutronics parameters were computed using novel Monte Carlo methods. The purpose of this summary is to compare the Weapons-Grade Mixed Oxide fuel (WG-MOX) Zr-tube’s neutron spectrum in ATR and PWR. The results indicate that the Zrtube’s neutron spectrum in ATR are softer than in PWR.

  13. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  14. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  15. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-22

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  16. Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell

    SciTech Connect

    Feltus, M.A.; Pozsgai, C. )

    1992-01-01

    Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative nature of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.

  17. Calculation of the radionuclides in PWR spent fuel samples for SFR experiment planning.

    SciTech Connect

    Naegeli, Robert Earl

    2004-06-01

    This report documents the calculation of radionuclide content in the pressurized water reactor (PWR) spent fuel samples planned for use in the Spent Fuel Ratio (SPR) Experiments at Sandia National Laboratories, Albuquerque, New Mexico (SNL) to aid in experiment planning. The calculation methods using the ORIGEN2 and ORIGEN-ARP computer codes and the input modeling of the planned PWR spent fuel from the H. B. Robinson and the Surry nuclear power plants are discussed. The safety hazards for the calculated nuclide inventories in the spent fuel samples are characterized by the potential airborne dose and by the portion of the nuclear facility hazard category 2 and 3 thresholds that the experiment samples would present. In addition, the gamma ray photon energy source for the nuclide inventories is tabulated to facilitate subsequent calculation of the direct and shielded dose rates expected from the samples. The relative hazards of the high burnup 72 gigawatt-day per metric ton of uranium (GWd/MTU) spent fuel from H. B. Robinson and the medium burnup 36 GWd/MTU spent fuel from Surry are compared against a parametric calculation of various fuel burnups to assess the potential for higher hazard PWR fuel samples.

  18. Fuel performance annual report for 1981. [PWR; BWR

    SciTech Connect

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  19. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  20. Conceptual design study of small long-life PWR based on thorium cycle fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higer conversion ratio in thermal region compared to uranium cycle produce some significant of 233U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  1. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  2. IN-CORE FUEL MANAGEMENT: PWR Core Calculations Using MCRAC

    NASA Astrophysics Data System (ADS)

    PetroviĆ, B. G.

    1991-01-01

    The following sections are included: * INTRODUCTION * IN-CORE FUEL MANAGEMENT CALCULATIONS * In-Core Fuel Management * Methodological Problems of In-Core Fuel Management * In-Core Fuel Management Analytical Tools * PENN STATE FUEL MANAGEMENT PACKAGE * Penn State Fuel Management Package (PFMP) * Assembly Data Description (ADD) * Linking PSU-LEOPARD and MCRAC: An Example * MULTICYCLE REACTOR ANALYSIS CODE (MCRAC) * Main Features and Options of MCRAC code * Core geometry * Diffusion equations * 1.5-group model * Multicycle neutronic analysis * Multicycle cost analysis * Criticality search * Power-dependent xenon feedback calculations * Control rod and burnable absorber simulation * Search for LP with flat BOC power distribution * Artificial ADD option * Variable dimensioning technique * RBI version of MCRAC code * Programming changes in PC version * Fuel interchange option * MCRAC Input/Output * General input description * Sample input * Sample output * EXPERIENCE WITH MCRAC CODE * CONCLUSIONS * REFERENCES

  3. Maximim Accelerations On The Fuel Assemblies Of a 21-PWR Waste Package During End Impacts 

    SciTech Connect

    T. Schmitt

    2005-08-17

    The objective of this calculation is to determine the acceleration of the fuel assemblies contained in a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities of the waste package is studied. The scope of this calculation is limited to estimating the acceleration of the fuel assemblies during the impact.

  4. Maximim Accelerations On The Fuel Assemblies Of a 21-PWR Waste Package During End Impacts 

    SciTech Connect

    V. DeLa Brosse

    2003-03-27

    The objective of this calculation is to determine the acceleration of the fuel assemblies contained in a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities of the waste package is studied. The scope of this calculation is limited to estimating the acceleration of the fuel assemblies during the impact.

  5. Optimization of small long-life PWR based on thorium fuel

    SciTech Connect

    Subkhi, Moh Nurul; Suud, Zaki Waris, Abdul; Permana, Sidik

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {sup 231}Pa give low excess reactivity.

  6. Optimization of small long-life PWR based on thorium fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  7. An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions for PWR Spent Fuel

    SciTech Connect

    DeHart, M.D.

    1993-01-01

    Isotopic characterization of spent fuel via depletion and decay calculations is necessary for determination of source terms for subsequent system analyses involving heat transfer, radiation shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in subsequent criticality calculations to assess the reduced worth of spent fuel. To validate the codes and data used in depletion approaches, experimental measurements are compared with numerical predictions for relevant spent fuel samples. Such comparisons have been performed in earlier work at the Oak Ridge National Laboratory (ORNL). This report describes additional independent measurements and corresponding calculations, which supplement the results of the earlier work. The current work includes measured isotopic data from 19 spent fuel samples obtained from the Italian Trino Vercelles pressurized-water reactor (PWR) and the U.S. Turkey Point Unit 3 PWR. In addition, an approach to determine biases and uncertainties between calculated and measured isotopic concentrations is discussed, together with a method to statistically combine these terms to obtain a conservative estimate of spent fuel isotopic concentrations. Results are presented based on the combination of measured-to-calculated ratios for earlier work and the current analyses. The results described herein represent an extension to a new reactor design not included in the earlier work, and spent fuel samples with enrichment as high as 3.9 wt % {sup 235}U. Results for the current work are found to be, for the most part, consistent with the findings of the earlier work. This consistency was observed for results obtained from each of two different cross-section libraries and suggests that the estimated biases determined for

  8. A Study on the Conceptual Design of a 1,500 MWe Passive PWR with Annular Fuel

    SciTech Connect

    Kwi Lim Lee; Soon Heung Chang

    2004-07-01

    In this study, the preliminary conceptual design of a 1500 MWe pressurized water reactor (PWR) with annular fuel has been performed. This design is derived from the AP1000 which is a 1000 MWe PWR with two-loop. However, the present design is a 1500 MWe PWR with three-loop, passive safety features and extensive plant simplifications to enhance the construction, operation, and maintenance. The preliminary design parameters of this reactor have been determined through simple relation to those of AP1000 for reactor, reactor coolant system, and passive safety injection system. Using the MATRA code, we analyze the core designs for two alternatives on fuel assembly types: solid fuel and annular fuel. The performance of reactor cooling systems is evaluated through the accident of the cold leg break in the core makeup tank loop by using MARS2.1 code. This study presents the developmental strategy, preliminary design parameters and safety analysis results. (authors)

  9. Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel

    SciTech Connect

    McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

    1989-02-01

    A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

  10. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  11. Modelling of molten fuel/concrete interactions. [PWR; BWR

    SciTech Connect

    Muir, J. F.; Benjamin, A. S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data.

  12. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGESBeta

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; Wang, Jy-An John

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  13. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  14. Modeling and design of a reload PWR core for a 48-month fuel cycle

    SciTech Connect

    McMahon, M.V.; Driscoll, M.J.; Todreas, N.E.

    1997-05-01

    The objective of this research was to use state-of-the-art nuclear and fuel performance packages to evaluate the feasibility and costs of a 48 calendar month core in existing pressurized water reactor (PWR) designs, considering the full range of practical design and economic considerations. The driving force behind this research is the desire to make nuclear power more economically competitive with fossil fuel options by expanding the scope for achievement of higher capacity factors. Using CASMO/SIMULATE, a core design with fuel enriched to 7{sup w}/{sub o} U{sup 235} for a single batch loaded, 48-month fuel cycle has been developed. This core achieves an ultra-long cycle length without exceeding current fuel burnup limits. The design uses two different types of burnable poisons. Gadolinium in the form of gadolinium oxide (Gd{sub 2}O{sub 3}) mixed with the UO{sub 2} of selected pins is sued to hold down initial reactivity and to control flux peaking throughout the life of the core. A zirconium di-boride (ZrB{sub 2}) integral fuel burnable absorber (IFBA) coating on the Gd{sub 2}O{sub 3}-UO{sub 2} fuel pellets is added to reduce the critical soluble boron concentration in the reactor coolant to within acceptable limits. Fuel performance issues of concern to this design are also outlined and areas which will require further research are highlighted.

  15. Monte Carlo characterization of PWR spent fuel assemblies to determine the detectability of pin diversion

    NASA Astrophysics Data System (ADS)

    Burdo, James S.

    This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the

  16. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  17. UO 2/Zry-4 chemical interaction layers for intact and leak PWR fuel rods

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae

    2010-09-01

    In this study, the UO 2 pellet-Zry-4 cladding interfaces of intact and leak PWR fuel rods were examined with the help of an optical microscope and a scanning electron microscope to investigate typical chemical interaction layers formed at the pellet-cladding interface during the normal reactor operations. The two intact and two leak fuel rods with the burnup of between 35,000 and 53,000 MWD/MTU were selected to evaluate the effects of gap-gas compositions and fuel burnup on the chemical interaction layer formation. Based on the optical and scanning electron micrographs, it is found that the intact fuel rod generates apparently one interaction layer of (U,Zr)O 2-x at the interface, whereas the leak fuel rod generates apparently two interaction layers of ZrO 2-x and (U,Zr)O 2-x. These interaction layers for the intact and leak fuel rods were predicted by several diffusion paths drawn on a U-Zr-O ternary phase diagram. The variations of chemical element compositions around the interface of one intact rod were generated by an electron probe micro-analyzer to confirm the interaction layers at the pellet-cladding interface. The interaction layer growth rates of the ZrO 2-x and (U,Zr)O 2-x phases were estimated, using the layer thicknesses and the reaction times.

  18. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    NASA Astrophysics Data System (ADS)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  19. Remote Gamma Scanning System for Characterization of BWR and PWR Fuel Rod Sections

    SciTech Connect

    Crowell, Shannon L.; Alzheimer, James M.

    2011-08-08

    Sometimes challenges with the design and deployment of automated equipment in remote environments deals more with the constraints imposed by the remote environment than it does with the details of the automation. This paper discusses the development of a scanning system used to provide gamma radiation profiles of irradiated fuel rod segments. The system needed the capability to provide axial scans of cut segments of BWR and PWR fuel rods. The scanning location is A-Cell at the Radiochemical Processing Laboratory (RPL) at the Hanford site in Washington State. The criteria for the scanning equipment included axial scanning increments of a tenth of an inch or less, ability to scan fuel rods with diameters ranging from 3/8 inch to 5/8 inch in diameter, and fuel rod segments up to seven feet in length. Constraints imposed by the environment included having the gamma detector and operator controls on the outside of the hot cell and the scanning hardware on the inside of the hot cell. This entailed getting a narrow, collimated beam of radiation from the fuel rod to the detector on the outside of the hot cell while minimizing the radiation exposure caused by openings for the wires and cables traversing the hot cell walls. Setup and operation of all of the in-cell hardware needed to accommodate limited access ports and use of hot cell manipulators. The radiation levels inside the cell also imposed constraints on the materials used.

  20. Analysis of MERCI decay heat measurement for PWR UO{sub 2} fuel rod

    SciTech Connect

    Jaboulay, J.C.; Bourganel, S.

    2012-01-15

    Decay heat measurements, called the MERCI experiment, were conducted at Commissariat a l'Energie Atomique (CEA)/Saclay to characterize accurately residual power at short cooling time and verify its prediction by decay code and nuclear data. The MOSAIC calorimeter, developed and patented by CEA/Grenoble (DTN/SE2T), enables measurement of the decay heat released by a pressurized water reactor (PWR) fuel rod sample between 200 and 4 W within a precision of 1%. The MERCI experiment included three phases. At first, a UO{sub 2} fuel rod sample was irradiated in the CEA/Saclay experimental reactor OSIRIS. The burnup achieved at the end of irradiation was similar to 3.5 GWd/tonne. The second phase was the transfer of the fuel rod sample from its irradiation location to a hot cell, to be inserted inside the MOSAIC calorimeter. It took 26 min to carry out the transfer. Finally, decay heat released by the PWR sample was measured from 27 min to 42 days after shutdown. Post irradiation examinations were performed to measure concentrations of some heavy nuclei (U, Pu) and fission products (Cs, Nd). The decay heat was predicted using a calculation scheme based on the PEPIN2 depletion code, the TRIPOLI-4 Monte Carlo code, and the JEFF3.1.1 nuclear data file. The MERCI experiment analysis shows that the discrepancy between the calculated and the experimental decay heat values is included between -10% at 27 min and +6% at 12 h, 30 min otter shutdown. From 4 up to 42 days of cooling time, the difference between calculation and measurement is about ± 1%, i.e., experimental uncertainty. The MERCI experiment represents a significant contribution for code validation; the time range above 10{sup 5} s has not been validated previously. (authors)

  1. Performance Spec. for Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shipping Port Spent Fuel Canisters

    SciTech Connect

    JOHNSON, D.M.

    2000-03-14

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders.

  2. Development of the ACP safeguards neutron counter for PWR spent fuel rods

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Menlove, Howard O.; Lee, Sang-Yoon; Kim, Ho-Dong

    2008-04-01

    An advanced neutron multiplicity counter has been developed for measuring spent fuel in the Advanced spent fuel Conditioning Process (ACP) at the Korea Atomic Energy Research Institute (KAERI). The counter uses passive neutron multiplicity counting to measure the 244Cm content in spent fuel. The input to the ACP process is spent fuel from pressurized water reactors (PWRs), and the high intensity of the gamma-ray exposure from spent fuel requires a careful design of the counter to measure the neutrons without gamma-ray interference. The nuclear safeguards for the ACP facility requires the measurement of the spent fuel input to the process and the Cm/Pu ratio for the plutonium mass accounting. This paper describes the first neutron counter that has been used to measure the neutron multiplicity distribution from spent fuel rods. Using multiple samples of PWR spent fuel rod-cuts, the singles (S), doubles (D), and triples (T) rates of the neutron distribution for the 244Cm nuclide were measured and calibration curves were produced. MCNPX code simulations were also performed to obtain the three counting rates and to compare them with the measurement results. The neutron source term was evaluated by using the ORIGEN-ARP code. The results showed systematic difference of 21-24% in the calibration graphs between the measured and simulation results. A possible source of the difference is that the burnup codes have a 244Cm uncertainty greater than ±15% and it would be systematic for all of the calibration samples. The S/D and D/T ratios are almost constant with an increment of the 244Cm mass, and this indicates that the bias is in the 244Cm neutron source calculation using the ORIGEN-ARP source code. The graphs of S/D and D/T ratios show excellent agreement between measurement and MCNPX simulation results.

  3. Code System to Calculate Cross Sections for PWR Fuel Assembly Calculations.

    1994-11-15

    Version 00 The MARIA System calculates cross sections for PWR fuel assembly calculations. It generates the cross sections library for the diffusion calculations with burnup and feedback effects (CARMEN System, NEA 0649 and RSIC CCC-487) and the k(infinite) and M**2 parameters for the nodal calculations (SIMULA, NEA 0768). MARIA includes three modules. PRELIM generates the input data for the fuel assembly calculation module, for all fuel assembly types in the core and at any conditionmore » of power rate and temperature. WIMS-TRACA is a modified version of the fuel assembly calculation program WIMS-D/4 (NEA 0329 and RSIC CCC-576), which generates the collapsed cross sections versus burn up needed by the CARMEN code (reference cell, boron, xenon, samarium, and light water). POSWIM calculates the transport corrections to the diffusion constant of the absorber materials generated by WIMS-TRACA, to be used directly in the diffusion code when rods or burnable absorber rods are present.« less

  4. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  5. Validation of the scale system for PWR spent fuel isotopic composition analyses

    SciTech Connect

    Hermann, O.W.; Bowman, S.M.; Parks, C.V.; Brady, M.C.

    1995-03-01

    The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic composition by the SCALE system depletion analysis was assessed using data presented in the report. Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2, and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of predicted and measured concentrations for 14 actinides and 37 fission and activation products. The basic method by which the SAS2H control module applies the neutron transport treatment and point-depletion methods of SCALE functional modules (XSDRNPM-S, NITAWL-II, BONAMI, and ORIGEN-S) is described in the report. Also, the reactor fuel design data, the operating histories, and the isotopic measurements for all cases are included in detail. The underlying radiochemical assays were conducted by the Materials Characterization. Center at Pacific Northwest Laboratory as part of the Approved Testing Material program and by four different laboratories in Europe on samples processed at the Karlsruhe Reprocessing Plant.

  6. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    SciTech Connect

    Wagner, J.C.; Parks, C.V.

    2000-09-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of

  7. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  8. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect

    Bi, G.; Liu, C.; Si, S.

    2012-07-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no

  9. Modern Fuel Cladding in Demanding Operation - ZIRLO in Full Life High Lithium PWR Coolant

    SciTech Connect

    Kargol, Kenneth; Stevens, Jim; Bosma, John; Iyer, Jayashri; Wikmark, Gunnar

    2007-07-01

    There is an increasing demand to optimize the PWR water chemistry in order to minimize activity build-up in the plants and to avoid CIPS and other fuel related issues. Operation with a constant pH between 7.2 and 7.4 is generally considered an important part in achieving the optimized water chemistry. The extended long cycles currently used in most of the U.S. PWRs implies that the lithium concentration at BOC will be outside the general operating experience with such a coolant chemistry regime. With the purpose to extend the experience of high lithium coolant operation, such water chemistry has been used in a few PWRs, i.e. CPSES Unit 2 and Diablo Canyon Units 1 and 2, all with ZIRLO{sup TM} cladding. Operation with a lithium concentration up to 4.2 ppm does not show any impact of the elevated lithium, while operation with up to 6 ppm possibly produce some limited corrosion acceleration in the region of sub-nucleate boiling but has no detrimental impact under the conditions limited by current operating experience. (authors)

  10. PWR core and spent fuel pool analysis using scale and nestle

    SciTech Connect

    Murphy, J. E.; Maldonado, G. I.; St Clair, R.; Orr, D.

    2012-07-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  11. Benchmark of SCALE (SAS2H) isotopic predictions of depletion analyses for San Onofre PWR MOX fuel

    SciTech Connect

    Hermann, O.W.

    2000-02-01

    The isotopic composition of mixed-oxide (MOX) fuel, fabricated with both uranium and plutonium, after discharge from reactors is of significant interest to the Fissile Materials Disposition Program. The validation of the SCALE (SAS2H) depletion code for use in the prediction of isotopic compositions of MOX fuel, similar to previous validation studies on uranium-only fueled reactors, has corresponding significance. The EEI-Westinghouse Plutonium Recycle Demonstration Program examined the use of MOX fuel in the San Onofre PWR, Unit 1, during cycles 2 and 3. Isotopic analyses of the MOX spent fuel were conducted on 13 actinides and {sup 148}Nd by either mass or alpha spectrometry. Six fuel pellet samples were taken from four different fuel pins of an irradiated MOX assembly. The measured actinide inventories from those samples has been used to benchmark SAS2H for MOX fuel applications. The average percentage differences in the code results compared with the measurement were {minus}0.9% for {sup 235}U and 5.2% for {sup 239}Pu. The differences for most of the isotopes were significantly larger than in the cases for uranium-only fueled reactors. In general, comparisons of code results with alpha spectrometer data had extreme differences, although the differences in the calculations compared with mass spectrometer analyses were not extremely larger than that of uranium-only fueled reactors. This benchmark study should be useful in estimating uncertainties of inventory, criticality and dose calculations of MOX spent fuel.

  12. Spent fuel dry storage technology development: thermal evaluation of isolated drywells containing spent fuel (1 kW PWR spent fuel assembly)

    SciTech Connect

    Unterzuber, R; Wright, J B

    1980-09-01

    A spent fuel Isolated Drywell Test was conducted at the Engine-Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site. Two PWR spent fuel assemblies having a decay heat level of approximately 1.1 kW were encapsulated inside the E-MAD Hot Bay and placed in instrumented near-surface drywell storage cells. Temperatures from the two isolated drywells and the adjacent soil have been recorded throughout the 19 month Isolated Drywell Test. Canister and drywell liner temperatures reached their peak values (254{sup 0}F and 203{sup 0}F, respectively) during August 1979. Thereafter, all temperatures decreased and showed a cycling pattern which responded to seasonal atmospheric temperature changes. A computer model was utilized to predict the thermal response of the drywell. Computer predictions of the drywell temperatures and the temperatures of the surrounding soil are presented and show good agreement with the test data.

  13. Evaluation of storing Shippingport Core II spent blanket fuel assemblies in the T Plant PWR Core II fuel pool without active cooling

    SciTech Connect

    Gilbert, E.R.; Lanning, D.D.; Dana, C.M.; Hedengren, D.C.

    1994-10-01

    PWR Core II fuel pool chiller-off test was conducted because it appeared possible that acceptable pool-water temperatures could be maintained without operating the chillers, thus saving hundreds of thousands of dollars in maintenance and replacement costs. Test results showed that the water-cooling capability is no longer needed to maintain pool temperature below 38{degrees}C (100{degrees}F).

  14. Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit

    SciTech Connect

    Wagner, John C.; Sanders, Charlotta E.

    2002-08-15

    The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommendation eliminates a large portion of the currently discharged SNF from loading in burnup credit casks and thus severely limits the practical usefulness of burnup credit. Therefore, data are needed to support the extension of burnup credit to additional SNF. This research investigates the effect of various fixed absorbers, including integral burnable absorbers, burnable poison rods, control rods, and axial power shaping rods, on the reactivity of PWR SNF. Trends in reactivity with relevant parameters (e.g., initial fuel enrichment, burnup and absorber type, exposure, and design) are established, and anticipated reactivity effects are quantified. Where appropriate, recommendations are offered for addressing the reactivity effects of the fixed absorbers in burnup-credit safety analyses.

  15. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    SciTech Connect

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria

  16. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as

  17. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  18. Scoping design analyses for optimized shipping casks containing 1-, 2-, 3-, 5-, 7-, or 10-year-old PWR spent fuel

    SciTech Connect

    Bucholz, J.A.

    1983-01-01

    This report details many of the interrelated considerations involved in optimizing large Pb, Fe, or U-metal spent fuel shipping casks containing 1, 2, 3, 5, 7, or 10-year-old PWR fuel assemblies. Scoping analyses based on criticality, shielding, and heat transfer considerations indicate that some casks may be able to hold as many as 18 to 21 ten-year-old PWR fuel assemblies. In the criticality section, a new type of inherently subcritical fuel assembly separator is described which uses hollow, borated stainless-steel tubes in the wall-forming structure between the assemblies. In another section, details of many n/..gamma.. shielding optimization studies are presented, including the optimal n/..gamma.. design points and the actual shielding requirements for each type of cask as a function of the age of the spent fuel and the number of assemblies in the cask. Multigroup source terms based on ORIGEN2 calculations at these and other decay times are also included. Lastly, the numerical methods and experimental correlations used in the steady-state and transient heat transfer analyses are fully documented, as are pertinent aspects of the SCOPE code for Shipping Cask Optimization and Parametric Evaluation. (While only casks for square, intact PWR fuel assemblies were considered in this study, the SCOPE code may also be used to design and analyze casks containing canistered spent fuel or other waste material. An abbreviated input data guide is included as an appendix).

  19. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  20. Combined numerical and experimental investigations of local hydrodynamics and coolant flow mass transfer in Kvadrat-type fuel assemblies of PWR reactors with mixing grids

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Samoilov, O. B.; Khrobostov, A. E.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Sorokin, V. D.

    2014-08-01

    Results of research works on studying local hydrodynamics and mass transfer for coolant flow in the characteristic zones of PWR reactor fuel assemblies in case of using belts of mixing spacer grids are presented. The investigations were carried out on an aerodynamic rig using the admixture diffusion method (the tracer-gas method). Certain specific features pertinent to coolant flow in the fuel rod bundles of Kvadrat-type fuel assemblies were revealed during the experiments. The obtained study results were included in the database for verifying computation fluid dynamics computer codes and detailed cell-wise calculations of reactor cores with Kvadrat-type fuel assemblies. The obtained results can also be used for more exact determination of local coolant flow hydrodynamic and mass transfer characteristics in assessing thermal reliability of PWR reactor cores.

  1. Advanced Fabrication Technique and Thermal Performance Prediction of U-Mo/Zr-alloy Dispersion Fuel Pin for High Burnup PWR

    NASA Astrophysics Data System (ADS)

    Suwardi

    2010-06-01

    In recent years, a novel class of zirconium alloys having the melting temperature of 990-1160 K has been developed. Based on novel zirconium matrix alloys, high uranium content fuel pin with U-9Mo has been developed according to capillary impregnation technique. The pin shows it is thermal conductivity ranging from 18 to 22 w/m/K that is comparably higher than UO2 pellet pin. The paper presents the met-met fabrication and thermal performance analysis of the fuel in typical PWR. The fabrication consists of mixing UO2 powder or granules and a novel Zr-alloy powder having low melting point, filling the mixture in a cladding tube that one of its end has been plugged, heating the pin to above melting temperature of Zr-alloy for an hour, natural cooling and heat treating at 300 K for 1/2 hr. The thermal analysis takes into account the pore and temperature distribution and high burn up effect to pellet conductivity. The thermal diffusivity ratio of novel to conventional fuel has been used as correction factor for the novel fuel conductivity. The results show a significant lowering pellet temperature along the radius until 1000 K at the hottest position. The analysis underestimates since the gap conductivity has been treated as decreased by 2% fission gas released that is not real since the use of lower temperature, and also decreasing thermal conductivity by porosity formation will much lower. The analysis shows that the novel fuel has very good thermal properties which able to pass the barrier of 65 MWD/kg-U, the limit to day commercial fuel. The burn-up extension means fewer fresh fuel is needed to produce electricity, preserve natural uranium resource, easier fuel handling operational per energy produced

  2. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect

    Lau, C. W.; Demaziere, C.; Nylen, H.; Sandberg, U.

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  3. Summary report on optimized designs for shipping casks containing 2-, 3-, 5-, 7-, or 10-year-old PWR spent fuel

    SciTech Connect

    Bucholz, J.A.

    1983-04-01

    The purpose of this study was to develop new conceptual designs for large Pb, Fe, and U-shielded spent fuel casks which have been optimized for the shipment of 2-, 3-, 5-, 7-, or 10-year-old PWR spent fuel assemblies. Design specifications for about 100 cases of potential interest are presented along with a brief 20-page synopsis of the associated analyses. Optimized shielding requirements are presented for each type of cask as a function of the age of the spent fuel and the number of assemblies in the cask. With respect to criticality, a new type of inherently subcritical fuel assembly separator is described which uses hollow, borated stainless-steel tubes in the wall-forming structure between the assemblies. Steady-state and transient heat transfer analyses for casks under nominal and accident conditions were performed using the SCOPE code for Shipping Cask Optimization and Parametric Evaluation. Based on criticality, shielding, and heat transfer considerations, it appears that optimized cask designs could be developed to carry 15 to 18 five-year-old PWR fuel assemblies or as many as 18 to 21 ten-year-old PWR fuel assemblies. 4 figures, 4 tables.

  4. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  5. Development of modified MDA (M-MDA), PWR fuel cladding tube for high duty operation in future

    SciTech Connect

    Watanabe, Seiichi; Kido, Toshiya; Arakawa, Yasushi

    2007-07-01

    A new cladding material of M-MDA has been developed in order to prepare for a strong growing demand for advanced fuel which can maintain its integrity even under high duties due to more efficient operation such as higher burnup, higher LHR, and longer operation cycle which will contribute the suppression of environmental burdens like CO{sub 2} emission. The main aim of M-MDA is to have excellent corrosion resistance while the other properties are inherited from MDA, which has been adopted to the step 2 fuel, instead of Zry-4, of Japanese PWR plant whose upper limit of assembly discharged burnup is 55 MWd/kgU. And we could confirm that the main aim of M-MDA was achieved by means of out-of-pile tests. In order to confirm improvement of corrosion resistance of M-MDA in the actual operation, irradiation test of M-MDA in the commercial reactor of Vandellos II is ongoing. The latest results of on-site examination after every end of cycle showed that oxide thickness of M-MDA-SR was much smaller than that of MDA at rod discharged burnup of approximately 60 MWd/kgU. The final irradiation cycle was completed on April 2007 and then we will obtain corrosion data of M-MDA over 70 MWd/kgU. M-MDA is a candidate alloy for advanced fuel under higher duty usage. (authors)

  6. Non-Invasive Characterization of Burnup for PWR Spent Fuel Rods with Burnups > 80 GWd/t

    SciTech Connect

    Caruso, S.; Murphy, M.; Jatuff, F.; Chawla, R.

    2006-07-01

    High-resolution gamma spectroscopy has been employed for the measurement of {sup 134}Cs/{sup 137}Cs, {sup 154}Eu/{sup 137}Cs and {sup 134}Cs/{sup 154}Eu gamma intensity ratios from spent fuel with the purpose of deriving pin-averaged single-ratio burnup indicators for high and ultra-high burnups. Two UO{sub 2} pressurised water reactor (PWR) fuel rod segments with record burnup levels >80 GWd/t have been experimentally characterised. Additionally, pin cell depletion calculations have been performed for each sample with the deterministic code CASMO-4, using both its JEF2.2- and its ENDF/B-IV-based libraries, for three different descriptions of the fuel rod irradiation histories, in order to test the sensitivity of the results to neutron cross sections and to the depletion model employed. Measured and calculated ratios have then been compared. It is shown that the {sup 134}Cs/{sup 137}Cs ratio, frequently used as burnup monitor, is considerably less accurate for values exceeding 50 GWd/t; discrepancies of up to {approx}25% are found between measured and calculated values. The ratios built with the {sup 154}Eu concentration show much larger discrepancies, essentially because this isotope is rather poorly predicted as revealed by the use of different basic cross section data. (authors)

  7. In-plant test and evaluation of the neutron collar for verification of PWR fuel assemblies at Resende, Brazil

    SciTech Connect

    Menlove, H.O.; Marzo, M.A.S.; de Almeida, S.G.; de Almeida, M.C.; Moitta, L.P.M.; Conti, L.F.; de Paiva, J.R.T.

    1985-11-01

    The neutron-coincidence collar has been evaluated for the measurement of pressurized-water reactor (PWR) fuel assemblies at the Fabrica de Elementos Combustiveis plant in Resende, Brazil. This evaluation was part of the cooperative-bilateral-safeguards technical-exchange program between the United States and Brazil. The neutron collar measures the STVU content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The STYU content is measured in the passive mode without the AmLi neutron-interrogation source. The extended evaluation took place over a period of 6 months with both scanning and single-zone measurements. The results of the tests gave a coincidence-response standard deviation of 0.7% (sigma = 1.49% for mass) for the active case and 2.5% for the passive case in 1000-s measurement times. The length measurement in the scanning mode was accurate to 0.77%. The accuracies of different calibration methods were evaluated and compared.

  8. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  9. Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety

    SciTech Connect

    DeHart, M.D.

    1999-08-01

    Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models.

  10. Development of a Safeguards Verification Method and Instrument to Detect Pin Diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies Phase I Study

    SciTech Connect

    Ham, Y S; Sitaraman, S

    2008-12-24

    A novel methodology to detect diversion of spent fuel from Pressurized Water Reactors (PWR) has been developed in order to address a long unsolved safeguards verification problem for international safeguards community such as International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed fuel assembly. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the assembly will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers. Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR spent fuel assemblies were performed and validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology developed promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the detection threshold of 50% missing pins from a spent fuel assembly, a threshold defined by the IAEA Safeguards Criteria. The methodology does not rely on any operator provided data like burnup or cooling time and does not require movement of the fuel assembly from the storage rack in the spent fuel pool. A concept was developed to build a practical field device, Partial Defect Detector (PDET), which will be completely portable and will use standard radiation measuring devices already in use at the IAEA. The use of the device will not require any information provided

  11. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    SciTech Connect

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.

    2012-06-19

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd

  12. Surveillance of PLUS7{sup TM} fuel for PWR nuclear power plant

    SciTech Connect

    Jang, Y. K.; Kim, J. I.; Shin, J. C.; Chung, J. G.; Chung, S. K.; Kim, M. S.; Lee, T. H.; Yoon, Y. B.; Kim, T. W.

    2012-07-01

    The surveillance program on the advanced nuclear fuel of PLUS{sup TM} developed for Optimized Power Reactors of 1000 MWe (OPR1000s) and Advanced Power Reactors of 1400 MWe (APR1400s) in Korea was completed in the early of 2011. This fuel had been jointly developed through the extensive out-of-pile tests with Westinghouse for three years since 1999. The irradiation tests for the in-reactor verification using four lead test assemblies (LTAs) had been started in Ulchin unit 3 in 2002. During the overhaul period after each irradiation test, the eight (8) burnup-dependent parameters were measured without disassembling using the precise measurement systems in pool-side. After three cycle irradiations, one test assembly was disassembled and the rod-wise inspection on twenty rods was performed. During this stage, five (5) parameters were measured and evaluated. Among these twenty rods, ten rods including skeleton were sent to hot-cell test facility for further detailed examination and are currently being examined. After in-reactor verifications during two cycles, this fuel was commercially supplied to eight (8) OPR1000s sequentially. Currently all eight (8) OPR1000s were replaced with this fuel. In addition, this fuel is going to be supplied to four (4) APR1400s being constructed in Braka, UAE as well as four(4) OPR1000s and four(4) APR1400s being constructed in Korea. In the meanwhile, the surveillance program for the commercially supplied fuel has been launched to confirm growth, creep, corrosion and deformation, etc. obtained during LTA irradiation. Four (4) limiting fuel assemblies, that is, two (2) assemblies to be discharged after 2 cycle irradiations and the other two (2) after 3 cycle irradiations were selected for this surveillance program. Irradiation data of commercially supplied fuels are compared and confirmed to LTA irradiation performance behaviors on this paper. Among the eight (8) burnup-dependent parameters, the interesting ones were irradiation

  13. Experimental Test Plan for PWR Sister Rods in the High Burnup Spent Fuel Data Project

    SciTech Connect

    Montgomery, Rose; Scaglione, John M; Bevard, Bruce Balkcom; Hanson, Brady; Billone, Dr. Michael

    2016-01-01

    The High Burnup Spent Fuel Data project pulled 25 sister rods (9 from the project assemblies and 16 from similar HBU assemblies) for characterization. The 25 sister rods are all high burnup and cover the range of modern domestic cladding alloys. The 25 sister rods were shipped to Oak Ridge National Laboratory (ORNL) in early 2016 for detailed non-destructive and destructive examination. Examinations are intended to provide baseline data on the initial physical state of the cladding and fuel prior to the loading, drying, and long-term dry storage process. Further examinations are focused on determining the effects of temperatures encountered during and following drying. Similar tests will be performed on rods taken from the project assemblies at the end of their long-term storage in a TN-32 dry storage cask (the cask rods ) to identify any significant changes in the fuel rods that may have occurred during the dry storage period. Additionally, some of the sister rods will be used for separate effects testing to expand the applicability of the project data to the fleet, and to address some of the data-related gaps associated with extended storage and subsequent transportation of high burnup fuel. A draft test plan is being developed that describes the experimental work to be conducted on the sister rods. This paper summarizes the draft test plan and necessary coordination activities for the multi-year experimental program to supply data relevant to the assessment of the safety of long-term storage followed by transportation of high burnup spent fuel.

  14. A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods

    NASA Astrophysics Data System (ADS)

    Walter, Daniel John

    Corrosion products on the fuel cladding surfaces within pressurized water reactor fuel assemblies have had a significant impact on reactor operation. These types of deposits are referred to as CRUD and can lead to power shifts, as a consequence of the accumulation of solid boron phases on the fuel rod surfaces. Corrosion deposits can also lead to fuel failure resulting from localized corrosion, where the increased thermal resistance of the deposit leads to higher cladding temperatures. The prediction of these occurrences requires a comprehensive model of local thermal hydraulic and chemical processes occurring in close proximity to the cladding surface, as well as their driving factors. Such factors include the rod power distribution, coolant corrosion product concentration, as well as the feedbacks between heat transfer, fluid dynamics, chemistry, and neutronics. To correctly capture the coupled physics and corresponding feedbacks, a high fidelity framework is developed that predicts three-dimensional CRUD deposition on a rod-by-rod basis. Multiphysics boundary conditions resulting from the coupling of heat transfer, fluid dynamics, coolant chemistry, CRUD deposition, neutron transport, and nuclide transmutation inform the CRUD deposition solver. Through systematic parametric sensitivity studies of the CRUD property inputs, coupled boundary conditions, and multiphysics feedback mechanisms, the most important variables of multiphysics CRUD modeling are identified. Moreover, the modeling framework is challenged with a blind comparison of plant data to predictions by a simulation of a sub-assembly within the Seabrook nuclear plant that experienced CRUD induced fuel failures. The physics within the computational framework are loosely coupled via an operator-splitting technique. A control theory approach is adopted to determine the temporal discretization at which to execute a data transfer from one physics to another. The coupled stepsize selection is viewed as a

  15. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  16. Sensitivity and uncertainty analysis of reactivities for UO2 and MOX fueled PWR cells

    NASA Astrophysics Data System (ADS)

    Foad, Basma; Takeda, Toshikazu

    2015-12-01

    The purpose of this paper is to apply our improved method for calculating sensitivities and uncertainties of reactivity responses for UO2 and MOX fueled pressurized water reactor cells. The improved method has been used to calculate sensitivity coefficients relative to infinite dilution cross-sections, where the self-shielding effect is taken into account. Two types of reactivities are considered: Doppler reactivity and coolant void reactivity, for each type of reactivity, the sensitivities are calculated for small and large perturbations. The results have demonstrated that the reactivity responses have larger relative uncertainty than eigenvalue responses. In addition, the uncertainty of coolant void reactivity is much greater than Doppler reactivity especially for large perturbations. The sensitivity coefficients and uncertainties of both reactivities were verified by comparing with SCALE code results using ENDF/B-VII library and good agreements have been found.

  17. Sensitivity and uncertainty analysis of reactivities for UO2 and MOX fueled PWR cells

    SciTech Connect

    Foad, Basma; Takeda, Toshikazu

    2015-12-31

    The purpose of this paper is to apply our improved method for calculating sensitivities and uncertainties of reactivity responses for UO{sub 2} and MOX fueled pressurized water reactor cells. The improved method has been used to calculate sensitivity coefficients relative to infinite dilution cross-sections, where the self-shielding effect is taken into account. Two types of reactivities are considered: Doppler reactivity and coolant void reactivity, for each type of reactivity, the sensitivities are calculated for small and large perturbations. The results have demonstrated that the reactivity responses have larger relative uncertainty than eigenvalue responses. In addition, the uncertainty of coolant void reactivity is much greater than Doppler reactivity especially for large perturbations. The sensitivity coefficients and uncertainties of both reactivities were verified by comparing with SCALE code results using ENDF/B-VII library and good agreements have been found.

  18. Reactivity and isotopic composition of spent PWR (pressurized-water-reactor) fuel as a function of initial enrichment, burnup, and cooling time

    SciTech Connect

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub infinity/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub infinity/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub infinity/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs.

  19. Quantification of Uncertainties due to 235,238U, 239,240,241Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly

    NASA Astrophysics Data System (ADS)

    da Cruz, D. F.; Rochman, D.; Koning, A. J.

    2014-04-01

    Uncertainty analysis on reactivity and discharged inventory for a typical PWR fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. The Total Monte-Carlo (TMC) method was applied using the deterministic transport code DRAGON. The nuclear data used in this study is from the JEFF-3.1 evaluations, with the exception of the nuclear data files for U, Pu and fission products isotopes, which are taken from the nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as result of uncertainties in nuclear data of the considered isotopes) is virtually independent on fuel burnp and amounts to 700 pcm. The uncertainties in inventory of the discharged fuel is dependent on the element considered and lies in the range 1-15% for most fission products, and is below 5% for the most important actinides.

  20. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  1. Development of self-interrogation neutron resonance densitometry (SINRD) to measure U-235 and Pu-239 content in a PWR spent fuel assembly

    SciTech Connect

    Lafleur, Adrienne M; Charlton, William S; Menlove, Howard O; Swinhoe, Martyn T

    2009-01-01

    The use of Self-Interrogation Neutron Resonance Densitometry (SINRD) to measure the {sup 235}U and {sup 239}Pu content in a PWR spent fuel assembly was investigated via Monte Carlo N-Particle eXtended transport code (MCNPX) simulations. The sensitivity of SINRD is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n, f) reaction peaks in fission chamber. These simulations utilize the {sup 244}Cm spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be measured using {sup 235}U and {sup 239}Pu fission chambers placed adjacent to the assembly. We used ratios of different fission chambers to reduce the sensitivity of the measurements to extraneous material present in fuel. The development of SINRD to measure the fissile content in spent fuel is of great importance to the improvement of nuclear safeguards and material accountability. Future work includes the use of this technique to measure the fissile content in FBR spent fuel and heavy metal product from reprocessing methods.

  2. Experimental evidence of oxygen thermo-migration in PWR UO2 fuels during power ramps using in-situ oxido-reduction indicators

    NASA Astrophysics Data System (ADS)

    Riglet-Martial, Ch.; Sercombe, J.; Lamontagne, J.; Noirot, J.; Roure, I.; Blay, T.; Desgranges, L.

    2016-11-01

    The present study describes the in-situ electrochemical modifications which affect irradiated PWR UO2 fuels in the course of a power ramp, by means of in-situ oxido-reduction indicators such as chromium or neo-formed chemical phases. It is shown that irradiated fuels (of nominal stoichiometry close to 2.000) under temperature gradient such as that occurring during high power transients are submitted to strong oxido-reduction perturbations, owing to radial migration of oxygen from the hot center to the cold periphery of the pellet. The oxygen redistribution, similar to that encountered in Sodium Fast Reactors fuels, induces a massive reduction/precipitation of the fission products Mo, Ru, Tc and Cr (if present) in the high temperature pellet section and the formation of highly oxidized neo-formed grey phases of U4O9 type in its cold section, of lower temperature. The parameters governing the oxidation states of UO2 fuels under power ramps are finally debated from a cross-analysis of our results and other published information. The potential chemical benefits brought by oxido-reductive additives in UO2 fuel such as chromium oxide, in connection with their oxygen buffering properties, are discussed.

  3. A Statistical Approach to Predict the Failure Enthalpy and Reliability of Irradiated PWR Fuel Rods During Reactivity-Initiated Accidents

    SciTech Connect

    Nam, Cheol; Jeong, Yong-Hwan; Jung, Youn-Ho

    2001-11-15

    During the last decade, the failure behavior of high-burnup fuel rods under a reactivity-initiated accident (RIA) condition has been a serious concern since fuel rod failures at low enthalpy have been observed. This has resulted in the reassessment of existing licensing criteria and failure-mode study. To address the issue, a statistics-based methodology is suggested to predict failure probability of irradiated fuel rods under an RIA. Based on RIA simulation results in the literature, a failure enthalpy correlation for an irradiated fuel rod is constructed as a function of oxide thickness, fuel burnup, and pulse width. Using the failure enthalpy correlation, a new concept of ''equivalent enthalpy'' is introduced to reflect the effects of the three primary factors as well as peak fuel enthalpy into a single damage parameter. Moreover, the failure distribution function with equivalent enthalpy is derived, applying a two-parameter Weibull statistical model. Finally, the sensitivity analysis is carried out to estimate the effects of burnup, corrosion, peak fuel enthalpy, pulse width, and cladding materials used.

  4. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    SciTech Connect

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degree}C and whether the cladding of the stored spent fuel ever exceeds 350{degree}C. Limiting the borehole to temperatures of 97{degree}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degree}C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degree}C for the full 1000-yr analysis period.

  5. One- and two-dimensional STEALTH simulations of fuel-pin transient response. Final report. [BWR; PWR

    SciTech Connect

    Wahi, K.K.

    1980-08-01

    This report presents an assessment of the adaptability of EPRI's one- and two-dimensional STEALTH computer codes to perform transient fuel rod analysis. The ability of the STEALTH code to simulate transient mechanical or thermomechanical loss-of-coolant accident is described. Analytic models of one- and two-dimensional formulations and features included in the two-dimensional simulation are discussed.

  6. In-field Calibration of a Fast Neutron Collar for the Measurement of Fresh PWR Fuel Assemblies

    SciTech Connect

    Swinhoe, Martyn Thomas; De Baere, Paul

    2015-04-17

    A new neutron collar has been designed for the measurement of fresh LEU fuel assemblies. This collar uses “fast mode” measurement to reduce the effect of burnable poison rods on the assay and thus reduce the dependence on the operator’s declaration. The new collar design reduces effect of poison rods considerably. Instead of 12 pins of 5.2% Gd causing a 20.4% effect, as in the standard thermal mode collar, they only cause a 3.2% effect in the new collar. However it has higher efficiency so that reasonably precise measurements can be made in 25 minutes, rather than the 1 hour of previous collars. The new collar is fully compatible with the use of the standard data collection and analysis code INCC. This report describes the calibration that was made with a mock-up assembly at Los Alamos National Laboratory and with actual assemblies at the AREVA Fuel fabrication Plant in Lingen, Germany.

  7. Prevention and cure of diseased fuel rod simulators, from conception to death, by timely and proper inspection. [PWR

    SciTech Connect

    Snyder, S.D.

    1980-01-01

    The major inspection methods - electrical, radiographic, and infrared - employed during the development, fabrication, and use of fuel rod simulators are described. Principal emphasis is placed on the infrared scanning inspection system and interpretation of test results. The role of liquid penetrant inspection and helium mass spectrograph testing is mentioned. Correlation and feed-back of information from all inspections during the development and fabrication steps are detailed.

  8. Determining fissile content in PWR spent fuel assemblies using a passive neutron Albedo reactivity with fission chambers technique

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-01-01

    State regulatory bodies and organizations such as the IAEA that are concerned with preventing the proliferation of nuclear weapons are interested in a means of quantifying the amount of plutonium in a given spent fuel assembly. The complexity of spent nuclear fuel makes the measurement of plutonium content challenging. There are a variety of techniques that can measure various properties of spent nuclear fuel including burnup, and mass of fissile content. No single technique can provide all desired information, necessitating an approach using multiple detector systems and types. This paper presents our analysis of the Passive Neutron Albedo Reactivity Fission Chamber (PNAR-FC) detector system. PNAR-FC is a simplified version of the PNAR technique originally developed in 1997. This earlier research was performed with a high efficiency, {sup 3}He-based system (PNAR-3He) with which multiplicty analysis was performed. With the PNAR technique a portion of the spent fuel assembly is wrapped in a 1 mm thick cadmium liner. Neutron count rates are measured both with and without the cadmium liner present. The ratio of the count rate with the cadmium liner to the count rate without the cadmium liner is calculated and called the cadmium ratio. In the PNAR-3He technique, multiplicity measurements were made and the cadmium ratio was shown to scale with the fissile content of the material being measured. PNAR-FC simplifies the PNAR technique by using only a few fission chambers instead of many {sup 3}He tubes. Using a simplified PNAR-FC technique provides for a cheaper, lighter, and thus more portable detector system than was possible with the PNAR-3He system. The challenge with the PNAR-FC system are two-fold: (1) the change in the cadmium ratio is weaker as a afunction of the changing fissile content relative to multiplicity count rates, and (2) the efficiency for the fission chamber based system are poorer than for the {sup 3}He based detectors. In this paper, we present our

  9. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  10. Quantification and local distribution of hydrogen within Zircaloy-4 PWR nuclear fuel cladding tubes at the nuclear microprobe of the Pierre Süe Laboratory from μ-ERDA

    NASA Astrophysics Data System (ADS)

    Raepsaet, C.; Bossis, Ph.; Hamon, D.; Béchade, J. L.; Brachet, J. C.

    2008-05-01

    Hydrogen content and its distribution in in-core materials of nuclear plants are known to have a strong influence on their behaviour, especially on their mechanical properties but also on their corrosion resistance. This point has to be largely investigated in the case of the nuclear fuel cladding (Zr based alloys) of pressurized water reactors (PWR). Two situations have been considered here, with regards to the hydrogen content and its spatial distribution within the thickness of the tubes: Irradiated fuel cladding tubes after a nominal period under working conditions in a PWR core. Non-irradiated fuel cladding previously exposed to conditions representative of an hypothetical "loss of coolant accident" scenario (LOCA). As far as micrometric distributions of H were required, μ-ERDA has been performed at the nuclear microprobe of the Pierre Süe Laboratory. This facility is fitted with two beam lines. In the first one, used for non-active sample analysis, the μ-ERDA configuration has been improved to reduce the limits of detection and the reliability of the results. The second one offers the unique feature of being dedicated to radioactive samples. We will present the nuclear microprobe and emphasize on the μ-ERDA configuration of the two beam lines. We will illustrate the performance of the setup by describing the results obtained for Zircaloy-4 cladding both on non-irradiated and irradiated samples.

  11. FEMAXI-V benchmarking study on peak temperature and fission gas release prediction of PWR rod fuel

    SciTech Connect

    Suwardi; Dewayatna, W.; Briyatmoko, B.

    2012-06-06

    The present paper reports a study of FEMAXI-V code and related report on code benchmarking. Capabilities of the FEMAXI-V code to predict the thermal and fission gas release have been tested on MOX fuels in LWRs which has been done in SCK{center_dot}CEN and Belgonucleaire by using PRIMO MOX rod BD8 irradiation experiment after V Sobolev as reported O. J. Ott. Base irradiation in the BR3 reactor, the BD8 rod was transported to CEA-Saclay for irradiation in the OSIRIS reactor (ramp power excursion). The irradiation device used for the PRIMO ramps was the ISABELLE 1 loop, installed on a movable structure of the core periphery. The power variations were obtained by inwards/backwards movements of the loop in the core water. The preconditioning phase for rod BD8 occurred at a peak power level of 189 W/cm with a hold time of 27 hours. The subsequent power excursion rate amounted to 77 W/ (cm.min), reaching a terminal peak power level of 395 W/cm that lasted for 20 hours.

  12. Simulating the Effect on Criticality of Simultaneous Matrix Degradation and Assembly Collapse for the 21 PWR Waste Package

    SciTech Connect

    A.A. Alsaed

    1999-09-23

    The purpose of this calculation is to evaluate the effects of fission products loss on the reactivity of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) in 21 PWR waste packages (WPs) in the event of simultaneous fuel matrix degradation and assembly collapse.

  13. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods; Revision 1

    SciTech Connect

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degrees}C and whether the cladding of the stored spent fuel ever exceeds 350{degrees}C. Limiting the borehole to temperatures of 97{degrees}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degrees}C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 {times} 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degrees}C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350{degrees}C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft {times} 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40{degrees}C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation.

  14. PWR depressurization analyses

    SciTech Connect

    Brownson, D.A.; Dobbe, C.A.; Knudson, D.L.

    1992-12-31

    Early containment failure resulting from direct containment heating (DCH) has been identified as a potential contributor to the risk of operating a pressurized water reactor (PWR). One important factor needed to evaluate the contribution of DCH to risk is the conditional probability that, given a core melt, the primary system will be at high pressure when the reactor vessel lower head fails. Two mechanisms that could reduce the pressure during a station blackout core melt accident are discussed. First, natural circulation in the reactor coolant system (RCS) could cause a temperature-induced failure of the RCS pressure boundary, which could result in unintentional (without operator action) depressurization. Second, plant operators could open relief valves in an attempt to intentionally depressurize the RCS prior to. lower head failure. Results from analytical studies of these two depressurization mechanisms for select PWRs are presented.

  15. PWR depressurization analyses

    SciTech Connect

    Brownson, D.A.; Dobbe, C.A.; Knudson, D.L.

    1992-01-01

    Early containment failure resulting from direct containment heating (DCH) has been identified as a potential contributor to the risk of operating a pressurized water reactor (PWR). One important factor needed to evaluate the contribution of DCH to risk is the conditional probability that, given a core melt, the primary system will be at high pressure when the reactor vessel lower head fails. Two mechanisms that could reduce the pressure during a station blackout core melt accident are discussed. First, natural circulation in the reactor coolant system (RCS) could cause a temperature-induced failure of the RCS pressure boundary, which could result in unintentional (without operator action) depressurization. Second, plant operators could open relief valves in an attempt to intentionally depressurize the RCS prior to. lower head failure. Results from analytical studies of these two depressurization mechanisms for select PWRs are presented.

  16. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    SciTech Connect

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  17. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  18. A PWR Thorium Pin Cell Burnup Benchmark

    SciTech Connect

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  19. WESTINGHOUSE 17X17 MOX PWR ASSEMBLY - WASTE PACKAGE CRITICALITY ANALYSIS (SCPB: N/A)

    SciTech Connect

    J.W. Davis

    1996-07-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi-Purpose Canister (MPC) PWR waste package concepts. The objectives of this evaluation are to show that the criticality potential of the MOX fuel is equal to or lower than the DBF or, if necessary, indicate what additional measures are required to make it so.

  20. TRU transmutation in thorium-based heterogeneous PWR core

    SciTech Connect

    Bae, Kang-Mok; Lim, Jae-Yong; Kim, Myung-Hyun

    2004-07-01

    A thorium-based seed and blanket design concept for a conventional pressurized light water reactor (PWR) was proposed to enhance the proliferation resistance potential and fuel cycle economics. The KTF core was satisfied with neutronic and thermal-hydraulic design limit of conventional PWR, APR-1400. In order to evaluate transmutation capability of a thorium-based KTF core, U/Zr seed fuel mixed with 10% TRU which come from 1,000 MWe power reactor after 10 years decay was proposed and analyzed by transmutation indices such as D{sub j}, TEX and SR. KTF core showed an extended fuel cycle burnup; average burnup of seed was 79.5 MWd/kgHM and blanket was 94.6 MWd/kgHM. It means that residence time of TRU in the core could be long enough for transmutation when TRU is mixed in seed fuel. The amount of TRU production from conventional PWR could be transmuted in the KTF-TRU core, especially Am-241 isotope is remarkably transmuted by capture reaction. Even isotopes of curium were cumulated in the core during the burnup, however, KTF-TRU core could reduce the TRU in spent fuel by using well-thermalized neutron spectrum. Proliferation resistance potential of thorium based transmutation fuel is slightly increased. About 31% reduction of TRU amount was measured from reduced plutonium production from U-238. Total amount of Am-241 was reduced significantly, but total amount of minor actinide (MA) was reduced by 28% of its initial loading mass. (authors)

  1. PWR Cross Section Libraries for ORIGEN-ARP

    SciTech Connect

    McGraw, Carolyn; Ilas, Germina

    2012-01-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% 235U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time.

  2. Design study of long-life PWR using thorium cycle

    SciTech Connect

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  3. Design study of long-life PWR using thorium cycle

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-01

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that 231Pa better than 237Np as burnable poisons in thorium fuel system. Thorium oxide system with 8% 233U enrichment and 7.6˜ 8% 231Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1% Δk/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53% Δk/k and reduced power peaking during its operation.

  4. RIA Limits Based On Commercial PWR Core Response To RIA

    SciTech Connect

    Beard, Charles L.; Mitchell, David B.; Slagle, William H.

    2006-07-01

    Reactivity insertion accident (RIA) limits have been under intense review by regulators since 1993 with respect to what should be the proper limit as a function of burnup. Some national regulators have imposed new lower limits while in the United States the limits are still under review. The data being evaluated with respect to RIA limits come from specialized test reactors. However, the use of test reactor data needs to be balanced against the response of a commercial PWR core in setting reasonable limits to insure the health and safety of the public without unnecessary restrictions on core design and operation. The energy deposition limits for a RIA were set in the 1970's based on testing in CDC (SPERT), TREAT, PBF and NSRR test reactors. The US limits given in radially averaged enthalpy are 170 cal/gm for fuel cladding failure and 280 cal/gm for coolability. Testing conducted in the 1990's in the CABRI, NSRR and IGR test reactors have demonstrated that the cladding failure threshold is reduced with burnup, with the primary impact due to hydrogen pickup for in-reactor corrosion. Based on a review of this data very low enthalpy limits have been proposed. In reviewing proposed limits from RIL-0401(1) it was observed that much of the data used to anchor the low allowable energy deposition levels was from recent NSRR tests which do not represent commercial PWR reactor conditions. The particular characteristics of the NSRR test compared to commercial PWR reactor characteristics are: - Short pulse width: 4.5 ms vs > 8 ms; - Low temperature conditions: < 100 deg. F vs 532 deg. F. - Low pressure environment: atmospheric vs {approx} 2200 psi. A review of the historical RIA database indicates that some of the key NSRR data used to support the RIL was atypical compared to the overall RIA database. Based on this detailed review of the RIA database and the response of commercial PWR core, the following view points are proposed. - The Failure limit should reflect local fuel

  5. DOSE RATES FOR WESTINGHOUSE 17X17 MOX PWR SNF IN A WASTE PACKAGE (SCPB: N/A)

    SciTech Connect

    T.L. Lotz

    1997-01-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to estimate the dose rate on and near the surface a Multi-Purpose Canister (MPC) PWR waste package (WP) which is loaded with Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel. The 21 PWR MPC WP is used to provide an upper bound for waste package designs since the 12 PWR MPC WP will have a smaller source term and an equivalent amount of shielding. the objectives of this evaluation are to calculate the requested dose rate(s) and document the calculation in a fashion to allow comparisons to other waste forms and WP designs at a future time.

  6. 21-PWR WASTE PACKAGE WITH ABSORBER PLATES LOADING CURVE EVALUATION

    SciTech Connect

    J.M. Scaglione

    2004-12-17

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of spent nuclear fuel into the 21 PWR waste package with absorber plates design as provided in Attachment IV. This calculation is an example of the application of the methodology presented in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent U-235, and a burnup range of 0 through 45 GWd/MTU. Higher burnups were not necessary because 45 GWd/MTU was high enough for the loading curve determination. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing PWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials. This calculation is subject to the ''Quality Assurance Requirements and Description'' (QARD) (DOE 2004) because it concerns engineered barriers that are included in the ''Q-List'' (BSC 2004k, Appendix A) as items important to safety and waste isolation.

  7. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  8. 21-PWR Waste Package Side and End Impacts

    SciTech Connect

    V. Delabrosse

    2003-02-27

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1.

  9. 21-PWR Waste Package Side and End Impacts

    SciTech Connect

    T. Schmitt

    2005-08-29

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1.

  10. Nuclear fuel, refueling, fuel handling, and licensing and regulation. Volume eleven

    SciTech Connect

    Not Available

    1986-01-01

    Volume eleven covers nuclear fuel (what is nuclear fuel, the nuclear fuel cycle, uranium mining, milling, and refining, uranium enrichment, nuclear fuel fabrication, fuel reprocessing), refueling and fuel handling (fuel assembly identification, fuel handling equipment, the fueling and refueling process, PWR refueling, BWR refueling), and licensing and regulation requirements (development of nuclear energy, federal licensing and regulatory organization, schedule for nuclear power plants, contents of reports to the Federal regulatory agency, nuclear power plant operator qualification).

  11. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    SciTech Connect

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in

  12. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These maymore » be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section

  13. Three Dimensional Analysis of 3-Loop PWR RCCA Ejection Accident for High Burnup

    SciTech Connect

    Marciulescu, Cristian; Sung, Yixing; Beard, Charles L.

    2006-07-01

    The Rod Control Cluster Assembly (RCCA) ejection accident is a Condition IV design basis reactivity insertion event for Pressurized Water Reactors (PWR). The event is historically analyzed using a one-dimensional (1D) neutron kinetic code to meet the current licensing criteria for fuel rod burnup to 62,000 MWD/MTU. The Westinghouse USNRC-approved three-dimensional (3D) analysis methodology is based on the neutron kinetics version of the ANC code (SPNOVA) coupled with Westinghouse's version of the EPRI core thermal-hydraulic code VIPRE-01. The 3D methodology provides a more realistic yet conservative analysis approach to meet anticipated reduction in the licensing fuel enthalpy rise limit for high burnup fuel. A rod ejection analysis using the 3D methodology was recently performed for a Westinghouse 3-loop PWR at an up-rated core power of 3151 MWt with reload cores that allow large flexibility in assembly shuffling and a fuel hot rod burnup to 75,000 MWD/MTU. The analysis considered high enrichment fuel assemblies at the control rod locations as well as bounding rodded depletions in the end of life, zero power and full power conditions. The analysis results demonstrated that the peak fuel enthalpy rise is less than 100 cal/g for the transient initiated at the hot zero power condition. The maximum fuel enthalpy is less than 200 cal/g for the transient initiated from the full power condition. (authors)

  14. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    SciTech Connect

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)

  15. New results from the NSRR experiments with high burnup fuel

    SciTech Connect

    Fuketa, Toyoshi; Ishijima, Kiyomi; Mori, Yukihide

    1996-03-01

    Results obtained in the NSRR power burst experiments with irradiated PWR fuel rods with fuel burnup up to 50 MWd/kgU are described and discussed in this paper. Data concerning test method, test fuel rod, pulse irradiation, transient records during the pulse and post irradiation examination are described, and interpretations and discussions on fission gas release and fuel pellet fragmentation are presented. During the pulse-irradiation experiment with 50 MWd/kgU PWR fuel rod, the fuel rod failed at considerably low energy deposition level, and large amount of fission gas release and fragmentation of fuel pellets were observed.

  16. A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison

    NASA Astrophysics Data System (ADS)

    Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.

    2014-06-01

    Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.

  17. PWR ENDF/B-VII cross-section libraries for ORIGEN-ARP

    SciTech Connect

    McGraw, C.; Ilas, G.

    2012-07-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% {sup 235}U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time. (authors)

  18. A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy

    SciTech Connect

    Rozon, Daniel; Shen Wei

    2001-05-15

    For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

  19. Horizontal Drop of 21- PWR Waste Package

    SciTech Connect

    A.K. Scheider

    2007-01-31

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  20. PWR secondary water chemistry guidelines: Revision 3. Final report

    SciTech Connect

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239).

  1. Integrated Radiation Transport and Thermo-Mechanics Simulation of a PWR Assembly

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Sampath, Rahul S; Allu, Srikanth; Berrill, Mark A; Barai, Pallab; Banfield, James E

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step towards incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source terms, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. AMPFuel was used to model an entire 17 x 17 Pressurized Water Reactor (PWR) fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins, the 25 guide tubes, top and bottom structural regions, and the upper and lower (neutron) reflector regions. The final full-assembly calculation was executed on Jaguar (Cray XT5) at the Oak Ridge Leadership Computing Facility using 40,000 cores in under 10 hours to model over 162 billion degrees of freedom for 10 loading steps.

  2. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  3. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    SciTech Connect

    Josephs, J. M.

    1980-12-31

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison is made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion-fission hybrid reactor which serves as fuel producer for several PWR reactors.

  4. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  5. PWR internal flow modeling with fuel assemblies details

    SciTech Connect

    Popov, E.; Yan, J.; Karoutas, Z.; Gehin, J.; Brewster, R.; Baglietto, E.

    2012-07-01

    This study is an example of a massive parallel computing of the coolant flow in a nuclear reactor. It resolves the flow velocities in each assembly on pin level and predicts the flow distribution in complex geometries such as the lower and upper reactor plenums. The size of the developed model (1.035 billion cells) required the runs to be executed on the NCCS clusters (www.nccs.gov). STAR-CCM+ code (www.ed-adapco.com) was installed on two clusters: JAGUARXT5 and FROST, both of which were capable of executing this model. (authors)

  6. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    SciTech Connect

    Santamarina, A.; Bernard, D.; Blaise, P.; Leconte, P.; Palau, J. M.; Roque, B.; Vaglio, C.; Vidal, J. F.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency of Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)

  7. Bi-content Gadolinia as Burnable Absorber in PWR to Improve the Reactor Core Behaviour

    SciTech Connect

    Zheng, S.

    2007-07-01

    The gadolinia product is one of the standard burnable absorbers used in the PWR long and low leakage fuel cycle in order to control the radial power distribution and to hold down the initial core reactivity. This product presents a large number of advantages such as the high efficiency with only a small number of gadolinia-bearing rods, the easy adjustment between the number and the content of the gadolinia-bearing rods according to the cycle length need and the initial reactivity hold-down, no increasing of boron concentration versus cycle depletion, no additional increasing of internal pressure in poisoned rods, very low additional manufacture cost. On the other hand, some unfavourable phenomena are also observed during the utilization of the gadolinia: amplification of the asymmetrical power distribution and more negative axial offset. Based on the correlation between the gadolinia burnout and its content, the use of gadolinia bi-content will improve the parameters indicated here above. The gadolinia bi-content have been used in BWR for more than 20 years. In this paper, the comparison of the main reactor core physical parameters in PWR, calculated with the AREVA NP standard neutronic code package SCIENCE, is made by using the mono- and bi-content of the gadolinia products in the same fuel assembly. The results show that the asymmetrical axial and azimuthal power distribution can be improved in the case of the bi-content gadolinia product. (authors)

  8. Proceedings: 2001 PWR/BWR Plant Chemistry Meeting

    SciTech Connect

    2001-05-01

    This report presents proceedings of EPRI's 2001 Plant Chemistry Conference, which brought together approximately 100 industry representatives to discuss experiences and issues regarding nuclear plant chemistry at both pressurized water reactor (PWR) and boiling water reactor (BWR) plants.

  9. Spent fuel and fuel pool component integrity. Annual report, FY 1980

    SciTech Connect

    Johnson, A.B. Jr.; Bailey, W.J.; Bradley, E.R.; Bruemmer, S.M.; Langstaff, D.C.

    1981-09-01

    During program FY 1980 staff members of the Spent Fuel and Fuel Pool Component Integrity Program at Pacific Northwest Laboratory (PNL) completed the following major tasks: represented DOE on the international Behavior of Fuel Assemblies in Storage (BEFAST) Committee; the program manager, A.B. Johnson, Jr., participated in an International Survey of Water Reactor Spent Fuel Storage Experience, which was conducted jointly by the International Atomic Energy Agency (Vienna) and the Nuclear Energy Agency (Paris); provided written testimony and cross statement for the Proposed Rulemaking on Storage and Disposal of Nuclear Waste; acquired and began examination of the world's oldest pool-stored Zircaloy-clad fuel from the Shippingport reactor, stored approx. 21 years in deionized water; acquired and began examination of stainless-clad spent fuel from the Connecticut Yankee Reactor (PWR); negotiated for specimens from components stored in spent fuel pools at fuel storage facilities from the Savannah River Plant, Aiken, South Carolina, Zion (PWR) spent fuel pool, Zion, Illinois, and La Crosse (BWR) spent fuel pool, La Crosse, Wisconsin; planned for examinations in FY 81 of specimens from the three spent fuel pools; investigated a low-temperature stress corrosion cracking mechanism that developed in piping at a few PWR spent fuel pools. This report summarizes the results of these activities and investigations. Details are provided in the presentationsand publications generated under this program and summarized in Appendix A.

  10. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    SciTech Connect

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C; Murphy, Brian D; Mueller, Don

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  11. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    SciTech Connect

    Hartini, Entin Andiwijayakusuma, Dinan

    2014-09-30

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  12. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  13. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    SciTech Connect

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  14. Development of a new lattice physics code robin for PWR application

    SciTech Connect

    Zhang, S.; Chen, G.

    2013-07-01

    This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhanced neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)

  15. Assessment of Reactivity Margins and Loading Curves for PWR Burnup Credit Cask Designs

    SciTech Connect

    Wagner, J.C.

    2002-12-17

    This report presents studies to assess reactivity margins and loading curves for pressurized water reactor (PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to demonstrate the impact on the predicted effective neutron multiplication factor, k{sub eff}, and burnup-credit loading curves. The purpose of this report is to provide a greater understanding of the importance of input parameter variations and quantify the impact of calculational assumptions on the outcome of a burnup-credit evaluation. This study should provide guidance to regulators and industry on the technical areas where improved information will most enhance the estimation of accurate subcritical margins. Based on these studies, areas where future work may provide the most benefit are identified. The report also includes an evaluation of the degree of burnup credit needed for high-density casks to transport the current spent nuclear fuel inventory. By comparing PWR discharge data to actinide-only based loading curves and determining the number of assemblies that meet the loading criteria, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of current spent fuel assemblies in high-capacity casks. Assemblies that are not acceptable for loading in the prototypic high-capacity cask may be stored or transported by other means (e.g., lower capacity casks that utilize flux traps and/or increased fixed poison concentrations or high-capacity casks with design/utilization modifications).

  16. PWR cores with silicon carbide cladding

    SciTech Connect

    Dobisesky, J. P.; Carpenter, D.; Pilat, E.; Kazimi, M. S.

    2012-07-01

    The feasibility of using silicon carbide rather than Zircaloy cladding, to reach higher power levels and higher discharge burnups in PWRs has been evaluated. A preliminary fuel design using fuel rods with the same dimensions as in the Westinghouse Robust Fuel Assembly but with fuel pellets having 10 vol% central void has been adopted to mitigate the higher fuel temperatures that occur due to the lower thermal conductivity of the silicon carbide and to the persistence of the open clad-pellet gap over most of the fuel life. With this modified fuel design, it is possible to achieve 18 month cycles that meet present-day operating constraints on peaking factor, boron concentration, reactivity coefficients and shutdown margin, while allowing batch average discharge burnups up to 80 MWD/kgU and peak rod burnups up to 100 MWD/kgU. Power uprates of 10% and possibly 20% also appear feasible. For non-uprated cores, the silicon carbide-clad fuel has a clear advantage that increases with increasing discharge burnup. Even for comparable discharge burnups, there is a savings in enriched uranium. Control rod configuration modifications may be required to meet the shutdown margin criterion for the 20% up-rate. Silicon carbide's ability to sustain higher burnups than Zircaloy also allows the design of a licensable two year cycle with only 96 fresh assemblies, avoiding the enriched uranium penalty incurred with use of larger batch sizes due to their excessive leakage. (authors)

  17. Fuel behavior during a LOCA: LOFT experiments

    SciTech Connect

    Russell, M.L.

    1980-11-01

    The LOFT experiments have provided the following fuel behavior information which appears to be valuable for improving the safety of PWR operation and resolving PWR licensing issues: (1) A generic unassisted core cooling event occurs during large-break LOCAs that dominates the cooling of the core before ECC reflood commences and potentially eliminates the possibility of flow channel blockage from prepressurized fuel rod swelling. (2) The large-break LOCA decompression forces do not disturb the normal control rod gravity drop and may not structually damage the fuel assemblies. (3) Large-break LOCA core cooling may also be enhanced by spacer grid and core counter flow delay of liquid escape from the core boundaries and liquid fallback from the upper plenum into the core region. (4) Lower fuel rod prepressurization may be possible in PWR fuel rods which would reduce flow channel blockage complications during LOCA's. (5) Uniform fuel rod cladding temperature indications during the large break LOCA's do not confirm expectations for the fuel rod cladding temperature variations that would inhibit development of flow channel blockages by ballooning of prepressurized fuel rods.

  18. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    SciTech Connect

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A.

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  19. Proceedings: PWR Primary Startup/Shutdown Chemistry Workshop

    SciTech Connect

    2000-08-01

    This workshop summary outlines the proceedings of the EPRI-sponsored PWR Primary Startup/Shutdown Workshop held in San Antonio, Texas on April 25-27, 2000 to support the next revision of current EPRI PWR Chemistry Guidelines. Information was exchanged to assess the effectiveness of the guidelines. The workshop also helped identify issues needing further study before the next revision. Approximately 50 utility and industry representatives attended the workshop with utility personnel chairing four sessions. The workshop provided an opportunity for utility representatives to express an opinion as to the effectiveness of the existing PWR Primary Water Chemistry Guidelines: Volume 2, Revision 4. Potential improvements and additions to the Guidelines are outlined in this report.

  20. PWR full-reactor coolant system decontamination

    SciTech Connect

    Aspden, R.G.; Pessall, N.; Grand, T.F. )

    1992-01-01

    The overall objective of the current program is to identify and address all aspects of full system decontamination with the purpose of qualifying at least one process for PWR use. The objective of the current study is to provide baseline data on the performance of materials on the primary side after exposure to one cycle of the LOMI fault testing. This data supplements prior information obtained after exposure to three cycles of LOMI testing. The technical significance of this excursion will be determined in a subsequent task. The general corrosion characteristics of over 39 materials were evaluated for some combinations of material, type of specimen (coupon and creviced coupons), and loop velocity (0, 5, 20 and 150 ft/sec). At velocities of less than or equal to 20 ft/sec, sixteen types of specimens were employed to evaluate localized corrosion and stress corrosion cracking. Specimens were examined after one cycle. Also included in this exposure were specimens added to provide more information on the effect of LOMI fault exposure one: (1) surface roughening of Stellite 156; (2) crevice corrosion of chromium plated 304 stainless steel with the open end gap increased from 3 to {approximately} 9 mils; (3) susceptibility of Inconel X-750 (HTH) to subsequent stress corrosion cracking, (4) loss of chromium plate from threads of 304 stainless steel bolts torqued into stainless steel collars; (5) crack initiation in an Alloy 600 tube known to be susceptible to primary water stress corrosion cracking; and (6) surface alternation of stressed Inconel X-750 springs with the spring temper.

  1. Standard- and extended-burnup PWR (pressurized-water reactor) and BWR (boiling-water reactor) reactor models for the ORIGEN2 computer code

    SciTech Connect

    Ludwig, S.B.; Renier, J.P.

    1989-12-01

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs.

  2. Leak before break application in French PWR plants under operation

    SciTech Connect

    Faidy, C.

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  3. Whole-core comet solutions to a 3-dimensional PWR benchmark problem with gadolinium

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2012-07-01

    A pressurized water reactor (PWR) benchmark problem with gadolinium was used to determine the accuracy and computational efficiency of the coarse mesh radiation transport method COMET. The benchmark problem contains 193 square fuel assemblies. The COMET solution (eigenvalue, assembly averaged and fuel pin averaged fission density distributions) was compared with those obtained from the corresponding Monte Carlo reference solution using the same 2-group material cross section library. The comparison showed that both the core eigenvalue and fission density distribution averaged over each assembly and fuel pin predicated by COMET agree very well with the corresponding MCNP reference solution if the incident flux response expansion used in COMET is truncated at 2nd order in the two spatial and the two angular variables. The benchmark calculations indicate that COMET has Monte Carlo accuracy. In, particular, the eigenvalue difference between the codes ranged from 17 pcm to 35 pcm, being within 2 standard deviations of the calculational uncertainty. The mean flux weighted relative differences in the assembly and fuel pin fission densities were 0.47% and 0.65%, respectively. It was also found that COMET's full (whole) core computational speed is 30,000 times faster than MCNP in which only 1/8 of the core is modeled. It is estimated that COMET would have been about over 6 orders of magnitude faster than MCNP if the full core were also modeled in MCNP. (authors)

  4. Enriched boric acid for PWR application: Cost evaluation study for a twin-unit PWR

    SciTech Connect

    Battaglia, J.A.; Waters, R.M.; von Hollen, J.M.; Lamatia, L.A.; Bergmann, C.A.; Ditommaso, S.M. . Nuclear and Advanced Technology Div.)

    1989-09-01

    In the nuclear industry boric acid dissolved in the reactor coolant is used as a soluble reactivity control agent. Reactivity control in nuclear plants is also provided by neutron absorbing control rods. This neutron absorbing duty is distributed between the control rods and soluble boric acid in such a way as to provide the most economical split. Typically, the control rods take care of rapid reactivity changes and the boric acid handles the slower long term control of reactivity by varying the boric acid concentrations within the reactor coolant. In PWR reactor plants the dissolved boric acid is referred to as a soluble poison or chemical shim due to the high capacity for thermal neutron capture exhibited by the boron-10 isotope contained in the boric acid molecule. This slow reactivity change or chemical shim control would otherwise have to be performed using control rods, a much more expensive proposition. Reactivity changes are controlled by the B-10 isotope by virtue of its very high cross section (3837 barns) for thermal neutron absorption. However, natural boron contains only 20 atom percent of the B-10 isotope and essentially all the remaining 80 percent as the B-11 isotope. The B-11 isotope of cross section .005 barns is essentially of no use as a neutron absorber. Since B-11 makes up the bulk of the total boron present and contributes little to the nuclear operation it would seem logical to eliminate this isotope of boron from the boric acid molecule. In so doing boric acid concentration in operating PWR plants need only be a fraction of that existing to accomplish identical nuclear operations. However, to achieve the elimination of B-11 from NBA (Natural Boric Acid) an isotope separation must be performed. 4 refs., 25 figs., 17 tabs.

  5. Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

    SciTech Connect

    Sanders, C.E.

    2001-07-20

    The Interim Staff Guidance on burnup credit (ISG-8) for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office, recommends the use of analyses that provide an ''adequate representation of the physics'' and notes particular concern with the ''need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted.'' In the absence of readily available information on the extent of control rod (CR) usage in U.S. PWRs and the subsequent reactivity effect of CR exposure on discharged SNF, NRC staff have indicated a need for greater understanding in these areas. In response, this paper presents results of a parametric study of the effect of CR exposure on the reactivity of discharged SNF for various CR designs (including Axial Power Shaping Rods), fuel enrichments, and exposure conditions (i.e., burnup and axial insertion). The study is performed in two parts. In the first part, two-dimensional calculations are performed, effectively assuming full axial CR insertion. These calculations are intended to bound the effect of CR exposure and facilitate comparisons of the various CR designs. In the second part, three-dimensional calculations are performed to determine the effect of various axial insertion conditions and gain a better understanding of reality. The results from the study demonstrate that the reactivity effect increases with increasing CR exposure (e.g., burnup) and decreasing initial fuel enrichment (for a fixed burnup). Additionally, the results show that even for significant burnup exposures, minor axial CR insertions (e.g., < 20 cm) result in an insignificant effect on the k{sub eff} of a spent fuel cask.

  6. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    SciTech Connect

    Josephs, J.M.

    1980-12-31

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison is made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10/sup 9/ over a 30 year period assuming a 200 gigawatt supply of electrical power.

  7. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... part 72, entitled ``General License for Storage of Spent Fuel at Power Reactor Sites'' (55 FR 29181... Reactor (BWR) fuel with high initial enrichment (up to 4.8 weight percent uranium-235 planer average... Pressurized Water Reactor (PWR) basket allowing transportation of 5 weight percent uranium-235 fuel...

  8. Equipment designs for the spent LWR fuel dry storage demonstration

    SciTech Connect

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations.

  9. Status report on the spent fuel test-Climax, Nevada Test Site: A test of dry storage of spent fuel in a deep granite location

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1982-12-31

    The Spent Fuel Test-Climax (SFT-C) is located at a depth of 420 m in the Climax granite at the Nevada Test Site. The test array contains 11 canistered PWR fuel assemblies, plus associated electrical simulators and electrical heaters. There are nearly 900 channels of thermal, radiation, stress, displacement, and test control instrumentation.

  10. Ambidexter-dupic: an LWR-MSR symbiont operating on an effective and efficient fuel cycle

    SciTech Connect

    Ham, T.K.; Lee, Y.J.; Seo, M.H.; Oh, S.K.

    2007-07-01

    The AMBIDEXTER is an integral-type molten-salt reactor system, having been designed for the GEN IV requirements with a denatured thorium-uranium fuel cycle. And the DUPIC fuel cycle, recognized as a highly transparent reprocessing method for the PWR spent fuel, was developed through Korea-Canada-U.S. collaboration. This paper demonstrates a closed uranium-thorium fuel cycle strategy for a PWR and MSR symbiont via combining these two. This fuel cycle improves its transparency in the nuclear proliferation aspect and it does its economics in the spent-fuel management aspect. Fluorination uranium content in the PWR spent fuel, in the aftermath of which the remnants are composed of fluorides of residual uranium, plutonium, minor actinides and non-volatile fission-products, and are to be used as the feedstock of initial and daily loads of the AMBIDEXTER. Thorium fluoride is admixed at early operating stage to suppress the reactivity increase rate due to burnout of the initially loaded fission products, and through the reactor lifetime to compensate the transmutation and fission losses. On the bypass line linked to the fuel-salt recirculation stream in the reactor system, a small-scale on-line fluorination unit evaporates surplus uranium daily-fed, but not yet converted to plutonium. As {sup 232}Th converts into {sup 233}U, the maximum of 1.67% fissile uranium enrichment was achieved presently, that can improve the economics when used in PWR fuel. (authors)

  11. Fuel utilization improvement in PWRs using the denatured /sup 233/U-Th cycle

    SciTech Connect

    Jones, H.M.; Schwenk, G.A.; Toops, E.C.; Yotinen, V.O.

    1980-06-01

    A number of changes in PWR core design and/or operating strategy were evaluated to assess the fuel utilization improvement achievable by their implementation in a PWR using thorium-based fuel and operating in a recycle mode. The reference PWR for this study was identical to the B and W Standard Plant except that the fuel pellets were of denatured (/sup 233/U//sup 238/U-Th)O/sub 2/. An initial scoping study identified the three most promising improvement concepts as (1) a very tight lattice, (2) thorium blankets, and (3) ThO/sub 2/ rods placed in available guide tubes. A conceptual core design incorporating these changes was then developed, and the fuel utilization of this modified design was compared with that of the reference case.

  12. Robotic inspection of PWR coolant pump casing welds

    SciTech Connect

    Pratt, W.R.; Alford, J.W.; Davis, J.B.

    1997-12-01

    As of January 1, 1995, the Swedish Nuclear Inspectorate began requiring more thorough inspections of cast stainless-steel components in nuclear power plants, including pressurized water reactor (PWR) reactor coolant pump (RCP) casings. The examination requirements are established by fracture mechanics analyses of component weldments and demonstrated test system detection capabilities. This may include full volumetric inspection or some portion thereof. Ringhals station is a four-unit nuclear power plant, owned and operated by the Swedish State Power Board, Vattenfall. Unit 1 is a boiling water reactor. Units 2, 3, and 4 are Westinghouse-designed PWRs, ranging in size from 795 to 925 MW. The RCP casings at the PWR units are made of cast stainless steel and contain four circumferential welds that require inspection. Due to the thickness of the casings at the weld locations and configuration and surface conditions on the outside diameter of the casings, remote inspection from the inside diameter of the pump casing was mandated.

  13. The nature and behavior of particulates in PWR primary coolant

    SciTech Connect

    Bridle, D.A.; Butter, K.R.; Cake, P.; Comley, G.C.W.; Mitchell, C.R. )

    1989-12-01

    A study of particle size distributions, nature and behavior of insoluble species carried by PWR coolants has been carried out over a four year period in Belgian reactors. Comparative data was obtained by the use of improved sampling systems designed to overcome the inadequacies of standard facilities. Coolant data is presented from commissioning and early operation of new plant to that in established PWR circuits. Results arising from reactors transients are also included, which refer to shutdown and start-up phases, power changes and scram situations. The information obtained includes chemical and radiochemical characteristics of particulates and their contribution to total activity carried by reactor coolant. The implications for plant operations are discussed. 16 refs., 55 figs., 24 tabs.

  14. Modeling a nuclear reactor for experimental purposes. [PWR

    SciTech Connect

    Berta, V T

    1980-01-01

    The Loss-of-Fluid Test (LOFT) Facility is a scale model of a commercial PWR and is as fully functional and operational as the generic commercial counterpart. LOFT was designed and built for experimental purposes as part of the overall NRC reactor safety research program. The purpose of LOFT is to assess the capability of reactor safety systems to perform their intended functions during occurrences of off-normal conditions in a commercial nuclear reactor. Off-normal conditions arising from large and small break loss-of-coolant accidents (LOCA), operational transients, and anticipated transients without scram (ATWS) were to be investigated. This paper describes the LOFT model of the generic PWR and summarizes the experiments that have been conducted in the context of the significant findings involving the complex transient thermal-hydraulics and the consequent effects on the commercial reactor analytical licensing techniques. Through these techniques the validity of the LOFT model as a scaled counterpart of the generic PWR is shown.

  15. Spent fuel handling and packaging program. Quarterly report, January-March 1980

    SciTech Connect

    Durrill, D C

    1980-04-01

    The following was completed: calorimeter equipment modification, installation, calibration and checkout, climax canister thermocouple channel/Climax shield plug alignment checks, Climax canister/shield plug/dummy fuel lifting force measurement, 1 KW PWR Fuel Temperature Test, and lag Storage Pit radiation background measurement study.

  16. WREM--TOODEE2--MOD3. 2d Time-Dependent Fuel Element Study

    SciTech Connect

    Lauben, G.N.

    1992-03-05

    WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR).

  17. Applicability of 3D Monte Carlo simulations for local values calculations in a PWR core

    NASA Astrophysics Data System (ADS)

    Bernard, Franck; Cochet, Bertrand; Jinaphanh, Alexis; Jacquet, Olivier

    2014-06-01

    As technical support of the French Nuclear Safety Authority, IRSN has been developing the MORET Monte Carlo code for many years in the framework of criticality safety assessment and is now working to extend its application to reactor physics. For that purpose, beside the validation for criticality safety (more than 2000 benchmarks from the ICSBEP Handbook have been modeled and analyzed), a complementary validation phase for reactor physics has been started, with benchmarks from IRPHEP Handbook and others. In particular, to evaluate the applicability of MORET and other Monte Carlo codes for local flux or power density calculations in large power reactors, it has been decided to contribute to the "Monte Carlo Performance Benchmark" (hosted by OECD/NEA). The aim of this benchmark is to monitor, in forthcoming decades, the performance progress of detailed Monte Carlo full core calculations. More precisely, it measures their advancement towards achieving high statistical accuracy in reasonable computation time for local power at fuel pellet level. A full PWR reactor core is modeled to compute local power densities for more than 6 million fuel regions. This paper presents results obtained at IRSN for this benchmark with MORET and comparisons with MCNP. The number of fuel elements is so large that source convergence as well as statistical convergence issues could cause large errors in local tallies, especially in peripheral zones. Various sampling or tracking methods have been implemented in MORET, and their operational effects on such a complex case have been studied. Beyond convergence issues, to compute local values in so many fuel regions could cause prohibitive slowing down of neutron tracking. To avoid this, energy grid unification and tallies preparation before tracking have been implemented, tested and proved to be successful. In this particular case, IRSN obtained promising results with MORET compared to MCNP, in terms of local power densities, standard

  18. Dispersion type zirconium matrix fuels fabricated by capillary impregnation method

    NASA Astrophysics Data System (ADS)

    Savchenko, A.; Konovalov, I.; Vatulin, A.; Morozov, A.; Orlov, V.; Uferov, O.; Ershov, S.; Laushkin, A.; Kulakov, G.; Maranchak, S.; Petrova, Z.

    2007-05-01

    Several novel dispersion fuel compositions with a high uranium content fuel (U9Mo, U5Zr5Nb, U3Si) and a zirconium alloy matrix with low melting point (1063-1133 K) have been developed at A.A. Bochvar Institute using a capillary impregnation fabrication method. The capillary impregnation method introduces fuel granules and granules of a zirconium alloy into a fuel element followed by a short-term anneal at a temperature above the melting temperature of alloy. The alloy melts down and under capillary forces moves into the joints between the fuel element components to form metallurgical bonds. The volume ratios between the components are: 55-65% fuel, 10-20% matrix, and 15-30% pores. Fuel elements produced by capillary impregnation method have a high uranium content (9-10 g cm-3) and a high thermal conductivity (18-22 W m-1 K-1), which, when used as PWR or BWR fuels allow the fuel temperature to be lowered to 723-773 K. They also feature porosity to accommodate swelling. The metallurgical fuel-cladding bond makes the fuel elements serviceable in power transients. The primary advantages for PWR, BWR and CANDU use of these fuels elements, would be the high uranium content, low fuel temperature and serviceability under transient conditions. Consideration is given to their applicability in Floating Nuclear Power Plants (FNPP) as well as for the feasibility of burning civil and weapon grade plutonium.

  19. The design of the DUPIC spent fuel bundle counter

    SciTech Connect

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs.

  20. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    SciTech Connect

    Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M

    1983-10-01

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

  1. Estimating probable flaw distributions in PWR steam generator tubes

    SciTech Connect

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  2. Vertical Drop Of 21-Pwr Waste Package On Unyielding Surface

    SciTech Connect

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-29

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only.

  3. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  4. Progress of the RIA experiments with high burnup fuels and their evaluation in JAERI

    SciTech Connect

    Ishijima, Kiyomi; Fuketa, Toyoshi

    1997-01-01

    Recent results obtained in the NSRR power burst experiments with high burnup PWR fuel rods are described and discussed in this paper. Data concerning test condition, transient records during pulse irradiation and post irradiation examination are described. Another high burnup PWR fuel rod failed in the test HBO-5 at the slightly higher energy deposition than that in the test HBO-1. The failure mechanism of the test HBO-5 is the same as that of the test HBO-1, that is, hydride-assisted PCMI. Some influence of the thermocouples welding on the failure behavior of the HBO-5 rod was observed.

  5. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    SciTech Connect

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  6. Brief account of the effect of overcooling accidents on the integrity of PWR pressure vessels

    SciTech Connect

    Cheverton, R.D.

    1982-01-01

    The occurrence in recent years of several (PWR) accident initiating events that could lead to severe thermal shock to the reactor pressure vessel, and the growing awareness that copper and nickel in the vessel material significantly enhance radiation damage in the vessel, have resulted in a reevaluation of pressure-vessel integrity during postulated overcooling accidents. Analyses indicate that the accidents of concern are those involving both thermal shock and pressure loadings, and that an accident similar to that at Rancho Seco in 1978 could, under some circumstances and at a time late in the normal life of the vessel, result in propagation of preexistent flaws in the vessel wall to the extent that they might completely penetrate the wall. More severe accidents have been postulated that would result in even shorter permissible lifetimes. However, the state-of-the-art fracture-mechanics analysis may contain excessive conservatism, and this possibility is being investigated. Furthermore, there are several remedial measures, such as fuel shuffling, to reduce the damage rate, and vessel annealing, to restore favorable material properties, that may be practical and used if necessary. 5 figures.

  7. VERA Core Simulator Methodology for PWR Cycle Depletion

    SciTech Connect

    Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel; Kim, Kang Seog; Graham, Aaron; Stimpson, Shane; Wieselquist, William A; Clarno, Kevin T; Palmtag, Scott; Downar, Thomas; Gehin, Jess C

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclear reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.

  8. Beta and gamma dose calculations for PWR and BWR containments

    SciTech Connect

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  9. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    SciTech Connect

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa; Xu, Yiban; Cao, Liping

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  10. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS.

    SciTech Connect

    A. K. MAJI; B. MARSHALL; ET AL

    2000-10-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  11. Comparison of PWR - Burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results

    SciTech Connect

    Oberle, P.; Broeders, C. H. M.; Dagan, R.

    2006-07-01

    The increasing tendency towards fuel lifetime extension in thermal nuclear reactors motivated validation work for available evaluation tools for nuclear fuel burnup calculations. In this study two deterministic codes with different transport solvers and one Monte Carlo method are investigated. The code system KAPROS/KARBUS uses the classical deterministic First Collision Probability method utilizing a cylinderized Wigner-Seitz cell. In the SCALES.0/TRITON/NEWT code the Extended Step Characteristic method is applied. In a first step the two deterministic codes are compared with experimental results from the KWO-Isotope Correlation Experiment up to 30 MWD/kg HM burnup, published in 1981. Two pin cell calculations are analyzed by comparison of calculated and experimental results for important heavy isotope vectors. The results are very satisfactory. Subsequently, further validation at higher burnup (< 80 MWD/kg HM) is provided by comparison of the two deterministic codes and the Monte Carlo based burnup code MONTEBURNS for PWR UO{sub 2} fuel assembly calculations. Possible reasons for differences in the results are analyzed and discussed. Especially the influence of cross section data and processing is presented. (authors)

  12. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGESBeta

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  13. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    SciTech Connect

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resulting operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.

  14. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  15. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    SciTech Connect

    J.K. Knudson

    2003-10-02

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  16. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    SciTech Connect

    A. Alsaed

    2005-07-28

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  17. Modeling local chemistry in PWR steam generator crevices

    SciTech Connect

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  18. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  19. Advanced pressurized water reactor for improved resource utilization, part II - composite advanced PWR concept

    SciTech Connect

    Turner, S.E.; Gurley, M.K.; Kirby, K.D.; Mitchell, W III

    1981-09-15

    This report evaluates the enhanced resource utilization in an advanced pressurized water reactor (PWR) concept using a composite of selected improvements identified in a companion study. The selected improvements were in the areas of reduced loss of neutrons to control poisons, reduced loss of neutrons in leakage from the core, and improved blanket/reflector concepts. These improvements were incorporated into a single composite advanced PWR. A preliminary assessment of resource requirements and costs and impact on safety are presented.

  20. Identification and evaluation of PWR in-vessel severe accident management strategies

    SciTech Connect

    Dukelow, J S; Harrison, D G; Morgenstern, M

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents.

  1. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    SciTech Connect

    Pillay, K.K.S.

    1993-05-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

  2. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    SciTech Connect

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  3. Experimental validation of the DARWIN2.3 package for fuel cycle applications

    SciTech Connect

    San-Felice, L.; Eschbach, R.; Bourdot, P.; Tsilanizara, A.; Huynh, T. D.; Ourly, H.; Thro, J. F.

    2012-07-01

    The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuel inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)

  4. Design and operation of gamma scan and fission gas sampling systems for characterization of irradiated commercial nuclear fuel

    SciTech Connect

    Knox, C.A.; Thornhill, R.E.; Mellinger, G.B.

    1989-09-01

    One of the primary objectives of the Materials Characterization Center (MCC) is to acquire and characterize spent fuels used in waste form testing related to nuclear waste disposal. The initial steps in the characterization of a fuel rod consist of gamma scanning the rod and sampling the gas contained in the fuel rod (referred to as fission gas sampling). The gamma scan and fission gas sampling systems used by the MCC are adaptable to a wide range of fuel types and have been successfully used to characterize both boiling water reactor (BWR) and pressurized water reactor (PWR) fuel rods. This report describes the design and operation of systems used to gamma scan and fission gas sample full-length PWR and BWR fuel rods. 1 ref., 10 figs., 1 tab.

  5. Radkowsky Thorium Fuel Project

    SciTech Connect

    Todosow, Michael

    2006-12-31

    In the early/mid 1990’s Prof. Alvin Radkowsky, former chief scientist of the U.S. Naval Reactors program, proposed an alternate fuel concept employing thorium-based fuel for use in existing/next generation pressurized water reactors (PWRs). The concept was based on the use of a 'seed-blanket-unit' (SBU) that was a one-for-one replacement for a standard PWR assembly with a uranium-based central 'driver' zone, surrounded by a 'blanket' zone containing uranium and thorium. Therefore, the SBU could be retrofit without significant modifications into existing/next generation PWRs. The objective was to improve the proliferation and waste characteristics of the current once-through fuel cycle. The objective of a series of projects funded by the Initiatives for Proliferation Prevention program of the U.S. Department of Energy (DOE-IPP) - BNL-T2-0074,a,b-RU 'Radkowsky Thorium Fuel (RTF) Concept' - was to explore the characteristics and potential of this concept. The work was performed under several BNL CRADAs (BNL-C-96-02 and BNL-C-98-15) with the Radkowsky Thorium Power Corp./Thorium Power Inc. and utilized the technical and experimental capabilities in the Former Soviet Union (FSU) to explore the potential of this concept for implementation in Russian pressurized water reactors (VVERs), and where possible, also generate data that could be used for design and licensing of the concept for Western PWRs. The Project in Russia was managed by the Russian Research Center-'Kurchatov Institute'(RRC-KI), and included several institutes (e.g., PJSC 'Electrostal', NPO 'LUCH' (Podolsk), RIINM (Bochvar Institute), GAN RF (Gosatomnadzor), Kalininskaja NPP (VVER-1000)), and consisted of the following phases: Phase-1 ($550K/$275K to Russia): The objective was to perform an initial review of all aspects of the concept (design, performance, safety, implementation issues, cost, etc.) to confirm feasibility/viability and identify any “show-stoppers”; Phase-2 ($600K/$300K to Russia

  6. Status report on the Spent-Fuel Test-Climax, Nevada Test Site: a test of dry storage of spent fuel in a deep granite location

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1982-03-01

    The Spent Fuel Test-Climax (SFT-C) is located at a depth of 420 m in the Climax granite at the Nevada Test Site. The test array contains 11 canistered PWR fuel assemblies, plus associated electrical simulators and electrical heaters. There are nearly 900 channels of thermal, radiation, stress, displacement, and test control instrumentation. This paper is a general status report on the test, which started in May 1980.

  7. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (E<0.625 eV) are required as these affect the CR integrity through stresses/strains induced by coupled clad embrittlement / absorber swelling phenomena. The concept of the PSI scheme under development is to provide from validated core analysis models, the volumetric neutron source to a full core MCNPX model that is then used to compute the neutron fluxes. A particular aspect that needs scrutiny is the ability of the MCNPX-based calculation methodology to accurately predict the flux shapes along the control rod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  8. Spent fuel test project, Climax granitic stock, Nevada Test Site

    SciTech Connect

    Ramspott, L.D.

    1980-10-24

    The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

  9. Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel

    SciTech Connect

    Wagner, J.C.

    2000-10-12

    Although significant effort has been dedicated to the study of burnup-credit issues over the past decade, U.S. studies to-date have primarily focused on spent pressurized-water-reactor (PWR) fuel. The current licensing approach taken by the U.S. Department of Energy for burnup credit in transportation seeks approval for PWR fuel only. Burnup credit for boiling-water-reactor (BWR) fuel has not yet been formally sought. Burnup credit for PWR fuel was pursued first because: (1) nearly two-thirds (by mass) of the total discharged commercial spent fuel in the United States is PWR fuel, (2) it can substantially increase the fuel assembly capacity with respect to current designs for PWR storage and transportation casks, and (3) fuel depletion in PWRs is generally less complicated than fuel depletion in BWRs. However, due to international needs, the increased enrichment of modern BWR fuels, and criticality safety issues related to permanent disposal within the United States, more attention has recently focused on spent BWR fuel. Specifically, credit for fuel burnup in the criticality safety analysis for long-term disposal of spent nuclear fuel enables improved design efficiency, which, due to the large mass of fissile material that will be stored in the repository, can have substantial financial benefits. For criticality safety purposes, current PWR storage and transportation canister designs employ flux traps between assemblies. Credit for fuel burnup will eliminate the need for these flux traps, and thus, significantly increase the PWR assembly capacity (for a fixed canister volume). Increases in assembly capacity of approximately one-third are expected. In contrast, current BWR canister designs do not require flux traps for criticality safety, and thus, are already at their maximum capacity in terms of physical storage. Therefore, benefits associated with burnup credit for BWR storage and transportation casks may be limited to increasing the enrichment capacity and

  10. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    SciTech Connect

    Rempe, J. L.; Knudson, D. L.; Lutz, R. J.

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  11. Corrosion Tests of LWR Fuels - Nuclide Release

    SciTech Connect

    P.A. Finn; Y. Tsai; J.C. Cunnane

    2001-12-14

    Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The {sup 99}Tc, {sup 129}I, {sup 137}Cs, {sup 97}Mo, and {sup 90}Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the {sup 99}Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup.

  12. Decay heat removal systems: design criteria and options. [PWR; BWR

    SciTech Connect

    Berry, D.L.

    1980-01-01

    Design criteria and alternate decay heat removal system concepts which have evolved in several different countries throughout the world were compared. The conclusion was reached that the best way to improve the reliability of pressurized water reactor (PWR) decay heat removal is first to focus on improving the reliability of the auxiliary feedwater and high pressure injection systems to cope with certain loss of feedwater transients and small loss of coolant accidents and then to assess how well these systems can handle special emergencies (e.g., sabotage, earthquake, airplane crash). For boiling water reactors (BWRs), it was concluded that emphasis should be placed first on improving the reliability of the residual heat removal and high pressure service water systems to cope with a loss of suppression pool cooling following a loss of feedwater transient and then to assess how well these systems can handle special emergencies. It was found that, for both PWRs and BWRs, a design objective for alternate decay heat removal systems should be at least an order of magnitude reduction in core meltdown probability.

  13. Barium silicate glass/Inconel X-750 interaction. [PWR

    SciTech Connect

    Kelsey, Jr., P. V.; Siegel, W. T.; Miley, D. V.

    1980-01-01

    Water reactor safety programs at the Idaho National Engineering Laboratory have required the development of specialized instrumentation. An example is the electrical conductivity-sensitive liquid level transducer developed for use in pressurized-water reactors (PWRs) in which the operation of the sensing probe relies upon the passage of current through the water between the center pin of the electrode and its shell such that when water is present the resulting voltage is low, and conversely, when water is absent the voltage is high. The transducer's ceramic seal is a hot-pressed glass ceramic; its metal housing is Inconel X-750. The ceramic material provides an essential dielectric barrier between the center pin and the outer housing. The operation of the probe as well as the integrity of the PWR environment requires a hermetically-bonded seal between the ceramic and the metal. However, during testing, an increasing number of probe assemblies failed owing to poor glass-to-metal seals as well as void formation within the ceramic. Therefore, a program was initiated to characterize the metallic surface with respect to pre-oxidation treatment and determine optimum conditions for wetting and bonding of the metal by the glass to obtain baseline data relevant to production of acceptable transducer seals.

  14. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    SciTech Connect

    Mueller, Don E.; Marshall, William J.; Wagner, John C.; Bowen, Douglas G.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  15. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    SciTech Connect

    Putney, J.M.; Preece, R.J.

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

  16. Fuel consolidation demonstration: Consolidation concept development

    SciTech Connect

    Not Available

    1990-02-01

    EPRI, Northeast utilities Service Company (NUSCO), DOE, Baltimore Gas Electric Company, and Combustion Engineering, Inc. (C-E) are engaged in a program to develop a system for consolidating spent fuel, in which the consolidated fuel will be licensable by NRC for storage in the spent-fuel storage pool. Fuel consolidation offers a means of substantially increasing the capacity of spent-fuel storage pools. Consolidation equipment design, development, construction, and testing are being performed by C-E in Windsor, Connecticut. Seismic and structural evaluation of the capability of the Millstone Unit 2 spent-fuel pool and building to accommodate the increased fuel capacity is being conducted by NUSCO. NUSCO plans to obtain a license to store consolidated fuel in the Millstone-2 spent-fuel storage pool. NUSCO also plans to perform a hot demonstration of the integrated consolidation system with spent fuel at Millstone-2. This report describes the consolidation system design that forms the basis for the detailed design of the equipment comprising the system, including information on the fabrication and testing of the equipment. Appendix B describes an evaluation of the ability of the system under development to consolidate LWR spent-fuel assemblies other than the 14 {times} 14 fuel of C-E design stored at Millstone-2. A comparison was made of fuel-assembly designs on the basis of information available in open literature. It was concluded that with appropriate dimensional modifications the spent-fuel consolidation system equipment design is applicable to almost all PWR fuel-assembly configurations. 8 refs., 20 figs.

  17. Reactor Physics Assessment of the Inclusion of Unseparated Neptunium in MOX Reactor Fuel

    SciTech Connect

    Ellis, Ronald James

    2009-01-01

    Reducing the number of actinide separation streams in a spent fuel recovery process would reduce the cost and complexity of the process, and lower the quantity and numbers of solvents needed. It is more difficult and costly to separate Np and recombine it with Am-Cm prior to co-conversion than to simply co-strip it with the U-Pu-Np. Inclusion of the Np in mixed oxide (MOX) fuel for light water reactor (LWR) applications should not seriously affect the operating behavior of the reactor, nor should it pose insurmountable fuel design issues. In this work, the U, Pu, and Np from typical discharged and cooled PWR spent nuclear fuel are assumed to be used together in the preparation of MOX fuel for use in a pressurized water reactor (PWR). The reactor grade Pu isotopic vector is used in the model and the relative mass ratio of the Pu and Np content (Np/Pu mass is 0.061) from the cooled spent fuel is maintained but the overall Pu-Np MOX wt% is adjusted with respect to the U content (assumed to be at 0.25 wt% 235U enrichment) to offset reactivity and cycle length effects. The SCALE 5.1 scientific package (especially modules TRITON, NEWT, ORIGEN-S, ORIGEN-ARP) was used for the calculations presented in this paper. A typical Westinghouse 17x17 fuel assembly design was modeled at nominal PWR operating conditions. It was seen that U-Pu-Np MOX fuel with NpO2 and PuO2 representing 11.5wt% of the total MOX fuel would be similar to standard MOX fuel in which PuO2 is 9wt% of the fuel. The reactivity, isotopic composition, and neutron and ? sources, and the decay heat details for the discharged MOX fuel are presented and discussed in this paper.

  18. Categorization of PWR accident sequences and guidelines for fault trees: seismic initiators

    SciTech Connect

    Kimura, C.Y.

    1984-09-01

    This study developed a set of dominant accident sequences that could be applied generically to domestic commercial PWRs as a standardized basis for a probabilistic seismic risk assessment. This was accomplished by ranking the Zion 1 accident sequences. The pertinent PWR safety systems were compared on a plant-by-plant basis to determine the applicability of the dominant accident sequences of Zion 1 to other PWR plants. The functional event trees were developed to describe the system functions that must work or not work in order for a certain accident sequence to happen, one for pipe breaks and one for transients.

  19. Investigation of stainless steel clad fuel rod failures and fuel performance in the Connecticut Yankee Reactor. Final report

    SciTech Connect

    Pasupathi, V.; Klingensmith, R. W.

    1981-11-01

    Significant levels of fuel rod failures were observed in the batch 8 fuel assemblies of the Connecticut Yankee reactor. Failure of 304 stainless steel cladding in a PWR environment was not expected. Therefore a detailed poolside and hot cell examination program was conducted to determine the cause of failure and identify differences between batch 8 fuel and previous batches which had operated without failures. Hot cell work conducted consisted of detailed nondestructive and destructive examination of fuel rods from batches 7 and 8. The results indicate that the batch 8 failure mechanism was stress corrosion cracking initiating on the clad outer surface. The sources of cladding stresses are believed to be (a) fuel pellet chips wedged in the cladding gap, (b) swelling of highly nondensifying batch 8 fuel and (c) potentially harmful effects of a power change event that occurred near the end of the second cycle of irradiation for batch 8.

  20. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

    SciTech Connect

    Greenspan, E

    2006-04-30

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the

  1. INTERCOMPARISON OF RESULTS FOR A PWR ROD EJECTION ACCIDENT

    SciTech Connect

    DIAMOND,D.J.; ARONSON,A.; JO,J.; AVVAKUMOV,A.; MALOFEEV,V.; SIDOROV,V.; FERRARESI,P.; GOUIN,C.; ANIEL,S.; ROYER,M.E.

    1999-10-01

    This study is part of an overall program to understand the uncertainty in best-estimate calculations of the local fuel enthalpy during the rod ejection accident. Local fuel enthalpy is used as the acceptance criterion for this design-basis event and can also be used to estimate fuel damage for the purpose of determining radiological consequences. The study used results from neutron kinetics models in PARCS, BARS, and CRONOS2, codes developed in the US, the Russian Federation, and France, respectively. Since BARS uses a heterogeneous representation of the fuel assembly as opposed to the homogeneous representations in PARCS and CRONOS, the effect of the intercomparison was primarily to compare different intra-assembly models. Quantitative comparisons for core power, reactivity, assembly fuel enthalpy and pin power were carried out. In general the agreement between methods was very good providing additional confidence in the codes and providing a starting point for a quantitative assessment of the uncertainty in calculated fuel enthalpy using best-estimate methods.

  2. PWR FLECHT SEASET 21-rod bundle flow blockage task data and analysis report. NRC/EPRI/Westinghouse Report No. 11. Appendices K-P

    SciTech Connect

    Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

    1982-09-01

    This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

  3. Large-break LOCA, in-reactor fuel bundle Materials Test MT-6A

    SciTech Connect

    Wilson, C.L.; Hesson, G.M.; Pilger, J.P.; King, L.L.; Panisko, F.E.

    1993-09-01

    This is a report on one of a series of experiments to simulates a loss-of-coolant accident (LOCA) using full-length fuel rods for pressurized water reactors (PWR). The experiments were conducted by Pacific Northwest Laboratory (PNL) under the LOCA simulation Program sponsored by the US Nuclear Regulatory Commission (NRC). The major objective of this program was causing the maximum possible expansion of the cladding on the fuel rods from a short-term adiabatic temperature transient to 1200 K (1700 F) leading to the rupture of the cladding; and second, by reflooding the fuel rods to determine the rate at which the fuel bundle is cooled.

  4. Assessment of void swelling in austenitic stainless steel PWR core internals.

    SciTech Connect

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  5. Prediction of quench and rewet temperatures. [PWR; BWR

    SciTech Connect

    Gunnerson, F. S.

    1980-01-01

    Many postulated nuclear reactor accidents result in high-temperature dryout or film boiling within the nuclear core. In order to mitigate potential fuel rod damage or rod failure, safe or lower fuel rod temperatures must be reestablished by promoting coolant/cladding contact. This process is commonly referred to as quenching or rewetting, and often, these terms are not differentiated. All theoretical predictions of the cooling process by various models based on single or multidimensional analytical and numerical studies require a knowledge of either the quenching or the rewetting temperature. The purpose of this paper is to define quench and rewet temperatures and present a method whereby each may be estimated.

  6. Cutback sensitivity test for boron-free small modular PWR

    NASA Astrophysics Data System (ADS)

    Choe, J.; Shin, H. C.; Jeong, J. E.; Lee, D.

    2016-08-01

    A soluble boron-free small modular pressurized water reactor (SMPWR) uses burnable absorbers (BA) instead of soluble boron to reduce excess reactivity. As a consequence, the fuel cycle length can be shortened by the residual penalty of BA. This paper performs cutback sensitivity tests to extend the cycle length. The influence of the height of the cutback, of the 235U enrichment rate, and of the BA material on the power peaking factor (Fq), the axial offset (AO) and the fuel cycle length is analyzed with the reactor core design system, CASMO-4E/SIMULATE-3 code system.

  7. Spent fuel burnup estimation by Cerenkov glow intensity measurement

    SciTech Connect

    Kuribara, Masayuki . Communication and Information Research Lab.)

    1994-10-01

    The Cerenkov glow images from irradiated fuel assemblies of boiling-water reactors (BWR) and pressurized-water reactors (PWR) are generally used for inspections. For this purpose, a new UV-I.I. CVD (ultra-violet light image intensifier Cerenkov viewing device), has been developed. This new device can measure the intensity of the Cerenkov glow from a spent fuel assembly, thus making it possible to estimate the burnup of the fuel assembly by comparing the Cerenkov glow intensity to the reference intensity. The experiment was carried out on BWR spent fuel assemblies and the results show that burnups are estimated within 20% accuracy compared to the declared burnups for the tested spent fuel assemblies for cooling times ranging from 900--2.000 d.

  8. Evaluation and demonstration of methods for improved fuel utilization. Fort Calhoun Poolside Inspection Programs: end-of-cycles 4 and 5

    SciTech Connect

    LaVake, J.C.; Smith, G.P.

    1980-08-01

    The purpose of this program is to demonstrate two techniques for improving fuel utilization in current Pressurized Water Reactors (PWR): (1) more efficient fuel management, and (2) high burnup. These improvements are being demonstrated in the Fort Calhoun reactor, a 1420 Mwt PWR. A more efficient fuel management scheme called SAVFUEL (Shimmed And Very Flexible Uranium Element Loading), will be demonstrated which reduces neutron leakage and is expected to reduce uranium requirements. Another part of the demonstration program will increase the fuel burnup of the current 14 x 14 fuel design to further reduce uranium requirements. The program is a joint Department of Energy (DOE), Omaha Public Power District (OPPD) and Combustion Engineering (C-E) endeavor and is part of a national effort to improve uranium utilization in light water reactors.

  9. Crack growth rates of nickel alloy welds in a PWR environment.

    SciTech Connect

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  10. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    SciTech Connect

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  11. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    SciTech Connect

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  12. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  13. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  14. Preliminary study on direct recycling of spent BWR fuel in BWR system

    NASA Astrophysics Data System (ADS)

    Waris, A.; Sumbono, Prayudhatama, Dythia; Novitrian, Su'ud, Zaki

    2012-06-01

    Spent fuel management is considered to be one of the main problems in energy nuclear utilization. Recycling after reprocessing is one of the options for dealing with nuclear reactor spent fuel. Reprocessing is very costly and needs remote handling since spent fuel is very hazard high level waste. On top of that, only a small number of countries can manage a reprocessing plant. If country likes Indonesia decide to "go nuclear", it should find another way to deal with the nuclear spent fuel. Korea has proposed the DUPIC (Direct Utilization of Spent PWR fuel In CANDU) concept. Nevertheless, DUPIC concept requires two types of nuclear power plants, i.e., pressurized water reactor (PWR) and CANadian Deuterium Uranium reactor (CANDU). In this study, we evaluate a scheme of direct recycling of spent BWR fuel in BWR system, under the concept that we have called as a SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario. Several spent BWR fuel compositions in loaded BWR fuel has been evaluated to achieve the criticality of reactor.

  15. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    SciTech Connect

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  16. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    SciTech Connect

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  17. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  18. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  19. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  20. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    SciTech Connect

    George, Nathan M; Maldonado, G Ivan; Terrani, Kurt A; Gehin, Jess C; Godfrey, Andrew T

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  1. Thorium plutonium (TREX) fuel for weapons-grade plutonium disposition in pressurized water reactors

    SciTech Connect

    Comfort, C.; Ferguson, C.; Klima, S.; Lilly, D.E.; Rahnema, F.

    1996-12-31

    The goal of this study was to create a pressurized water reactor (PWR) reactor assembly (17 x 17) that would burn weapons-grade plutonium (WGP). Current designs of mixed-oxide (MOX) fuels combine WGP with uranium as the fuel. MOX fuel assemblies will destroy plutonium, but only 40 to 50% of the plutonium present in the fuel. This percentage is limited by the presence of {sup 238}U in the core, which becomes {sup 239}Pu by absorption and decay. The production of plutonium counteracts the disposition of WGP in current MOX fuel designs. This problem can be overcome by replacing the uranium in a MOX design with thorium. This loss of uranium (primarily {sup 238}U) halts the production of {sup 239}Pu in the thorium plutonium (TREX) fuel. The absence of {sup 239}Pu production allows the TREX design to burn up to 85 wt% of the {sup 239}Pu, originally loaded in the fuel.

  2. Demonstration of a noise-surveillance system at a PWR

    SciTech Connect

    Smith, C.M.

    1982-01-01

    The automated surveillance system has monitored the Sequoyah Nuclear Plant during its first fuel cycle. The system was able to acceptably adapt to different plant operating conditions. While evaluations are still ongoing, results indicate that the system was able to adapt to signals with different statistical character and that the discriminants are useful in detecting spectral changes. The system monitored long-term noise behavior, detected spectra that differ from what is considered normal, and provided concise storage of spectra together with the plant operating condition associated with the stored spectra.

  3. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    SciTech Connect

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has also been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)

  4. The electrochemistry in 316SS crevices exposed to PWR-relevant conditions

    NASA Astrophysics Data System (ADS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Henshaw, J.; Deconinck, J.

    2009-04-01

    The chemical and electrochemical conditions within a crevice of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions were modelled with a computational electrochemistry code. The influence of various variables: dissolved hydrogen, boric acid, lithium hydroxide concentration, crevice length, and radiation dose rate was studied. It was found with the model that 25 ccH 2/kg (STP) was sufficient to remain below an electrode potential of -230 mV she, commonly accepted sufficient to prevent stress corrosion cracking under BWR conditions. In a PWR plant various operational B-Li cycles are possible but it was found that the choice of the cycle did not significantly influence the model results. It was also found that a hydrogen level of 50 ccH 2/kg (STP) would be needed to avoid substantial lowering of the pH inside a crevice.

  5. Trend Analysis of Nuclear Fuel Performance at Taiwan

    NASA Astrophysics Data System (ADS)

    Sung, Talun; Hu, Chung-Hsing

    2008-03-01

    Because the price of oil is increasing dramatically, the substituted energies are fast developed: such as solar power, wind power and fuel cell. Nuclear energy is considered as another substituted energy source because it is low cost and low CO2 pollution. However, the price of nuclear fuel has been jumped to 7 times higher than that at 4 years ago. How to manage the fuel cycle to reduce the cost becomes a big issue for the nuclear power plants. There are several ways to improve such as increasing the enrichments and longer cycle periods. Dr. O'Sullivan and his team have investigated 18 PWR reactors in USA and the results have shown that these changes not only improve the fuel cycle cost but also reduce the safety margins. The authors warned these changes should be examined. Taiwanese power plants have done all these improvements like most other nuclear power plants did. Therefore, this study has collected the data of Taiwan's PWR reactors and examined the safety parameters such as FδH, shutdown margin, moderator temperature coefficient (MTC). This report shows that the safety margins are not reduced as that of the pervious investigation but the MTC was more negative at the end of cycle than before.

  6. Contain analysis of hydrogen distribution and combustion in PWR dry containments

    SciTech Connect

    Yang, J.W.; Nimnual, S.

    1991-01-01

    Hydrogen transport and combustion in a PWR dry containment are analyzed using the CONTAIN code for a multi-compartment model of the Zion plant. The analysis includes consideration of both degraded core and full core meltdown accidents initiated by a small break LOCA. The importance of intercell flow mixing on distributions of gas composition and temperature in various compartments are evaluated. Thermal stratification and combustion behavior are discussed. 4 refs., 8 figs., 2 tabs.

  7. Some Aspects of Cost/ Benefit Analysis for In-Service Inspection of PWR Steam Generators

    SciTech Connect

    Zima, G. E.; Lyon, G. H.; Doctor, P. G.; Hoenes, G. R.; Petty, S. E.; Weakley, S. A.

    1981-05-01

    This report discusses a number of aspects of cost/benefit (C/B) analysis for in-service inspection (lSI} of pressurized water reactor (PWR) steam generators (SGs) and identifies several problem areas that must be addressed prior to a full C/B analysis capability. Following a brief review of the impact of SG problems on the productivity of PWR units and of the scope and variability of SG problems among U.S. PWRs, various occupational implications of SG lSI are considered, namely manpower, time, and rad exposure. The opportunities provided by refueling outages in respect to lSI frequency and work time windows are reviewed. Indices for characterizing the nondestructive testing {NDT) information, rad exposure, $ impact, and manpower and time attributes of single ISIs and a series of ISIs over an arbitrary evaluation period are presented and calculated for a number of lSI cases using SG parameters for three typical PWR units. A comparison of the $ impact of unscheduled outages attributable to SG problems with the $ cost of ambitious lSI strategies indicates that the $ cost is virtually negligible for well-planned ISis. Considering the ALARA constraint on occupational rad exposure, the skilled manpower pool for NDT work appears to be the principal factor limiting lSI scope and frequency. Analysis of the manpower and time requirements for inspection of a 40-unit PWR population indicates, however, that an lSI strategy embodying two campaigns per year and a total population inspection within a 2-year interval is not far beyond current capabilities.

  8. Shipper/receiver difference verification of spent fuel by use of PDET

    SciTech Connect

    Ham, Y. S.; Sitaraman, S.

    2011-07-01

    Spent fuel storage pools in most countries are rapidly approaching their design limits with the discharge of over 10,000 metric tons of heavy metal from global reactors. Countries like UK, France or Japan have adopted a closed fuel cycle by reprocessing spent fuel and recycling MOX fuel while many other countries opted for above ground interim dry storage for their spent fuel management strategy. Some countries like Finland and Sweden are already well on the way to setting up a conditioning plant and a deep geological repository for spent fuel. For all these situations, shipments of spent fuel are needed and the number of these shipments is expected to increase significantly. Although shipper/receiver difference (SRD) verification measurements are needed by IAEA when the recipient facility receives spent fuel, these are not being practiced to the level that IAEA has desired due to lack of a credible measurement methodology and instrument that can reliably perform these measurements to verify non-diversion of spent fuel during shipment and confirm facility operator declarations on the spent fuel. In this paper, we describe a new safeguards method and an associated instrument, Partial Defect Tester (PDET), which can detect pin diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies in an in-situ condition. The PDET uses multiple tiny neutron and gamma detectors in the form of a cluster and a simple, yet highly precise, gravity-driven system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly. The method takes advantage of the PWR fuel design which contains multiple guide tubes which can be accessed from the top. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. Our simulation study as well as validation measurements indicated that the ratio of the gamma signal to the thermal neutron signal at each detector location normalized to

  9. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    SciTech Connect

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal.

  10. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    SciTech Connect

    Wagner, J.C.

    2001-08-02

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

  11. In-core detector activation rate for a PWR assembly

    SciTech Connect

    Todosow, M.; Eisenhart, L.D.

    1982-01-01

    The in-core detector system is the principal source of information for determining relative assembly powers, and maximum fuel rod powers in a reactor core. The detector signals are used in conjunction with pre-calculated factors, and appropriate normalizations, to obtain measured power values. Considerable reliance is placed on the accuracy of in-core detector inferred power distributions in reactor operations, and in the verification of calculational methods. The objective of this study was to compare results from standard design codes for the in-core detector activation rate (and the fission rate distribution in an assembly), to results obtained from a detailed calculation performed with a continuous energy Monte Carlo program with ENDF/B-V nuclear data.

  12. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  13. Spent-fuel verification measurements using passive and active radiation techniques

    SciTech Connect

    Ewing, R.I.; Seager, K.D.

    1996-08-01

    This paper describes an evolutionary development process that will lead to spent fuel measurements that directly measure fissile reactivity. First, the Fork measurement system has been used to verify the burnup of pressurized water reactor (PWR) spent-fuel assemblies at U.S. nuclear utilities. Fork measurements have demonstrated the utility of the passive Fork system to verify reactor records with a single 100-second measurement on each assembly. Second, an Advanced Fork system incorporating collimated gamma-ray spectroscopy has been designed to permit advanced calibration techniques that are independent of reactor burnup records and to allow rapid axial scanning of spent fuel assemblies. Third, an Active Fork system incorporating a neutron source to interrogate spent fuel is proposed to provide the capability to measure fissile reactivity, when compared to measurements on fresh fuel assemblies of the same design. The Advanced and Active Fork systems have wide applicability to spent fuel verification for PWR, boiling water reactor (BWR), and U.S. Department of Energy (DOE) spent fuel.

  14. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    SciTech Connect

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  15. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  16. A classification scheme for LWR fuel assemblies

    SciTech Connect

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs.

  17. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  18. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    SciTech Connect

    Ellis, Ronald James

    2015-04-01

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) during cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.

  19. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    SciTech Connect

    David Andrs; Ray Berry; Derek Gaston; Richard Martineau; John Peterson; Hongbin Zhang; Haihua Zhao; Ling Zou

    2012-05-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  20. Full-length high-temperature severe fuel damage test No. 5

    SciTech Connect

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy`s Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant ({approximately}50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident.

  1. Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels

    SciTech Connect

    Nakahara, Yoshinori; Suyama, Kenya; Inagawa, Jun; Nagaishi, Ryuji; Kurosawa, Setsumi; Kohno, Nobuaki; Onuki, Mamoru; Mochizuki, Hiroki

    2002-02-15

    To establish a nuclide composition benchmark data set for the verification of burnup codes, destructive analyses of light water reactor spent-fuel samples, which were cut out from several heights of spent-fuel rods, were carried out at the analytical laboratory at the Japan Atomic Energy Research Institute. The 16 samples from three kinds of pressurized water reactor (PWR) fuel rods and the 18 samples from two boiling water reactor (BWR) fuel rods were examined. Their initial {sup 235}U enrichments and burnups were from 2.6 to 4.1% and from 4 to 50 GWd/t, respectively. One PWR fuel rod and one BWR fuel rod contained gadolinia as a burnable poison. The measurements for more than 40 nuclides of uranium, transuranium, and fission product elements were performed by destructive analysis using mass spectrometry, and alpha-ray and gamma-ray spectrometry. Burnup for each sample was determined by the {sup 148}Nd method. The analytical methods and the results as well as the related irradiation condition data are compiled as a complete benchmark data set.

  2. Fuel temperature reactivity coefficient calculation by Monte Carlo perturbation techniques

    SciTech Connect

    Shim, H. J.; Kim, C. H.

    2013-07-01

    We present an efficient method to estimate the fuel temperature reactivity coefficient (FTC) by the Monte Carlo adjoint-weighted correlated sampling method. In this method, a fuel temperature change is regarded as variations of the microscopic cross sections and the temperature in the free gas model which is adopted to correct the asymptotic double differential scattering kernel. The effectiveness of the new method is examined through the continuous energy MC neutronics calculations for PWR pin cell problems. The isotope-wise and reaction-type-wise contributions to the FTCs are investigated for two free gas models - the constant scattering cross section model and the exact model. It is shown that the proposed method can efficiently predict the reactivity change due to the fuel temperature variation. (authors)

  3. The manufacture and performance of homogeneous microstructure SBR MOX fuel

    SciTech Connect

    Barker, Matthew A.; Stephenson, Keith; Weston, Rebecca

    2007-07-01

    In the early 1980's, British experience in the manufacture of mixed-oxide fast reactor fuel was used to develop a new thermal MOX manufacturing route called the Short Binder-less Route (SBR). Laboratory- scale development led to the manufacture of commercial PWR fuel in a small pilot plant, and the construction of the full-scale dual-line Sellafield MOX Plant (SMP). SMP's first MOX assemblies are now under irradiation. SBR MOX is manufactured with 100% co-milled feedstock, leading to a microstructure dominated by a solid solution of (U,Pu)O{sub 2} at the nominal enrichment. A comprehensive fuel performance research programme has demonstrated the benign performance of SBR MOX up to 54 MWd/kgHM. In particular, the homogeneous microstructure is believed to be instrumental in the favourable fission gas retention and PCI resistance properties. (authors)

  4. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    SciTech Connect

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  5. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  6. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    SciTech Connect

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-10-03

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation.

  7. A study on the expulsion of iodine from spent-fuel solutions

    SciTech Connect

    Sakurai, Tsutomu; Takahashi, Akira; Ishikawa, Niroh

    1995-02-01

    During dissolution of spent nuclear fuels, some radioiodine remains in spent-fuel solutions. Its expulsion to dissolver off-gas is important to minimize iodine escape to the environment. In our current work, the iodine remaining in spent-fuel solutions varied from 0 to 10% after dissolution of spent PWR-fuel specimens (approximately 3 g each). The amount remaining probably was dependent upon the dissolution time required. The cause is ascribable to the increased nitrous acid concentration that results from NOx generated during dissolution. The presence of nitrous acid was confirmed spectrophotometrically in an NO-HNO{sub 3} system at 100{degrees}C. Experiments examining NOx concentration versus the quantity of iodine in a simulated spent-fuel solution indicate that iodine (I{minus}) in spent fuels is subjected to the following three reactions: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid arising from NOx, and (3) formation of colloidal iodine (AgI, PdI{sub 2}), the major iodine species in a spent-fuel solution. Reaction (2) competes with reaction (3) to control the quantity of iodine remaining in solution. The following two-step expulsion process to remove iodine from a spent-fuel solution was derived from these experiments: Step One - Heat spent-fuel solutions without NOx sparging. When aged colloidal iodine is present, an excess amount of iodate should be added to the solution. Step Two - Sparge the fuel solution with NOx while heating. Effect of this new method was confirmed by use of a spent PWR-fuel solution.

  8. PWR FLECHT SEASET 21-rod-bundle flow-blockage task: data and analysis report. NRC/EPRI/Westinghouse report No. 11, main report and appendices A-J

    SciTech Connect

    Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

    1982-09-01

    This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

  9. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    SciTech Connect

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.; Baker, M.; Pecos, J.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 to 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.

  10. Analysis of spent fuel assay with a lead slowing down spectrometer

    SciTech Connect

    Gavron, Victor I; Smith, L. Eric; Ressler, Jennifer J

    2010-10-29

    Assay of fissile materials in spent fuel that are produced or depleted during the operation of a reactor, is of paramount importance to nuclear materials accounting, verification of the reactor operation history, as well as for criticality considerations for storage. In order to prevent future proliferation following the spread of nuclear energy, we must develop accurate methods to assay large quantities of nuclear fuels. We analyze the potential of using a Lead Slowing Down Spectrometer for assaying spent fuel. We conclude that it is possible to design a system that will provide around 1% statistical precision in the determination of the {sup 239}Pu, {sup 241}Pu and {sup 235}U concentrations in a PWR spent-fuel assembly, for intermediate-to-high burnup levels, using commercial neutron sources, and a system of {sup 238}U threshold fission detectors. Pending further analysis of systematic errors, it is possible that missing pins can be detected, as can asymmetry in the fuel bundle.

  11. Analysis of spent fuel assay with a lead slowing down spectrometer

    SciTech Connect

    Gavron, Victor I; Smith, L Eric; Ressler, Jennifer J

    2008-01-01

    Assay of fissile materials in spent fuel that are produced or depleted during the operation of a reactor, is of paramount importance to nuclear materials accounting, verification of the reactor operation history, as well as for criticality considerations for storage. In order to prevent future proliferation following the spread of nuclear energy, we must develop accurate methods to assay large quantities of nuclear fuels. We analyze the potential of using a Lead Slowing Down Spectrometer for assaying spent fuel. We conclude that it is possible to design a system that will provide around 1% statistical precision in the determination of the {sup 239}Pu, {sup 241}Pu and {sup 235}U concentrations in a PWR spent-fuel assembly, for intermediate-to-high burnup levels, using commercial neutron sources, and a system of {sup 238}U threshold fission detectors. Pending further analysis of systematic errors, it is possible that missing pins can be detected, as can asymmetry in the fuel bundle.

  12. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through

  13. Inspection procedures for experimental fuel production

    NASA Astrophysics Data System (ADS)

    Campsie, I. C.; Rattray, H. D.

    1988-04-01

    This paper describes the inspection procedures used in the development and manufacture of experimental fuel elements and their components. The examples quoted mainly apply to the PFR experimental fuel programme, although for well over a quarter of a century the procedures and techniques have been progressively developed and applied to the Magnox, SGHW, AGR, HTR, PFR and PWR fuel development programmes undertaken at the UKAEA's Springfields and Windscale Nuclear Power Development Laboratories. In contrast to production runs involving large numbers of standard components, experimental fuel is often assembled from components which, while they may look alike, may have design and material variations. Thus in addition to normal batching and bonding operations, great emphasis has to be placed on dimensional inspection, material testing and the individual identification of all items, thus maintaining traceability throughout all operations. The quality and performance of experimental items are often evaluated comparing pre- and post-test dimensional or NDT measurements. In the case of irradiation tests, several years can elapse between the measurements, therefore it is essential to ensure the reproducibility and compatibility of pre- and post-test measuring techniques and the traceability of all measured data and standards.

  14. On the Application of CFD Modeling for the Prediction of the Degree of Mixing in a PWR During a Boron Dilution Transient

    SciTech Connect

    Lycklama, Jan-Aiso; Hoehne, Thomas

    2006-07-01

    In a Pressurized Water Reactor, negative reactivity is present in the core by means of Boric acid as a soluble neutron absorber in the coolant water. During a so-called Boron Dilution Transient (BDT), a de-borated slug of coolant water is transported from the cold leg into the reactor vessel, and the borated coolant water is diluted by mixing with this un-borated water. The resulting decrease in the boron concentration leads to an insertion of positive reactivity in the core, which may lead to a reactivity excursion. The associated power peak may damage the fuel rods. The mixing of borated and un-borated water in downcomer and lower plenum is an important process, because it mitigates the degree of reactivity insertion. In the present study the application of Computational Fluid Dynamics (CFD) for the prediction of this mixing of un-borated with borated water in the RPV has been assessed. The analyses have been compared with the measurement data from the Rossendorf coolant mixing model (ROCOM) experiment. The ROCOM test facility represents the primary cooling system of a KONVOI type of PWR (1300 MW{sub el}). In spite of the complicated spatial, temporal, and geometrical aspects of the flow in the RPV, the agreement between the calculated and the experimental data is good. The CFD model tends to slightly under predict the degree of mixing in the RPV resulting in a slight under-prediction of the boron concentration at the core. (authors)

  15. Phenomenon analysis of stress corrosion cracking in the vessel head penetrations of French PWR`s

    SciTech Connect

    Pichon, C.; Buisine, D.; Faidy, C.; Gelpi, A.; Vaindirlis, M.

    1995-12-31

    During a hydrotest in 1991, a leak was detected on,a reactor vessel head (RVH) penetration of a French PWR. This leak was due to a phenomenon of Primary Water Stress Corrosion Cracking (PWSCC) affecting these penetrations in Alloy 600. The destructive and non-destructive examinations undertaken during the following months highlighted the generic nature of the degradations. In order to well understand this phenomenon and implement the most suitable maintenance policy, a large scale scientific program was decided and performed jointly by Electricite de France and FRAMATOME. The paper will present all the results obtained in this program concerning the parameters governing the PWSCC. In particular the following fields will be developed: (1) the material, its microstructure in line with the manufacturing and its susceptibility to PWSCC; (2) the stresses and their evaluations by measurements, mock up corrosion tests and Finite Element Analysis (FEA); (3) the effect of surface finish on crack initiation; and (4) the crack growth rate. This phenomenon analysis will be useful for evaluating the risk of PWSCC on other Alloy 600 areas in PWR`s primary system.

  16. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  17. Application of the MELCOR code to design basis PWR large dry containment analysis.

    SciTech Connect

    Phillips, Jesse; Notafrancesco, Allen; Tills, Jack Lee

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  18. Code System for PWR & BWR Multicompartment Containment Analysis, Versions MOD5

    1999-06-02

    CONTEMPT4/MOD6 describes the response of multicompartment containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program can accommodate both pressurized water reactor (PWR) and boiling water reactor (BWR) containment systems. Also, both design basis accident (DBA) and degraded core type LOCA conditions can be analyzed. The program calculates the time variation of compartment pressures, temperatures, and mass and energy inventories due to inter-compartment mass and energy exchange taking into account user-supplied descriptions of compartments,more » inter-compartment junction flow areas, LOCA source terms, and user-selected problem features. Analytical models available to describe containment systems include models for containment fans and pumps, cooling sprays, heat conducting structures, sump drains, PWR ice condensers, and BWR pressure suppression systems. CONTEMPT4/MOD6 also provides analytical models for hydrogen and carbon monoxide combustion within compartments and energy transfer due to gas radiation to accommodate degraded core type accidents.« less

  19. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  20. Fuel Performance Experience, Analysis and Modeling: Deformations, Fission Gas Release and Pellet-Clad Interaction

    SciTech Connect

    Zhou, G.; Hallstadius, L.; Helmersson, S.; Massih, A.R.; Schrire, D.; Kaellstroem, R.; Wikmark, G.; Hellwig, C.

    2007-07-01

    Some basic attributes of light water reactor fuel performance, determined by measurements, are evaluated. In particular, data on fuel volume swelling, cladding creep/growth, fission product gas release and cladding deformation due to pellet-clad mechanical interaction of rods irradiated in power reactors to rod burnups up to about 70 MWd/kgU are presented and appraised. A thermal fuel matrix swelling caused by fission products shows a linear increase in the fuel volume fraction with burnup up to 70 MWd/kgU with a mean rate of 0.76% per 10 MWd/kgU at a best-estimate level. Cladding hoop strain data due to in-reactor creep as a function of burnup from 15 to 70 MWd/kgU for pressurized water reactor (PWR) rods and from 5 to 50 MWd/kgU for boiling water reactor (BWR) rods are presented. The maximum measured cladding creep-down hoop strain in the considered BWR rods is {epsilon}{sub {theta}} {approx_equal} -0.5% and in the PWR rods {epsilon}{sub {theta}} {approx_equal} -1.25%. Rod growth data on BWR and PWR rods as a function of burnup are presented and discussed. Rod internal free volume data, measured and calculated as a function of burnup, are presented. Recent high burnup (52-70 MWd/kgU) fission product gas release data obtained by destructive methods are evaluated with the STAV7 computer code. Finally, slow power ramp experiments conducted at the Studsvik R2 reactor are simulated with the STAV7 code and it is observed that by accounting the contribution of fuel thermal gaseous swelling, the code describes the clad diameter increase due to pellet-clad mechanical interaction under the power bump satisfactorily. (authors)

  1. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  2. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    NASA Astrophysics Data System (ADS)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  3. Finite Element Stress Analysis of Spent Nuclear Fuel Disposal Canister in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Kwon, Young Joo; Choi, Jong Won

    This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.

  4. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration

    SciTech Connect

    Lee, Young-Ho; Kim, Hyung-Kyu; Kang, Heung-Seok; Yoon, Kyung-Ho; Kim, Jae-Yong; Lee, Kang-Hee

    2012-06-06

    Recently, a dual-cooled fuel (i.e., annular fuel) that is compatible with current operating PWR plants has been proposed in order to realize both a considerable amount of power uprating and an increase of safety margins. As the design concept should be compatible with current operating PWR plants, however, it shows a narrow gap between the fuel rods when compared with current solid nuclear fuel arrays and needs to modify the spacer grid shapes and their positions. In this study, fretting wear tests have been performed to evaluate the wear resistance of a dual-cooled fuel by using a proposed spring and dimple of spacer grids that have a cantilever type and hemispherical shape, respectively. As a result, the wear volume of the spring specimen gradually increases as the contact condition is changed from a certain gap, just contact to positive force. However, in the dimple specimen, just contact condition shows a large wear volume. In addition, a circular rod motion at upper region of contact surface is gradually increased and its diametric size depends on the wear depth increase. Based on the test results, the fretting wear resistance of the proposed spring and dimple is analyzed by comparing the wear measurement results and rod motion in detail.

  5. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration

    NASA Astrophysics Data System (ADS)

    Lee, Young-Ho; Kim, Hyung-Kyu; Kang, Heung-Seok; Yoon, Kyung-Ho; Kim, Jae-Yong; Lee, Kang-Hee

    2012-06-01

    Recently, a dual-cooled fuel (i.e., annular fuel) that is compatible with current operating PWR plants has been proposed in order to realize both a considerable amount of power uprating and an increase of safety margins. As the design concept should be compatible with current operating PWR plants, however, it shows a narrow gap between the fuel rods when compared with current solid nuclear fuel arrays and needs to modify the spacer grid shapes and their positions. In this study, fretting wear tests have been performed to evaluate the wear resistance of a dual-cooled fuel by using a proposed spring and dimple of spacer grids that have a cantilever type and hemispherical shape, respectively. As a result, the wear volume of the spring specimen gradually increases as the contact condition is changed from a certain gap, just contact to positive force. However, in the dimple specimen, just contact condition shows a large wear volume. In addition, a circular rod motion at upper region of contact surface is gradually increased and its diametric size depends on the wear depth increase. Based on the test results, the fretting wear resistance of the proposed spring and dimple is analyzed by comparing the wear measurement results and rod motion in detail.

  6. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  7. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  8. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  9. Corrosion report for the U-Mo fuel concept

    SciTech Connect

    Henager, Jr., Charles H.; Bennett, Wendy D.; Doherty, Ann L.; Fuller, E. S.; Hardy, John S.; Omberg, Ronald P.

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  10. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  11. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  12. Quantification of Back-End Nuclear Fuel Cycle Metrics Uncertainties Due to Cross Sections

    SciTech Connect

    Tracy E. Stover, Jr.

    2007-11-01

    This work examines uncertainties in the back end fuel cycle metrics of isotopic composition, decay heat, radioactivity, and radiotoxicity. Most advanced fuel cycle scenarios, including the ones represented in this work, are limited by one or more of these metrics, so that quantification of them becomes of great importance in order to optimize or select one of these scenarios. Uncertainty quantification, in this work, is performed by propagating cross-section covariance data, and later number density covariance data, through a reactor physics and depletion code sequence. Propagation of uncertainty is performed primarily via the Efficient Subspace Method (ESM). ESM decomposes the covariance data into singular pairs and perturbs input data along independent directions of the uncertainty and only for the most significant values of that uncertainty. Results of these perturbations being collected, ESM directly calculates the covariance of the observed output posteriori. By exploiting the rank deficient nature of the uncertainty data, ESM works more efficiently than traditional stochastic sampling, but is shown to produce equivalent results. ESM is beneficial for very detailed models with large amounts of input data that make stochastic sampling impractical. In this study various fuel cycle scenarios are examined. Simplified, representative models of pressurized water reactor (PWR) and boiling water reactor (BWR) fuels composed of both uranium oxide and mixed oxides are examined. These simple models are intended to give a representation of the uncertainty that can be associated with open uranium oxide fuel cycles and closed mixed oxide fuel cycles. The simplified models also serve as a demonstration to show that ESM and stochastic sampling produce equivalent results, because these models require minimum computer resources and have amounts of input data small enough such that either method can be quickly implemented and a numerical experiment performed. The simplified

  13. Partial Defect Verification of the Pressurized Water Reactor Spent Fuel Assemblies

    SciTech Connect

    Ham, Y S; Sitaraman, S

    2010-02-05

    The International Atomic Energy Agency (IAEA) has the responsibility to carry out independent inspections of all nuclear material and facilities subject to safeguards agreements in order to verify compliance with non-proliferation commitments. New technologies have been continuously explored by the IAEA and Member States to improve the verification measures to account for declared inventory of nuclear material and detect clandestine diversion and production of nuclear materials. Even with these efforts, a technical safeguards challenge has remained for decades for the case of developing a method in identifying possible diversion of nuclear fuel pins from the Light Water Reactor (LWR) spent fuel assemblies. We had embarked on this challenging task and successfully developed a novel methodology in detecting partial removal of fuel from pressurized water reactor spent fuel assemblies. The methodology uses multiple tiny neutron and gamma detectors in the form of a cluster and a high precision driving system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly without any movement of the fuel. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. The combined information of gamma and neutron signature is used to produce base signatures and they are principally dependent on the geometry of the detector locations, and exhibit little sensitivity to initial enrichment, burn-up or cooling time. A small variation in the fuel bundle such as a few missing pins changes the shape of the signature to enable detection. This resulted in a breakthrough method which can be used to detect pin diversion without relying on the nuclear power plant operator's declared operation data. Presented are the results of various Monte Carlo simulation studies and experiments from actual commercial PWR spent fuel assemblies.

  14. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  15. On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.

    PubMed

    Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning

    2016-08-01

    For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line.

  16. ALARA assessment of spent fuel and nuclear waste transportation systems

    SciTech Connect

    Sutherland, S. H.

    1980-01-01

    The effects of ALARA (as low as reasonably achievable) on transportation system costs were evaluated for LWR spent fuel, high-level commercial and defense wastes, and remotely handled TRU waste. Three dose rate specifications were used: 10 mrem/h at 2m, 5 mrem/h, and 2 mrem/h. The evaluation was done for wastes and LWR spent fuel 1, 3, 5, and 10 years old. Gamma shield materials were depleted uranium, lead, and steel; the neutron shield material was water. Results for a 7-element PWR cask show that uranium shielding is the lightest, and that the increased weight of the low dose rate casks results in 1 to 2 million dollars increase in lifetime transportation costs. 6 figures, 3 tables. (DLC)

  17. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    SciTech Connect

    Hostick, C.J. ); Lavender, J.C. ); Wakeman, B.H. )

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel.

  18. Decontamination as a precursor to decommissioning. Status report Task 2: process evaluation. [PWR; BWR

    SciTech Connect

    Divine, J.R.; Woodruff, E.M.; McPartland, S.A.; Zima, G.E.

    1983-05-01

    As part of the US Nuclear Regulatory Commission's program to reduce occupational exposure and waste volumes, the Pacific Northwest Laboratory is studying decontamination as a precursor to decommissioning. Eleven processes or solvents were examined for their behavior in decontaminating BWR carbon steel samples. The solvents included NS-1, a proprietary solvent of Dow Chemical Corporation, designed for BWR use, and AP-Citrox, a well-known, two-step process designed for PWR stainless steel; it was used to provide a reference for later comparison to other systems and processes. The decontamination factors observed in the tests performed in a small laboratory scale recirculating loop ranged from about 1 (no effect) to 222 (about 99.6% of the initial activity removed. Coordinated corrosion measurements were made using twelve chemical solvents and eight metal alloys found in a range of reactor types.

  19. Methods and findings of a systems interaction study of a Westinghouse PWR

    SciTech Connect

    Youngblood, R.; Hanan, N.; Fitzpatrick, R.; Xue, D.; Bozoki, G.; Fresco, A.; Papazoglou, I.; Mitra, S.; Macdonald, G.; Chelliah, E.

    1985-01-01

    This paper describes the methods and findings of a systems interaction study of a Westinghouse PWR. BNL conducted the study as a methods application that was performed to support the resolution of Unresolved Safety Issue A-17 on Systems Interactions. The method calls for a fault tree model of the plant to be developed in stages, corresponding to successively increasing levels of scope and detail. A functional model is developed first, resolved only to sufficient detail to reflect support system dependences; this guides the subsequent searches for spatial and induced-human interactions. This process has led to the identification of an active single failure causing loss of low pressure injection following a large or medium LOCA.

  20. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    SciTech Connect

    Simion, G.P.; VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B.; Bulmahn, K.D.

    1993-06-01

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement.

  1. Three Dimensional Radiation Transport Analyses in Pwr with Tort and Mcnp

    NASA Astrophysics Data System (ADS)

    Fukuya, Koji; Nakata, Hayato; Kimura, Itsuro; Kitagawa, Hideo; Ohmura, Masaki; Ito, Taku; Shin, Kazuo

    2003-06-01

    Three dimensional (3D) neutron and gamma calculations for structural materials inside the reactor vessel in a commercial PWR were performed using the 3D transport code TORT and the Monte Carlo code MCNP to assess the accuracy of calculations using these codes and libraries. Comparisons with two dimensional DORT calculations with various libraries and surveillance dosimetry measurements indicated that TORT and MCNP calculations give similar agreements with surveillance measurements to DORT calculations. Influences of the cross section data, ENDF/B-IV, ENDF/B-VI and JENDL3.2 on attenuation of the fast flux and dpa rate in the reactor vessel, relative contributions of gamma-rays and thermal neutrons to dpa were discussed.

  2. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  3. Metal cation inhibitors for controlling denting corrosion in steam generators. Final report. [PWR

    SciTech Connect

    Leidheiser, H. Jr.; Granata, R.D.; Simmons, G.W.; Music, S.; Vedage, H.L.

    1982-12-01

    Metal cations of arsenic, antimony, tin, manganese, zinc, cadmium, indium, and thallium have been evaluated in a preliminary way as possible3 inhibitors for controlling denting corrision observed in steam generators used with pressurized water reactors (PWR). The rationale for this approach was based upon the well-known inhibition effects of metal cations on corrosion rates in electrolyte/metal systems. A review of corrosion inhibition by metal cations (H. Leidheiser, Jr., Corrosion 36, 339 (1982)) has identified eleven inhibition mechanisms. The major test methods used for this evaluation were: (1) Isothermal capsule tests of carbon/steel/Inconel 600 tube bulging rates at temperatures up to 288/sup 0/C in seawater/copper-nickel chloride bulge-accelerating solutions. (2) Immersion weight-loss tests of steel coupled to Inconel 600 in boiling (102/sup 0/C) 3% sodium chloride solutions. In addition, electrochemical measuremens and surface analyses were performed. The major findings of this investigation are presented.

  4. Common cause evaluations in applied risk analysis of nuclear power plants. [PWR

    SciTech Connect

    Taniguchi, T.; Ligon, D.; Stamatelatos, M.

    1983-04-01

    Qualitative and quantitative approaches were developed for the evaluation of common cause failures (CCFs) in nuclear power plants and were applied to the analysis of the auxiliary feedwater systems of several pressurized water reactors (PWRs). Key CCF variables were identified through a survey of experts in the field and a review of failure experience in operating PWRs. These variables were classified into categories of high, medium, and low defense against a CCF. Based on the results, a checklist was developed for analyzing CCFs of systems. Several known techniques for quantifying CCFs were also reviewed. The information provided valuable insights in the development of a new model for estimating CCF probabilities, which is an extension of and improvement over the Beta Factor method. As applied to the analysis of the PWR auxiliary feedwater systems, the method yielded much more realistic values than the original Beta Factor method for a one-out-of-three system.

  5. VISA: a computer code for predicting the probability of reactor pressure-vessel failure. [PWR

    SciTech Connect

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.; Klecker, R.W.; Engel, D.W.; Johnson, K.I.

    1983-09-01

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue from J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.

  6. Failure probability of PWR reactor coolant loop piping. [Double-ended guillotine break

    SciTech Connect

    Lo, T.; Woo, H.H.; Holman, G.S.; Chou, C.K.

    1984-02-01

    This paper describes the results of assessments performed on the PWR coolant loop piping of Westinghouse and Combustion Engineering plants. For direct double-ended guillotine break (DEGB), consideration was given to crack existence probability, initial crack size distribution, hydrostatic proof test, preservice inspection, leak detection probability, crack growth characteristics, and failure criteria based on the net section stress failure and tearing modulus stability concept. For indirect DEGB, fragilities of major component supports were estimated. The system level fragility was then calculated based on the Boolean expression involving these fragilities. Indirect DEGB due to seismic effects was calculated by convolving the system level fragility and the seismic hazard curve. The results indicate that the probability of occurrence of both direct and indirect DEGB is extremely small, thus, postulation of DEGB in design should be eliminated and replaced by more realistic criteria.

  7. Fog inerting effects on hydrogen combustion in a PWR ice condenser contaminant

    SciTech Connect

    Luangdilok, W.; Bennett, R.B.

    1995-05-01

    A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H{sub 2}-air-steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser contaminant during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H{sub 2} by volume). 18 refs., 3 tabs.

  8. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    SciTech Connect

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose rates were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.

  9. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  10. Measurement techniques in dry-powdered processing of spent nuclear fuels.

    SciTech Connect

    Bowers, D. L.; Hong, J.-S.; Kim, H.-D.; Persiani, P. J.; Wolf, S. F.

    1999-07-21

    High-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICPMS) detection, {alpha}-spectrometry ({alpha}-S), and {gamma}-spectrometry ({gamma}-S) were used for the determination of nuclide content in five samples excised from a high-burnup fuel rod taken from a pressurized water reactor (PWR). The samples were prepared for analysis by dissolution of dry-powdered samples. The measurement techniques required no separation of the plutonium, uranium, and fission products. The sample preparation and analysis techniques showed promise for in-line analysis of highly-irradiated spent fuels in a dry-powdered process. The analytical results allowed the determination of fuel burnup based on {sup 148}Nd, Pu, and U content. A goal of this effort is to develop the HPLC-ICPMS method for direct fissile material accountancy in the dry-powdered processing of spent nuclear fuel.

  11. Effect of aging on the PWR Chemical and Volume Control System

    SciTech Connect

    Grove, E.J.; Travis, R.J.; Aggarwal, S.K.

    1995-06-01

    The PWR Chemical and Volume Control System (CVCS) is designed to provide both safety and non-safety related functions. During normal plant operation it is used to control reactor coolant chemistry, and letdown and charging flow. In many plants, the charging pumps also provide high pressure injection, emergency boration, and RCP seal injection in emergency situations. This study examines the design, materials, maintenance, operation and actual degradation experiences of the system and main sub-components to assess the potential for age degradation. A detailed review of the Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Report (LER) databases for the 1988--1991 time period, together with a review of industry and NRC experience and research, indicate that age-related degradations and failures have occurred. These failures had significant effects on plant operation, including reactivity excursions, and pressurizer level transients. The majority of these component failures resulted in leakage of reactor coolant outside the containment. A representative plant of each PWR design (W, CE, and B and W) was visited to obtain specific information on system inspection, surveillance, monitoring, and inspection practices. The results of these visits indicate that adequate system maintenance and inspection is being performed. In some instances, the frequencies of inspection were increase in response to repeated failure events. A parametric study was performed to assess the effect of system aging on Core Damage Frequency (CDF). This study showed that as motor-operated valve (MOV) operating failures increased, the contribution of the High Pressure Injection to CDF also increased.

  12. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  13. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  14. Reactor-specific spent fuel discharge projections, 1987-2020

    SciTech Connect

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  15. Reactor-specific spent fuel discharge projections: 1985 to 2020

    SciTech Connect

    Heeb, C.M.; Libby, R.A.; Walling, R.C.; Purcell, W.L.

    1986-09-01

    The creation of four spent-fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No New Orders with Extended Burnup, (2) No New Orders with Constant Burnup, (3) Middle Case with Extended Burnup, and (4) Middle Case with Constant Burnup. Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel.

  16. Reactor-specific spent fuel discharge projections: 1986 to 2020

    SciTech Connect

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs.

  17. A Cherenkov viewing device for used-fuel verification

    NASA Astrophysics Data System (ADS)

    Attas, E. M.; Chen, J. D.; Young, G. J.

    1990-12-01

    A Cherenkov viewing device (CVD) has been developed to help verify declared inventories of used nuclear fuel stored in water bays. The device detects and amplifies the faint ultraviolet Cherenkov glow from the water surrounding the fuel, producing a real-time visible image on a phosphor screen. Quartz optics, a UV-pass filter and a microchannel-plate image-intensifier tube serve to form the image, which can be photographed or viewed directly through an eyepiece. Normal fuel bay lighting does not interfere with the Cherenkov light image. The CVD has been successfully used to detect anomalous PWR, BWR and CANDU (CANada Deuterium Uranium: registered trademark) fuel assemblies in the presence of normal-burnup assemblies stored in used-fuel bays. The latest version of the CVD, known as Mark IV, is being used by inspectors from the International Atomic Energy Agency for verification of light-water power-reactor fuel. Its design and operation are described, together with plans for further enhancements of the instrumentation.

  18. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  19. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  20. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  1. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.; Liu, Wenfeng; Hales, Jason; Stanek, Chris; Wirth, Brian D.

    2014-06-15

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  2. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Jason Hales; Various

    2014-06-01

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  3. Assessment of different fuel design options with SiC cladding for light water reactors

    SciTech Connect

    Xu, S.; Kazimi, M. S.

    2012-07-01

    It is very important to avoid high tensile stresses in SiC if it is to be used safely as the cladding material in LWRs. To achieve this goal, three fuel design options are examined here: fuel pellets with a 10% vol central void, adding 10% vol BeO in UO{sub 2} fuel and replacing the gas gap with Lead-Bismuth Eutectic (LBE) bond. For each case, a neutronic analysis is first applied using CASMO-4E to obtain the required enrichment to achieve a fuel average burnup of 50 MWd/kgU. The fuel performance code FRAPCON, specifically FRAPCON-3.3 and FRAPCON-EP, is modified and then used to simulate the effects of steady-state irradiation in each case for typical PWR peak rod conditions. Key parameters like fuel average temperature and plenum pressure are examined for the relative performance of each approach. The results show that all three options can improve the fuel performance by lowering the fuel temperature as well as the plenum pressure. Fuel pellets with a central void design offers the most advantages since the larger void volume in the fuel rod results in the lowest plenum pressure, which is the limiting condition for safe operation of the SiC cladding. (authors)

  4. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  5. EDF Nuclear Power Plants Operating Experience with MOX fuel

    SciTech Connect

    Thibault, Xavier

    2006-07-01

    EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many

  6. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  7. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    SciTech Connect

    J.W. Davis

    1996-08-29

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  8. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  9. PwrSoC (integration of micro-magnetic inductors/transformers with active semiconductors) for more than Moore technologies

    NASA Astrophysics Data System (ADS)

    Mathuna, Cian Ó.; Wang, Ningning; Kulkarni, Santosh; Roy, Saibal

    2013-07-01

    This paper introduces the concept of power supply on chip (PwrSoC) which will enable the development of next-generation, functionally integrated, power management platforms with applications in dc-dc conversion, gate drives, isolated power transmission and ultimately, high granularity, on-chip, power management for mixed-signal, SOC chips. PwrSoC will integrate power passives with the power management IC, in a 3D stacked or monolithic form factor, thereby delivering the performance of a highefficiency dc-dc converter within the footprint of a low-efficiency linear regulator. A central element of the PwrSoC concept is the fabrication of power micro-magnetics on silicon to deliver micro-inductors and micro-transformers. The paper details the magnetics on silicon process which combines thin film magnetic core technology with electroplated copper conductors. Measured data for micro-inductors show inductance operation up to 20 MHz, footprints down to 0.5 mm2, efficiencies up to 93% and dc current carrying capability up to 600 mA. Measurements on micro-transformers show voltage gain of approximately - 1 dB at between 10 MHz and 30 MHz. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  10. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  11. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    SciTech Connect

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

  12. Distribution of characteristics of LWR [light water reactor] spent fuel

    SciTech Connect

    Reich, W.J.; Notz, K.J.; Moore, R.S.

    1991-01-01

    The purpose of this report is to develop a collective description of the entire spent fuel inventory in terms of various fuel properties relevant to Approved Testing Materials (ATMs) using information available from the Characteristics Data Base (CBD), which is sponsored by the US Department of Energy`s (DOE`s) Office of Civilian Radioactive Waste Management. A number of light-water reactor (LWR) characteristics were analyzed including assembly class representation, fuel burnup, enrichment, fuel fabrication data, defective fuel quantities, and, at PNL`s specific request, linear heat generation rate (LHGR) and the utilization of burnable poisons. A quantitative relationships was developed between burnup and enrichment for BWRs and PWRs. The relationship shows that the existing BWR ATM is near the center of the burnup-enrichment distribution, while the four PWR ATMs bracket the center of the burnup range but are on the low side of the enrichment range. Fuel fabrication data are based on vendor specifications for new fuel. Defective fuel distributions were analyzed in terms of assembly class and vendor design. LHGR values were calculated from utility data on burnup and effective full-power days; these calculations incorporate some unavoidable assumptions which may compromise the value of the results. Only a limited amount of data are available on burnable poisons at this time. Based on this distribution study, suggestions for additional ATMs are made. These are based on the class and design concepts and include BWR/2,3 barrier fuel, and the WE 17 {times} 17 class with integral burnable poison. Both should be at relatively high burnups. 16 refs., 5 figs., 15 tabs.

  13. The benefits of a fast reactor closed fuel cycle in the UK

    SciTech Connect

    Gregg, R.; Hesketh, K.

    2013-07-01

    The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size, so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the

  14. Evaluation of fuel cycle scenarios on MOX fuel recycling in PWRs and SFRs

    SciTech Connect

    Carlier, B.; Caron-Charles, M.; Van Den Durpel, L.; Senentz, G.; Serpantie, J.P.

    2013-07-01

    Prospects on advanced fuel cycle scenario are considered for achieving a progressive integration of Sodium Fast Reactor (SFR) technology within the current French Pressurized Water Reactor (PWR) nuclear fleet, in a view to benefit from fissile material multi-recycling capability. A step by step process is envisioned, and emphasis is put on its potential implementation through the nuclear mass inventory calculations with the COSAC code. The overall time scale is not optimized. The first step, already implemented in several countries, the plutonium coming from the reprocessing of used Light Water Reactor (LWR) fuels is recycled into a small number of LWRs. The second step is the progressive introduction of the first SFRs, in parallel with the continuation of step 1. This second step lets to prepare the optimized multi recycling of MOX fuel which is considered in step 3. Step 3 is characterized by the introduction of a greater number of SFR and MOX management between EPR reactors and SFRs. In the final step 4, all the fleet is formed with SFRs. This study assesses the viability of each step of the overall scenario. The switch from one step to the other one could result from different constrains related to issues such as resources, waste, experience feedback, public acceptance, country policy, etc.

  15. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  16. CASMO5/TSUNAMI-3D spent nuclear fuel reactivity uncertainty analysis

    SciTech Connect

    Ferrer, R.; Rhodes, J.; Smith, K.

    2012-07-01

    The CASMO5 lattice physics code is used in conjunction with the TSUNAMI-3D sequence in ORNL's SCALE 6 code system to estimate the uncertainties in hot-to-cold reactivity changes due to cross-section uncertainty for PWR assemblies at various burnup points. The goal of the analysis is to establish the multiplication factor uncertainty similarity between various fuel assemblies at different conditions in a quantifiable manner and to obtain a bound on the hot-to-cold reactivity uncertainty over the various assembly types and burnup attributed to fundamental cross-section data uncertainty. (authors)

  17. Conceptual studies for pressurised water reactor cores employing plutonium erbium zirconium oxide inert matrix fuel assemblies

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-08-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor (PWR), the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2-Er 2O 3-ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to `real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2-fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies.

  18. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  19. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  20. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    SciTech Connect

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications.

  1. Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data

    SciTech Connect

    1997-11-01

    Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

  2. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    SciTech Connect

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetrically burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.

  3. The Euratom Fast Collar (EFC): A Safeguards Instrument Design to Address Future Fuel Measurement Challenges

    SciTech Connect

    Evans, Louise; Swinhoe, Martyn T.; Menlove, Howard O.; Browne, Michael C.

    2012-08-13

    Summary of this presentation: (1) EFC instrument design for {sup 235}U verification measurements issued to EURATOM to issue a call for commercial tender; (2) Achieved a fast (Cd mode) measurement with less than 2% relative uncertainty in the doubles neutron counting rate in 10 minutes using a standard source strength; (3) Assay time in fast mode consistent with the needs of an inspector; (4) Extended to realistic calibration range for modern fuel designs - Relatively insensitive to gadolinia content for fuel designs with up to 32 burnable poison rods and 15 wt % gadolinia concentration, which is a realistic maximum for modern PWR fuel; (5) Improved performance over the standard thermal neutron collar with greater than twice the efficiency of the original design; (6) Novel tube pattern to reduce the impact of accidental pile-up; and (7) Joint test of prototype unit - EURATOM-LANL.

  4. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  5. A Model for Assessment of Failure of LWR Fuel during an RIA

    SciTech Connect

    Liu, Wenfeng; Kazimi, Mujid S.

    2007-07-01

    This paper presents a model for Pellet-Cladding Mechanical Interaction (PCMI) failure of LWR fuel during an RIA. The model uses the J-integral as a driving parameter to characterize the failure potential during PCMI. The model is implemented in the FRAPTRAN code and is validated by CABRI and NSRR simulated RIA test data. Simulation of PWR and BWR conditions are conducted by FRAPTRAN to evaluate the fuel failure potential using this model. Model validation and simulation results are compared with the strain-based failure model of PNNL and the SED/CSED model of EPRI. Our fracture mechanics model has good capability to differentiate failure from non-failure cases. The results reveal significant effects of power pulse width: a wider pulse width generally increases the threshold for fuel failure. However, this effect is less obvious for highly corroded cladding. (authors)

  6. Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies

    SciTech Connect

    Not Available

    1980-05-01

    The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system.

  7. 3D hydrodynamic lift force model for AREVA fuel assembly in EDF PWRs

    SciTech Connect

    Ekomie, S.; Bigot, J.; Dolleans, Ph.; Vallory, J.

    2007-07-01

    The accurate knowledge of the hydrodynamic lift force acting on a fuel assembly in PWR core is necessary to design the hold-down system of this assembly. This paper presents the model used by AREVA NP and EDF for computing this force. It results from a post-processing of sub-channel thermal-hydraulic codes respectively porous medium approach code THYC (EDF) and sub-channel type code FLICA III-F (AREVA NP). This model is based on the application of the Euler's theorem. Some hypotheses used to simplify the complexity of fuel assembly geometry are supported by CFD calculations. Then the model is compared to some experimental results obtained on a single fuel assembly inserted in the HERMES-T test facility located in CEA - Cadarache. Finally, the model is applied to calculate the lift force for the whole core. Various loading patterns including homogenous and mixed cores have been investigated and compared. (authors)

  8. Fuel composition

    SciTech Connect

    Badger, S.L.

    1983-09-20

    A composition useful, inter alia, as a fuel, is based on ethyl alcohol denatured with methylisobutyl alcohol and kerosene, which is mixed with xylenes and isopropyl alcohol. The xylenes and isopropyl alcohol act with the denaturizing agents to raise the flash point above that of ethyl alcohol alone and also to mask the odor and color the flame, thus making the composition safer for use as a charcoal lighter or as a fuel for e.g. patio lamps.

  9. Impact of makeup water system performance on PWR steam generator corrosion. Final report

    SciTech Connect

    Bell, M.J.; Pearl, W.L.; Sawochka, S.G.; Smith, L.A.

    1985-06-01

    The objectives of this project were to review makeup system design and performance and assess the possible relation of pressurized water reactor (PWR) steam generator corrosion to makeup water impurity ingress at fresh water sites. Project results indicated that makeup water transport of most ionic impurities can be expected to have a significant impact on secondary cycle chemistry only if condenser inleakage and other sources of impurities are maintained at very low levels. Since makeup water oxygen control techniques at most study plants were not consistent with state-of-the-art technology, oxygen input to the cycle via makeup can be significant. Leakage of colloidal silica and organics through makeup water systems can be expected to control blowdown silica levels and organic levels throughout the cycle at many plants. Attempts to correlate makeup water quality to steam generator corrosion observations were unsuccessful since (1) other impurity sources were significant compared to makeup at most study plants, (2) many variables are involved in the corrosion process, and (3) in the case of IGA, the variables have not been clearly established. However, in some situations makeup water can be a significant source of contaminants suspected to lead to both IGA and denting.

  10. MELCOR 1.8.2 assessment: Surry PWR TMLB` (with a DCH study)

    SciTech Connect

    Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Summers, R.M.; Thompson, S.L.

    1994-02-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified.

  11. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    SciTech Connect

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-07-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  12. LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.

    1997-04-01

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.

  13. Aging mechanisms in the Westinghouse PWR (Pressurized Water Reactor) Control Rod Drive system

    SciTech Connect

    Gunther, W.; Sullivan, K.

    1991-01-01

    An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs.

  14. Issues in Three-Dimensional Depletion Analysis of Measured Data Near the End of a Fuel Rod

    SciTech Connect

    DeHart, Mark D; Gauld, Ian C; Suyama, Kenya

    2008-01-01

    The dynamics of reactor operation result in nonuniform axial-burnup profiles in fuel with any significant burnup. At the beginning of life in a pressurized water reactor (PWR), a near-cosine axial-shaped flux will begin depleting fuel near the axial center of a fuel assembly at a greater rate than at the ends. As the reactor continues to operate, the cosine flux shape will flatten because of the fuel depletion and fission-product buildup that occur near the center. However, because of the high leakage near the end of the fuel assembly, burnup will drop off rapidly near the ends. Partial-length absorbers or nonuniform axial fuel loadings can further complicate the burnup profile. In a boiling water reactor, the same phenomena come into play, but the burnup profile is complicated by the significant variation of axial moderator density and by nonuniform axial loadings of burnable poison rods. Numerous studies of axial burnup effects have been published. However, most analyses performed in estimation of isotopic distributions due to axial burnup have been based on a set of two-dimensional (2-D) calculations performed for burnups that represent the axial burnup distribution in a fuel assembly. In general, this approach works quite well because the in-core axial gradient of the neutron flux is small over most of the length of the fuel rod, and the 2-D approximation is appropriate. Conversely, because the axial gradient becomes significant as one approaches either end of the fuel assembly, the 2-D approximation begins to break down at that point. It has been theorized that axial leakage will lead to a reduced fast flux relative to the thermal flux, softening the spectrum near the ends of the fuel, and that a 2-D approximation is conservative in that it provides more plutonium production. This has not been put the test, however, for two reasons--a lack of good three-dimensional (3-D) analysis methods acceptable for away-from-reactor applications and, more importantly, a

  15. Metal Matrix Microencapsulated (M3) fuel neutronics performance in PWRs

    SciTech Connect

    Fratoni, Massimiliano; Terrani, Kurt A

    2012-01-01

    superior to the conventional oxide fuel since PCMI and rod burst, respectively, have been mitigated. Under beyond design basis accident scenarios where the fuel is exposed to high temperature steam for prolonged periods, larger inventory of zirconium metal in the core could negatively affect the accident progression. A thin steam resistant layer (e.g. alumina forming alloy steel), integrated into the solid rod during fabrication by co-extrusion or hot-isostatic-pressing, offers the potential to provide additional fuel protection from steam interaction: blanketing under a range of boiling regimes and under severe accident conditions up to high temperatures well beyond what is currently possible in the conventional fuel. A crucial aspect to the viability of M3 fuel in light water reactors is the reduced heavy metal load compared to standard pellet fuel. This study evaluated the design requirements to operate a Pressurized Water Reactor (PWR) with M3 fuel in order to obtain fuel cycle length, reactivity coefficients, and power peaking factors comparable to that of standard fuel.

  16. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  17. Lessons learnt from VERCORS tests.. Study of the active role played by UO 2-ZrO 2-FP interactions on irradiated fuel collapse temperature

    NASA Astrophysics Data System (ADS)

    Pontillon, Y.; Malgouyres, P. P.; Ducros, G.; Nicaise, G.; Dubourg, R.; Kissane, M.; Baichi, M.

    2005-09-01

    The VERCORS experimental program was launched in order to study radionuclide release from standard PWR fuels and quantify the corresponding source term in severe-accident conditions. Performed by the CEA, it forms part of a larger program concerning reactor-accident studies funded by the IRSN in collaboration with EDF. Twenty-five experiments have been performed leading to a large database regarding release of fission products and actinides from UO 2 and MOX fuels under several types of atmosphere. The fuel burn-up ranges from 38 GWd/t to 70 GWd/t. Nearly all the tests were performed in such a way as to measure with some accuracy the fuel temperature. The present paper gives an overview of the program (i.e. sample and loop description, general FPs behaviour), with emphasis on the potential effect of UO 2-ZrO 2-FP interactions on fuel collapse temperature.

  18. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  19. Comparison of Calculated and Measured Neutron Fluence in Fuel/Cladding Irradiation Experiments in HFIR

    SciTech Connect

    Ellis, Ronald James

    2011-01-01

    A recently-designed thermal neutron irradiation facility has been used for a first series of irradiations of PWR fuel pellets in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory. Since June 2010, irradiations of PWR fuel pellets made of UN or UO{sub 2}, clad in SiC, have been ongoing in the outer small VXF sites in the beryllium reflector region of the HFIR, as seen in Fig. 1. HFIR is a versatile, 85 MW isotope production and test reactor with the capability and facilities for performing a wide variety of irradiation experiments. HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched (in {sup 235}U) uranium (HEU) as the fuel. The reactor core consists of a series of concentric annular regions, each about 2 ft (0.61 m) high. A 5-in. (12.70-cm)-diam hole, referred to as the flux trap, forms the center of the core. The fuel region is composed of two concentric fuel elements made up of many involute-shaped fuel plates: an inner element that contains 171 fuel plates, and an outer element that contains 369 fuel plates. The fuel plates are curved in the shape of an involute, which provides constant coolant channel width between plates. The fuel (U{sub 3}O{sub 8}-Al cermet) is nonuniformly distributed along the arc of the involute to minimize the radial peak-to-average power density ratio. A burnable poison (B{sub 4}C) is included in the inner fuel element primarily to reduce the negative reactivity requirements of the reactor control plates. A typical HEU core loading in HFIR is 9.4 kg of {sup 235}U and 2.8 g of {sup 10}B. The thermal neutron flux in the flux trap region can exceed 2.5 x 10{sup 15} n/cm{sup 2} {center_dot} s while the fast flux in this region exceeds 1 x 10{sup 15} n/cm{sup 2} {center_dot} s. The inner and outer fuel elements are in turn surrounded by a concentric ring of beryllium reflector approximately 1 ft (0.30 m) thick. The beryllium reflector consists of three regions

  20. A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors

    NASA Astrophysics Data System (ADS)

    Brenner, Donald W.; Lu, Shijing; O'Brien, Christopher J.; Bucholz, Eric W.; Rak, Zsolt

    2015-02-01

    A new model is proposed for the structure and properties of porous metal oxide scales (aka Chalk River Unidentified Deposits (CRUD)) observed on the nuclear fuel rod cladding in Pressurized Water Reactors (PWR). The model is based on the thermodynamically-driven expansion of agglomerated octahedral nickel ferrite particles in response to pH and temperature changes in the CRUD. The model predicts that porous nickel ferrite with internal {1 1 1} surfaces is a thermodynamically stable structure under PWR conditions even when the free energy of formation of bulk nickel ferrite is positive. This explains the pervasive presence of nickel ferrite in CRUD, observed CRUD microstructures, why CRUD maintains its porosity, and variations in porosity within the CRUD observed experimentally. This model is a stark departure from decades of conventional wisdom and detailed theoretical analysis of CRUD chemistry, and defines new research directions for model validation, and for understanding and ultimately controlling CRUD formation.

  1. Analysis of a rod withdrawal in a PWR core with the neutronic- thermalhydraulic coupled code RELAP/PARCS and RELAP/VALKIN

    SciTech Connect

    Miro, R.; Maggini, F.; Barrachina, T.; Verdu, G.; Gomez, A.; Ortego, A.; Murillo, J. C.

    2006-07-01

    The Reactor Ejection Accident (REA) belongs to the Reactor Initiated Accidents (RIA) category of accidents and it is part of the licensing basis accident analyses required for pressure water reactors (PWR). The REA at hot zero power (HZP) is characterized by a single rod ejection from a core position with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main feature limiting the consequences of the accident in a PWR is the Doppler Effect. To check the performance of the coupled code RELAP5/PARCS2.5 and RELAP5/VALKIN a REA in Trillo NPP is simulated. These analyses will allow knowing more accurately the PWR real plant phenomenology in the RIA most limiting conditions. (authors)

  2. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  3. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-09-23

    This patent describes a distillate fuel for indirect injection compression ignition engines containing at least the combination of (i) organic nitrate ignition accelerator, and (ii) an additive selected from the group consisting of alkenyl substituted succinimide, alkenyl substituted succinamide and mixtures thereof. The alkenyl substituent contains about 12-36 carbon atoms, the additive being made by the process comprising (a) isomerizing the double bond of an ..cap alpha..-olefin containing about 12-36 carbon atoms to obtain a mixture of internal olefins, (b) reacting the mixture of internal olefins with maleic acid, anhydride or ester to obtain an intermediate alkenyl substituted succinic acid, anhydride or ester, and (c) reacting the intermediate with ammonia to form a succinimide, succinamide or mixture thereof. The combination is present in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.

  4. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  5. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  6. Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR

    SciTech Connect

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

  7. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  8. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.

  9. International experience with a multidisciplinary table top exercise for response to a PWR accident

    SciTech Connect

    Lakey, J.R.A.

    1996-06-01

    Table Top Exercises are used for the training of emergency response personnel from a wide range of disciplines whose duties range from strategic to tactical, from managerial to operational. The exercise reported in this paper simulates the first two or three hours of an imaginary accident on a generic PWR site (named Seaside or Lakeside depending on its location). It is designed to exercise the early response of staff of the utility, government, local authority and the media and some players represent the public. The relatively few scenarios used for this exercise are based on actual events scaled to give off-site consequences which demand early assessment and therefore stress the communication procedures. The exercise is applicable in different cultures and has been used in over 20 short courses held in the USA, UK, Sweden, Prague, and Hong Kong. There are two styles of support for players: a linear program which ensures that all players follow the desired path through the event and an open program which is triggered by umpires (who play the reactor crew from a script) and by requests from other players. In both cases the exercise ends with a Press Conference. Players have an initial briefing and are assigned to roles; those who must speak at interviews and at the Press Conference arc given separate briefing by an expert in Public Affairs. The exercise runs with up to six groups and the communication rate reaches about 30 to 40 messages per hour for each group. The exercise can be applied to test management and communication systems and to study human response to emergencies because the merits of individual players are highlighted in the relatively stressful conditions of the initial stage of an accident. For some players the exercise is the first time that they have been required to carry out their task in front of other people.

  10. On-line PWR RHR pump performance testing following motor and impeller replacement

    SciTech Connect

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  11. Behaviour of fission gas in the rim region of high burn-up UO 2 fuel pellets with particular reference to results from an XRF investigation

    NASA Astrophysics Data System (ADS)

    Mogensen, M.; Pearce, J. H.; Walker, C. T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU.

  12. Shippingport Spent Fuel Canister System Description

    SciTech Connect

    JOHNSON, D.M.

    2000-03-27

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available.

  13. Thermal Behavior of Advanced UO{sub 2} Fuel at High Burnup

    SciTech Connect

    Muller, E.; Lambert, T.; Silberstein, K.; Therache, B.

    2007-07-01

    To improve the fuel performance, advanced UO{sub 2} products are developed to reduce significantly Pellet-Cladding Interaction and Fission Gas Release to increase high burnup safety margins on Light Water Reactors. To achieve the expected improvements, doping elements are currently used, to produce large grain viscoplastic UO{sub 2} fuel microstructures. In that scope, AREVA NP is conducting the qualification of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. To assess the fuel thermal performance, especially the fuel conductivity degradation with increasing burnup and also the kinetics of fission gas release under transient operating conditions, an instrumented in-pile experiment, called REMORA, has been developed by the CEA. One segment base irradiated for five cycles in a French EDF commercial PWR ({approx} 62 GWd/tM) was consequently re-instrumented with a fuel centerline thermocouple and an advanced pressure sensor. The design of this specific sensor is based on the counter-pressure principle and avoids any drift phenomenon due to nuclear irradiation. This rodlet was then irradiated in the GRIFFONOS rig of the Osiris experimental reactor at CEA Saclay. This device, located in the periphery of the core, is designed to perform test under conditions close to those prevailing in French PWR reactor. Power variations are carried out by translating the device relatively to the core. Self - powered neutron detectors are positioned in the loop in order to monitor the power the whole time of the irradiation. The re-irradiation of the REMORA experiment consisted of a stepped ramp to power in order to point out a potential degradation of the fuel thermal conductivity with increasing burnup. During the first part of the irradiation, most of the measurements were performed at low power in order to take into account the irradiation effects on UO{sub 2} thermal conductivity at high burnup in low range of temperature. The second part of the irradiation

  14. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  15. Future Fuel.

    ERIC Educational Resources Information Center

    Stover, Del

    1991-01-01

    Tough new environmental laws, coupled with fluctuating oil prices, are likely to prompt hundreds of school systems to examine alternative fuels. Literature reviews and interviews with 45 government, education, and industry officials provided data for a comparative analysis of gasoline, diesel, natural gas, methanol, and propane. (MLF)

  16. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  17. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  18. A Review of Thorium Utilization as an option for Advanced Fuel Cycle--Potential Option for Brazil in the Future

    SciTech Connect

    Maiorino, J.R.; Carluccio, T.

    2004-10-03

    Since the beginning of Nuclear Energy Development, Thorium was considered as a potential fuel, mainly due to the potential to produce fissile uranium 233. Several Th/U fuel cycles, using thermal and fast reactors were proposed, such as the Radkwoski once through fuel cycle for PWR and VVER, the thorium fuel cycles for CANDU Reactors, the utilization in Molten Salt Reactors, the utilization of thorium in thermal (AHWR), and fast reactors (FBTR) in India, and more recently in innovative reactors, mainly Accelerator Driven System, in a double strata fuel cycle. All these concepts besides the increase in natural nuclear resources are justified by non proliferation issues (plutonium constrain) and the waste radiological toxicity reduction. The paper intended to summarize these developments, with an emphasis in the Th/U double strata fuel cycle using ADS. Brazil has one of the biggest natural reserves of thorium, estimated in 1.2 millions of tons of ThO{sub 2}, as will be reviewed in this paper, and therefore R&D programs would be of strategically national interest. In fact, in the past there was some projects to utilize Thorium in Reactors, as the ''Instinto/Toruna'' Project, in cooperation with France, to utilize Thorium in Pressurized Heavy Water Reactor, in the mid of sixties to mid of seventies, and the thorium utilization in PWR, in cooperation with German, from 1979-1988. The paper will review these initiatives in Brazil, and will propose to continue in Brazil activities related with Th/U fuel cycle.

  19. TRAC-PF1/MOD1 US/Japanese PWR conservative LOCA prediction

    SciTech Connect

    Gruen, G E; Fisher, J E

    1987-11-01

    This report documents the results of a 200%, double-ended, cold-leg-break, loss-of-coolant-accident (LOCA) calculation using the TRAC-PF1/MOD1 computer code. The reactor system represented a typical United States/Japanese pressurized water reactor with a 15 x 15 fuel bundle arrangement 12-ft long, four loops, and cold-leg Emergency Core Cooling (ECC) Systems. Conservation boundary and initial conditions were used. Reactor power was 102% of the 3250 MWt rated power, decay heat was set to 120% of American Nuclear Society Standard 5.1, highest core lifetime values for power peaking and fuel stored energy were used, and the LOCA occurred simultaneously with a loss of offsite power. Best estimate assumptions were used for the break flow model, fuel rod heat transfer and metal-water reaction correlations, and steady-state fuel temperature profiles. A flow blockage model, having the capability to account for the effects of cladding ballooning or rupturing, was not used. Except for these best estimate assumptions, the boundary and initial conditions were consistent with those used in licensing calculations. Maximum fuel rod temperatures were 1380 K (2020/sup 0/F) and 1040 K (1410/sup 0/F) on the hottest evaluation model rod and hottest best estimate rod, respectively. The high reported values or fuel cladding temperature were a direct consequence of the conservative boundary and initial conditions used for the calculation, primarily the 2% overpower condition, the core decay heat assumption, and the degraded ECCS. The calculation demonstrated successful core reflooding before 1478 K (2200/sup 0/F) cladding temperature was exceeded on any fuel rod. 7 refs., 47 figs., 5 tabs.

  20. Supplemental fuel vapor system

    SciTech Connect

    Foster, P.M.

    1991-01-08

    This patent describes a supplemental fuel system utilizing fuel vapor. It comprises: an internal combustion engine including a carburetor and an intake manifold; a fuel tank provided with air vents; a fuel conduit having a first end connected to the fuel tank and in communication with liquid fuel in the tank and a second end connected to the carburetor; the fuel conduit delivering the liquid fuel to the carburetor from the fuel tank; a fuel vapor conduit having a first end connected to the fuel tank at a location displaced from contact with the liquid fuel and a second end connected to a carbon canister; a PCV conduit having a first end connected to a pollution control valve and a second end connected to the intake manifold; and, an intermediate fuel vapor conduit having a first end connected to the fuel vapor conduit and a second end connected to the PCV conduit; wherein the air vents continuously provide air to the tank to mix with the liquid fuel and form fuel vapor. The fuel vapor drawn from the fuel tank by vacuum developed in the intake manifold and flows through the fuel vapor conduit. The intermediate fuel vapor conduit and the intake manifold to combustion chambers of the internal combustion engine so as to supplement fuel delivered to the engine by the fuel conduit. The liquid fuel and the fuel vapor constantly delivered to the engine during normal operation.

  1. Fabrication Characteristics of Large Grain DUPIC Fuel Using SIMFUEL

    SciTech Connect

    Park, Geun IL; Lee, Jung Won; Lee, Jae Won; Yang, Myung Seung; Song, Kee Chan

    2007-07-01

    Fabrication characteristics to improve the density and grain size of DUPIC fuel with relation to its fuel performance were experimentally evaluated using SIMFUEL as a surrogate for an actual spent PWR fuel due to the high radioactivity of a spent fuel. Hence, SIMFUELs with a burn-up of 35,000 MWd/tU and 60,000 MWd/tU were used to investigate the influence of fission products contents as an impurity on the fuel powder properties and on the density and grain size of a simulated DUPIC pellet. In order to improve the densification and grain growth of the simulated DUPIC fuel, the effect of the addition of sintering aids was investigated. The specific surface area of the OREOX powders was increased with an increase of the impurities by the dissolved oxides in UO{sub 2} among the impurity groups. The specific surface area of the powders milled after the OXREOX treatment was slightly higher than the UO{sub 2} powder used for a nuclear power plant, thus resulting in sintered pellets with a higher than 95% T.D. (theoretical density). The grain size of the sintered pellets was significantly decreased with increasing amount of the metallic and oxide precipitates. However, on adding the sintering aids such as TiO{sub 2} and Nb{sub 2}O{sub 5}, the grain size of the sintering aids-doped pellets was greatly improved by up to around 3 times that of the raw pellets and their sintered density was also increased by up to 2%. (authors)

  2. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  3. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    NASA Astrophysics Data System (ADS)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code

  4. Fuel conditioner

    SciTech Connect

    Nelson, M.L.; Nelson, O.L. Jr.

    1988-06-28

    A fuel conditioner is described comprising 10 to 80% of a polar oxygenated hydrocarbon having an average molecular weight from about 250 to about 500, an acid acid number from about 25 to about 125, and a saponification number from about 30 to about 250; and 5 to 50% of an oxygenated compatibilizing agent having a solubility parameter of from about 8.8 to about 11.5 and moderate to strong hydrogen-bonding capacity.

  5. Design of the Testing Set-up for a Nuclear Fuel Rod by Neutron Radiography at CARR

    NASA Astrophysics Data System (ADS)

    Wei, Guohai; Han, Songbai; Wang, Hongli; Hao, Lijie; Wu, Meimei; He, Linfeng; Wang, Yu; Liu, Yuntao; Sun, Kai; Chen, Dongfeng

    In this paper, an experimental set-up dedicated to non-destructively test a 15cm-long Pressurized Water Reactor (PWR) nuclear fuel rod by neutron radiography (NR) is described. It consists of three parts: transport container, imaging block and steel support. The design of the transport container was optimized with Monte-Carlo Simulation by the MCNP code. The material for the shell of the transport container was chosen to be lead with the thickness of 13 cm. Also, the mechanical devices were designed to control fuel rod movement inside the container. The imaging block was designed as the exposure platform, with three openings for the neutron beam, neutron converter foil, and specimen. Development and application of this experimental set-up will help gain much experience for investigating the actual irradiated fuel rod by neutron radiography at CARR in the future.

  6. Analysis of a Defected Dissimilar Metal Weld in a PWR Power Plant

    SciTech Connect

    Efsing, P.; Lagerstrom, J.

    2002-07-01

    During the refueling outage 2000, inspections of the RC-loops of one of the Ringhals PWR-units, Ringhals 4, indicated surface breaking defects in the axial direction of the piping in a dissimilar weld between the Low alloy steel nozzle and the stainless safe end in the hot leg. In addition some indications were found that there were embedded defects in the weld material. These defects were judged as being insignificant to the structural integrity. The welds were inspected in 1993 with the result that no significant indications were found. The weld it self is a double U weld, where the thickness of the material is ideally 79,5 mm. Its is constructed by Inconel 182 weld material. At the nozzle a buttering was applied, also by Inconel 182. The In-service inspection, ISI, of the object indicated four axial defects, 9-16 mm deep. During fabrication, the areas where the defects are found were repaired at least three times, onto a maximum depth of 32 mm. To evaluate the defects, 6 boat samples from the four axial defects were cut from the perimeter and shipped to the hot-cell laboratory for further examination. This examination revealed that the two deep defects had been under sized by the ISI outside the requirement set by the inspection tolerances, while the two shallow defects were over sized, but within the tolerances of the detection system. When studying the safety case it became evident that there were several missing elements in the way this problems is handled with respect to the Swedish safety evaluation code. Among these the most notable at the beginning was the absence of reliable fracture mechanical data such as crack growth laws and fracture toughness at elevated temperature. Both these questions were handled by the project. The fracture mechanical evaluation has focused on a fit for service principal. Thus defects both in the unaffected zones and the disturbed zones, boat sample cutouts, of the weld have been analyzed. With reference to the Swedish safety

  7. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  8. Studies of Flexible MOX/LEU Fuel Cycles

    SciTech Connect

    Adams, M.L.; Alonso-Vargas, G.

    1999-03-01

    This project was a collaborative effort involving researchers from Oak Ridge National Laboratory and North Carolina State University as well as Texas A and M University. The background, briefly, is that the US is planning to use some of its excess weapons Plutonium (Pu) to make mixed-oxide (MOX) fuel for existing light-water reactors (LWRs). Considerable effort has already gone into designing fuel assemblies and core loading patterns for the transition from full-uranium cores to partial-MOX and full-MOX cores. However, these designs have assumed that any time a reactor needs MOX assemblies, these assemblies will be supplied. In reality there are many possible scenarios under which this supply could be disrupted. It therefore seems prudent to verify that a reactor-based Pu-disposition program could tolerate such interruptions in an acceptable manner. Such verification was the overall aim of this project. The task assigned to the Texas A and M team was to use the HELIOS code to develop libraries of two-group homogenized cross sections for the various assembly designs that might be used in a Westinghouse Pressurized Water Reactor (PWR) that is burning weapons-grade MOX fuel. The NCSU team used these cross sections to develop optimized loading patterns under several assumed scenarios. Their results are documented in a companion report.

  9. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen; Zhou, Bangxin; Shoji, Tetsuo

    2016-04-01

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T-L and L-T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T-L orientation with a higher crack growth rate than that in the specimen L-T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L-T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant.

  10. Dosimetry Evaluation of In-Core and Above-Core Zirconium Alloy Samples in a PWR

    NASA Astrophysics Data System (ADS)

    Amiri, Benjamin W.; Foster, John P.; Greenwood, Larry R.

    2016-02-01

    A description of the neutron fluence analysis of activated zirconium alloys samples at a Westinghouse 3-loop reactor is presented. These samples were irradiated in the core and in the fuel plenum region, where dosimetry measurements are relatively rare compared with regions radially outward of the core. Dosimetry measurements performed by Batelle/PNNL are compared to the calculational models. Good agreement is shown with the in-core measurements when using analysis conditions expected to best represent this region, such as an assembly-specific axial power distribution. However, the use of these conditions to evaluate dosimetry in the fuel plenum region can lead to significant underestimation of the fluence. The use of a flat axial power distribution, however, does not underestimate the fluence in the fuel plenum region.

  11. Fuel densifier converts biomass into fuel cubes

    SciTech Connect

    Not Available

    1982-02-01

    A new cost-effective means to produce clean-burning and low cost commercial and industrial fuel is being introduced by Columbia Fuel Densification Corp., Phoenix. The Columbia Commercial Hydraulic Fuel Densifier converts raw biomass materials such as wood chips, paper, peat moss and rice hulls into densified fuel cubes. The densifier is mobile and its operation is briefly outlined.

  12. The Chemistry os Spent Nuclear Fuel From X-Ray Absorption Spectroscopy

    SciTech Connect

    F.A. Fortner; A.J. Kropf; J.C. Cunnane

    2006-09-21

    Present and future nuclear fuel cycles will require an understanding of the complex chemistry of trace fission products and transuranium actinides in spent nuclear fuel (SNF). Because of the unique analytical challenges presented by SNF to the materials scientist, many of its fundamental physical and chemical properties remain poorly understood, especially on the microscopic scale. Such an understanding of the chemical states of radionuclides in SNF would benefit development of technologies for fuel monitoring, fuel performance improvement and modeling, fuel reprocessing, and spent fuel storage and disposal. We have recently demonstrated the use of synchrotron x-ray absorption spectroscopy (XAS) to examine crystal chemical properties of actinides and fission products in extracted specimens of SNF. Information obtained includes oxidation state, chemical bond coordination, and quantitative elemental concentration and distribution. We have also used XAS in a scanning mode to obtain x-ray spectral micrographs with resolution approaching 1 micron. A brief overview of the technique will be presented, along with findings on uranium, plutonium, neptunium, technetium, and molybdenum in commercial PWR SNF specimens.

  13. Severe accidents in spent fuel pools in support of generic safety, Issue 82

    SciTech Connect

    Sailor, V.L.; Perkins, K.R.; Weeks, J.R.; Connell, H.R.

    1987-07-01

    This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. Spent fuel pool fission product inventory is estimated and the releases and consequences for the various cladding scenarios are provided. Possible preventive or mitigative measures are qualitatively evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified.

  14. Interim storage technology of spent fuel and high-level waste in Germany

    SciTech Connect

    Geiser, H.; Schroder, J.

    2007-07-01

    The idea of using casks for interim storage of spent fuel arose at GNS after a very controversial political discussion in 1978, when total passive safety features (including aircraft crash conditions) were required for an above ground spent fuel storage facility. In the meantime, GNS has loaded more than 1000 casks at 25 different storage sites in Germany. GNS cask technology is used in 13 countries. Spent fuel assemblies of PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high level waste containers are stored in full metal casks of the CASTOR{sup R} type. Also MOX fuel of PWR and BWR has been stored. More than two decades of storage have shown that the basic requirements (safe confinement, criticality safety, sufficient shielding and appropriate heat transfer) have been fulfilled in any case - during normal operation and in case of severe accidents, including aircraft crash. There is no indication of problems arising in the future. Of course, the experience of more than 20 years has resulted in improvements of the cask design. The CASTOR{sup R} casks have been thoroughly investigated by many experiments. There have been approx. 50 full and half scale drop tests and a significant number of fire tests, simulations of aircraft crash, investigations with anti tank weapons, and an explosion of a railway tank with liquid gas neighbouring a loaded CASTOR{sup R} cask. According to customer and site specific demands, different types of storage facilities are realized in Germany. Firstly, there are facilities for long-term storage, such as large ventilated central storage buildings away from reactor or ventilated storage buildings at the reactor site, ventilated underground tunnels or concrete platforms outside a building. Secondly, there are facilities for temporary storage, where casks have been positioned in horizontal orientation under a ventilated shielding cover outside a building. (authors)

  15. Fuel utilization and fuel sensitivity of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Kevin

    2011-03-01

    Fuel utilization and fuel sensitivity are two important process variables widely used in operation of SOFC cells, stacks, and generators. To illustrate the technical values, the definitions of these two variables as well as practical examples are particularly given in this paper. It is explicitly shown that the oxygen-leakage has a substantial effect on the actual fuel utilization, fuel sensitivity and V-I characteristics. An underestimation of the leakage flux could potentially results in overly consuming fuel and oxidizing Ni-based anode. A fuel sensitivity model is also proposed to help extract the leakage flux information from a fuel sensitivity curve. Finally, the "bending-over" phenomenon observed in the low-current range of a V-I curve measured at constant fuel-utilization is quantitatively coupled with leakage flux.

  16. Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask

    SciTech Connect

    Wagner, J. C.

    2008-01-31

    The Interim Staff Guidance on bumup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission's Spent Fuel Project Office, recommends a bumup measurement for each assembly to confirm the reactor record and compliance with the assembly bumup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained. This report presents a computational criticality safety analysis of the consequences of misloading fuel assemblies in a highcapacity cask that relies on burnup credit for criticality safety. The purpose of this report is to provide a quantitative understanding of the effects of fuel misloading events on safety margins. A wide variety of fuel-misloading configurations are investigated and results are provided for informational purposes. This report does not address the likelihood of occurrence for any of the misload configurations considered. For representative, qualified bumup-enrichment combinations, with and without fission products included, misloading two assemblies that are underburned by 75% results in an increase in keff of 0.025-0.045, while misloading four assemblies that are underburned by 50% also results in an increase in keff of 0.025-0.045. For the cask and conditions considered, a reduction in bumup of 20% in all assemblies results in an increase in kff of less than 0.035. Misloading a single fresh assembly with 3, 4, or 5 wt% 235U enrichment results in an increase in keffof--0.02, 0.04, or 0.06, respectively. The report concludes with a summary of these and other important findings, as well as a discussion of relevant issues that should be considered when assessing the appropriate role of burnup measurements.

  17. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  18. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  19. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Near-term commercial spent fuel shipping cask requirements

    SciTech Connect

    Daling, P.M.

    1984-11-01

    This report describes an analysis of the near-term commercial light water reactor (LWR) spent fuel transportation system. The objective was to determine if the existing commercial spent fuel shipping cask fleet is adequate to provide the needed transportation services for the period of time the US government would be authorized to accept spent fuel for Federal Interim Storage (FIS). A spent fuel shipping cask supply-demand analysis was performed to evaluate the existing fleet size. The results of the shipping cask handling capability study indicated that by weight, 75% of the spent fuel shipments will be by truck (overweight plus legal-weight truck). From the results of the shipping cask supply-demand analysis it was concluded that, if utilities begin large-scale applications for FIS, the five legal-weight truck (LWT) casks currently in service would be inadequate to perform all of the needed shipments as early as 1987. This further assumes that a western site would be selected for the FIS facility. If the FIS site were to be located in the East, the need for additional LWT casks would be delayed by about two years. The overweight truck (OWT) cask fleet (two PWR and two BWR versions) will be adequate through 1992 if some shipments to FIS can be made several years before a reactor is projected to lose full core reserve. This is because OWT cask requirements increase gradually over the next several years. The feasibility of shipping before losing full core reserve has not been evaluated. Cask utilization requirements in later years will be reduced if some shipments can be made prior to the time they are actually needed. The existing three rail casks are adequate to perform near-term shipments. 18 references, 4 figures, 18 tables.

  1. Propagation of Isotopic Bias and Uncertainty to Criticality Safety Analyses of PWR Waste Packages

    SciTech Connect

    Radulescu, Georgeta

    2010-06-01

    Burnup credit methodology is economically advantageous because significantly higher loading capacity may be achieved for spent nuclear fuel (SNF) casks based on this methodology as compared to the loading capacity based on a fresh fuel assumption. However, the criticality safety analysis for establishing the loading curve based on burnup credit becomes increasingly complex as more parameters accounting for spent fuel isotopic compositions are introduced to the safety analysis. The safety analysis requires validation of both depletion and criticality calculation methods. Validation of a neutronic-depletion code consists of quantifying the bias and the uncertainty associated with the bias in predicted SNF compositions caused by cross-section data uncertainty and by approximations in the calculational method. The validation is based on comparison between radiochemical assay (RCA) data and calculated isotopic concentrations for fuel samples representative of SNF inventory. The criticality analysis methodology for commercial SNF disposal allows burnup credit for 14 actinides and 15 fission product isotopes in SNF compositions. The neutronic-depletion method for disposal criticality analysis employing burnup credit is the two-dimensional (2-D) depletion sequence TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)/NEWT (New ESC-based Weighting Transport code) and the 44GROUPNDF5 crosssection library in the Standardized Computer Analysis for Licensing Evaluation (SCALE 5.1) code system. The SCALE 44GROUPNDF5 cross section library is based on the Evaluated Nuclear Data File/B Version V (ENDF/B-V) library. The criticality calculation code for disposal criticality analysis employing burnup credit is General Monte Carlo N-Particle (MCNP) Transport Code. The purpose of this calculation report is to determine the bias on the calculated effective neutron multiplication factor, k{sub eff}, due to the bias and bias uncertainty associated with

  2. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    NASA Astrophysics Data System (ADS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-05-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water.

  3. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    NASA Astrophysics Data System (ADS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; de Araújo Figueiredo, C.

    2016-08-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H2/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition.

  4. Carburetor fuel discharge assembly

    SciTech Connect

    Yost, R.M.

    1993-06-29

    An improved carburetor for use on an internal combustion engine is described, the carburetor having an airflow passage and fuel discharge means for admitting fuel into the airflow passage for mixing the fuel with air flowing in the airflow passage to form a fuel/air mixture to be supplied to the combustion chamber(s) of the engine, the fuel discharge means including a fuel discharge assembly which comprises a hollow discharge tube and fuel supplying means connected to the discharge tube for admitting fuel into the interior of the discharge tube, wherein the discharge tube has a longitudinal internal bore in fluid communication with the fuel supplying means, wherein the internal bore extends between an inlet that is closest to the fuel supplying means and an outlet that is furthest from the fuel supplying means with the outlet of the bore being located within the airflow passage of the carburetor to supply fuel into this passage after the fuel passes from the fuel supplying means through the internal bore of the discharge tube, wherein the improvement relates to the fuel discharge assembly and comprises: a hollow fuel flow guide tube telescopically received inside the internal bore of the discharge tube, wherein the fuel flow guide tube extends from approximately the location of the inlet of the bore up at least a portion of the length of the bore towards the outlet of the bore to conduct fuel from the fuel supplying means into the bore of the discharge tube.

  5. J-2X Fuel Turbopump Point of Departure: The Performance of the J-2s Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, S. R.; Becht, D. G.; Mulder, A. D.

    2008-01-01

    To aid the J-2X program design effort with detailed performance and environment information, the J-2S fuel turbopump (FTP) inducer has undergone a thorough test series in both water and hydrogen. The test series utilizes both inducer only and a complete pump configuration to assess the inducer interaction to the overall turbopump system. The test goals include verification of suction performance against heritage J-2S data, head production, effects of thermodynamic suppression head (TSH), and evaluation of the inducer dynamic pressure caused by cavitation instabilities. Test facilities at both Pratt & Whitney Rocketdyne (PWR) and NASA s Stennis Space Center (SSC) are employed for the testing. The inducer only water test effort conducted at PWR established performance curves for suction performance, head production, and efficiency over a wide operating range. Because the heritage J-2S suction performance data set is in hydrogen, it is desired to obtain current suction performance data in hydrogen as well, thus avoiding the reliance on a theoretical TSH correlation for direct comparison. This data then provides an empirically based TSH correlation allowing for the comparison of water test suction data to system suction requirements. The FTP testing performed at SSC provides these suction performance relationships as well as inlet duct dynamic pressures during liquid hydrogen operation. The test effort successfully confirms the heritage J-2S suction performance and establishes the amount of TSH between water and hydrogen operation at the design flow coefficient. Correlating data is also obtained for cavitating instability frequency content, illustrating the validity of using the wide flow range water test data to predict hydrogen performance.

  6. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  7. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  8. Comparison between TORT and MCNP applications for PWR vessel fluence calculations

    SciTech Connect

    Lopez-Sobrino, G.; Ortego, P.; Casado, C.

    1997-12-01

    A comparison is presented on the nodal contribution to fast neutron fluence on the vessel of a Westinghouse three-loop pressurized water reactor. The main calculations were performed with the Oak Ridge National Laboratory three-dimensional discrete ordinates transport code TORT, and a wide comparison was performed with the Los Alamos National Laboratory (LANL) continuous-energy Monte Carlo code MCNP4A. Nine light water reactors are currently in operation in Spain., five of them with the same Westinghouse three-loop design. ENUSA is the fuel supplier to these units, performing the loading pattern search and reload safety analysis. ENUSA developed this process to determine the individual contribution of each fuel assembly power to the fast neutron flux in the vessel so that the contribution to the vessel fluence in the choice of the loading pattern could be determined. The idea was to enrich the amount of information required by the utility for such a choice by means of a quick calculation of the estimated fluence contribution during the development of the preliminary loading pattern through the use of polynomial expressions of fast flux at each angle per unit relative power in the four quarters of every fuel assembly.

  9. Future aviation fuels overview

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  10. Perspectives on the closed fuel cycle Implications for high-level waste matrices

    NASA Astrophysics Data System (ADS)

    Gras, Jean-Marie; Quang, Richard Do; Masson, Hervé; Lieven, Thierry; Ferry, Cécile; Poinssot, Christophe; Debes, Michel; Delbecq, Jean-Michel

    2007-05-01

    Nuclear energy accounts for 80% of electricity production in France, generating approximately 1150 t of spent fuel for an electrical output of 420 TWh. Based on a reprocessing-conditioning-recycling strategy, the orientations taken by Électricité de France (EDF) for the mid-term and the far-future are to keep the fleet performances at the highest level, and to maintain the nuclear option fully open by the replacement of present pressurized water reactor (PWR) by new light water reactor (LWR), such as the evolutionary pressurized reactor (EPR) and future Generation IV designs. Adaptations of waste materials to new requirements will come with these orientations in order to meet long-term energy sustainability. In particular, waste materials and spent fuels are expected to meet increased requirements in comparison with the present situation. So the treatment of higher burn-up UO2 spent fuel and MOX fuel requires determining the performances of glass and other matrices according to several criteria: chemical 'digestibility' (i.e. capacity of glass to incorporate fission products and minor actinides without loss of quality), resistance to alpha self-irradiation, residual power in view of disposal. Considering the long-term evolution of spent MOX fuel in storage, the helium production, the influence of irradiation damages accumulation and the evolution of the microstructure of the fuel pellet need to be known, as well as for the future fuels. Further, the eventual transmutation of minor actinides in fast neutron reactors (FR) of Generation IV, if its interest in optimising high-level waste management is proven, may also raise new challenges about the materials and fuel design. Some major questions in terms of waste materials and spent fuel are discussed in this paper.

  11. Neutronic optimization in high conversion Th-{sup 233}U fuel assembly with simulated annealing

    SciTech Connect

    Kotlyar, D.; Shwageraus, E.

    2012-07-01

    This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-{sup 233}U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density. (authors)

  12. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  13. Fuel economy of hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.; Kumar, R.

    On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5-2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor-expander module) are critical.

  14. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  15. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    SciTech Connect

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  16. Optimal fuel loading pattern design using an artificial neural network and a fuzzy rule-based system

    SciTech Connect

    Han Gon Kim; Soon Heung Chang; Byung Ho Lee )

    1993-10-01

    The Optimal Fuel Shuffling System (OFSS) was developed for the optimal design of pressurized water reactor (PWR) fuel loading patterns. An optimal loading pattern is defined in which the local power peaking factor is lower than a predetermined value during one cycle and the effective multiplication factor is maximized to extract the maximum energy. The OFSS is a hybrid system in which a rule-based system, fuzzy logic, and an artificial neural network (ANN) are connected with each other. The rule-based system classifies loading patterns into two types by using several heuristic rules and a fuzzy rule. The fuzzy rule is introduced to achieve a more effective and faster search. Its membership function is automatically updated in accordance with the prediction results. The ANN predicts core parameters for the patterns generated from the rule-based system. A back propagation network is used for fast prediction of the core parameters. The ANN and fuzzy logic can be used to improve the capabilities of existing algorithms. The OFSS was demonstrated and validated for cycle 1 of the Kori-1 PWR.

  17. Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels

    NASA Astrophysics Data System (ADS)

    Botazzoli, Pietro; Luzzi, Lelio; Brémier, Stephane; Schubert, Arndt; Van Uffelen, Paul; Walker, Clive T.; Haeck, Wim; Goll, Wolfgang

    2011-12-01

    The TRANSURANUS burn-up model (TUBRNP) calculates the local concentration of the actinides, the main fission products, and 4He as a function of the radial position across a fuel rod. In this paper, the improvements in the helium production model as well as the extensions in the simulation of 238-242Pu, 241Am, 243Am and 242-245Cm isotopes are described. Experimental data used for the extended validation include new EPMA measurements of the local concentrations of Nd and Pu and recent SIMS measurements of the radial distributions of Pu, Am and Cm isotopes, both in a 3.5% enriched commercial PWR UO 2 fuel with a burn-up of 80 and 65 MWd/kgHM, respectively. Good agreement has been found between TUBRNP and the experimental data. The analysis has been complemented by detailed neutron transport calculations (VESTA code), and also revealed the need to update the branching ratio for the 241Am(n,γ) 242mAm reaction in typical PWR conditions.

  18. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect

    Rahman, Fariz Abdul; Lee, John C.; Franceschini, Fausto; Wenner, Michael

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  19. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  20. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  1. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  2. Sub-Scale Testing and Development of the J-2X Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, Scott R.; Becht, David G.

    2011-01-01

    In the early stages of the J-2X upper stage engine program, various inducer configurations proposed for use in the fuel turbopump (FTP) were tested in water. The primary objectives of this test effort were twofold. First, to obtain a more comprehensive data set than that which existed in the Pratt & Whitney Rocketdyne (PWR) historical archives from the original J-2S program, and second, to supplement that data set with information regarding the cavitation induced vibrations for both the historical J-2S configuration as well as those tested for the J-2X program. The J-2X FTP inducer, which actually consists of an inducer stage mechanically attached to a kicker stage, underwent 4 primary iterations utilizing sub-scaled test articles manufactured and tested in PWR's Engineering Development Laboratory (EDL). The kicker remained unchanged throughout the test series. The four inducer configurations tested retained many of the basic design features of the J-2S inducer, but also included variations on leading edge blade thickness and blade angle distribution, primarily aimed at improving suction performance at higher flow coefficients. From these data sets, the effects of the tested design variables on hydrodynamic performance and cavitation instabilities were discerned. A limited comparison of impact to the inducer efficiency was determined as well.

  3. Feasibility study of application of ductless fuel assembly to FBR

    SciTech Connect

    Itoh, K.; Shibahara, I.

    1996-07-01

    Feasibility studies on an application of the ductless fuel concept to an FBR core have been carried out in order to evaluate the basic features of the ductless core, especially in the fields of the thermal-hydraulic aspects and the mechanical behaviors. Regarding thermal-hydraulic aspects, analyses were performed by using a whole core thermal-hydraulic analysis code by making some modification for this study on the PWR code THINC. A small scaled ductless core model was prepared and a hydraulic experiment was carried out to study basic hydraulic characteristics of a ductless core. Core mechanical behaviors were analyzed focusing on the core irradiation bowing aspects and the seismic behaviors. Following features are revealed on the core structural behaviors: (1) the bowing stiffness of the ductless assembly is around 1/5 to 1/10 of that of the duct type assembly; (2) the contact loads between assemblies by the bowing effects are small through core cycles; (3) the damping of the ductless assemblies are so large that the seismic responses are small and the loads between assemblies are small due to occurring many contact points. Through this study it is expected that the concept of the ductless fuel can be applicable to FBR cores from the design view points of thermal-hydraulic and core mechanical behaviors.

  4. The J-2X Fuel Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  5. CESAR5.3: An Industrial Tool for Nuclear Fuel and Waste Characterization with Associated Qualification - 12067

    SciTech Connect

    Vidal, Jean-Marc; Eschbach, Romain; Launay, Agnes; Binet, Christophe; THRO, Jean-Francois

    2012-07-01

    CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of cooling time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR version 5.3 uses the CEA

  6. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    NASA Astrophysics Data System (ADS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  7. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  8. Halden In-Reactor Test to Exhibit PWR Axial Offset Anomaly

    SciTech Connect

    P.Bennett, B. Beverskog, R.Suther

    2004-12-01

    Many PWRs have encountered the axial offset anomaly (AOA) since the early 1990s, and these experiences have been reported widely. AOA is a phenomenon associated with localized boron hideout in corrosion product deposits (crud) on fuel surfaces. Several mitigation approaches have been developed or are underway to either delay the onset of AOA or avoid it entirely. This study describes the first phase of an experimental program designed to investigate whether the use of enriched boric acid (EBA) in the reactor coolant can mitigate AOA.

  9. A balance procedure for calculating the model fuel assemblies reflooding during design basis accident and its verification on PARAMETER test facility

    NASA Astrophysics Data System (ADS)

    Bazyuk, S. S.; Ignat'ev, D. N.; Parshin, N. Ya.; Popov, E. B.; Soldatkin, D. M.; Kuzma-Kichta, Yu. A.

    2013-05-01

    A balance procedure is proposed for estimating the main parameters characterizing the process of model fuel assemblies reflooding of a VVER reactor made on different scales under the conditions of a design basis accident by subjecting them to bottom reflooding1. The proposed procedure satisfactorily describes the experimental data obtained on PARAMETER test facility in the temperature range up to 1200°C. The times of fuel assemblies quenching by bottom reflooding calculated using the proposed procedure are in satisfactory agreement with the experimental data obtained on model fuel assemblies of VVER- and PWR-type reactors and can be used in developing measures aimed at enhancing the safety of nuclear power stations.

  10. Safety assessment document for the spent reactor fuel calorimeter for use in the E-MAD facility at the Nevada Test Site

    SciTech Connect

    1980-06-01

    A calorimeter has been designed to measure the decay heat generation rates of spent fuel assemblies prior to their encapsulation in the Engine Maintenance, Assembly, and Disassembly (E-MAD) facility at the Nevada Test Site. The decay heat from a spent fuel assembly is determined by immersing the assembly in boiling water contained within a closed calorimeter vessel. The calorimeter has been designed to accommodate a single PWR or BWR type fuel assembly with a decay heat generation rate in the range of 0.1 kW to 2.5 kW. The expected accuracy of decay heat measurement within the design range is +-10%. A safety assessment of the design, installation and operation of the calorimeter has been conducted.

  11. Technical basis for the initiation and cessation of environmentally-assisted cracking of low-alloy steels in elevated temperature PWR environments

    SciTech Connect

    James, L.A.

    1997-10-01

    The Section 11 Working Group on Flaw Evaluation of the ASME B and PV Code Committee is considering a Code Case to allow the determination of the conditions under which environmentally-assisted cracking of low-alloy steels could occur in PWR primary environments. This paper provides the technical support basis for such an EAC Initiation and Cessation Criterion by reviewing the theoretical and experimental information in support of the proposed Code Case.

  12. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  13. Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen

    NASA Astrophysics Data System (ADS)

    Hiernaut, J.-P.; Wiss, T.; Colle, J.-Y.; Thiele, H.; Walker, C. T.; Goll, W.; Konings, R. J. M.

    2008-07-01

    A commercial PWR fuel sample with a local burn-up of about 240 MWd/kgHM was annealed in a Knudsen cell mass spectrometer system with a heating rate of 10 K/min up to 2750 K at which temperature the sample was completely vaporized. The release of fission gases and fission products was studied as a function of temperature. In one of the runs the heating was interrupted successively at 900, 1500 and 1860 K and at each step a small fragment of the sample was examined by SEM and analysed by energy dispersive electron probe microanalysis. The release behaviour of volatile, gaseous and other less volatile fission products is presented and analysed with the EFFUS program and related to the structural changes of the fuel.

  14. Bulk Fuel Man.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by bulk fuel workers. Addressed in the four individual units of the course are the following topics: bulk fuel equipment, bulk fuel systems, procedures for handling fuels, and…

  15. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  16. Solid fuel oil mixtures

    SciTech Connect

    Rutter, P.R.; Veal, C.J.

    1984-11-27

    Fuel composition comprises 15 to 60% be weight, preferably 40 to 55%, of a friable solid fuel, e.g. coal, a stabilizing additive composition and a fuel oil. The additive comprises the combination of a polymer containing functional groups, e.g., maleinized polybutadiene, and a surfactant. The composition is suitable for use as a liquid fuel for industrial burners.

  17. Status of verification and validation of AREVA's ARCADIA{sup R} code system for PWR applications

    SciTech Connect

    Porsch, D.; Leberig, M.; Kuch, S.; Magat, P.; Segard, K.

    2012-07-01

    In March 2010 the submittal of Topical Reports for ARCADIA{sup R} and COBRA-FLX, the thermal-hydraulic module of ARCADIA{sup R}, to the U.S. Nuclear Regulatory Commission (NRC) concluded a major step in the development of AREVA's new code system for core design and safety analyses. This submittal was dedicated to the application of the code system to uranium fuel in pressurized water reactors. The submitted information comprised results for plants operated in the US (France)) and Germany and provided uncertainties for in-core measuring systems with traveling in-core detectors and for the aero-ball system of the EPR. A reduction of the uncertainties in the prediction of F{sub AH} and F{sub Q} of > 1 % (absolute) was derived compared to the current code systems. This paper extents the verification and validation base for uranium based fuel and demonstrates the basic capabilities of ARCADIA{sup R} of describing MOX. The achieved status of verification and validation is described in detail. All applications followed the same standard without any specific calibration. The paper gives also insight in the new capability of 3D full core steady-state and transient pin-by-pin/sub-channel-by-sub-channel calculations and the opportunities offered by this feature. The gain of margins with increasing detail of the representation is outlined. Currently, the strategies for worldwide implementation of ARCADIA{sup R} are developed. (authors)

  18. Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR

    SciTech Connect

    Gruszczynski, M.J.; Viskanta, R.

    1983-01-01

    The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

  19. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    SciTech Connect

    Williamson, D.A.

    1991-12-31

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas & Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States` utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste.

  20. Concentric layer ramjet fuel

    SciTech Connect

    Burdette, G.W.; Francis, J.P.

    1988-03-08

    This patent describes a solid fuel ramjet grain comprising concentric layers of solid ramjet fuel having a perforation therethrough along the center axis of the grain. The performation is connected to a combustion after-chamber. The solid ramjet fuel layers comprises a pure hydroxyl-terminated polybutadiene hydrocarbon fuel or a mixture of a hydroxyl-terminated polybutadiene hydrocarbon fuel and from about 5 to about 60 percent by weight of an additive to increase the fuel regression rate selected from the group consisting of magnesium, boron carbide, aluminum, and zirconium such that, when buried in the operation of the ramjet, each fuel layer produces a different level of thrust.

  1. Tomorrow's engines and fuels

    SciTech Connect

    Douaud, A. )

    1995-02-01

    The paper discusses global views and trends in vehicles and fuels. This includes important progress in Europe in vehicle fuel consumption; lower consumption being stimulated by CO[sub 2] emission limits; reduced vehicle emission; and new air quality strategy on ozone and toxic gas controls. The paper then discusses new engine and fuel technologies for low consumption and emissions. These include three-way catalyst engines; advanced after-treatments; clean and efficient fuels; reformulated gasoline in the US and Europe; diesel fuel reformulation; new fuels and dedicated engines for specialized markets; and gaseous fuels (LPG, CNG, biofuels, and hydrogen).

  2. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  3. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  4. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  5. Transmutation Performance Analysis for Inert Matrix Fuels in Light Water Reactors and Computational Neutronics Methods Capabilities at INL

    SciTech Connect

    Michael A. Pope; Samuel E. Bays; S. Piet; R. Ferrer; Mehdi Asgari; Benoit Forget

    2009-05-01

    The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.

  6. Geochemistry Model Abstraction and Sensitivity Studies for the 21 PWR CSNF Waste Package

    SciTech Connect

    P. Bernot; S. LeStrange; E. Thomas; K. Zarrabi; S. Arthur

    2002-10-29

    The CSNF geochemistry model abstraction, as directed by the TWP (BSC 2002b), was developed to provide regression analysis of EQ6 cases to obtain abstracted values of pH (and in some cases HCO{sub 3}{sup -} concentration) for use in the Configuration Generator Model. The pH of the system is the controlling factor over U mineralization, CSNF degradation rate, and HCO{sub 3}{sup -} concentration in solution. The abstraction encompasses a large variety of combinations for the degradation rates of materials. The ''base case'' used EQ6 simulations looking at differing steel/alloy corrosion rates, drip rates, and percent fuel exposure. Other values such as the pH/HCO{sub 3}{sup -} dependent fuel corrosion rate and the corrosion rate of A516 were kept constant. Relationships were developed for pH as a function of these differing rates to be used in the calculation of total C and subsequently, the fuel rate. An additional refinement to the abstraction was the addition of abstracted pH values for cases where there was limited O{sub 2} for waste package corrosion and a flushing fluid other than J-13, which has been used in all EQ6 calculation up to this point. These abstractions also used EQ6 simulations with varying combinations of corrosion rates of materials to abstract the pH (and HCO{sub 3}{sup -} in the case of the limiting O{sub 2} cases) as a function of WP materials corrosion rates. The goodness of fit for most of the abstracted values was above an R{sup 2} of 0.9. Those below this value occurred during the time at the very beginning of WP corrosion when large variations in the system pH are observed. However, the significance of F-statistic for all the abstractions showed that the variable relationships are significant. For the abstraction, an analysis of the minerals that may form the ''sludge'' in the waste package was also presented. This analysis indicates that a number a different iron and aluminum minerals may form in the waste package other than those

  7. Effect of bundle size on cladding deformation in LOCA simulation tests. [PWR; BWR

    SciTech Connect

    Chapman, R.H.; Crowley, J.L.; Longest, A.W.

    1982-01-01

    Two LOCA simulation tests were conducted to investigate the effects of temperature uniformity and radial restraint boundary conditions on Zircaloy cladding deformation. In one of the tests (B-5), boundary conditions typical of a large array were imposed on an inner 4 x 4 square array by two concentric rings of interacting guard fuel pin simulators. In the other test (B-3), the boundary conditions were imposed on a 4 x 4 square array by a non-interacting heated shroud. Test parameters conducive to large deformation were selected in order to favor rod-to-rod interactions. The tests showed that rod-to-rod interactions play an important role in the deformation process.

  8. LES analysis of the flow in a simplified PWR assembly with mixing grid

    NASA Astrophysics Data System (ADS)

    Bieder, Ulrich; Falk, Francois

    2014-06-01

    The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparisons between calculation and experiment are focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 10 to 20 hydraulic diameters (dh) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5x5 tube bundle) and TrioU calculations is done for the whole distance between two successive mixing grids that is up to 0.6m downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below: Linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid, Further downstream, when the cross flow velocity is reduced and isotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models will fail, The mixing grid affects the cross flow velocity up to the successive grid at a distance of about 50dh. The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 nodes of the HPC machine CURIE of the CCRT was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations.

  9. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark; Howard, Robert

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  10. Analysis of the risk of transporting spent nuclear fuel by train

    SciTech Connect

    Elder, H.K.

    1981-09-01

    This report uses risk analyses to analyze the safety of transporting spent nuclear fuel for commercial rail shipping systems. The rail systems analyzed are those expected to be used in the United States when the total electricity-generating capacity by nuclear reactors is 100 GW in the late 1980s. Risk as used in this report is the product of the probability of a release of material to the environment and the consequences resulting from the release. The analysis includes risks in terms of expected fatalities from release of radioactive materials due to transportation accidents involving PWR spent fuel shipped in rail casks. The expected total risk from such shipments is 1.3 x 10/sup -4/ fatalities per year. Risk spectrums are developed for shipments of spent fuel that are 180 days and 4 years out-of-reactor. The risk from transporting spent fuel by train is much less (by 2 to 4 orders of magnitude) than the risk to society from other man-caused events such as dam failure.

  11. Design of a Prototype Differential Die-Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    NASA Astrophysics Data System (ADS)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Jansson, Peter; Swinhoe, Martyn T.; Goodsell, Alison V.; Tobin, Stephen J.

    2016-06-01

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  12. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    NASA Astrophysics Data System (ADS)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  13. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  14. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  15. HTGR Fuel performance basis

    SciTech Connect

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  16. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  17. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  18. Micro fuel cell

    SciTech Connect

    Zook, L.A.; Vanderborgh, N.E.; Hockaday, R.

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  19. Presentation of the MERC work-flow for the computation of a 2D radial reflector in a PWR

    SciTech Connect

    Clerc, T.; Hebert, A.; Leroyer, H.; Argaud, J. P.; Poncot, A.; Bouriquet, B.

    2013-07-01

    This paper presents a work-flow for computing an equivalent 2D radial reflector in a pressurized water reactor (PWR) core, in adequacy with a reference power distribution, computed with the method of characteristics (MOC) of the lattice code APOLLO2. The Multi-modelling Equivalent Reflector Computation (MERC) work-flow is a coherent association of the lattice code APOLLO2 and the core code COCAGNE, structured around the ADAO (Assimilation de Donnees et Aide a l'Optimisation) module of the SALOME platform, based on the data assimilation theory. This study leads to the computation of equivalent few-groups reflectors, that can be spatially heterogeneous, which have been compared to those obtained with the OPTEX similar methodology developed with the core code DONJON, as a first validation step. Subsequently, the MERC work-flow is used to compute the most accurate reflector in consistency with all the R and D choices made at Electricite de France (EDF) for the core modelling, in terms of number of energy groups and simplified transport solvers. We observe important reductions of the power discrepancies distribution over the core when using equivalent reflectors obtained with the MERC work-flow. (authors)

  20. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    SciTech Connect

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.; Thomas, Larry E.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. For the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.

  1. OBSERVATIONS AND IMPLICATIONS OF INTERGRANULAR STRESS CORROSION CRACK GROWTH OF ALLOY 152 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2013-08-15

    Significant intergranular (IG) crack growth during stress corrosion cracking (SCC) tests has been documented during tests in simulated PWR primary water on two alloy 152 specimens cut from a weldment produced by ANL. The cracking morphology was observed to change from transgranular (TG) to mixed mode (up to ~60% IG) during gentle cycling and cycle + hold loading conditions. Measured crack growth rates under these conditions often suggested a moderate degree of environmental enhancement consistent with faster growth on grain boundaries. However, overall SCC propagation rates at constant stress intensity (K) or constant load were very low in all cases. Initial SCC rates up to 6x10-9 mm/s were occasionally measured, but constant K/load growth rates dropped below ~1x10-9 mm/s with time even when significant IG engagement existed. Direct comparisons were made among loading conditions, measured crack growth response and cracking morphology during each test to assess IGSCC susceptibility of the alloy 152 specimens. These results were analyzed with respect to our previous SCC crack growth rate measurements on alloy 152/52 welds.

  2. Fuel injection nozzle

    SciTech Connect

    Kato, M.; Tojo, S.; Arai, K.

    1986-07-22

    A fuel injection nozzle is described connected to a fuel injection pump to inject fuel into a combustion chamber of an internal combustion engine consisting of: a nozzle housing defining therein a fuel sump chamber, an injection hole communicating with the sump chamber and opened at the outer surface of the nozzle housing, a stepped cylinder bore having a smaller diameter bore section and a larger diameter bore section and a fuel passage communicating at one end with the sump chamber and at the other end with the smaller diameter bore section of the stepped cylinder bore; a stepped plunger fitted in the stepped cylinder bore and having a smaller diameter plunger section fitted into the smaller diameter bore section and a larger diameter plunger section fitted into the larger diameter bore section in which the smaller diameter bore section together with the end face of the smaller diameter plunger section defines a pump chamber communicating with the fuel passage and the larger diameter bore section together with the end face of the larger diameter plunger section defines a main fuel chamber into which a main fuel is supplied from the fuel injection pump; auxiliary fuel supply means for supplying an auxiliary fuel into the sump chamber and pump chamber through the fuel passage; valve means for opening and closing an injection hole; communication means for permitting the main fuel chamber to communicate with the fuel passage when the main fuel is supplied from the injection pump into the main fuel chamber to cause the stepped plunger to be moved a predetermined distance in a direction in which the auxiliary fuel in the pump chamber is pressurized.

  3. Evaluation of nonchemical decontamination techniques for use on reactor coolant systems. [PWR

    SciTech Connect

    Gardner, H.R.; Allen, R.P.; Polentz, L.M.; Skiens, W.E.; Wolf, G.A.

    1982-10-01

    The objective of this work is to describe, characterize, and evaluate a number of decontamination techniques that could be applied to the cleaning of fuel debris and corrosion products from reactor coolant systems and components. Excluded from consideration are the traditional or common chemical decontamination techniques. The information developed for each technique includes: theory of operation, methods of application, accessibility requirements, remote operation capability, state of development, previous applications, decontamination effectiveness, corrosion problems during and after decontamination, material removal, radiological and industrial safety, cost, post-decontamination cleanup, need for post-decontamination surface treatment, waste generation and disposal, and redistribution of contamination. The techniques treated are: Mechanical Methods; High-Pressure Water (< 20,000 psi); Ultrahigh-Pressure Water (> 20,000 psi); Abrasive Cleaning; Vibratory Finishing; Ultrasonics; High-Pressure FREON Cleaning; Electropolishing; Alternative Electrolyte Techniques; Steam/Hot Water Cleaning and Two-Phase Mixtures; Decontamination Foams, Gels, and Pastes; Strippable Decontamination Coatings; Reflux Decontamination; Dry Ice Blasting; Electrochemically-Activated Solutions; Molten Salt Methods; and Thermal Erosion.

  4. Development of a coupled PARCS/RELAPS model of the Ringhals-3 PWR

    SciTech Connect

    Banati, J.; Demaziere, C.; Staalek, M.

    2006-07-01

    This paper deals with the development of a coupled PARCS/RELAPS model of the Swedish Ringhals-3 pressurized water reactor. The stand-alone PARCS and RELAP5 models are first presented. On the neutronic side, the dependence of the material constants on history effects, burnup, and instantaneous conditions is accounted for, and the full heterogeneity of the core is thus taken into account. The reflectors are also explicitly represented. On the thermal-hydraulic side, each of the 157 fuel assemblies is modeled. The model is furthermore able to handle possible asymmetrical conditions of the flow field between the loops. The coupling between the two codes is then reported, with emphasis on the mapping between the hydrodynamic/heat structures and the neutronic nodes. Preliminary coupling tests for steady-state calculations were successfully performed and comparisons against plant measured data demonstrate a very good agreement of the model with the measurements. The coupled model will be later on used for analyzing the consequences of the power up-rate planned for this reactor, via the simulation of a few limiting transients. (authors)

  5. Experiment data report for Multirod Burst Test (MRBT) bundle B-6. [PWR; BWR

    SciTech Connect

    Chapman, R H; Longest, A W; Crowley, J L

    1984-07-01

    A reference source of MRBT bundle B-6 test data is presented with minimum interpretation. The primary objective of this 8 x 8 multirod burst test was to investigate cladding deformation in the alpha-plus-beta-Zircaloy temperature range under simulated light-water-reactor (LWR) loss-of-coolant accident (LOCA) conditions. B-6 test conditions simulated the adiabatic heatup (reheat) phase of an LOCA and produced very uniform temperature distributions. The fuel pin simulators were electrically heated (average linear power generation of 1.42 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (330/sup 0/C) to the burst temperature at a rate of 3.5/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 930/sup 0/C. Cladding burst strain ranged from 21 to 56%, with an average of 31%. Volumetric expansion over the heated length of the cladding ranged from 16 to 32%, with an average of 23%. 23 references.

  6. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  7. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  8. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  9. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  10. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  11. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  12. Aviation fueling hose

    SciTech Connect

    Not Available

    1989-01-01

    This standard provides comprehensive specifications and identifies appropriate test procedures for aircraft fueling hose, hose couplings, and coupled hose assemblies suitable for use on aviation fuel servicing equipment (fuelers/hydrant dispensers).

  13. Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

    SciTech Connect

    Gauld, I. C.; Ryman, J. C.

    2000-12-11

    This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.

  14. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

  15. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  16. Jet fuel instability mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1985-01-01

    The mechanisms of the formation of fuel-insoluble deposits were studied in several real fuels and in a model fuel consisting of tetralin in dodecane solution. The influence of addition to the fuels of small concentrations of various compounds on the quantities of deposits formed and on the formation and disappearance of oxygenated species in solution was assessed. The effect of temperature on deposit formation was also investigated over the range of 308-453 K.

  17. Fuel cells feasibility

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.; Charng, T.

    1981-01-01

    The technical and economic status of fuel cells is assessed with emphasis on their potential benefits to the Deep Space Network. The fuel cell, what it is, how it operates, and what its outputs are, is reviewed. Major technical problems of the fuel cell and its components are highlighted. Due to these problems and economic considerations it is concluded that fuel cells will not become commercially viable until the early 1990s.

  18. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  19. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  20. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  1. AREVA NP Cr{sub 2}O{sub 3}-doped fuel development for BWRs

    SciTech Connect

    Delafoy, C.; Dewes, P.; Miles, T.

    2007-07-01

    The search for improvements in nuclear fuel cycle economics results in increasing demands for fuel discharged burnup and reliability, plant maneuverability and power up-rating. To achieve these objectives without any reduction of safety margins, fuel design and materials that enable enhanced performance capabilities have been developed or are under investigations. Research on fuel pellets focuses on the modification of the microstructure to increase fission product retention and pellet mechanical compliance. Currently, production of the desired large grain viscoplastic UO{sub 2} fuel microstructures has been extensively investigated by AREVA NP through the use of doping elements. This track is nowadays a worldwide working field. In this area, AREVA NP has launched the development of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. The purpose of this paper is first to present the current results with the AREVA NP optimized chromia doped fuel and to discuss the key advantages in terms of fuel performance for BWR applications. In particular, the development relies on ramp testing results, fuel temperature and fission gas release values acquired at high burnup and high power levels. Second, the paper focuses on the qualification process implemented by AREVA NP to assess the margins of the optimized Cr{sub 2}O{sub 3}-doped UO{sub 2} fuel towards safety criteria at high burnup and the risk of PCI failure, as well as to develop calculation tools to support design. The driving force in this qualification plan is to gain the accurate knowledge of the optimized doped fuel behavior under normal, transient and anticipated accident conditions. To support this effort, irradiation campaigns are under progress in PWR and BWR plants to cover a wide range of existing operating conditions and to anticipate future demands. Considering only the BWR part, the program has successfully run since 2005 and is designed to obtain data up to high burnup, at least 70 GWd

  2. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    SciTech Connect

    Persiani, P.J.

    1995-06-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO{sub 2} fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO{sub 2} once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments.

  3. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  4. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    SciTech Connect

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  5. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  6. Fireplaces and Fireplace Fuels.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  7. Fuels from Recycling Systems

    ERIC Educational Resources Information Center

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  8. Nuclear fuels status

    NASA Technical Reports Server (NTRS)

    Kania, Michael

    1991-01-01

    A discussion on coated particle fuel performance from a modular High Temperature Gas Reactor (HTGR) is presented along with experimental results. The following topics are covered: (1) the coated particle fuel concept; (2) the functional requirements; (3) performance limiting mechanisms; (4) fuel performance; and (5) methods/techniques for characterizing performance.

  9. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  10. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  11. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  12. Application of surface-harmonics code SUHAM-U and Monte-Carlo code UNK-MC for calculations of 2D light water benchmark-experiment VENUS-2 with UO{sub 2} and MOX fuel

    SciTech Connect

    Boyarinov, V. F.; Davidenko, V. D.; Nevinitsa, V. A.; Tsibulsky, V. F.

    2006-07-01

    Verification of the SUHAM-U code has been carried out by the calculation of two-dimensional benchmark-experiment on critical light-water facility VENUS-2. Comparisons with experimental data and calculations by Monte-Carlo code UNK with the same nuclear data library B645 for basic isotopes have been fulfilled. Calculations of two-dimensional facility were carried out with using experimentally measured buckling values. Possibility of SUHAM code application for computations of PWR reactor with uranium and MOX fuel has been demonstrated. (authors)

  13. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  14. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  15. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  16. Fuel Cell Handbook update

    SciTech Connect

    Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

    1993-11-01

    The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

  17. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    NASA Astrophysics Data System (ADS)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  18. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  19. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  20. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  1. Crack initiation testing of thimble tube material under PWR conditions to determine a stress threshold for IASCC

    NASA Astrophysics Data System (ADS)

    Bosch, R. W.; Vankeerberghen, M.; Gérard, R.; Somville, F.

    2015-06-01

    IASCC (Irradiation Assisted Stress Corrosion Cracking) crack initiation tests have been carried out on thimble tube material retrieved from a Belgian PWR. The crack initiation tests were carried out by constant load testing of thimble tube specimens at different stress levels. The time-to-failure was determined as a function of the applied stress to find a stress threshold under which no stress corrosion cracking will take place. The thimble tube was made of 316L cold-worked stainless steel and the dose profile along the thimble tube ranges from 45 to 80 dpa. This allows adding crack initiation data for dose values that have not been significantly reported, i.e. in the range of 45-55 dpa and at 80 dpa. The results can be used to determine whether the stress under which no IASCC occurs saturates for a dose larger than 30 dpa or whether a small further threshold decrease with dose can be observed. Over a period of four years, more than 40 specimens have been tested with doses ranging from 45 to 80 dpa at stress levels between 40% and 70% of the irradiated yield stress. Fracture occurred at all stress levels (but not all specimens) although the time-to-failure increased with decreasing stress. The results show that intergranular cracking was the main fracture mode in all failed O-rings. Three of six 80 dpa O-rings subjected to 40% and 45% of the yield stress did not fail after six months of testing. Based on these results and a comparison with literature data, an apparent stress limit for IASCC could be estimated at 40% of the irradiated yield stress.

  2. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  3. The problem of optimizing the water chemistry used in the primary coolant circuit of a nuclear power station equipped with VVER reactors under the conditions of longer fuel cycle campaigns and increased capacity of power units

    NASA Astrophysics Data System (ADS)

    Sharafutdinov, R. B.; Kharitonova, N. L.

    2011-05-01

    It is shown that the optimal water chemistry of the primary coolant circuit must be substantiated while introducing measures aimed at increasing the power output in operating power units and for the project called AES-2006/AES TOI (a typical optimized project of a nuclear power station with enhanced information support). The experience gained from operation of PWR reactors with an elongated fuel cycle at an increased level of power is analyzed. Conditions under which boron compounds are locally concentrated on the fuel rod surfaces (the hideout phenomenon) and axial offset anomaly occurs are enlisted, and the influence of lithium on the hideout in the pores of deposits on the surfaces of fuel assemblies is shown.

  4. Evaluation of effective-stress-function algorithm for nuclear fuel simulation

    SciTech Connect

    Kim, H. C.; Yang, Y. S.; Koo, Y. H.

    2013-07-01

    In a pressurized water reactor (PWR), the mechanical integrity of nuclear fuel is the most critical issue as it is an important barrier for fission products released into the environment. The integrity of zirconium cladding that surrounds uranium oxide can be threatened during off-normal operation owing to a pellet-cladding mechanical interaction (PCMI). To analyze the fuel and cladding behavior during off-operation, the fuel performance code should calculate an inelastic analysis in two - or three-dimensional calculations. In this paper, the effective stress function (ESF) algorithm based on a two-dimensional FE module has been implemented to simulate the inelastic behavior of the cladding with stability and accuracy. The ESF algorithm solves the governing equations of the inelastic constitutive behavior by calculating the zero of the appropriate effective-stress-function. To verify the accuracy of the ESF algorithm for an inelastic analysis, a code-to-code benchmark was performed using the commercial FE code, ANSYS 13.0. To demonstrate the stability and convergence of the implemented algorithm, the number of iterations in the ESF algorithm was compared with that in a sequential algorithm in the case of an inelastic problem. Consequently, the evaluation results demonstrate that the implemented ESF algorithm improves the efficiency of the computation without a loss of accuracy for an inelastic analysis. (authors)

  5. Impact Analysis and Test for the Spacer Grid Assembly of a Nuclear Fuel Assembly

    NASA Astrophysics Data System (ADS)

    Song, Kee-Nam; Lee, Sang-Hoon; Lee, Soo-Bum

    A spacer grid assembly is one of the main structural components of the nuclear fuel assembly for a Pressurized light Water Reactor (PWR). The spacer grid assembly supports and aligns the fuel rods, guides the fuel assemblies past each other during a handling and, if needed, sustains lateral seismic loads. The ability of a spacer grid assembly to resist these lateral loads is usually characterized in terms of its dynamic and static crush strengths, which are acquired from tests. In this study, a finite element analysis on the dynamic crush strength of spacer grid assembly specimens is carried out. Comparisons show that the analysis results are in good agreement with the test results to within about a 30 % difference range. Therefore, we could predict the crush strength of a spacer grid assembly in advance, before performing a dynamic crush test. And also a parametric study on the crush strength of a spacer grid assembly is carried out by adjusting the weld penetration depth for a sub-sized spacer grid, which also shows a good agreement between the test and analysis results.

  6. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE PAGESBeta

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; Svard, Staffan Jacobsson; Jansson, Peter; Swinhoe, Martyn T.; Tobin, Stephen J.

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  7. Diesel fuel injection system

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1986-04-22

    A fuel injection pump is described of the multiple plunger spill port type for an automotive type internal combustion engine, the pump including at least four axially spaced engine camshaft driven pump plungers grouped in pairs and sequentially and in succession moved in one direction through a fuel pumping stroke and oppositely through a fuel intake stroke. A fuel pressurization/supply chamber is contiquous to the end of each plunger for pressurization of the fuel therein or supply of fuel thereto from a supply passage upon coordinate movement of the plunger, fill/spill passage means connected to a single fuel return spill port and in parallel flow relationship to each of the plunger bores as a function of the position of the plungers, each plunger having a pair of internal passages connected at all times to its chamber and alternately alignable with the supply or fill/spill passage means as a function of the position of the plunger. A fuel discharge passage is operatively connecting each of the chambers to an individual engine cylinder, a single spill port control valve movable to block or permit the spill of fuel through the spill port to a return line to control the pressurization of fuel in all of the fuel chambers and associated discharge passages, a single solenoid connected to the spill control valve for moving it to block or unblock the spill port, and a single shuttle valve operatively associated with all of the fill/spill passage means and spill port reciprocably movable between positions to sequentially connect the plunger chambers one at a time in succession to the spill port during the pumping pressurization stroke of its plunger for the injection of fuel to an individual cylinder while the other chambers are in various stages of being refilled with fuel and preparing for pressurization upon successive actuation of the plungers by the camshaft.

  8. Fuel enrichment apparatus and method for gaseous fuel mixers

    SciTech Connect

    Fox, C.D.

    1981-08-25

    A fuel enrichment apparatus and method is shown for a gaseous fuel carburetor of either a fixed venturi or air valve type. The apparatus provides fuel enriching at the starting and wide open throttle conditions of the carburetor when the pressure drop in the induction passage is at a minimum. The apparatus also economizes on fuel usage by being closed to fuel transfer at idle speed and normal engine speed. The apparatus operates from the fuel supply line to the carburetor with only the fuel pressure available in that line, thereby obviating the need for either a second fuel line or a high pressure fuel line.

  9. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  10. Spiral cooled fuel nozzle

    DOEpatents

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  11. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  12. Non-intrusive Experimental Study on Nuclear Fuel Assembly Response to Seismic Loads

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Noah A.

    Experimental measurements of nuclear fuel bundle response to seismic loads have primarily been focused on the response of the structure. Forcing methods have included use of shake tables, however, the majority of work has used hydraulic actuators rigidly connected to a single spacer grid to force the fuel bundle. Structural measurements utilize such instruments as linear variable displacement transducers (LVDT) that are mounted on the structure. From these measurements it has been shown that fuel bundles in prototypical conditions, with an axial flow of 6 m/s, behave markedly different from fuel bundles in still water when there is external forcing on the core from an earthquake. It has also been shown that the structure and fluid are fully coupled. Thus more recently attention has been focused on fluid measurements in the bypass region around fuel bundles with external forcing with laser doppler velocimetry (LDV), which is a point wise fluid velocity measurement technique. This work describes a unique facility that has garnered a large experimental database of fully coupled fluid and structure measurements with time resolved particle image velocimetry (PIV) and digital image correlation (DIC) within a full height 6x6 fuel bundle exposed to seismic forcing on a large 6 degree of freedom shake table. A refractive index matched (RIM) vertical liquid tunnel is mounted on the shake table and houses the fuel bundle which is based on the geometry of a prototypical fuel bundle in a pressurized water reactor (PWR). PIV is obtained with high spatial resolution by rigidly mounting all optical equipment to the test section on the shake table, where the laser light is delivered through high power multi-mode step index fiber optics from a high powered Nd:YLF laser located 10 meters away from the test section. High temporal resolution for the PIV measurements is obtained with state of the art high speed CMOS cameras that record straight to hard drive allowing for increased

  13. Food for fuel

    SciTech Connect

    Bell, J.

    1982-05-01

    Cassava, sugar cane, grain crops, molasses - all are potential feedstocks for ethanol production. Brazil has taken a clear lead in converting food crops into ethanol fuels for the automobile, but other countries may follow and the economic consequences could be considerable. This article looks at the various options. The total activity involved in fuel ethanol production and usage is considered as comprising three related components: feedstock production, ethanol production and application of the ethanol as a transport fuel.

  14. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  15. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  16. CHF Performance of Hybrid Mixing Vane Grid for a Nuclear Fuel Bundle

    SciTech Connect

    Shin, Chang-Hwan; Chun, Tae-Hyun; Choo, Yeon-Jun; Moon, Sang-Ki; Chun, Se-Young

    2007-07-01

    Numerous studies have shown that the mixing vanes of the spacer grids in a nuclear fuel rod bundle increase the Critical Heat Flux (CHF) significantly. The amount of the CHF enhancement depends strongly on the design of the mixing vanes such as the vane shape and vane bending angle. Recently a new mixing vane design was developed for an advanced spacer grid. It is called a Hybrid Mixing Vane. The main objective of this work is to evaluate the CHF performance of the hybrid vane grid and to compare it with that of a split vane grid. Three kinds of rod bundles were tested for the above objectives: no mixing vane grids, the hybrid mixing vane grids, and the split mixing vane grids. To measure the CHF data, 5x5 rod bundle experiments were conducted in the FTHEL (Freon Thermal Hydraulic Experiment Loop). Each experiment was performed by maintaining the following system conditions as constant: inlet pressure, inlet temperature, and mass flow rate. The experiments were performed in ranges of the inlet pressure, P{sub in} = 2000{approx}3000 kPa, mass flux, G = 1000{approx}3000 kg/m{sup 2}s, and inlet subcooling, {delta}h{sub in}= 10{approx}55 kJ/kg, which simulates the PWR operating conditions for a water equivalence through a fluid-to-fluid modeling. The CHF performances were compared with the data belonging to a PWR's operating conditions; a pressure of 2000{approx}3000 kPa and a mass flux of 1500{approx}3000 kg/m{sup 2}s. The average of the CHF increase for the hybrid mixing grids for 20 data sets is 18.2% higher than that for the no vane grids. While the average of the CHF increase for the split mixing vane grids for 20 data sets is 14.5% higher than that for the no vane grids. Consequently, the CHF performance of the hybrid mixing vane grid is superior by about 4% to that of the split mixing vane grid near the normal PWR operating conditions even under a longer grid span than usual. (authors)

  17. REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG TERM DISPOSAL

    SciTech Connect

    Radulescu, Georgeta; Wagner, John C

    2011-01-01

    This paper summarizes the problem specification and compares participants results for the OECD/NEA/WPNCS Expert Group on Burn-up Credit Criticality Safety Phase VII Benchmark Study of Spent Fuel Compositions for Long-Term Disposal. The Phase VII benchmark was developed to study the ability of relevant computer codes and associated nuclear data to predict spent fuel isotopic compositions and corresponding keff values in a cask configuration over the time duration relevant to spent nuclear fuel (SNF) disposal. The benchmark was divided into two sets of calculations: (1) decay calculations out to 1,000,000 years for provided pressurized-water-reactor (PWR) UO2 discharged fuel compositions and (2) burnup credit criticality calculations for a representative cask model at selected time steps. Contributions from 15 organizations and companies in 10 countries were submitted to the Phase VII benchmark exercise. This paper provides a description of the Phase VII benchmark and detailed comparisons of the participants isotopic compositions and keff values that were calculated with a diversity of computer codes and nuclear data sets. Differences observed in the calculated time-dependent nuclide densities are attributed to different decay data or code-specific numerical approximations. The variability of the keff results is consistent with the evaluated uncertainty associated with cross-section data.

  18. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    SciTech Connect

    Salay, Michael; Gauntt, Randall O.; Lee, Richard Y.; Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  19. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  20. FUEL ASSAY REACTOR

    DOEpatents

    Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.

    1962-12-25

    A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)