Sample records for jet fuel exposure

  1. Effects of concurrent noise and jet fuel exposure on hearing loss.

    PubMed

    Kaufman, Laura R; LeMasters, Grace K; Olsen, Donna M; Succop, Paul

    2005-03-01

    We sought to examine the effects of occupational exposure to jet fuel on hearing in military workers. Noise-exposed subjects, with or without jet fuel exposure, underwent hearing tests. Work histories, recreational exposures, protective equipment, medical histories, alcohol, smoking, and demographics were collected by questionnaire. Jet fuel, solvent, and noise exposure data were collected from records. Fuel exposure estimates were less than 34% of the OSHA Threshold Limit Values. Subjects with 3 years of jet fuel exposure had a 70% increase in adjusted odds of hearing loss (OR = 1.7; 95% CI = 1.14-2.53) and the odds increased to 2.41 (95% CI = 1.04-5.57) for 12 years of noise and fuel exposure. These findings suggest that jet fuel has a toxic affect on the auditory system.

  2. Immunotoxicological effects of JP-8 jet fuel exposure.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that

  3. The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.

    PubMed

    Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T

    2011-11-01

    Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.

  4. Urinary biomarkers of exposure to jet fuel (JP-8).

    PubMed Central

    Serdar, Berrin; Egeghy, Peter P; Waidyanatha, Suramya; Gibson, Roger; Rappaport, Stephen M

    2003-01-01

    Benzene, naphthalene, and 1- and 2-naphthol were measured in urine samples obtained from 322 U.S. Air Force personnel categorized a priori as likely to have low, moderate, or high exposure to jet fuel [jet propulsion fuel-8 (JP-8)]. In postexposure samples, levels of these analytes in the high-exposure group were 3- to 29-fold greater than in the low-exposure group and 2- to 12-fold greater than in the moderate-exposure group. Heavy exposure to JP-8 contributed roughly the same amount of benzene and more than three times the amount of naphthalene compared with cigarette smoking. Strong correlations were observed among postexposure levels of naphthalene-based biomarkers in urine and naphthalene in air and breath. We conclude that urinary naphthalene and the naphthols can serve as biomarkers of exposure to jet fuel. Of these, the naphthols are probably more useful because of their greater abundance and slower elimination kinetics. PMID:14594628

  5. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

    PubMed Central

    Fife, Terry D.; Robb, Michael J. A.; Steenerson, Kristen K.; Saha, Kamala C.

    2018-01-01

    We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel. PMID:29867750

  6. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel.

    PubMed

    Fife, Terry D; Robb, Michael J A; Steenerson, Kristen K; Saha, Kamala C

    2018-01-01

    We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3-5 years' duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n -hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

  7. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    PubMed

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  8. Jet Fuel Exposure and Neurological Health in Military Personnel

    DTIC Science & Technology

    2006-07-01

    relationship between JP-8 fuel exposure and adverse neurological outcomes in military personnel working in a cold climate environment. The research...with hypothesized neurocognitive and neurophysiologic performance outcomes . The project has two phases: Tier I is to conduct onsite exposure ...AD_________________ Award Number: W81XWH-06-1-0105 TITLE: Jet Fuel Exposure and Neurological

  9. A dermatotoxicokinetic model of human exposures to jet fuel.

    PubMed

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  10. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  11. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.

    PubMed

    Ritchie, Glenn; Still, Kenneth; Rossi, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl

    2003-01-01

    Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over 5 billion gallon of JP-8 by the militaries of the United States and other NATO countries. JP-8, for example, represents the largest single chemical exposure in the U.S. military (2.53 billion gallon in 2000), while Jet A and A-1 are among the most common sources of nonmilitary occupational chemical exposure. Although more recent figures were not available, approximately 4.06 billion gallon of kerosene per se were consumed in the United States in 1990 (IARC, 1992). These exposures may occur repeatedly to raw fuel, vapor phase, aerosol phase, or fuel combustion exhaust by dermal absorption, pulmonary inhalation, or oral ingestion routes. Additionally, the public may be repeatedly exposed to lower levels of jet fuel vapor/aerosol or to fuel combustion products through atmospheric contamination, or to raw fuel constituents by contact with contaminated groundwater or soil. Kerosene-based hydrocarbon fuels are complex mixtures of up to 260+ aliphatic and aromatic hydrocarbon compounds (C(6) -C(17+); possibly 2000+ isomeric forms), including varying concentrations of potential toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes (including polycyclic aromatic hydrocarbons [PAHs], and certain other C(9)-C(12) fractions (i.e., n-propylbenzene, trimethylbenzene isomers). While hydrocarbon fuel exposures occur typically at concentrations below current permissible exposure limits (PELs) for the parent fuel or its constituent chemicals, it is unknown whether additive or synergistic interactions among hydrocarbon constituents, up to six

  12. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  13. Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.

    PubMed

    Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R

    2014-01-01

    Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.

  14. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.

  15. Effects of in utero JP-8 jet fuel exposure on the immune systems of pregnant and newborn mice.

    PubMed

    Harris, D T; Sakiestewa, D; He, X; Titone, D; Witten, M

    2007-10-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. In the present study, the effects of in-utero JP-8 jet fuel exposure in mice were examined to ascertain any potential effects of jet fuel exposure on female personnel and their offspring. Exposure by the aerosol route (at 1000 mg/m3 for 1 h/day; similar to exposures incurred by flight line personnel) commencing during the first (d7 to birth) or last (d15 to birth) trimester of pregnancy was analyzed. It was observed that even 6-8 weeks after the last jet fuel exposure that the immune system of the dams (mother of newborn mice) was affected (in accordance with previous reports on normal mice). That is, thymus organ weights and viable cell numbers were decreased, and immune function was depressed. A decrease in viable male offspring was found, notably more pronounced when exposure started during the first trimester of pregnancy. Regardless of when jet fuel exposure started, all newborn mice (at 6-8 weeks after birth) reported significant immunosuppression. That is, newborn pups displayed decreased immune organ weights, decreased viable immune cell numbers and suppressed immune function. When the data were analyzed in relation to the respective mothers of the pups the data were more pronounced. Although all jet fuel-exposed pups were immunosuppressed as compared with control pups, male offspring were more affected by jet fuel exposure than female pups. Furthermore, the immune function of the newborn mice was directly correlated to the immune function of their respective mothers. That is, mothers showing the lowest immune function after JP-8 exposure gave birth to pups displaying the greatest effects of jet fuel exposure on immune function. Mothers who showed the highest levels of immune function after in-utero JP-8

  16. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  17. Chronic effects on JP-8 jet fuel exposure on the lungs. Final technical report, 1 April 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, M.L.

    1994-06-02

    There are four major findings from the three years of work devoted to the effects of chronic JP-8 jet fuel exposure on the lungs and secondary organs. These findings are the following chronic exposure to JP-8 jet fuel alters pulmonary function and lung structures with an acute response with as little as seven days of low dose, approximately 500 mg/m3, exposure to JP-8 jet fuel; chronic exposure to JP-8 jet fuel increased liver, spleen, and kidney weights compared to controls. Microscopic evaluation of liver sections were normal; however, kidney and spleen had histological changes consistent with organic solvent exposure. Theremore » is a correlation between JP-8 jet fuel exposure-induced decreases in lung Substance P levels and lung neutral endopeptidase levels. Chronic exposure to JP-8 jet fuel caused a decrease in lung Substance P levels with a corresponding increase in lung neutral endopeptidase levels; and, there is a recovery process in the 56 day low dose JP-8 jet fuel-exposed lungs as marked by a return to baseline and longitudinal control 99mTcDTPA values. The 99mTcDTPA data was very consistent with our pathologic findings of very little lung injury in the 56 day low dose JP-8 jet fuel-exposed rats. We speculate that this finding indicates that there is a 'threshold' level of JP-8 jet fuel exposure that the lungs' defense mechanism(s) can tolerate.« less

  18. JP-8 jet fuel exposure suppresses the immune response to viral infections.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; He, X; Hyde, J; Witten, M

    2008-05-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1A h/day resulted in immediate secretion of two immunosuppressive agents, namely, interleukin-10 and prostaglandin E2. Thus, it was of interest to determine if jet fuel exposure might alter the immune response to infectious agents. The Hong Kong influenza model was used for these studies. Mice were exposed to 1000A mg/m(3) JP-8 (1A h/day) for 7A days before influenza viral infection. Animals were infected intra-nasally with virus and followed in terms of overall survival as well as immune responses. All surviving animals were killed 14A days after viral infection. In the present study, JP-8 exposure increased the severity of the viral infection by suppressing the anti-viral immune responses. That is, exposure of mice to JP-8 for 1A h/day for 7A days before infection resulted in decreased immune cell viability after exposure and infection, a greater than fourfold decrease in immune proliferative responses to mitogens, as well as an overall loss of CD3(+), CD4(+), and CD8(+) T cells from the lymph nodes, but not the spleens, of infected animals. These changes resulted in decreased survival of the exposed and infected mice, with only 33% of animals surviving as compared with 50% of mice infected but not jet fuel-exposed (and 100% of mice exposed only to JP-8). Thus, short-term, low-concentration JP-8 jet fuel exposures have significant suppressive effects on the immune system which can result in increased severity of viral infections.

  19. Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed. Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (i.e., physiology, cardiology, respiratory, etc.); e.g., the immune system. Previous studies have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system, which should have serious consequences for the exposed host in terms of susceptibility to infectious agents. If these alterations in immune function were long-lasting, it might also result in an increased likelihood of development and/or progression of cancer, as well as autoimmune disease. In the current study, mice were exposed for 1 h/day for 7 days to a moderate (1000 mg/m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel to stimulate occupational exposures. One to 28 days after the last exposure the mice were analyzed for effects of the exposure on their immune systems. It was observed that decrease in viable immune cell numbers and immune organ weights found at 24 h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analyzed by mitogenesis assays, which persisted for up to 4 weeks post-exposure. Thus, short-term exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long-lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure. Such long

  20. Human exposure to the jet fuel, JP-8.

    PubMed

    Tu, Raymond H; Mitchell, Clifford S; Kay, Gary G; Risby, Terence H

    2004-01-01

    This study investigates anecdotal reports that have suggested adverse health effects associated with acute or chronic exposure to jet fuel. JP-8 exposure during the course of the study day was estimated using breath analysis. Health effects associated with exposure were measured using a neurocognitive testing battery and liver and kidney function tests. Breath analysis provided an estimate of an individual's recent JP-8 exposure that had occurred via inhalation and dermal routes. All individuals studied on base exhaled aromatic and aliphatic hydrocarbons that are found in JP-8. The subject who showed evidence of the most exposure to JP-8 had a breath concentration of 11.5 mg x m(-3) for total JP-8. This breath concentration suggested that exposure to JP-8 at an Air Guard Base is much less than exposure observed at other Air Force Bases. This reduction in exposure to JP-8 is attributed to the safety practices and standard operating procedures carried out by base personnel. The base personnel who exhibited the highest exposures to JP-8 were fuel cell workers, fuel specialists and smokers, who smoked downwind from the flightline. Although study-day exposures appear to be much less than current guidelines, chronic exposure at these low levels appeared to affect neurocognitive functioning. JP-8-exposed individuals performed significantly poorer than a sample of non-exposed age- and education-matched individuals on 20 of 47 measures of information processing and other cognitive functions.

  1. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  2. Gene expression profiles in the rat central nervous system induced by JP-8 jet fuel vapor exposure.

    PubMed

    Lin, Baochuan; Ritchie, Glenn D; Rossi, John; Pancrazio, Joseph J

    2004-06-17

    Jet propulsion fuel-8 (JP-8) is the predominant fuel for military land vehicles and aircraft used in the US and NATO. Occupational exposure to jet fuel in military personnel has raised concern for the health risk associated with such exposure in the Department of Defense. Clinical studies of humans chronically exposed to jet fuel have suggested both neurotoxicity and neurobehavioral deficits. We utilized rat neurobiology U34 array to measure gene expression changes in whole brain tissue of rats exposed repeatedly to JP-8, under conditions that simulated possible occupational exposure (6 h/day for 91 days) to JP-8 vapor at 250, 500, and 1000 mg/m(3), respectively. Our studies revealed that the gene expression changes of exposure groups can be divided into two main categories according to their functions: (1). neurotransmitter signaling pathways; and (2). stress response. The implications of these gene expression changes are discussed.

  3. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.

    PubMed

    MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan

    2010-01-01

    Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were

  4. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  5. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats.

    PubMed

    Fechter, Laurence D; Gearhart, Caroline A; Fulton, Sherry

    2010-07-01

    This study was undertaken to identify the ototoxic potential of two jet fuels presented alone and in combination with noise. Rats were exposed via a subacute inhalation paradigm to JP-8 jet fuel, a kerosene-based fuel refined from petroleum, and a synthetic fuel produced by the Fischer-Tropsch (FT) process. Although JP-8 contains small ( approximately 5%) concentrations of aromatic hydrocarbons some of which known to be ototoxic, the synthetic fuel does not. The objectives of this study were to identify a lowest observed adverse effect level and a no observed adverse effect level for each jet fuel and to provide some preliminary, but admittedly, indirect evidence concerning the possible role of the aromatic hydrocarbon component of petroleum-based jet fuel on hearing. Rats (n = 5-19) received inhalation exposure to JP-8 or to FT fuel for 4 h/day on five consecutive days at doses of 500, 1000, and 2000 mg/m(3). Additional groups were exposed to various fuel concentrations followed by 1 h of an octave band of noise, noise alone, or no exposure to fuel or noise. Significant dose-related impairment in the distortion product otoacoustic emissions (DPOAE) was seen in subjects exposed to combined JP-8 plus noise exposure when JP-8 levels of at least 1000 mg/m(3) were presented. No noticeable impairment was observed at JP-8 levels of 500 mg/m(3) + noise. In contrast to the effects of JP-8 on noise-induced hearing loss, FT exposure had no effect by itself or in combination with noise exposure even at the highest exposure level tested. Despite an observed loss in DPOAE amplitude seen only when JP-8 and noise were combined, there was no loss in auditory threshold or increase in hair cell loss in any exposure group.

  6. Effect of in vivo jet fuel exposure on subsequent in vitro dermal absorption of individual aromatic and aliphatic hydrocarbon fuel constituents.

    PubMed

    Muhammad, F; Monteiro-Riviere, N A; Baynes, R E; Riviere, J E

    2005-05-14

    The percutaneous absorption of topically applied jet fuel hydrocarbons (HC) through skin previously exposed to jet fuel has not been investigated, although this exposure scenario is the occupational norm. Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different HC consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-dJP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-dJP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from

  7. JP-8 jet fuel exposure potentiates tumor development in two experimental model systems.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; He, X; Hyde, J; Witten, M

    2007-11-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). Thus, it was of interest to determine if jet fuel exposure might promote tumor growth and metastasis. The syngeneic B16 tumor model was used for these studies. Animals were injected intravenously with tumor cells, and lung colonies were enumerated. Animals were also examined for metastatic spread of the tumor. Mice were either exposed to 1000 mg/m3 JP-8 (1 h/ day) for 7 days before tumor injection or were exposed to JP-8 at the time of tumor injection. All animals were killed 17 days after tumor injection. In the present study, JP8 exposure potentiated the growth and metastases of B16 tumors in an animal model. Exposure of mice to JP-8 for 1 h/day before tumor induction resulted in an approximately 8.7-fold increase in tumors, whereas those mice exposed to JP8 at the time of tumor induction had a 5.6-fold increase in tumor numbers. Thus, low concentration JP-8 jet fuel exposures have significant immune suppressive effects on the immune system that can result in increased tumor formation and metastases. We have now extended the observations to an experimental subcutaneous tumor model. JP8 exposure at the time of tumor induction in this model did not affect the growth of the tumor. However, JP8-exposed, tumor-bearing animals died at an accelerated rate as compared with air-exposed, tumor-bearing mice.

  8. The Utility of Naphthyl-Keratin Adducts as Biomarkers for Jet-Fuel Exposure

    EPA Science Inventory

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). Th...

  9. Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers

    PubMed Central

    Chao, Yi-Chun E.; Kupper, Lawrence L.; Serdar, Berrin; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.

    2006-01-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure. PMID:16451852

  10. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    PubMed

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  11. Jet Fuel-Associated Occupational Contact Dermatitis.

    PubMed

    Contestable, James J

    2017-03-01

    Occupational contact dermatitis is a ubiquitous problem. Sailors onboard U.S. Navy vessels are at high risk given the multitude of potential workplace exposures. Solvents, petrochemicals, and fuels are abundant and can cause irritant or allergic contact dermatitis. Symptoms of contact dermatitis can cause inability to work and, if chronic, may require a change in rating or job. Prevention of this issue requires patient education about the risks and correct personnel protective equipment. Even with preventative strategies in place, exposures and cases of contact dermatitis will occur. Treatment consists of topical steroids and immunomodulators, as well as barrier creams and emollients. The goal of treatment is to fully restore the skin's natural barrier and prevent further exposure. A classic case of jet fuel-associated contact dermatitis is reviewed. A literature review utilizing PubMed, Google Scholar, and Google Search was conducted to elucidate our understanding of this issue, current occupational health guidelines, preventative approaches, and treatments. This case report provides guidance and recommendations for providers who encounter contact dermatitis related to petrochemicals, such as jet fuel. The literature review revealed limited knowledge surrounding in vivo human skin effects of jet fuel, specifically JP-5. Even larger gaps were found in our understanding of, and guidelines for, protective modalities against jet fuel exposure and dermatitis. A case is presented to facilitate recognition of jet fuel contact dermatitis and guidance for treatment and prevention. Given our current limited knowledge and guidelines concerning protective equipment and skin protectants, multiple proposals for future studies are suggested. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  12. Proteomic analysis of the renal effects of simulated occupational jet fuel exposure.

    PubMed

    Witzmann, F A; Bauer, M D; Fieno, A M; Grant, R A; Keough, T W; Lacey, M P; Sun, Y; Witten, M L; Young, R S

    2000-03-01

    We analyzed protein expression in the cytosolic fraction prepared from whole kidneys in male Swiss-Webster mice exposed 1 h/day for five days to aerosolized JP-8 jet fuel at a concentration of 1000 mg/m3, simulating military occupational exposure. Kidney cytosol samples were solubilized and separated via large-scale, high-resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant changes in soluble kidney proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass finger-printing and related to ultrastructural abnormalities, altered protein processing, metabolic effects, and paradoxical stress protein/detoxification system responses. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression in the kidney and provide novel molecular evidence of JP-8 nephrotoxicity. Human risk is suggested by these data but conclusive assessment awaits a noninvasive search for biomarkers in JP-8 exposed humans.

  13. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-03-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  14. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed Central

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-01-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  15. Dermal exposure to jet fuel suppresses delayed-type hypersensitivity: a critical role for aromatic hydrocarbons.

    PubMed

    Ramos, Gerardo; Limon-Flores, Alberto Yairh; Ullrich, Stephen E

    2007-12-01

    Dermal exposure to military (JP-8) and/or commercial (Jet-A) jet fuel suppresses cell-mediated immune reactions. Immune regulatory cytokines and biological modifiers, including platelet activating factor (PAF), prostaglandin E(2), and interleukin-10, have been implicated in the pathway of events leading to immune suppression. It is estimated that approximately 260 different hydrocarbons are found in jet fuel, and the exact identity of the active immunotoxic agent(s) is unknown. The recent availability of synthetic jet fuel (S-8), which is refined from natural gas, and is devoid of aromatic hydrocarbons, made it feasible to design experiments to address this problem. Here we tested the hypothesis that the aromatic hydrocarbons present in jet fuel are responsible for immune suppression. We report that applying S-8 to the skin of mice does not upregulate the expression of epidermal cyclooxygenase-2 (COX-2) nor does it induce immune suppression. Adding back a cocktail of seven of the most prevalent aromatic hydrocarbons found in jet fuel (benzene, toluene, ethylbenzene, xylene, 1,2,4-trimethlybenzene, cyclohexylbenzene, and dimethylnaphthalene) to S-8 upregulated epidermal COX-2 expression and suppressed a delayed-type hypersensitivity (DTH) reaction. Injecting PAF receptor antagonists, or a selective cycloozygenase-2 inhibitor into mice treated with S-8 supplemented with the aromatic cocktail, blocked suppression of DTH, similar to data previously reported using JP-8. These findings identify the aromatic hydrocarbons found in jet fuel as the agents responsible for suppressing DTH, in part by the upregulation of COX-2, and the production of immune regulatory factors and cytokines.

  16. Acute toxicity evaluation of JP-8 jet fuel and JP-8 jet fuel containing additives. Final report, November 1995-February 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.E.; Kinead, E.R.; Feldmann, M.L.

    1996-11-01

    To reduce fuel fouling in current U.S Navy and Air Force aircraft systems and to provide additional heat sink and thermal stability for future systems, the Air Force is developing an improved JP-8 jet fuel (JP-8 + 100). Two companies (Betz and Mobil) have developed additive packages that are currently being tested in aircraft systems. To determine if the additive packages will produce health effects for flightline personnel, acute testing was performed on JP-8 and the two JP-8 + 100 jet fuels. A single oral dose at 5 mg jet fuel/kg body weight to five male and five female F-344more » rats, and a single dermal application of 2 g jet fuel/kg body weight applied to five male and five female NZW rabbits resulted in no deaths. No signs of toxic stress were observed, and all animals gained weight over the 14-day observation periods. Single treatment of 0.5 mL neat jet fuel to rabbit skin produced negative results for skin irritation. Guinea pigs tailed to elicit a sensitization response following repeated applications of the jet fuels. Inhalation vapor exposure to JP-8, JP-8 + 100 (Betz), and JP-8 (Mobil) were determined to be >3.43, >3.52, and >3.57 mg/L, respectively. LD% values for aerosol exposure to JP-8, JP-8 + 100 (Betz), and JP-8 + 100 (Mobil) were >4.44, >4.39, and >4.54 mg/L, respectively. Under the conditions of these tests, the additive packages did not potentiate the acute effects normally associated with JP-8 jet fuel exposures.« less

  17. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    PubMed

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  18. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats.

    PubMed

    Fechter, Laurence D; Gearhart, Caroline; Fulton, Sherry; Campbell, Jerry; Fisher, Jeffrey; Na, Kwangsam; Cocker, David; Nelson-Miller, Alisa; Moon, Patrick; Pouyatos, Benoit

    2007-08-01

    We report on the transient and persistent effects of JP-8 jet fuel exposure on auditory function in rats. JP-8 has become the standard jet fuel utilized in the United States and North Atlantic Treaty Organization countries for military use and it is closely related to Jet A fuel, which is used in U.S. domestic aviation. Rats received JP-8 fuel (1000 mg/m(3)) by nose-only inhalation for 4 h and half of them were immediately subjected to an octave band of noise ranging between 97 and 105 dB in different experiments. The noise by itself produces a small, but permanent auditory impairment. The current permissible exposure level for JP-8 is 350 mg/m(3). Additionally, a positive control group received only noise exposure, and a fourth group consisted of untreated control subjects. Exposures occurred either on 1 day or repeatedly on 5 successive days. Impairments in auditory function were assessed using distortion product otoacoustic emissions and compound action potential testing. In other rats, tissues were harvested following JP-8 exposure for assessment of hydrocarbon levels or glutathione (GSH) levels. A single JP-8 exposure by itself at 1000 mg/m(3) did not disrupt auditory function. However, exposure to JP-8 and noise produced an additive disruption in outer hair cell function. Repeated 5-day JP-8 exposure at 1000 mg/m(3) for 4 h produced impairment of outer hair cell function that was most evident at the first postexposure assessment time. Partial though not complete recovery was observed over a 4-week postexposure period. The adverse effects of repeated JP-8 exposures on auditory function were inconsistent, but combined treatment with JP-8 + noise yielded greater impairment of auditory function, and hair cell loss than did noise by itself. Qualitative comparison of outer hair cell loss suggests an increase in outer hair cell death among rats treated with JP-8 + noise for 5 days as compared to noise alone. In most instances, hydrocarbon constituents of the fuel

  19. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure

    PubMed Central

    Kang-Sickel, Juei-Chuan C.; Butler, Mary Ann; Frame, Lynn; Serdar, Berrin; Chao, Yi-Chun E.; Egeghy, Peter; Rappaport, Stephen M.; Toennis, Christine A.; Li, Wang; Borisova, Tatyana; French, John E.; Nylander-French, Leena A.

    2014-01-01

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+−) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure. PMID:21961652

  20. The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure.

    PubMed

    Kang-Sickel, Juei-Chuan C; Butler, Mary Ann; Frame, Lynn; Serdar, Berrin; Chao, Yi-Chun E; Egeghy, Peter; Rappaport, Stephen M; Toennis, Christine A; Li, Wang; Borisova, Tatyana; French, John E; Nylander-French, Leena A

    2011-11-01

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). The NKA, post-exposure breath naphthalene, and male gender were associated with an increase, while CYP2E1*6 DD and GSTT1-plus (++/+-) genotypes were associated with a decrease in urine naphthalene level (p < 0.0001). The NKA show great promise as biomarkers for dermal exposure to naphthalene. Further studies are warranted to characterize the relationship between NKA, other exposure biomarkers, and/or biomarkers of biological effects due to naphthalene and/or PAH exposure.

  1. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  2. Occupational Jet Fuel Exposure and Invasive Cancer Occurrence in the United States Air Force, 1989-2003

    DTIC Science & Technology

    2007-01-01

    Krishnadasan, A., Kennedy, N., Morgenstern, H., Ritz , B. Estimated effects of solvents and mineral oils on cancer incidence and mortality in a cohort of...aerospace workers. Am J Ind Med 2005; 48: 249-58. 25. Carlton , GN and Smith, LB. Exposures to jet fuel and benzene during aircraft fuel tank repair in

  3. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel.

    PubMed

    Rohan, Joyce G; McInturf, Shawn M; Miklasevich, Molly K; Gut, Chester P; Grimm, Michael D; Reboulet, James E; Howard, William R; Mumy, Karen L

    2018-01-01

    Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m 3 ). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.

  4. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    EPA Science Inventory

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  5. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats.

    PubMed

    Fechter, L D; Fisher, J W; Chapman, G D; Mokashi, V P; Ortiz, P A; Reboulet, J E; Stubbs, J E; Lear, A M; McInturf, S M; Prues, S L; Gearhart, C A; Fulton, S; Mattie, D R

    2012-01-01

    Both laboratory and epidemiological studies published over the past two decades have identified the risk of excess hearing loss when specific chemical contaminants are present along with noise. The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss (NIHL) using inhalation exposure to fuel and simultaneous exposure to either continuous or intermittent noise exposure over a 4-wk exposure period using both male and female Fischer 344 rats. In the initial study, male (n = 5) and female (n = 5) rats received inhalation exposure to JP-8 fuel for 6 h/d, 5 d/wk for 4 wk at concentrations of 200, 750, or 1500 mg/m³. Parallel groups of rats also received nondamaging noise (constant octave band noise at 85 dB(lin)) in combination with the fuel, noise alone (75, 85, or 95 dB), or no exposure to fuel or noise. Significant concentration-related impairment of auditory function measured by distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) threshold was seen in rats exposed to combined JP-8 plus noise exposure when JP-8 levels of 1500 mg/m³ were presented with trends toward impairment seen with 750 mg/m³ JP-8 + noise. JP-8 alone exerted no significant effect on auditory function. In addition, noise was able to disrupt the DPOAE and increase auditory thresholds only when noise exposure was at 95 dB. In a subsequent study, male (n = 5 per group) and female (n = 5 per group) rats received 1000 mg/m³ JP-8 for 6 h/d, 5 d/wk for 4 wk with and without exposure to 102 dB octave band noise that was present for 15 min out of each hour (total noise duration 90 min). Comparisons were made to rats receiving only noise, and thosereceiving no experimental treatment. Significant impairment of auditory thresholds especially for high-frequency tones was identified in the male rats receiving combined treatment. This study provides a basis for estimating excessive hearing loss under

  6. Long-term exposure to jet fuel. II. A cross-sectional epidemiologic investigation on occupationally exposed industrial workers with special reference to the nervous system.

    PubMed

    Knave, B; Olson, B A; Elofsson, S; Gamberale, F; Isaksson, A; Mindus, P; Persson, H E; Struwe, G; Wennberg, A; Westerholm, P

    1978-03-01

    Thirty jet fuel exposed workers selected according to exposure criteria and thirty nonexposed controls from a jet motor factory were examined, with special reference to the nervous system, by occupational hygiene physicians, psychiatrists, psychologists, and neurophysiologists. The controls and the exposed subjects were matched with respect to age, employment duration, and education. Among the exposed subjects the mean exposure duration was 17 years, and 300 mg/m3 was calculated as a rough time-weighted average exposure level. The investigation revealed significant differences between the exposed and nonexposed groups for (a) incidence and prevalence of psychiatric symptoms, (b) psychological tests with the load on attention and sensorimotor speed and (c) electroencephalograms. When the control group was selected, it was ensured that the two groups were essentially equivalent except for exposure to jet fuel. It is concluded, therefore, that the differences found between the groups are probably related to exposure to jet fuel.

  7. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    PubMed

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P < 0.0001), with similar differences observed for other analytes in air. Naphthalene was strongly correlated with THC (r = 0.82, P < 0.0001) and both were positively correlated with the relative humidity of the work environment. Exposures to THC and naphthalene varied significantly by job categories based on USAF specialty codes and were highest among personnel working in fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups

  8. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  9. Pulmonary Evaluation of Permissible Exposure Limit of Syntroleum S-8 Synthetic Jet Fuel in Mice

    PubMed Central

    Wong, Simon S.; Thomas, Alana; Barbaris, Brian; Lantz, R. Clark; Witten, Mark L.

    2009-01-01

    No current studies have systematically examined pulmonary health effects associated with Syntroleum S-8 synthetic jet fuel (S-8). In order to gain an understanding about the threshold concentration in which lung injury is observed, C57BL/6 male mice were nose-only exposed to S-8 for 1 h/day for 7 days at average concentrations of 0 (control), 93, 352, and 616 mg/m3. Evaluation of pulmonary function, airway epithelial barrier integrity, and pathohistology was performed 24 h after the final exposures. Significant decreases were detected in expiratory lung resistance and total lung compliance of the 352 mg/m3 group, for which no clear concentration-dependent alterations could be determined. No significant changes in respiratory permeability were exhibited, indicating that there was no loss of epithelial barrier integrity following S-8 exposure. However, morphological examination and morphometric analysis of distal lung tissue, by using transmission electron microscopy, revealed cellular damage in alveolar type II epithelial cells, with significant increases in volume density of lamellar bodies/vacuoles at 352 and 616 S-8 mg/m3. Moreover, terminal bronchiolar Clara injury, as evidenced by apical membrane blebs, was observed at relatively low concentrations, suggesting if this synthetic jet fuel is utilized, the current permissible exposure limit of 350 mg/m3 for hydrocarbon fuels should cautiously be applied. PMID:19357071

  10. Pulmonary evaluation of permissible exposure limit of syntroleum S-8 synthetic jet fuel in mice.

    PubMed

    Wong, Simon S; Thomas, Alana; Barbaris, Brian; Lantz, R Clark; Witten, Mark L

    2009-06-01

    No current studies have systematically examined pulmonary health effects associated with Syntroleum S-8 synthetic jet fuel (S-8). In order to gain an understanding about the threshold concentration in which lung injury is observed, C57BL/6 male mice were nose-only exposed to S-8 for 1 h/day for 7 days at average concentrations of 0 (control), 93, 352, and 616 mg/m(3). Evaluation of pulmonary function, airway epithelial barrier integrity, and pathohistology was performed 24 h after the final exposures. Significant decreases were detected in expiratory lung resistance and total lung compliance of the 352 mg/m(3) group, for which no clear concentration-dependent alterations could be determined. No significant changes in respiratory permeability were exhibited, indicating that there was no loss of epithelial barrier integrity following S-8 exposure. However, morphological examination and morphometric analysis of distal lung tissue, by using transmission electron microscopy, revealed cellular damage in alveolar type II epithelial cells, with significant increases in volume density of lamellar bodies/vacuoles at 352 and 616 S-8 mg/m(3). Moreover, terminal bronchiolar Clara injury, as evidenced by apical membrane blebs, was observed at relatively low concentrations, suggesting if this synthetic jet fuel is utilized, the current permissible exposure limit of 350 mg/m(3) for hydrocarbon fuels should cautiously be applied.

  11. Long-term exposure to jet fuel: an investigation on occupationally exposed workers with special reference to the nervous system.

    PubMed

    Knave, B; Persson, H E; Goldberg, J M; Westerholm, P

    1976-09-01

    In the present study the results of a neurological and neurophysiological health examination of 29 aircraft factory workers chronically exposed to jet fuel vapors are presented. The exposed subjects were classified into a heavily exposed and a less heavily exposed group. The examination included a standardized clinical neurological examination, measurements of the conduction velocities in the peripheral nerves, and threshold determinations of vibratory sensations in the extremities. All 13 persons examined in the heavily exposed group and 7 of the 16 in the less heavily exposed group stated that they had repeatedly experienced acute effects (dizziness, respiratory tract symptoms, heart palpitations, a feeling of pressure on the chest, nausea, headache) of the jet fuel vapors in the inhaled air. A high rate of symptoms indicative of neurasthenia and psychasthenia and symptoms and signs indicative of polyneuropathy was observed both in the heavily exposed group and in the two groups combined in comparison with reference groups. Considering the presented facts concerning (a) the acute effects on repeated occasions, (b) the high rates of symptoms indicative of neurasthenia and psychasthenia and symptoms and signs indicative of polyneuropathy, and (c) the differences in the observations made between the two groups with varying degrees of exposure to jet fuel, the authors interpreted the results as indicative of a possible effect of long-term exposure to jet fuel on the nervous system.

  12. Past, present and emerging toxicity issues for jet fuel.

    PubMed

    Mattie, David R; Sterner, Teresa R

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Past, present and emerging toxicity issues for jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattie, David R., E-mail: david.mattie@wpafb.af.mil; Sterner, Teresa R.

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8more » and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.« less

  14. MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  15. Subacute effects of inhaled Jet Fuel-A (Jet A) on airway and immune function in female rats.

    PubMed

    Sweeney, Lisa M; Prues, Susan L; Reboulet, James E

    2013-04-01

    Two studies were conducted to assess the potential airway and immune effects following subacute (14 d) exposure of female rats to 500, 1000 or 2000 mg/m³ of Jet-A for 4 h/d. The first study used Sprague-Dawley rats; the second study included both Fischer 344 (F344) and Sprague-Dawley rats. In the first study, exposure to 2000 mg/m³ jet fuel may have caused significant upper airway inflammation on day 7 post-exposure, as indicated by elevated protein and lactate dehydrogenase in nasal lavage fluid, but any inflammation resolved by day 14 post-exposure. No significant impact on immune cell populations in the spleens was observed. The histological examination showed no evidence of infectious or toxic effect. In the second study, body weights of the F344 rats in the 2000 mg/m³ group were depressed, as compared to the controls, at the end of the exposure. Some lung lavage fluid markers were increased at 24 h after the final exposure, however, no test article-induced histological changes were observed in the lungs, nasal cavities, or any other tissue of any of the jet fuel exposed animals. Overall, these studies demonstrated limited evidence of effects of 14 d of exposure to Jet A on the airways, immune system, or any other organ or system of female Sprague-Dawley and F344 rats, with no remarkable differences between strains. The lack of identified significant airway or immune effects was in contrast to previous examinations of jet fuel for pulmonary toxicity in mice and rats and for immunotoxicity in mice.

  16. JP-8 jet fuel exposure rapidly induces high levels of IL-10 and PGE2 secretion and is correlated with loss of immune function.

    PubMed

    Harris, David T; Sakiestewa, Debbie; Titone, Dominic; Witten, Mark

    2007-05-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has demonstrated that JP-8 exposure is immunosuppressive. In the present study, the potential mechanisms for the effects of JP-8 exposure on the immune system were investigated. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). JP-8 exposure rapidly induced a persistently high level of serum IL-10 and PGE2 at an exposure concentration of 1000 mg/m3. IL-10 levels peaked at 2 h post-JP-8 exposure and then stabilized at significantly elevated serum levels, while PGE2 levels peaked after 2-3 days of exposure and then stabilized. Elevated IL-10 and PGE2 levels may at least partially explain the effects of JP-8 exposure on immune function. Elevated IL-10 and PGE2 levels, however, cannot explain all of the effects due to JP-8 exposure (e.g., decreased organ weights and decreased viable immune cells), as treatment with a PGE2 inhibitor did not completely reverse the immunosuppressive effects of jet fuel exposure. Thus, low concentration JP-8 jet fuel exposures have significant effects on the immune system, which can be partially explained by the secretion of immunosuppressive modulators, which are cumulative over time.

  17. Age-related differences in pulmonary inflammatory responses to JP-8 jet fuel aerosol inhalation.

    PubMed

    Wang, S; Young, R S; Witten, M L

    2001-02-01

    Our previous studies have demonstrated that JP-8 jet fuel aerosol inhalation induced lung injury and dysfunction. To further examine JP-8 jet fuel-induced inflammatory mechanisms, a total of 40 male C57BL/6 mice (young, 3.5 months; adult, 12 months; half in each age group) were randomly assigned to the exposure or control groups. Mice were nose-only exposed to room air or atmospheres of 1000 mg/m3 JP-8 jet fuel for 1 h/day for 7 days. Lung injury was assessed by pulmonary mechanics, respiratory permeability, lavaged cell profile, and chemical mediators in bronchoalveolar lavage fluid (BALF). The young and adult mice exposed to JP-8 jet fuel had similar values with regards to increased lung dynamic compliance, lung permeability, BALF cell count, and decreased PGE2. However, there were several different responses between the young-versus-adult mice with respect to BALF cell differential, TNF-alpha, and 8-iso-PGF2,, levels after exposure to JP-8 jet fuel. These data suggest that JP-8 jet fuel may have different inflammatory mechanisms leading to lung injury and dysfunction in the younger-versus-adult mice.

  18. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Postural sway and exposure to jet propulsion fuel 8 among US Air Force personnel.

    PubMed

    Maule, Alexis L; Heaton, Kristin J; Rodrigues, Ema; Smith, Kristen W; McClean, Michael D; Proctor, Susan P

    2013-04-01

    To determine whether short-term jet propulsion fuel 8 (JP-8) exposure is associated with balance measurements in JP-8-exposed air force personnel. As part of a larger neuroepidemiology study, balance tasks were completed by JP-8-exposed individuals (n = 37). Short-term JP-8 exposure was measured using personal breathing zone levels and urinary biomarkers. Multivariate linear regression analyses were conducted to examine the relationship between workday JP-8 exposure and postural sway. Balance control decreased as the task became more challenging. Workday exposure to JP-8, measured by either personal air or urinary metabolite levels, was not significantly related to postural sway. Increases in workday postural sway were associated with demographic variables, including younger age, being a current smoker, and higher body mass index. Results suggest that short-term workday JP-8 exposure does not significantly contribute to diminished balance control.

  20. MEETING IN VANCOUVER, B.C.: MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  1. Jet Fuel, Noise, and the Central Auditory Nervous System: A Literature Review.

    PubMed

    Warner, Rachelle; Fuente, Adrian; Hickson, Louise

    2015-09-01

    Prompted by the continued prevalence of hearing related disabilities accepted as eligible for compensation and treatment under Australian Department of Veterans' Affairs legislation, a review of recent literature regarding possible causation mechanisms and thus, possible prevention strategies, is timely. The emerging thoughts on the effects of a combination of jet fuel and noise exposure on the central auditory nervous system (CANS) have relevance in the military aviation context because of the high exposures to solvents (including fuels) and unique noise hazards related to weapons systems and military aircraft. This literature review aimed to identify and analyze the current knowledge base of the effects of combined exposure to JP-8 jet fuel (or its aromatic solvent components) and noise on the CANS in human populations. We reviewed articles examining electrophysiological and behavioral measurement of the CANS following combined exposures to jet fuel (or its aromatic constituents) and noise. A total of 6 articles met the inclusion criteria for the review and their results are summarized. The articles considered in this review indicate that assessment of the CANS should be undertaken as part of a comprehensive test battery for military members exposed to both noise and solvents in the workplace. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  2. Inhalation exposure to JP-8 jet fuel alters pulmonary function and substance P levels in Fischer 344 rats.

    PubMed

    Pfaff, J; Parton, K; Lantz, R C; Chen, H; Hays, A M; Witten, M L

    1995-01-01

    In a simulated military flightline exposure protocol, Fischer 344 rats (F344) were used to investigate the pulmonary effects of JP-8 jet fuel inhalation. Exposures were nose only and for 1 h daily. Groups were exposed for 7 days (7D) or 28 days (28D). Each exposure group had a matched longitudinal control group (LC7 and LC28). Exposure concentrations of 520 mg m-3 caused an increase in dynamic compliance after 7 days of exposure, but compliance changes were not seen with continued exposure (28D, 495 mg m-3). Pulmonary resistance was increased in both 7- and 28-day JP-8-exposed groups. Changes in pulmonary function were accompanied by a decrease in substance P concentrations from the bronchoalveolar lavage fluid (BALF). No significant change was observed in BALF levels of 6-keto-PGF1 alpha, the stable metabolite of prostacyclin, which is a marker of endothelial cell function. The JP-8-exposed rats gained significantly less weight during the study period than the LC7 and LC28 groups, and the lungs of the 7D group were heavier by wet lung/body weight ratio (WtL/WtB). Alveolar clearance of technetium-labelled diethylenetriamine pentaacetate ([99mTc]DTPA) was increased in jet fuel-exposed groups. Light microscopy showed no pathological evidence of lung injury. Recovery from the early pulmonary effects of JP-8 inhalation occurred with continued exposure, as seen by recovery of pulmonary compliance and WtL/WtB.

  3. Aviation Fuel Exposure Resulting in Otitis Externa with Vertigo.

    PubMed

    Long, Robert J; Charles, Reese A

    2018-07-01

    Otitis externa secondary to irritant or chemical exposure is well documented; however, specifically secondary to jet fuel exposure and its associated toxicology is not. Over 2 million military and civilian personnel per year are occupationally exposed to aviation fuels. An aircraft maintainer presented with noninfectious acute otitis externa secondary to external ear canal exposure to JP-5 jet fuel. Proper exposure guidelines were followed, but it was not realized that the external ear canal was involved. The first symptoms to emerge were vertigo, dizziness, and disequilibrium; however, on physical exam it appeared that there was no middle ear involvement. Otitis externa normally does not present with vestibular symptoms as the pathology affects the external ear canal dermal tissue. Upon review of JP-5's toxicology profile, dermal absorption is a route of entry and can cause general neurological symptoms, including loss of coordination. This case highlights potential deficiencies in the standardized safety data sheets that are used after exposure. Without mention of possible auricular exposure one may focus on the logical protection of the eyes, mouth, and visible skin. This is concerning due to potential delayed exposure symptoms, dermal absorption, high level of dermal destruction, and the close proximity to the sensory system. The goal of this case report is to improve the knowledge of providers caring for personnel who may be exposed and to suggest possible revisions to the Safety Data Sheets for jet fuel.Long RJ, Charles RA. Aviation fuel exposure resulting in otitis externa with vertigo. Aerosp Med Hum Perform. 2018; 89(7):661-663.

  4. (2-methoxyethoxy)acetic acid: a urinary biomarker of exposure for jet fuel JP-8.

    PubMed

    B'hymer, Clayton; Mathias, Patricia; Krieg, Edward; Cheever, Kenneth L; Toennis, Christine A; Clark, John C; Kesner, James S; Gibson, Roger L; Butler, Mary Ann

    2012-05-01

    To demonstrate the utility of the urinary metabolite (2-methoxyethoxy)acetic acid (MEAA) as a biomarker of exposure. 2-(2-methoxyethoxy)ethanol [diethylene glycol monomethyl ether] is an anti-icing agent used in the formulation of JP-8, and it is added at a known uniform 0.1% (v/v) concentration to each batch lot. JP-8 is a kerosene-based fuel containing different compounds that vary in the content of every batch/lot of fuel; thus, MEAA has the potential to be a more specific and a consistent quantitative biomarker for JP-8 exposure. MEAA was used to measure exposure of jet propulsion fuel 8 (JP-8) in United States Air Force (USAF) personnel working at six airbases within the United States. Post-shift urine specimens from various personnel including high (n = 98), moderate (n = 38), and low (n = 61) exposure workgroup categories were collected and analyzed by a gas chromatographic-mass spectrometric test method. The three exposure groups were evaluated for the number per group positive for MEAA, and a statistical analysis consisted of pair-wise t-tests for unequal variances was used to test for the differences in mean MEAA concentrations between the exposure groups. The number of samples detected as positive for MEAA exposure, that is, those above the test method's limit of detection (LOD = 0.1 μg/ml), were 92 (93.9%), 13 (34.2%), and 2 (3.3%) for the high, moderate, and low exposure workgroup categories, respectively. The mean urinary MEAA level was significantly greater in the high exposure category (6.8 μg/ml), compared to the moderate (0.42 μg/ml) and the low (0.07 μg/ml) exposure categories. The maximum concentration of urinary MEAA was 110 μg/ml for the high exposure category, while 4.8 μg/ml and 0.2 μg/ml maximum levels were found in the moderate and low exposure categories, respectively. This study demonstrated that urinary MEAA can be used as an accurate biomarker of exposure for JP-8 workers and clearly distinguished the differences in JP-8

  5. Benzene and naphthalene in air and breath as indicators of exposure to jet fuel

    PubMed Central

    Egeghy, P; Hauf-Cabalo, L; Gibson, R; Rappaport, S

    2003-01-01

    Aims: To estimate exposures to benzene and naphthalene among military personnel working with jet fuel (JP-8) and to determine whether naphthalene might serve as a surrogate for JP-8 in studies of health effects. Methods: Benzene and naphthalene were measured in air and breath of 326 personnel in the US Air Force, who had been assigned a priori into low, moderate, and high exposure categories for JP-8. Results: Median air concentrations for persons in the low, moderate, and high exposure categories were 3.1, 7.4, and 252 µg benzene/m3 air, 4.6, 9.0, and 11.4 µg benzene/m3 breath, 1.9, 10.3, and 485 µg naphthalene/m3 air, and 0.73, 0.93, and 1.83 µg naphthalene/m3 breath, respectively. In the moderate and high exposure categories, 5% and 15% of the benzene air concentrations, respectively, were above the 2002 threshold limit value (TLV) of 1.6 mg/m3. Multiple regression analyses of air and breath levels revealed prominent background sources of benzene exposure, including cigarette smoke. However, naphthalene exposure was not unduly influenced by sources other than JP-8. Among heavily exposed workers, dermal contact with JP-8 contributed to air and breath concentrations along with several physical and environmental factors. Conclusions: Personnel having regular contact with JP-8 are occasionally exposed to benzene at levels above the current TLV. Among heavily exposed workers, uptake of JP-8 components occurs via both inhalation and dermal contact. Naphthalene in air and breath can serve as useful measures of exposure to JP-8 and uptake of fuel components in the body. PMID:14634191

  6. Effects of repeated exposure of rats to JP-5 or JP-8 jet fuel vapor on neurobehavioral capacity and neurotransmitter levels.

    PubMed

    Rossi, J; Nordholm, A F; Carpenter, R L; Ritchie, G D; Malcomb, W

    2001-07-20

    The U.S. Naval Service is anticipating transition from the nearly exclusive use of JP-5 jet fuel to predominant use of JP-8, consistent with the primary utilization by the U.S. Army, U.S. Air Force, and the militaries of most NATO countries. To compare the relative risk of repeated exposure to JP-5 versus JP-8 vapor, groups of 32 male Sprague-Dawley rats each were exposed for 6 h/d, 5 d/wk for 6 wk (180 h) to JP-8 jet fuel vapor (1,000 +/- 10% mg/m3), IP-5 vapor (1,200 +/- 10% mg/m3), or room air control conditions. Following a 65-d rest period, rats completed 10 tests selected from the Neurobehavioral Toxicity Assessment Battery (NTAB) to evaluate changes in performance capacity. Repeated exposure to JP-5 resulted in significant effects on only one test, forelimb grip strength (FGS), while exposure to JP-8 vapor resulted in a significant difference versus controls on appetitive reinforcer approach sensitization (ARAS). Rats were further evaluated for concentrations of major neurotransmitters and metabolites in five brain regions and in the blood serum. Levels of dopamine, the dopamine metabolite dihydroxyphenylacetic acid (DOPAC), and the serotonin metabolite homovanillic acid (HVA) were significantly modulated in various brain regions, as measured 85+ d postexposure. Similarly, serum levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were differentially modulated following JP-8 or JP-5 exposure. Results are compared to previously published research evaluating the neurotoxicity of repeated exposure to other hydrocarbon fuels and solvents.

  7. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  8. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  9. Jet Fuel Kerosene is not Immunosuppressive in Mice or Rats Following Inhalation for 28 Days

    PubMed Central

    White, Kimber L.; DeLorme, Michael P.; Beatty, Patrick W.; Smith, Matthew J.; Peachee, Vanessa L.

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m3 for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m3 did not adversely affect the functional immune responses of female mice and rats. PMID:24028664

  10. Jet fuel kerosene is not immunosuppressive in mice or rats following inhalation for 28 days.

    PubMed

    White, Kimber L; DeLorme, Michael P; Beatty, Patrick W; Smith, Matthew J; Peachee, Vanessa L

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m(3) for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m(3) did not adversely affect the functional immune responses of female mice and rats.

  11. Trends of jet fuel demand and properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1984-01-01

    Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

  12. IN VIVO COMPARISON OF EPITHELIAL RESPONSES FOR S-8 VERSUS JP-8 JET FUELS BELOW PERMISSIBLE EXPOSURE LIMIT

    PubMed Central

    Wong, Simon S.; Vargas, Jason; Thomas, Alana; Fastje, Cindy; McLaughlin, Michael; Camponovo, Ryan; Lantz, R. Clark; Heys, Jeffrey; Witten, Mark L.

    2010-01-01

    This study was designed to characterize and compare the pulmonary effects in distal lung from a low-level exposure to jet propellant-8 fuel (JP-8) and a new synthetic-8 fuel (S-8). It is hypothesized that both fuels have different airway epithelial deposition and responses. Consequently, male C57BL/6 mice were nose-only exposed to S-8 and JP-8 at average concentrations of 53 mg/m3 for 1 hour/day for 7 days. A pulmonary function test performed 24 hr after the final exposure indicated that there was a significant increase in expiratory lung resistance in the S-8 mice, whereas JP-8 mice had significant increases in both inspiratory and expiratory lung resistance compared to control values. Neither significant S-8 nor JP-8 respiratory permeability changes were observed compared to controls, suggesting no loss of epithelial barrier integrity. Morphological examination and morphometric analysis of airway tissue demonstrated that both fuels showed different patterns of targeted epithelial cells: bronchioles in S-8 and alveoli/terminal bronchioles in JP-8. Collectively, our data suggest that both fuels may have partially different deposition patterns, which may possibly contribute to specific different adverse effects in lung ventilatory function. PMID:18930109

  13. Inhibition of jet fuel aliphatic hydrocarbon induced toxicity in human epidermal keratinocytes.

    PubMed

    Inman, A O; Monteiro-Riviere, N A; Riviere, J E

    2008-05-01

    Jet propellant (JP)-8, the primary jet fuel used by the U.S. military, consists of hydrocarbon-rich kerosene base commercial jet fuel (Jet-A) plus additives DC1-4A, Stadis 450 and diethylene glycol monomethyl ether. Human epidermal keratinocytes (HEK) were exposed to JP-8, aliphatic hydrocarbon (HC) fuel S-8 and aliphatic HC pentadecane (penta), tetradecane (tetra), tridecane (tri) and undecane (un) for 5 min. Additional studies were conducted with signal transduction pathway blockers parthenolide (P; 3.0 microm), isohelenin (I; 3.0 microm), SB 203580 (SB; 13.3 microm), substance P (SP; 3.0 microm) and recombinant human IL-10 (rHIL-10; 10 ng ml(-1)). In the absence of inhibitors, JP-8 and to a lesser extent un and S-8, had the greatest toxic effect on cell viability and inflammation suggesting, as least in vitro, that synthetic S-8 fuel is less irritating than the currently used JP-8. Each inhibitor significantly (P < 0.05) decreased HEK viability. DMSO, the vehicle for P, I and SB, had a minimal effect on viability. Overall, IL-8 production was suppressed at least 30% after treatment with each inhibitor. Normalizing data relative to control indicate which inhibitors suppress HC-mediated IL-8 to control levels. P was the most effective inhibitor of IL-8 release; IL-8 was significantly decreased after exposure to un, tri, tetra and penta but significantly increased after JP-8 exposure compared with controls. Inhibitors were not effective in suppressing IL-8 release in JP-8 exposures to control levels. This study shows that inhibiting NF-kappa B, which appears to play a role in cytokine production in HC-exposed HEK in vitro, may reduce the inflammatory effect of HC in vivo. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    PubMed

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  15. Acute Dermal Irritation Study of Six Jet Fuels in New Zealand White Rabbits: Comparison of Four Bio-Based Jet Fuels with Two Petroleum JP-8 Fuels

    DTIC Science & Technology

    2014-02-01

    NA 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) Sterner, Teresa R.1; Hurley, Jonathon M.2; Edwards, James T.3; Shafer, Linda M.4; Mattie , David R... Mattie , D.R. 2014. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio -Based Jet Fuels with...AFRL-RH-WP-TR-2014-0046 ACUTE DERMAL IRRITATION STUDY OF SIX JET FUELS IN NEW ZEALAND WHITE RABBITS: COMPARISON OF FOUR BIO -BASED JET FUELS

  16. Fuzzy Evaluating Customer Satisfaction of Jet Fuel Companies

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Fang, Guoyi

    Based on the market characters of jet fuel companies, the paper proposes an evaluation index system of jet fuel company customer satisfaction from five dimensions as time, business, security, fee and service. And a multi-level fuzzy evaluation model composing with the analytic hierarchy process approach and fuzzy evaluation approach is given. Finally a case of one jet fuel company customer satisfaction evaluation is studied and the evaluation results response the feelings of the jet fuel company customers, which shows the fuzzy evaluation model is effective and efficient.

  17. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  18. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  19. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    EPA Science Inventory

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
    Abstract
    The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  20. BREATH MEASUREMENT OF TOTAL BODY BURDEN OF JP-8 JET FUEL FOR EPIDEMIOLOGICAL STUDY

    EPA Science Inventory

    A complex epidemiological investigation of the effects of acute exposure to JP-8 jet fuel in the U.S. Air Force was performed through the study of about 350 human subjects across six Air Force bases. The focus was on fuels system maintenance personnel as the "exposed"...

  1. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  2. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    NASA Astrophysics Data System (ADS)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  3. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.

    PubMed

    Tracey, Rebecca; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Skinner, Michael K

    2013-04-01

    Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Hydrocarbons (Jet Fuel JP-8) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations

    PubMed Central

    Tracey, Rebecca; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Skinner, Michael K.

    2012-01-01

    Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures. PMID:23453003

  5. Volatile Organic Compounds in Blood as Biomarkers of Exposure to JP-8 Jet Fuel Among US Air Force Personnel.

    PubMed

    Maule, Alexis L; Proctor, Susan P; Blount, Benjamin C; Chambers, David M; McClean, Michael D

    2016-01-01

    This study aimed to evaluate blood volatile organic compound (VOC) levels as biomarkers of occupational jet propulsion fuel 8 (JP-8) exposure while controlling for smoking. Among 69 Air Force personnel, post-shift blood samples were analyzed for components of JP-8, including ethylbenzene, toluene, o-xylene, and m/p-xylene, and for the smoking biomarker, 2,5-dimethylfuran. JP-8 exposure was characterized based on self-report and measured work shift levels of total hydrocarbons in personal air. Multivariate regression was used to evaluate the relationship between JP-8 exposure and post-shift blood VOCs while controlling for potential confounding from smoking. Blood VOC concentrations were higher among US Air Force personnel who reported JP-8 exposure and work shift smoking. Breathing zone total hydrocarbons was a significant predictor of VOC blood levels, after controlling for smoking. These findings support the use of blood VOCs as a biomarker of occupational JP-8 exposure.

  6. Neutral endopeptidase (NEP) and its role in pathological pulmonary change with inhalation exposure to JP-8 jet fuel.

    PubMed

    Pfaff, J K; Tollinger, B J; Lantz, R C; Chen, H; Hays, A M; Witten, M L

    1996-01-01

    Through a simulated flightline exposure protocol, Fischer 344 rats (F344) were subjected to an aerosol/vapor mix of the military jet fuel, JP-8. Previous studies with this model of lung injury have revealed significant increases in pulmonary resistance, increased alveolar clearance of 99mTcDTPA, and a decrease in bronchoalveolar lavage fluid (BALF) concentration of the neuropeptide substance P (SP). Exposures to JP-8 were nose-only and for one hour daily. Six groups of Fischer 344 rats were exposed for 7, 28, or 56 days at two JP-8 concentrations (low dose = 469-520 mg/m3/hr, high dose = 814-1263 mg/m3/hr). Exposed groups were matched with longitudinal controls. In response to JP-8 inhalation, exposure animals demonstrated a dose-dependent as well as duration-determined reduction in BALF SP concentration. Both JP-8 concentrations caused significant pathological changes in lower pulmonary structures.

  7. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    PubMed

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  8. Epithelioid sarcoma of the thumb associated with hydrazine fuel exposure: a case report.

    PubMed

    Helmers, Scott; Ruland, Robert T; Jacob, Lionel N

    2004-01-01

    Hydrazine fuels are commonly used propellants for missiles and tactical jet aircraft used by the U.S. Air Force and the National Aeronautical and Space Administration. Hydrazine fuels are known to cause cancer after respiratory exposure or ingestion in laboratory animals and humans. Although hydrazine is known to cause skin irritation, there are no published reports describing cancer developing after cutaneous exposure to hydrazine in humans. Hydrazine is known to cause cancer in animals after skin exposure and is used to induce angiosarcomas in mice after cutaneous exposure. We present a case of an epithelioid sarcoma developing in the thumb of a patient after repeated exposure to hydrazine fuel. We hypothesize that the epithelioid sarcoma is a consequence of cutaneous exposure to hydrazine fuel. Continued efforts to develop less toxic alternative fuels and increased personal protection from occupational exposure are highly recommended.

  9. Jet aircraft hydrocarbon fuels technology

    NASA Technical Reports Server (NTRS)

    Longwell, J. P. (Editor)

    1978-01-01

    A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A. The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining, distribution, and aircraft operating costs; combustor liner temperature and emissions studies; and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems.

  10. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis [Livermore, CA

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  11. Compatibility of elastomers in alternate jet fuels

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  12. Partitioning of Aromatic Constituents into Water from Jet Fuels.

    PubMed

    Tien, Chien-Jung; Shu, Youn-Yuen; Ciou, Shih-Rong; Chen, Colin S

    2015-08-01

    A comprehensive study of the most commonly used jet fuels (i.e., Jet A-1 and JP-8) was performed to properly assess potential contamination of the subsurface environment from a leaking underground storage tank occurred in an airport. The objectives of this study were to evaluate the concentration ranges of the major components in the water-soluble fraction of jet fuels and to estimate the jet fuel-water partition coefficients (K fw) for target compounds using partitioning experiments and a polyparameter linear free-energy relationship (PP-LFER) approach. The average molecular weight of Jet A-1 and JP-8 was estimated to be 161 and 147 g/mole, respectively. The density of Jet A-1 and JP-8 was measured to be 786 and 780 g/L, respectively. The distribution of nonpolar target compounds between the fuel and water phases was described using a two-phase liquid-liquid equilibrium model. Models were derived using Raoult's law convention for the activity coefficients and the liquid solubility. The observed inverse, log-log linear dependence of the K fw values on the aqueous solubility were well predicted by assuming jet fuel to be an ideal solvent mixture. The experimental partition coefficients were generally well reproduced by PP-LFER.

  13. Jet fuels from synthetic crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1977-01-01

    An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.

  14. IMPLEMENTATION OF NATURAL ATTENUATION AT A JP-4 JET FUEL RELEASE AFTER ACTIVE REMEDIATION

    EPA Science Inventory

    After eighteen months of active remediation at a JP-4 jet-fuel spill, a residual of unremediated hydrocarbon remained. Further site characterization was conducted to evaluate the contribution of natural attenuation to control exposure to hazards associated with the residual cont...

  15. Subacute Effects of Inhaled Jet Fuel-A (JET A) on Airway and Immune Function in Rats

    DTIC Science & Technology

    2012-07-16

    the source of the oil used in its manufacture. This study used fuel provided by five of the major oil companies ( blend POSF-4658, Chevron, Shell Oil... using a Hastings (Model 40) monitor. The chamber system schematic is depicted in Figure 4. Figure 4. Schematic of exposure control system...were used due to concerns that the air control animals (Group 2) might be unintentionally exposed to background levels of Jet A. Group 2 was exposed

  16. Evaluation of Jet Fuel Induced Hearing Loss in Rats

    DTIC Science & Technology

    2011-10-13

    flow of approximately 20 liters per minute (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an...inch PVC pipe contained the spray pattern. The pipe was initially reduced in size to accept an orifice plate which can be used to measure flow rate...chamber flow . Two drain ports were used to remove residual jet fuel which accumulated after a day‟s exposure. To achieve the 10 1500 mg/m 3

  17. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  18. Autoxidation of jet fuels: Implications for modeling and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Chin, L.P.

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less

  19. EVALUATION AND COMPARISON OF URINARY METABOLIC BIOMARKERS OF EXPOSURE FOR THE JET FUEL JP-8

    PubMed Central

    B’Hymer, Clayton; Krieg, Edward; Cheever, Kenneth L.; Toennis, Christine A.; Clark, John C.; Kesner, James S.; Gibson, Roger; Butler, Mary Ann

    2015-01-01

    A study of workers exposed to jet fuel propellant 8 (JP-8) was conducted at U.S. Air Force bases and included the evaluation of three biomarkers of exposure: S-benzylmercapturic acid (BMA), S-phenylmercapturic acid (PMA), and (2-methoxyethoxy)acetic acid (MEAA). Postshift urine specimens were collected from various personnel categorized as high (n = 98), moderate (n = 38) and low (n = 61) JP-8 exposure based on work activities. BMA and PMA urinary levels were determined by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS), and MEAA urinary levels were determined by gas chromatography–mass spectrometry (GC-MS). The numbers of samples determined as positive for the presence of the BMA biomarker (above the test method’s limit of detection [LOD = 0.5 ng/ml]) were 96 (98.0%), 37 (97.4%), and 58 (95.1%) for the high, moderate, and low (control) exposure workgroup categories, respectively. The numbers of samples determined as positive for the presence of the PMA biomarker (LOD = 0.5 ng/ml) were 33 (33.7%), 9 (23.7%), and 12 (19.7%) for the high, moderate, and low exposure categories. The numbers of samples determined as positive for the presence of the MEAA biomarker (LOD = 0.1 μg/ml) were 92 (93.4%), 13 (34.2%), and 2 (3.3%) for the high, moderate, and low exposure categories. Statistical analysis of the mean levels of the analytes demonstrated MEAA to be the most accurate or appropriate biomarker for JP-8 exposure using urinary concentrations either adjusted or not adjusted for creatinine; mean levels of BMA and PMA were not statistically significant between workgroup categories after adjusting for creatinine. PMID:22712851

  20. Evaluation and comparison of urinary metabolic biomarkers of exposure for the jet fuel JP-8.

    PubMed

    B'Hymer, Clayton; Krieg, Edward; Cheever, Kenneth L; Toennis, Christine A; Clark, John C; Kesner, James S; Gibson, Roger; Butler, Mary Ann

    2012-01-01

    A study of workers exposed to jet fuel propellant 8 (JP-8) was conducted at U.S. Air Force bases and included the evaluation of three biomarkers of exposure: S-benzylmercapturic acid (BMA), S-phenylmercapturic acid (PMA), and (2-methoxyethoxy)acetic acid (MEAA). Postshift urine specimens were collected from various personnel categorized as high (n = 98), moderate (n = 38) and low (n = 61) JP-8 exposure based on work activities. BMA and PMA urinary levels were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and MEAA urinary levels were determined by gas chromatography-mass spectrometry (GC-MS). The numbers of samples determined as positive for the presence of the BMA biomarker (above the test method's limit of detection [LOD = 0.5 ng/ml]) were 96 (98.0%), 37 (97.4%), and 58 (95.1%) for the high, moderate, and low (control) exposure workgroup categories, respectively. The numbers of samples determined as positive for the presence of the PMA biomarker (LOD = 0.5 ng/ml) were 33 (33.7%), 9 (23.7%), and 12 (19.7%) for the high, moderate, and low exposure categories. The numbers of samples determined as positive for the presence of the MEAA biomarker (LOD = 0.1 μ g/ml) were 92 (93.4%), 13 (34.2%), and 2 (3.3%) for the high, moderate, and low exposure categories. Statistical analysis of the mean levels of the analytes demonstrated MEAA to be the most accurate or appropriate biomarker for JP-8 exposure using urinary concentrations either adjusted or not adjusted for creatinine; mean levels of BMA and PMA were not statistically significant between workgroup categories after adjusting for creatinine.

  1. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  2. Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    PubMed

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng

    2017-01-01

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons

  3. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE PAGES

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...

    2017-11-09

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  4. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  5. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  6. Repeated aerosol-vapor JP-8 jet fuel exposure affects neurobehavior and neurotransmitter levels in a rat model.

    PubMed

    Baldwin, Carol M; Figueredo, Aurelio J; Wright, Lynda S; Wong, Simon S; Witten, Mark L

    2007-07-01

    Four groups of Fischer Brown Norway hybrid rats were exposed for 5, 10, 15, or 20 d to aerosolized-vapor jet propulsion fuel 8 (JP-8) compared to freely moving (5 and 10-d exposures) or sham-confined controls (15 and 20-d exposures). Behavioral testing utilized the U.S. Environmental Protection Agency Functional Observational Battery. Exploratory ethological factor analysis identified three salient factors (central nervous system [CNS] excitability, autonomic 1, and autonomic 2) for use in profiling JP-8 exposure in future studies. The factors were used as dependent variables in general linear modeling. Exposed animals were found to engage in more rearing and hyperaroused behavior compared to controls, replicating prior JP-8 exposure findings. Exposed animals also showed increasing but rapidly decelerating stool output (autonomic 1), and a significant increasing linear trend for urine output (autonomic 2). No significant trends were noted for either of the control groups for the autonomic factors. Rats from each of the groups for each of the time frames were randomly selected for tissue assay from seven brain regions for neurotransmitter levels. Hippocampal DOPAC was significantly elevated after 4-wk JP-8 exposure compared to both control groups, suggesting increased dopamine release and metabolism. Findings indicate that behavioral changes do not appear to manifest until wk 3 and 4 of exposure, suggesting the need for longitudinal studies to determine if these behaviors occur due to cumulative exposure, or due to behavioral sensitization related to repeated exposure to aerosolized-vapor JP-8.

  7. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  8. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the

  9. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  10. Computer analysis of effects of altering jet fuel properties on refinery costs and yields

    NASA Technical Reports Server (NTRS)

    Breton, T.; Dunbar, D.

    1984-01-01

    This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications.

  11. Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia

    2010-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  12. Evaluation of genotoxic and oxidative effects in workers exposed to jet propulsion fuel.

    PubMed

    Erdem, Onur; Sayal, Ahmet; Eken, Ayşe; Akay, Cemal; Aydın, Ahmet

    2012-05-01

    Jet fuel is a common occupational exposure risk among military and civilian populations. The purpose of this study was to evaluate genotoxic and oxidative effects in workers occupational exposure to jet propulsion fuel (JP-8). In this study, sister-chromatid exchange (SCE), high frequency of SCE cells (HFCs), and micronuclei (MN) were determined for 43 workers exposed to JP-8 and 38 control subjects. We measured the antioxidant enzyme activities including that of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). The levels of thiobarbituric acid-reactive substances (TBARS) were also studied. Urinary 1- and 2-naphthol excretion was used as a biomarker of occupational exposure to JP-8. The results obtained from cytogenetic analysis show a statistically significant increase in frequency of SCE in the exposed workers when compared to controls (P < 0.05). Interestingly, the mean value of the frequency (%o) of MN and HFCs for workers and controls did not show any statistical differences (P > 0.05). Oxidative stress parameters were not statistically different between exposed and control groups except for TBARS levels. Urinary 1-and 2-naphthol levels of exposed workers were found to be significantly higher than those of control subjects. Occupational exposure to JP-8 resulted in no significant genotoxic and oxidative effects, while smoking is the principal confounding factor for the some parameters. To understand the genotoxic and oxidative effects of JP-8 exposure, further studies should be planned to find out whether human populations may be at increased risk for cancer because of the exposures related to occupation and lifestyle.

  13. Chemistry and Transport Properties for Jet Fuel Combustion

    DTIC Science & Technology

    2013-04-01

    AFRL-OSR-VA-TR-2013-0168 Chemistry and Transport Properties for Jet Fuel Combustion Angela Violi University of Michigan...5a. CONTRACT NUMBER (U) Chemistry and Transport Properties for Jet Fuel Combustion 5b. GRANT NUMBER FA9550-09-1-0021 5c...combustors.   Although,  chemical  kinetic  mechanisms  of  hydrocarbons  have  been  widely  studied,  molecular   transport

  14. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  15. Tumorigenic Evaluation of Jet Fuels JP-TS and JP-7.

    DTIC Science & Technology

    1991-04-01

    DTIC AL-TR-1991 0020 3 ELECTE0 AD-A252 012 JUN 2 6 1992• • TUMORIGENIC EVALUATION OF JET FUELS JP-TS AND JP-7 E. R. Kinkead C. L. Gaworski C. D...Evaluation of Jet Fuels JP-TS and JP-7. The research described in this report began in March 1981 and was completed in February 1991 under U.S. Air Force...of jet engines in military and commercial aircraft has led to the development of a number of petroleum distillate fuels with special properties. These

  16. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  17. Commercial jet fuel quality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  18. Near-term feasibility of alternative jet fuels

    DOT National Transportation Integrated Search

    2009-01-01

    This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...

  19. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  20. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  1. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  2. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.

  3. Laser Induced Fluorescence Detection of Gums in Jet Fuels

    DTIC Science & Technology

    1992-05-01

    Classification) Laser Induced Fluorescence Detection of GLus in Jet Fuels 12 PERSONAL AUTHOR(S) David W. Naegeli and Ralph H. Hill 13a. TYPE OF REPORT 13b...degraded jet fuel.( ) 47 REFERENCES 1. Fodor, G.E.; Naegeli , D.W.; Kohl, K.B.; Cuellar, J.P., Jr., Interim Report BFLRF No. 199, AD A163590, Belvoir Fuels...and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX, June 1985. 2. Fodor, G.E.; Naegeli , D.W., Proceedings of the 2nd

  4. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  5. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  6. Toxicological profile for jet fuels (JP-4 and JP-7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This statement was prepared to give you information about jet fuels JP-4 and JP-7 and to emphasize the human effects that may result from exposure to them. The Environmental Protection Agency (EPA) has identified 1,397 hazardous waste sites as the most serious in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal clean-up activities. JP-4 has been found in at least 4 of these sites. JP-7 has not been found in any NPL site.

  7. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  8. Review of Jet Fuel Life Cycle Assessment Methods and Sustainability Metrics

    DOT National Transportation Integrated Search

    2015-12-01

    The primary aim of this study is to help aviation jet fuel purchasers (primarily commercial airlines and the U.S. military) to understand the sustainability implications of their jet fuel purchases and provide guidelines for procuring sustainable fue...

  9. Advanced Thermally Stable Coal-Based Jet Fuels

    DTIC Science & Technology

    2008-02-01

    of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity

  10. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2011-01-01

    Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.

  11. Phenol-selective mass spectrometric analysis of jet fuel.

    PubMed

    Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott

    2017-08-21

    Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.

  12. Life-cycle analysis of camelina biodiesel and jet-fuel

    NASA Astrophysics Data System (ADS)

    Dangol, Namrata

    Camelina sativa (Camelina) could be a potential feedstock to help meet the goal of 36 billion gallons of biofuel production in the United States by 2022, as set forth by EISA of 2007. This research is focused on assessing the energy balance and greenhouse gas (GHG) emissions from camelina biodiesel grown and produced in the Pacific Northwest (PNW) region of the USA. Data were collected from a camelina farm in the region and compared to literature values. Energy used in camelina crushing and transesterification were measured at the University of Idaho. Life cycle analysis showed that use of camelina biodiesel reduces GHG emissions by 72% compared to 2005 baseline diesel fuel. Camelina biodiesel at B100 level, however, did not meet the ASTM D6751 specification for oxidative stability without any additives but could be corrected with proper additive. Camelina had a smaller seed size compared to canola and consequently required 23% more energy for crushing. Despite higher energy use for crushing, the net energy ratio for camelina biodiesel was found to be 3.68. From the agronomic standpoint, camelina can be incorporated as a rotational crop into low rainfall areas of the PNW. Wheat areas of PNW with annual rainfall from 19 to 38 cm (7.5--15") and currently incorporating fallow into their rotations were considered as potential areas for camelina. There were 846,500 hectares (2.1 million acres) of land available in the region that could potentially produce 443.0 million L of biodiesel (117.1 million gal) and 1.2 billion kg of meal per year. This meal quantity is about 12.1% of the potential camelina meal that could be used as livestock feed in the PNW. Therefore, it was concluded that the meal has adequate market to be consumed locally as livestock feed. This research also conducted the life cycle analysis of camelina jet fuel produced in the laboratory scale facility. The jet fuel was produced via deoxygenation of the camelina oil in an inert environment, in the

  13. Female Reproductive Effects of Exposure to Jet Fuel at U.S. Air Force Bases

    DTIC Science & Technology

    2001-05-01

    amenorrhea and dys- strual characteristics of adult Afri- tors associated with menstrual disor- ,e r 4.6, 7 13 Prolonged bleed- can-Americans, and few...smokers than in non-smokers. Al- Stress (measured by life event or strual disorders.4󈧒 The major though vigorous exercise has been perceived stress...bases for both military and civilian the frequency of physical exercise .7 although personal gains (eg, starting women. Specifically, jet fuel, gaso

  14. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  15. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    PubMed

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  17. JP-8+100: The development of high-thermal-stability jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.

    1996-09-01

    Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less

  18. Alternative jet fuel scenario analysis report

    DOT National Transportation Integrated Search

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  19. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    PubMed

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  20. Thermal Stability of Jet Fuels: Kinetics of Forming Deposit Precursors

    NASA Technical Reports Server (NTRS)

    Naegeli, David W.

    1997-01-01

    The focus of this study was on the autoxidation kinetics of deposit precursor formation in jet fuels. The objectives were: (1) to demonstrate that laser-induced fluorescence is a viable kinetic tool for measuring rates of deposit precursor formation in jet fuels; (2) to determine global rate expressions for the formation of thermal deposit precursors in jet fuels; and (3) to better understand the chemical mechanism of thermal stability. The fuels were isothermally stressed in small glass ampules in the 120 to 180 C range. Concentrations of deposit precursor, hydroperoxide and oxygen consumption were measured over time in the thermally stressed fuels. Deposit precursors were measured using laser-induced fluorescence (LIF), hydroperoxides using a spectrophotometric technique, and oxygen consumption by the pressure loss in the ampule. The expressions, I.P. = 1.278 x 10(exp -11)exp(28,517.9/RT) and R(sub dp) = 2.382 x 10(exp 17)exp(-34,369.2/RT) for the induction period, I.P. and rate of deposit precursor formation R(sub dp), were determined for Jet A fuel. The results of the study support a new theory of deposit formation in jet fuels, which suggest that acid catalyzed ionic reactions compete with free radical reactions to form deposit precursors. The results indicate that deposit precursors form only when aromatics are present in the fuel. Traces of sulfur reduce the rate of autoxidation but increase the yield of deposit precursor. Free radical chemistry is responsible for hydroperoxide formation and the oxidation of sulfur compounds to sulfonic acids. Phenols are then formed by the acid catalyzed decomposition of benzylic hydroperoxides, and deposit precursors are produced by the reaction of phenols with aldehydes, which forms a polymer similar to Bakelite. Deposit precursors appear to have a phenolic resin-like structure because the LIF spectra of the deposit precursors were similar to that of phenolic resin dissolved in TAM.

  1. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  2. Biological and Health Effects of Exposure to Kerosene-Based Jet Fuels and Performance Additives

    DTIC Science & Technology

    2003-01-01

    cancer , or other serious organic disease in fuel-exposed workers, large numbers of self-reported health complaints in this cohort appear to justify...is little epidemiological evidence for fuel-induced death, cancer , or other serious organic disease in fuel-exposed workers, large numbers of self...kidneys of some BaP-exposed males. Exposure to respirable PAHs is thought to represent a significant human cancer risk (Holland et al., 1981; U.S

  3. Fuel Microemulsions for Jet Engine Smoke Reduction

    DTIC Science & Technology

    1980-05-01

    ESL-TR-80-25 FUEL MICROEMULSIONS FOR JET ENGINE SMOKE REDUCTION LEVEL$: 0• D.W. NAEGELI , G.E. FODOR, C.A. MOSES MOBILE ENERGY DIVISION 1N•j SOUTHWEST...Moses, C.A, and D.W. Naegeli , "Fuel Property Effects on Combustor Per- formance," AS!E Paper 79-GT-178, San Diego, CA, January 1979. 17. Naegeli , D.W

  4. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  5. Investigation of charge dissipation in jet fuel in a dielectric fuel tank

    NASA Astrophysics Data System (ADS)

    Kitanin, E. L.; Kravtsov, P. A.; Trofimov, V. A.; Kitanina, E. E.; Bondarenko, D. A.

    2017-09-01

    The electrostatic charge dissipation process in jet fuel in a polypropylene tank was investigated experimentally. Groundable metallic terminals were installed in the tank walls to accelerate the dissipation process. Several sensors and an electrometer with a current measuring range from 10-11 to 10-3 A were specifically designed to study the dissipation rates. It was demonstrated that thanks to the sensors and the electrometer one can obtain reliable measurements of the dissipation rate and look at how it is influenced by the number and locations of the terminals. Conductivity of jet fuel and effective conductivity of the tank walls were investigated in addition. The experimental data agree well with the numerical simulation results obtained using COMSOL software package.

  6. Protection from JP-8 jet fuel induced immunotoxicity by administration of aerosolized substance P.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and decreased sensorimotor speed. The United States Air Force has decided to implement the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Exposure to potential environment toxicants such as JP-8 may have significant effects on host physiology. Previous studies in mice have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system; e.g., decreased viable immune cell numbers, decreased immune organ weights, and loss on immune function that persisted for extended periods of time (i.e., up to 4 weeks post-exposure). Previous studies have shown that JP-8 induced pulmonary dysfunction was associated with a decrease in levels of the neuropeptide substance P (SP) in lung lavage fluids. It was found that administration of aerosolized SP was able to protect exposed animals from such JP-8 induced pulmonary changes. In the current study, aerosolized SP was analyzed for its effects on JP-i induced immunotoxicity in exposed mice. It was observed that SP administration could protect JP-8 exposed animals from losses of viable immune cell numbers, but not losses in immune organ weights. Further, exposure of animals to SP inhibitors generally increased the immunotoxicity of JP-8 exposure. SP appeared to act on all immune cell populations equally as analyzed by flow cytometry, as no one immune cell population appeared to be preferentially protected by SP. Also, SP administration was capable of protecting JP-8 exposed animals from loss of immune function at all concentrations of JP-8 utilized (250-2500 mg/m3). Significantly, SP only needed to be administered for 15 minutes after JP-8 exposure, and was active at both 1 microM and 1 nM concentrations. Thus, SP administration appears to be a

  7. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    NASA Astrophysics Data System (ADS)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  8. Correlation between in vivo and in vitro pulmonary responses to jet propulsion fuel-8 using precision-cut lung slices and a dynamic organ culture system.

    PubMed

    Hays, Allison M; Lantz, R Clark; Witten, Mark L

    2003-01-01

    In tissue slice models, interactions between the heterogeneous cell types comprising the lung parenchyma are maintained thus providing a controlled system for the study of pulmonary toxicology in vitro. However, validation of the model in vitro system must be affirmed. Previous reports, in in vivo systems, have demonstrated that Clara cells and alveolar type II cells are the targets following inhalation of JP-8 jet fuel. We have utilized the lung slice model to determine if cellular targets are similar following in vitro exposure to JP-8. Agar-filled adult rat lung explants were cored and precision cut, using the Brende/Vitron tissue slicer. Slices were cultured on titanium screens located as half-cylinders in cylindrical Teflon cradles that were loaded into standard scintillation vials and incubated at 37 degrees C. Slices were exposed to JP-8 jet fuel (0.5 mg/ml, 1.0 mg/ml, and 1.5 mg/ml in medium) for up to 24 hours. We determined ATP content using a luciferin-luciferase bioluminescent assay. No significant difference was found between the JP-8 jet fuel doses or time points, when compared to controls. Results were correlated with structural alterations following aerosol inhalation of JP-8. As a general observation, ultrastructural evaluation of alveolar type cells revealed an apparent increase in the number and size of surfactant secreting lamellar bodies that was JP-8 jet fuel-dose dependent. These results are similar to those observed following aerosol inhalation exposure. Thus, the lung tissue slice model appears to mimic in vivo effects of JP-8 and therefore is a useful model system for studying the mechanisms of lunginjury following JP-8 exposure.

  9. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  10. Jet Fuel Exacerbated Noise-Induced Hearing Loss: Focus on Prediction of Central Auditory Processing Dysfunction

    DTIC Science & Technology

    2017-09-01

    to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we

  11. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    PubMed

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  12. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  13. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  14. Powder Extinguishants for Jet-Fuel Fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C.

    1986-01-01

    Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.

  15. Experimental verification of the thermodynamic properties for a jet-A fuel

    NASA Technical Reports Server (NTRS)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Clifford; Andre Boehman; Chunshan Song

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using knownmore » refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  17. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  18. Infrared spectroscopy for the determination of hydrocarbon types in jet fuels

    NASA Technical Reports Server (NTRS)

    Buchar, C. S.

    1981-01-01

    The concentration of hydrocarbon types in conventional jet fuels and synfuels can be measured using a computerized infrared spectrophotometer. The computerized spectrophotometer is calibrated using a fuel of known aromatic and olefinic content. Once calibration is completed, other fuels can be rapidly analyzed using an analytical program built into the computer. The concentration of saturates can be calculated as 100 percent minus the sum of the aromatic and olefinic concentrations. The analysis of a number of jet fuels produced an average standard deviation of 1.76 percent for aromatic types and one of 3.99 percent for olefinic types. Other substances such as oils and organic mixtures can be analyzed for their hydrocarbon content.

  19. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  20. Cleanup of a jet fuel spill

    NASA Astrophysics Data System (ADS)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  1. Local and systemic toxicity of JP-8 from cutaneous exposures.

    PubMed

    McDougal, James N; Rogers, James V

    2004-04-01

    Jet propellant-8 (JP-8) jet fuel is a version of commercial jet fuel, Jet A, and is a complex mixture of primarily aliphatic (but also aromatic) hydrocarbons that varies in composition from batch to batch. There is potential for dermal exposure to jet fuels with personnel involved in aircraft refueling and maintenance operations as well as ground personnel. Cutaneous exposures have the potential to cause skin irritation, sensitization or skin cancer. JP-8 has been shown to be irritating and causes molecular changes in the skin of laboratory animals. The mechanisms of some of these effects have been investigated in intact skin and cultured skin cells. Hydrocarbons have also been shown to cause skin cancer with repeated application to the skin. Additionally, there is concern about systemic toxicity from dermal exposures to jet fuels, such as JP-8. Assessing risks from systemic absorption of hydrocarbon components is complex because most of the components are present in the mixture in small quantities (less than 1%). The effect of the fuel as a vehicle, different rates of penetration through the skin and different target organ toxicities all complicate the assessment of the hazards of cutaneous exposures. The purpose of this manuscript is to review studies of local and systemic toxicity of JP-8.

  2. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  3. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Satya P.; Garbark, Daniel B.; Taha, Rachid

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including:more » (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H 2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet turbine

  4. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  5. Comparison of atomization characteristics of drop-in and conventional jet fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  6. The Oxidation and Ignition of Jet Fuels

    DTIC Science & Technology

    2017-01-03

    approved for public release. A series of experimental studies designed to elucidate the oxidative reactivity and ignition properties of jet fuel and its...3 2. Experimental Method……………………………………………..………………….……..4 2.1. Shock tube…………………………………………………….…………………….4 2.2. Mid-infrared... experimental kinetics database for larger hydrocarbon components, real transportation fuels, model fuel mixtures, and important intermediate species

  7. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  8. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V A; Bell, M G; Bell, R E

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi

  9. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    PubMed

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  10. In vitro time- and dose-effect response of JP-8 and S-8 jet fuel on alveolar type II epithelial cells of rats.

    PubMed

    Robb, Tiffany M; Rogers, Michael J; Woodward, Suann S; Wong, Simon S; Witten, Mark L

    2010-07-01

    This study was designed to characterize and compare the effects of jet propellant-8 (JP-8) fuel and synthetic-8 (S-8) on cell viability and nitric oxide synthesis in cultured alveolar type II epithelial cells of rats. Exposure times varied from 0.25, 0.5, 1, and 6 hours at the following concentrations of jet fuel: 0.0, 0.1, 0.4, and 2.0 microg/mL. Data indicate that JP-8 presents a gradual decline in cell viability and steady elevation in nitric oxide release as exposure concentrations increase. At a 2.0 microg/mL concentration of JP-8, nearly all of the cells are not viable. Moreover, S-8 exposure to rat type II lung cells demonstrated an abrupt fall in percentage cell viability and increases in nitric oxide measurement, particularly after the 2.0 microg/mL was reached at 1 and 6 hours. At 0.0, 0.2, and 0.4 microg/mL concentrations of S-8, percentage viability was sustained at steady concentrations. The results suggest different epithelial toxicity and mechanistic effects of S-8 and JP-8, providing further insight concerning the impairment imposed at specific levels of lung function and pathology induced by the different fuels.

  11. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  12. Further studies of fuels from alternate sources - fire extinguishment experiments with JP-5 jet turbine fuel derived from shale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, R.N.; Affens, W.A.; McLaren, G.W.

    1978-05-01

    Fire extinguishment experiments with JP-5 jet fuels derived from shale crude oil and also from petroleum (for comparison) were conducted at NRL's Chesapeake Bay facility. The experiments were conducted in a 40-foot diameter circular pool using Aqueous Film Forming Foam (AFFF) as the fire extinguishing agent. The results with both types of fuel were similar, and it was concluded that the techniques and agents for AFFF application, which have been developed for petroleum fuel fires, can also be used for shale derived jet fuel.

  13. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    PubMed

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  14. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  15. Transverse liquid fuel jet breakup, burning, and ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hsi-shang

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flamemore » supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.« less

  16. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Thirty-two jet and diesel fuel samples of varying chemical composition and physical properties were prepared from oil shale and coal syncrudes. Hydrocarbon types in these samples were determined by a fluorescent indicator adsorption analysis, and the results from three laboratories are presented and compared. Two methods of rapid high performance liquid chromatography were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  17. Jet fuel property changes and their effect on producibility and cost in the U.S., Canada, and Europe

    NASA Technical Reports Server (NTRS)

    Varga, G. M., Jr.; Avella, A. J., Jr.; Cunningham, A. R.; Featherston, C. D.; Gorgol, J. F.; Graf, A. J.; Lieberman, M.; Oliver, G. A.

    1985-01-01

    The effects of changes in properties and blending stocks on the refinery output and cost of jet fuel in the U.S., Canada, and Europe were determined. Computerized refinery models that minimize production costs and incorporated a 1981 cost structure and supply/demand projections to the year 2010 were used. Except in the West U.S., no changes in jet fuel properties were required to meet all projected demands, even allowing for deteriorating crude qualities and changes in competing product demand. In the West U.S., property changes or the use of cracked blendstocks were projected to be required after 1990 to meet expected demand. Generally, relaxation of aromatics and freezing point, or the use of cracked stocks produced similar results, i.e., jet fuel output could be increased by up to a factor of three or its production cost lowered by up to $10/cu m. High quality hydrocracked stocks are now used on a limited basis to produce jet fuel. The conversion of U.S. and NATO military forces from wide-cut to kerosene-based jet fuel is addressed. This conversion resulted in increased costs of several hundred million dollars annually. These costs can be reduced by relaxing kerosene jet fuel properties, using cracked stocks and/or considering the greater volumetric energy content of kerosene jet fuel.

  18. Market cost of renewable jet fuel adoption in the United States.

    DOT National Transportation Integrated Search

    2013-03-01

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet : fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines : of meeting this goal using renewable fuel produ...

  19. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  20. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  1. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaokun; Li, Teng; Tang, Kan

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reactionmore » mechanism is discussed.« less

  2. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  3. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

    NASA Astrophysics Data System (ADS)

    Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

    2018-06-01

    Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

  4. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  5. Oilseeds for use in biodiesel and drop-in renewable jet fuel

    USDA-ARS?s Scientific Manuscript database

    Oilseeds, primarily soybean and canola, are currently used as feedstocks for biodiesel production. Oilseeds can also be used to produce drop-in renewable jet fuel and diesel products. While soybean and canola are the most common oilseed crops used for renewable fuel production in the U.S., many othe...

  6. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  7. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  8. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels.

    PubMed

    van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat

    2011-07-15

    Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. IET. Jet fuel tank being lowered into position below grade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Jet fuel tank being lowered into position below grade. Two tanks already in place. Date: October 18, 1954. INEEL negative no. 12535 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. Jet Fuel Thermal Stability Investigations using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Klettlinger, Jennifer; Vasu, Subith

    2017-01-01

    Ellipsometry is an optical technique used to measure the thickness of thin films. This technique was used to measure the thickness of deposits created by heated jet fuel, specifically Sasol IPK on stainless steel tubes. A new amorphous model was used to iteratively determine the film thickness. This method was found to be repeatable, and the thickness of deposit increased with increasing temperature and increasing concentration of naphthalene.

  11. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    PubMed

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C 8 -C 19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Assessment of potential asbestos exposures from jet engine overhaul work.

    PubMed

    Mlynarek, S P; Van Orden, D R

    2012-06-01

    Asbestos fibers have been used in a wide variety of products and numerous studies have shown that exposures from the use or manipulation of these products can vary widely. Jet engines contained various components (gaskets, clamps, o-rings and insulation) that contained asbestos that potentially could release airborne fibers during routine maintenance or during an engine overhaul. To evaluate the potential exposures to aircraft mechanics, a Pratt & Whitney JT3D jet engine was obtained and overhauled by experienced mechanics using tools and work practices similar to those used since the time this engine was manufactured. This study has demonstrated that the disturbance of asbestos-containing gaskets, o-rings, and other types of asbestos-containing components, while performing overhaul work to a jet engine produces very few airborne fibers, and that virtually none of these aerosolized fibers is asbestos. The overhaul work was observed to be dirty and oily. The exposures to the mechanics and bystanders were several orders of magnitude below OSHA exposure regulations, both current and historic. The data presented underscore the lack of risk to the health of persons conducting this work and to other persons in proximity to it from airborne asbestos. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report

    NASA Technical Reports Server (NTRS)

    Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

    2011-01-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

  14. Flame ignition studies of conventional and alternative jet fuels and surrogate components

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel

  15. Identification of microorganisms isolated from jet fuel systems.

    PubMed

    Edmonds, P; Cooney, J J

    1967-03-01

    Seventy-two samples from jet aircraft fuel systems were examined for microbial contamination. Ten contaminated samples yielded 43 microorganisms which were classified into nine genera of bacteria and three genera of fungi. The predominant types, comprising about 37% of the isolated cultures, were identified as Bacillus spp. The remaining cultures were distributed among 11 genera, each of which represented 2 to 9% of the total isolates. Four cultures could not be assigned to a genus on the basis of the diagnostic criteria used. Only five isolates, in the genera Pseudomonas and Hormodendrum (Cladosporium), grew abundantly in a mineral salts solution with JP-4 fuel as the sole source of carbon. The presence of fuel utilizers in a fuel system may be a better index to potential problems that have been correlated with microbial contamination than the presence of aerobic sporeforming bacilli.

  16. Long-term health experience of jet engine manufacturing workers: VII: occupational exposures.

    PubMed

    Kennedy, Kathleen J; Esmen, Nurtan A; Hancock, Roger P; Lacey, Steven E; Marsh, Gary M; Buchanich, Jeanine M; Youk, Ada O

    2013-06-01

    To reconstruct agent-specific occupational exposures for a cohort of jet engine manufacturing workers for use in an epidemiological mortality study. Potential chemical and physical exposures at eight jet engine manufacturing and overhaul/repair plants were evaluated for the period 1952 to 2001. Eleven agents were selected for detailed examination, and a job-exposure matrix was constructed. Quantitative exposure estimates were generated for metalworking fluids, nickel, cobalt, chromium, solvents, and incomplete combustion aerosol from metalworking fluids. Qualitative exposure estimates were assigned for ionizing radiation, electromagnetic fields, polychlorinated biphenyls, and lead-cadmium. All exposures showed decreasing trends over the study period. The quantitative exposure levels generated in this study were lower than early contemporaneous professional practice recommendations and were similar to or lower than published data from other industries.

  17. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  18. Opportunities and challenges for developing an oilseed to renewable jet fuel industry

    USDA-ARS?s Scientific Manuscript database

    Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...

  19. Heat transfer correlations for kerosene fuels and mixtures and physical properties for Jet A fuel

    NASA Technical Reports Server (NTRS)

    Ackerman, G. H.; Faith, L. E.

    1972-01-01

    Heat transfer correlations are reported for conventional Jet A fuel for both laminar and turbulent flow in circular tubes. Correlations were developed for cooling in turbine engines, but have broader applications in petroleum and chemical processing, and other industrial applications.

  20. The effects of oxygen scavenging on jet fuel thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Williams, T.F.; Whitacre, S.

    1996-10-01

    Preliminary tests with a proposed oxygen scavenger (triphenyl-phosphine, TPP) have been done in closed static and flowing systems to study its effects on the oxidation and the deposit formation of jet fuel. TPP was found to significantly slow the oxidation of hexadecane or jet fuel at some temperatures/concentrations and increase the oxidation rate at other conditions. The additive helped decrease the formation of deposits at higher concentrations (200 mg/l) but not at lower concentrations. No evidence of phosphorous was observed in the deposits that were formed. Gas chomatography combined with mass spectrometry and atomic emission detection showed that TPP producedmore » the expected oxidation product (triphenylphosphineoxide) and an unexpected triphenylphosphine-sulfide. The GC/AED allowed A quantitative analysis of the conversion efficiency of TPP to TPPO upon stressing in a closed system.« less

  1. Environmental cost-benefit analysis of ultra low sulfur jet fuel.

    DOT National Transportation Integrated Search

    2011-12-01

    Aircraft emissions can reduce air quality, leading to adverse health impacts including : increased risk of premature mortality. A technically viable way to mitigate the health : impacts of aviation is the use of desulfurized jet fuel, as has been don...

  2. Analytic tests and their relation to jet fuel thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Kauffman, R.E.

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions showmore » that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.« less

  3. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  4. Effects of JP-8 Jet Fuel on Homeostasis of Clone 9 Rat Liver Cells

    NASA Technical Reports Server (NTRS)

    Wilson, C. L.; Barhoumi, R.; Burghardt, R.; Miladi, A.; Jung, A.

    2000-01-01

    Chronic exposure to JP-8 and other kerosene-based petroleum distillates has been associated with hepatic, renal, neurologic, pulmonary, and immune toxicity. However, the effects of kerosene-type jet fuels on cellular homeostasis hitherto have not been reported. Fluorescence imaging using a Meridian Ultima laser scanning fluorescence microscope was used to evaluate the effect of JP-8 jet fuel on a communication competent rat liver cell line. Several endpoints of cellular function were measured including gap junctional intercellular communication (GJIC), mitochondrial and plasma membrane potential (MMP and PMP, respectively), intracellular glutathione (GSH) concentration, glutathione-S-transferase (GST) activity, and reactive oxygen species (ROS) generation. Cells were treated with JP-8 (0.01 to 2% in ethanol (EtOH)) for the following time points: 1 h, 24 h, 48 h, and analysis immediately after addition of jet fuel. GJIC analyzed directly after addition of 1% JP-8 was reduced 4.9-fold relative to EtOH-dosed control groups and further reduction (12.6-fold) was observed in cells treated for 1 h. Moreover, GJIC was not recoverable in cells treated with 1% JP-8 for 1 h and subsequently washed and incubated in fresh medium for 1 h. Significant changes in GSH content and GST activity were observed in cells analyzed directly after addition of 1% JP-8. GSH content increased in cells treated for 1 h with less than 2% JP-8 whereas treatment with 2% JP-8 for 1 h resulted in a 50% reduction in intracellular GSH relative to EtOH-dosed controls. Cells treated with 1% JP-8 for 48 h exhibited changes in GSH levels. However, higher JP-8 concentrations exhibited more pronounced changes in GSH and GST, which led to suppression of GSH synthesis. ROS increased in a dose-responsive fashion at JP-8 concentrations up to 1%, but decreased to 80% of control values at 2% and 3% JP-8. A 25% reduction in PMP was observed in cells treated for 1 h with 1% JP-8. In contrast, cells treated for 48 h

  5. Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1986-01-01

    The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates.

  6. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  7. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE PAGES

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; ...

    2017-05-18

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  8. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.

    PubMed

    Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D

    2009-04-01

    The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.

  9. Performance of Aqueous Film Forming Foam (AFFF) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires

    DTIC Science & Technology

    2011-12-01

    aqueous film forming foam ( AFFF ) firefighting agents and equipment are capable of...AFRL-RX-TY-TR-2012-0012 PERFORMANCE OF AQUEOUS FILM FORMING FOAM ( AFFF ) ON LARGE-SCALE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES...Performance of Aqueous Film Forming Foam ( AFFF ) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires FA4819-09-C-0030 0602102F 4915 D0

  10. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  11. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was preparedmore » by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can

  12. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  13. Low-Cost Jet Fuel Starter Design Study

    DTIC Science & Technology

    1974-12-02

    2G 27 3^ 38 & 39 60 vi WflU I LIST OF TABLES (continued) TABLE NO, 7 D-l I>-2 TITLE PAGE NO, Sea Level Design Point Component...Improvements 60 Turbojet Performance Summary D-3 Turbofan Performance Summary D-5 vii 1 SECTION INTRODUCTION The purpose of this study was to define...temperature difference between the top and bot- tom of the starter, does not begin to have an effect until after 60 seconds from shutdown. The Jet fuel

  14. Flight and Preflight Tests of a Ram Jet Burning Magnesium Slurry Fuel and Utilizing a Solid-propellant Gas Generator for Fuel Expulsion

    NASA Technical Reports Server (NTRS)

    Bartlett, Walter, A , jr; Hagginbotham, William K , Jr

    1955-01-01

    Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.

  15. Conversion of crop seed oils to jet fuel and associated methods

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  16. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    PubMed

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  17. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.

    PubMed

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M; Nachon, Florian; Masson, Patrick; Furlong, Clement E; Lockridge, Oksana

    2011-11-01

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such "fume events". Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers

    PubMed Central

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Furlong, Clement E.; Lockridge, Oksana

    2011-01-01

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such “fume events”. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24–48 hours after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. PMID:21723309

  19. Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine : Liquid Oxygen Mixtures with Jet Fuel

    NASA Technical Reports Server (NTRS)

    Rothenberg, Edward A; Ordin, Paul M

    1954-01-01

    The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.

  20. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    PubMed

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  1. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    PubMed

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass. Copyright © 2015. Published by Elsevier Ltd.

  2. Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2003-01-01

    Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.

  3. Shock wave calibration of under-expanded natural gas fuel jets

    NASA Astrophysics Data System (ADS)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  4. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  5. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  6. Effect of fuel density and heating value on ram-jet airplane range

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M

    1952-01-01

    An analytical investigation of the effects of fuel density and heating value on the cruising range of a ram-jet airplane was made. Results indicate that with present-day knowledge of chemical fuels, neither very high nor very low fuel densities have any advantages for long-range flight. Of the fuels investigated, the borohydrides and metallic boron have the greatest range potential. Aluminum and aluminum hydrocarbon slurries were inferior to pure hydrocarbon fuel and boron-hydrocarbon slurries were superior on a range basis. It was concluded that the practical difficulties associated with the use of liquid hydrogen fuel cannot be justified on a range basis.

  7. Minimum-fuel, three-dimensional flight paths for jet transports

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1985-01-01

    A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.

  8. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam

  9. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  10. Evaluation of 10 Jet Fuels in the Salmonella-Escherichia coli Mutagenicity Assay

    DTIC Science & Technology

    2016-09-07

    4658), Valero 25% Aromatic JP8 (POSF 8457), KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327), ARA ReadiJet (POSF 10328), Amyris Farnesane (POSF...JP8 (POSF 8457) * KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327) * ARA ReadiJet (POSF 10328) * Amyris Farnesane (POSF 10329) * Virent HDO-SK...fuel/plate. Due to evidence of toxicity, KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327) and Virent HDO-SK (POSF 10330) were used at

  11. Transverse liquid fuel jet breakup, burning, and ignition. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Li, Hsi-Shang

    1990-01-01

    An analytical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion. Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, were used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic cross flow. Typical flame structures and concentration profiles were calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integration reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  12. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    EPA Science Inventory

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  13. Identification of target genes responsive to JP-8 exposure in the rat central nervous system.

    PubMed

    Lin, B; Ritchie, G D; Rossi, J; Pancrazio, J J

    2001-06-01

    Concern for the health risk associated with occupational exposure to jet fuel has emerged in the Department of Defense. Jet propulsion fuel-8 (JP-8) is the fuel used in most US and North Atlantic Treaty Organization (NATO) jet aircraft, and will be the predominant fuel both for military land vehicles and aircraft into the twenty-first century. JP-8 exhibits reduced volatility and lower benzene content as compared to JP-4, the predominant military aircraft fuel before 1992, possibly suggesting greater occupational exposure safety. However, the higher rates of occupational exposure through fueling and maintenance of increasingly larger numbers of aircraft/vehicles raise concerns with respect to toxicity. Clinical studies of workers experiencing long-term exposure to certain jet fuels demonstrated deficits in CNS function, including fatigue, neurobehavioral changes, psychiatric disorders, and abnormal electroencephalogram (EEG). In the present study, cDNA nylon arrays (Atlas Rat 1.2 Array, Clontech Laboratories, Palo Alto, CA) were utilized to measure changes in gene expression in whole brain tissue of rats exposed repeatedly to JP-8, under conditions that simulated possible real-world occupational exposure (6 h/day for 91 days) to JP-8 vapor at 1,000 mg/m3. Gene expression analysis of the exposure group compared to the control group revealed a modulation of several genes, including glutathione S-transferase Yb2 subunit (GST Yb2); cytochrome P450 IIIAl (CYP3A1); glucose-dependent insulinotropic peptide (GIP); alpha1-proteinase inhibitor (alpha1-AT); polyubiquitin; GABA transporter 3 (GAT-3); and plasma membrane Ca2+-transporting ATPase (brain isoform 2) (PMCA2). The implications of these vapor-induced changes in gene expression are discussed.

  14. Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    PubMed

    Yao, Guolin; Staples, Mark D; Malina, Robert; Tyner, Wallace E

    2017-01-01

    Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven

  15. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  16. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Kinchin, C.; McCormick, R.

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  17. Propane-Fueled Jet Engine

    NASA Astrophysics Data System (ADS)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  18. Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.

    PubMed

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin

    2016-08-01

    Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.

    PubMed

    Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E

    2007-11-01

    Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of

  20. Effects of aerosol-vapor JP-8 jet fuel on the functional observational battery, and learning and memory in the rat.

    PubMed

    Baldwin, C M; Houston, F P; Podgornik, M N; Young, R S; Barnes, C A; Witten, M L

    2001-01-01

    To determine whether JP-8 jet fuel affects parameters of the Functional Observational Battery (FOB), visual discrimination, or spatial learning and memory, the authors exposed groups of male Fischer Brown Norway hybrid rats for 28 d to aerosol/vapor-delivered JP-8, or to JP-8 followed by 15 min of aerosolized substance P analogue, or to sham-confined fresh room air. Behavioral testing was accomplished with the U.S. Environmental Protection Agency's Functional Observational Battery. The authors used the Morris swim task to test visual and spatial learning and memory testing. The spatial test included examination of memory for the original target location following 15 d of JP-8 exposure, as well as a 3-d new target location learning paradigm implemented the day that followed the final day of exposure. Only JP-8 exposed animals had significant weight loss by the 2nd week of exposure compared with JP-8 with substance P and control rats; this finding compares with those of prior studies of JP-8 jet fuel. Rats exposed to JP-8 with or without substance P exhibited significantly greater rearing and less grooming behavior over time than did controls during Functional Observational Battery open-field testing. Exposed rats also swam significantly faster than controls during the new target location training and testing, thus supporting the increased activity noted during Functional Observational Battery testing. There were no significant differences between the exposed and control groups' performances during acquisition, retention, or learning of the new platform location in either the visual discrimination or spatial version of the Morris swim task. The data suggest that although visual discrimination and spatial learning and memory were not disrupted by JP-8 exposure, arousal indices and activity measures were distinctly different in these animals.

  1. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  2. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen.

    PubMed

    Zhang, Jingjing; Zhao, Chen

    2015-12-18

    The traditional methodology includes a carbon-chain shortening strategy to produce bio-jet fuel from lipids via a two-stage process with hydrogen. Here, we propose a new solution using a carbon-chain filling strategy to convert C10 terpene and lipids to jet fuel ranged hydrocarbons with aromatic hydrocarbon ingredients in the absence of hydrogen.

  3. Applications of photoacoustic techniques to the study of jet fuel residue

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.

    1983-01-01

    It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.

  4. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  5. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  6. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  7. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.

    2002-01-01

    Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.

  8. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    PubMed

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  9. Physical and chemical behavior of flowing endothermic jet fuels

    NASA Astrophysics Data System (ADS)

    Ward, Thomas Arthur

    Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting

  10. The costs of production of alternative jet fuel: A harmonized stochastic assessment.

    PubMed

    Bann, Seamus J; Malina, Robert; Staples, Mark D; Suresh, Pooja; Pearlson, Matthew; Tyner, Wallace E; Hileman, James I; Barrett, Steven

    2017-03-01

    This study quantifies and compares the costs of production for six alternative jet fuel pathways using consistent financial and technical assumptions. Uncertainty was propagated through the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast pyrolysis. The results indicate that none of the six processes would be profitable in the absence of government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in the United States with a Renewable Fuel Standard policy analysis. Results indicate that some pathways could achieve positive NPV with relatively high likelihood under existing policy supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively, in the best-case scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    NASA Astrophysics Data System (ADS)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  12. Biomass fuel exposure and respiratory diseases in India.

    PubMed

    Prasad, Rajendra; Singh, Abhijeet; Garg, Rajiv; Giridhar, Giridhar B

    2012-10-01

    One half of the world's population relies on biomass fuel as the primary source of domestic energy. Biomass fuel exposure causes a high degree of morbidity and mortality in humans. This is especially true in the context of developing countries, which account for 99% of the world's biomass fuel use. Biomass fuel consists of fire wood, dung cakes, agricultural crop residues such as straw, grass, and shrubs, coal fuels and kerosene. Together, they supply 75% of the domestic energy in India. An estimated three-quarters of Indian households use biomass fuel as the primary means for domestic cooking. Ninety percent of rural households and 32% of urban households cook their meals on a biomass stove. There are wide variations between the rural and urban households regarding the specific type of biomass fuel used. Globally, almost 2 million deaths per year are attributable to solid fuel use, with more than 99% of these occurring in developing countries. Biomass fuel accounts for 5-6% of the national burden of disease. Burning biomass fuels emits toxic fumes into the air that consist of small solid particles, carbon monoxide, polyorganic and polyaromatic hydrocarbons, and formaldehyde. Exposure to biomass fuels has been found to be associated with many respiratory diseases such as acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, pulmonary tuberculosis, and asthma. Biomass fuel exposure is closely related to the burden of disease in India. Hopes are that future studies will examine the morbidity associated with biomass exposure and seek to prevent it. Concerted efforts to improve stove design and transition to high-efficiency low-emission fuels may reduce respiratory disease associated with biomass fuel exposure.

  13. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1991-01-01

    Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.

  14. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  15. An evaluation of the relative fire hazards of jet A and jet B for commercial flight

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Hacker, P. T.

    1973-01-01

    The relative fire hazards of Jet A and Jet B aircraft fuels are evaluated. The evaluation is based on a consideration of the presence of and/or the generation of flammable mixtures in fuel systems, the ignition characteristics, and the flame propagation rates for the two fuel types. Three distinct aircraft operating regimes where fuel type may be a factor in fire hazards are considered. These are: (1) ground handling and refueling, (2) flight, and (3) crash. The evaluation indicates that the overall fire hazards for Jet A are less than for Jet B fuel.

  16. Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1995-01-01

    Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.

  17. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  18. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  19. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  20. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  1. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  2. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  3. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    USDA-ARS?s Scientific Manuscript database

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  4. Carbon monoxide exposure from aircraft fueling vehicles.

    PubMed

    McCammon, C S; Halperin, W F; Lemen, R A

    1981-01-01

    Investigators from the National Institute for Occupational Safety and Health observed deficiencies in maintenance of fueling trucks at an international airport. The exhaust system is vented under the front bumper, a standard design on fueling trucks which is intended to minimize the proximity of the exhaust system to the jet fuel in the vehicles. Carbon monoxide levels were measured in the cabs of 17 fueling trucks with windows closed, heaters on, and in different positions relative to the wind. One truck had an average CO level of 300 ppm, two exceeded 100 ppm, five others exceeded 50 ppm, while levels in the other nine averaged less than or equal to 500 ppm. Levels of CO depended on the mechanical condition of the vehicle and the vehicle's orientation to the wind. Stringent maintenance is required as the exhaust design is not fail-safe.

  5. Past, Present and Emerging Toxicity Issues for Jet Fuel

    DTIC Science & Technology

    2011-01-01

    Statistically significant dominant lethal effects were not observed for either mice or rats (Air Force, 1978). However, because of the small sample...Adams, M.M., 2004. Immunological and hematological effects observed in B6C3F1 mice exposed to JP-8 jet fuel for 14 days. J. Toxicol. Environ. Health A...acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with

  6. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  7. Fire Safety Tests Comparing Synthetic Jet and Diesel Fuels with JP-8 (POSTPRINT)

    DTIC Science & Technology

    2010-04-01

    about 25% aromatics and 75% saturated (paraffin and naphthene ) hydro- carbons [5]. JP-8 is produced from jet fuel A by adding a corrosion inhibitor...4529a 43.9 44.2 Lubricity (mm) ASTM D – 5001 0.58 0.92 Acidity (mg KOH/g) ASTM D – 3242 0.004 0.003 SPK fuels taken from Moses [7], diesel fuels taken...this occurred the burnback pan was removed from the agent pan. The flames in the agent pan were allowed to break up the foam blanket and propagate until

  8. Environmental Quality Research-Fate of Toxic Jet Fuel Components in Aquatic Systems

    DTIC Science & Technology

    1981-12-01

    literature suggests that the maximum growt rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 days at water temperatures near 25°C...the results of an investigation of the potential toxic effects of the jet fuel JP-4 (petroleum-based and shale-based) on the aqueous environ- ment... investigated included fuel/ H 2 0 ratios and mixing times. Hydrocarbon composition of the WSF of JP-4, both petroleum e.nd shale-derived, appears to be

  9. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  10. Cost and fuel consumption per nautical mile for two engine jet transports using OPTIM and TRAGEN

    NASA Technical Reports Server (NTRS)

    Wiggs, J. F.

    1982-01-01

    The cost and fuel consumption per nautical mile for two engine jet transports are computed using OPTIM and TRAGEN. The savings in fuel and direct operating costs per nautical mile for each of the different types of optimal trajectories over a standard profile are shown.

  11. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock

    USDA-ARS?s Scientific Manuscript database

    Hydrotreated renewable jet fuel (HRJ) derived from crop oils has been commercially demonstrated but full-scale production has been hindered by feedstock costs that make the product more costly than petroleum-based fuels. Maintaining low feedstock costs while developing crops attractive to farmers to...

  12. IN-SITU AIR INJECTION, SOIL VACUUM EXTRACTION AND ENHANCED BIODEGRADATION: A CASE STUDY IN A JP-4 JET FUEL CONTAMINATED SITE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) and the U.S. Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that ext...

  13. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  14. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil.

    PubMed

    Bailis, Robert E; Baka, Jennifer E

    2010-11-15

    This analysis presents a comparison of life-cycle GHG emissions from synthetic paraffinic kerosene (SPK) produced as jet fuel substitute from jatropha curcas feedstock cultivated in Brazil against a reference scenario of conventional jet fuel. Life cycle inventory data are derived from surveys of actual Jatropha growers and processors. Results indicate that a baseline scenario, which assumes a medium yield of 4 tons of dry fruit per hectare under drip irrigation with existing logistical conditions using energy-based coproduct allocation methodology, and assumes a 20-year plantation lifetime with no direct land use change (dLUC), results in the emissions of 40 kg CO₂e per GJ of fuel produced, a 55% reduction relative to conventional jet fuel. However, dLUC based on observations of land-use transitions leads to widely varying changes in carbon stocks ranging from losses in excess of 50 tons of carbon per hectare when Jatropha is planted in native cerrado woodlands to gains of 10-15 tons of carbon per hectare when Jatropha is planted in former agro-pastoral land. Thus, aggregate emissions vary from a low of 13 kg CO₂e per GJ when Jatropha is planted in former agro-pastoral lands, an 85% decrease from the reference scenario, to 141 kg CO₂e per GJ when Jatropha is planted in cerrado woodlands, a 60% increase over the reference scenario. Additional sensitivities are also explored, including changes in yield, exclusion of irrigation, shortened supply chains, and alternative allocation methodologies.

  15. Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.

  16. Detection of DNA damage in workers exposed to JP-8 jet fuel.

    PubMed

    Krieg, Edward F; Mathias, Patricia I; Toennis, Christine A; Clark, John C; Marlow, Kate L; B'hymer, Clayton; Singh, Narendra P; Gibson, Roger L; Butler, Mary Ann

    2012-09-18

    The genotoxicity of jet propulsion fuel 8 (JP-8) was assessed in the leukocytes of archived blood specimens from U.S. Air Force personnel using the comet assay. No differences in mean comet assay measurements were found between low, moderate, and high exposure groups before or after a 4h work shift. Before the work shift, mean tail DNA and mean tail (Olive) moment increased as the concentration of benzene measured in end-exhaled breath increased, indicating that prior environmental or work-related exposures to benzene produced DNA damage. The number of cells with highly damaged DNA decreased as the pre-shift benzene concentration in breath increased. It is not clear why the decrease is occurring. Mean tail DNA and mean tail (Olive) moment decreased as the concentrations of benzene and naphthalene measured in breath immediately after the work shift increased. These inverse relationships may reflect a slower rate of absorption or a faster rate of expiration of benzene in the lung. The number of cells with highly damaged DNA increased as the concentration of urinary (2-methoxyethoxy)acetic acid (MEAA) increased. This relationship was not seen in urinary MEAA adjusted for creatinine. MEAA is a metabolite of the deicing agent 2-(2-methoxyethoxy)ethanol contained in JP-8. MEAA or a component of JP-8 correlated with MEAA may have a toxic effect on DNA. Published by Elsevier B.V.

  17. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils ...canola, jatropha, soy, palm , etc.) Alternative fuels – University of North Dakota EERC – UOP – General Electric (GE) t i o n C o s t t i o n C o s t

  18. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  19. Jet-A fuel evaporation analysis in conical tube injectors

    NASA Technical Reports Server (NTRS)

    Lai, M.-C.; Chue, T.-H.; Zhu, G.; Sun, H.; Tacina, R.; Chun, K.; Hicks, Y.

    1991-01-01

    A simple one-dimensional drop-life-history analysis and a multidimensional spray calculation using KIVA-II code are applied to the vaporization of Jet-A fuel in multiple tube injectors. Within the assumptions of the analysis, the one-dimensional results are useful for design purposes. The pressure-atomizer breakup models do not accurately predict the dropsize measured experimentally or deduced from the one-dimensional analysis. Cold flow visualization and dropsize measurements show that capillary wave breakup mechanism plays an important role in the spray angle and droplet impingement on the tube wall.

  20. Life cycle water footprint analysis for rapeseed derived jet fuel in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Rapeseed is a promising feedstock source for hydroprocessed esters and fatty acids (HEFA) jet fuel production to address energy security and climate change mitigation. However, concerns have been raised about its impact on water as large scale biofuels production may place pressure on fresh water su...

  1. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  2. Overview of fuel inventory in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Brezinsek, S.; Catarino, N.; Corregidor, V.; Heinola, K.; Koivuranta, S.; Krat, S.; Lahtinen, A.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET

    2017-08-01

    Post mortem analyses of JET ITER-Like-Wall tiles and passive diagnostics have been completed after each of the first two campaigns (ILW-1 and ILW-2). They show that the global fuel inventory is still dominated by co-deposition; hence plasma parameters and sputtering processes affecting material migration influence the distribution of retained fuel. In particular, differences between results from the two campaigns may be attributed to a greater proportion of pulses run with strike points in the divertor corners, and having about 300 discharges in hydrogen at the end of ILW-2. Recessed and remote areas can contribute to fuel retention due to the larger areas involved, e.g. recessed main chamber walls, gaps in castellated Be main chamber tiles and material migration to remote divertor areas. The fuel retention and material migration due to the bulk W Tile 5 during ILW-1 are presented. Overall these tiles account for only a small percentage of the global accountancy for ILW-1.

  3. Effect of high surface area activated carbon on thermal degradation of jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergova, K.; Eser, S.; Arumugam, R.

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. Wemore » also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.« less

  4. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    DOT National Transportation Integrated Search

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  5. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled

  6. Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei.

    PubMed

    Tomko, Timothy A; Dunlop, Mary J

    2015-01-01

    Recent metabolic engineering efforts have generated microorganisms that can produce biofuels, including bio-jet fuels, however these fuels are often toxic to cells, limiting production yields. There are natural examples of microorganisms that have evolved mechanisms for tolerating hydrocarbon-rich environments, such as those that thrive near natural oil seeps and in oil-polluted waters. Using genomic DNA from the hydrocarbon-degrading microbe Marinobacter aquaeolei, we constructed a transgenic library that we expressed in Escherichia coli. We exposed cells to inhibitory levels of pinene, a monoterpene that can serve as a jet fuel precursor with chemical properties similar to existing tactical fuels. Using a sequential strategy with a fosmid library followed by a plasmid library, we were able to isolate a region of DNA from the M. aquaeolei genome that conferred pinene tolerance when expressed in E. coli. We determined that a single gene, yceI, was responsible for the tolerance improvements. Overexpression of this gene placed no additional burden on the host. We also tested tolerance to other monoterpenes and showed that yceI selectively improves tolerance. The genomes of hydrocarbon-tolerant microbes represent a rich resource for tolerance engineering. Using a transgenic library, we were able to identify a single gene that improves E. coli's tolerance to the bio-jet fuel precursor pinene.

  7. Gum and deposit formation from jet-turbine and diesel fuels at 130C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, Bosco Y.

    1986-01-01

    The ultimate objective of this work is to devise an accelerated test to compare rates of soluble gum and deposit formation from jet-turbine and diesel fuels in storage and of hard deposits in engines. This paper describes rates of oxygen absorption and gum formation in air at 130 C. For a single fuel or hydrocarbon, the rate of gum formation is closely proportional to the oxygen absorbed, even when this rate varies with purification and additives. In general, pure hydrocarbons absorb oxygen much faster than the fuels, but the fuels and 2-ethylnaphthalene give more gum for the oxygen absorbed thanmore » the other pure hydrocarbons. Gum has two main sources; one appears to be associated with the chain termination mechanism in oxidation, the other coupling of fuel molecules in the absence of oxygen. Other possibilities are discussed.« less

  8. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  9. Long-term fuel retention in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Widdowson, A.; Likonen, J.; Alves, E.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Koivuranta, S.; Krat, S.; Matthews, G. F.; Mayer, M.; Petersson, P.; Contributors, JET

    2016-02-01

    Post-mortem studies with ion beam analysis, thermal desorption, and secondary ion mass spectrometry have been applied for investigating the long-term fuel retention in the JET ITER-like wall components. The retention takes place via implantation and co-deposition, and the highest retention values were found to correlate with the thickness of the deposited impurity layers. From the total amount of retained D fuel over half was detected in the divertor region. The majority of the retained D is on the top surface of the inner divertor, whereas the least retention was measured in the main chamber on the mid-plane of the inner wall limiter. The recessed areas of the inner wall showed significant contribution to the main chamber total retention. Thermal desorption spectroscopy analysis revealed the energetic T from DD reactions being implanted in the divertor. The total T inventory was assessed to be \\gt 0.3 {{mg}}.

  10. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    NASA Astrophysics Data System (ADS)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  11. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  12. Jet propulsion for airplanes

    NASA Technical Reports Server (NTRS)

    Buckingham, Edgar

    1924-01-01

    This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.

  13. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  14. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  15. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.

    2006-10-01

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have

  16. Agronomic comparison of several brassica species in the U.S. Corn Belt as feedstock for hydrotreated jet fuel

    USDA-ARS?s Scientific Manuscript database

    Through a patented process developed in the U.S., hydrotreated renewable jet fuel (HRJ) derived from plant oils has been commercially demonstrated. However, full-scale production has not yet come to fruition because HRJ is not economically competitive with petroleum-based fuels due to high feedstock...

  17. Mixing and Flow-field Characteristics of Strongly-forced Transitional / Turbulent Jets and Jet Flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, Krishna

    2005-11-01

    Strong pulsations of the fuel flow rate have previously been shown to dramatically alter the flame length and luminosity of nonpremixed jet flames. The mechanisms responsible for such changes are explored experimentally in nonreacting and reacting strongly pulsed jets by using cinematographic PIV and acetone PLIF. The large amplitude forcing was obtained by pulsing the flow using a solenoid valve at the organ-pipe resonance frequency of the fuel delivery tube. The velocity fluctuations in the flow produced by the resonant pulsing of the jet can reach to about 8 times that of the mean flow. The jet characteristics were studied for Reynolds numbers based on mean flow velocity ranging between 800 and 2400. The PIV shows that with strong pulsations the jet exhibits significant reverse flow into the fuel delivery tube and an increase in turbulence in the near-field region. The acetone PLIF imaging was performed inside and outside the fuel tube in order to study the effects of pulsations on the mixing. These measurements showed significant in-tube partial premixing due to the reverse flow near the nozzle exit as well as enhanced mixing due to coherent vortical structures and increased turbulence.

  18. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fuel Regression Characteristics of Cascaded Multistage Impinging-Jet (CAMUI) Type Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    Itoh, Mitsunori; Maeda, Takenori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Nakashima, Takuji; Wakita, Masashi; Uematsu, Tsutomu; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori

    A series of lab-scale firing tests was conducted to investigate the fuel regression characteristics of Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket. The alternative fuel grain used in this rocket consists of a number of cylindrical fuel blocks with two ports, which were aligned along the axis of the combustion chamber with a small gap. The ports are aligned staggered with respect to ones of neighboring blocks so that the combustion gas flow impinges on the forward-end surface of each block. In this fuel grain, forward-end surfaces, back-end surfaces and ports of fuel blocks contribute as burning surfaces. Polyethylene and LOX were used as a propellant, and the tests were conducted at the chamber pressure of 0.5 2MPa and the mass flux of 50 200kg/m2s. Main results obtained in this study are in the followings: The regression rate of each surface was obtained as a function of the propellant mass flux and local equivalent ratio of the combustion gas. At back-end surfaces the regression rate has a high sensitivity on the gap height of neighboring fuel blocks. These fuel regression characteristics will contribute as fundamental data to improve the optimum design of the fuel grain.

  20. Rapid Response R&D for the Propulsion Directorate. Delivery Order 0019: Advanced Alternative Energy Technologies, Subtask: Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer-Tropsch Based SPK-1 Case Study

    DTIC Science & Technology

    2011-09-01

    carry finished jet fuel from the CBTL facility. The pipeline connects the CBTL facility to a petroleum refinery located in Wood River, Illinois...Under Option 1, all the blended jet fuel is transported via pipeline from the refinery in Wood River to Chicago’s O’Hare airport. Under Option 2...shipping F-T jet fuel to a refinery in Wood River, Illinois (near St. Louis, Missouri) for blending and final transport of the blended jet fuel to

  1. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.

    PubMed

    Crawford, Jordan T; Shan, Chin Wei; Budsberg, Erik; Morgan, Hannah; Bura, Renata; Gustafson, Rick

    2016-01-01

    Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated. The process uses a hybrid poplar feedstock, which undergoes dilute acid pretreatment and enzymatic hydrolysis. Sugars are fermented to acetic acid, which undergoes conversion to ethyl acetate, ethanol, ethylene, and finally a saturated hydrocarbon end product. An unfermentable lignin stream may be burned for steam and electricity production, or gasified to produce hydrogen. During biofuel production, hydrogen gas is required and may be obtained by various methods including lignin gasification. Both technical and economic aspects of the biorefinery are analyzed, with different hydrogen sources considered including steam reforming of natural gas and gasification of lignin. Cash operating costs for jet fuel production are estimated to range from 0.67 to 0.86 USD L -1 depending on facility capacity. Minimum fuel selling prices with a 15 % discount rate are estimated to range from 1.14 to 1.79 USD L -1 . Capacities of 76, 190, and 380 million liters of jet fuel per year are investigated. Capital investments range from 356 to 1026 million USD. A unique biorefinery is explored to produce a hydrocarbon biofuel with a high yield from bone dry wood of 330 L t -1 . This yield is achieved chiefly due to the use of acetogenic bacteria that do not produce carbon dioxide as a co-product during fermentation. Capital investment is significant in the biorefinery in part because hydrogen is required to produce a fully de-oxygenated fuel. Minimum selling price to achieve reasonable returns on investment is sensitive to capital financing options because of high capital costs. Various strategies, such as producing alternative, intermediate products, are investigated with the intent to reduce risk in building the proposed facility. It appears that producing and selling these

  2. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.

    PubMed

    Puckett, Sean D; Pacey, Gilbert E

    2009-04-15

    The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples.

  3. Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufferand, H.; Tosatto, L.; La Mantia, B.

    2009-08-15

    The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less

  4. Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery)

    DTIC Science & Technology

    2012-09-01

    1α may serve as a marker of epidermal damage or stress due to irritation in this in vitro model. As an alternative to the 3-dimensional human skin...AFRL-RH-FS-SR-2013-0003 Final Report: Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery) David R. Mattie...2. REPORT TYPE Special Report 3. DATES COVERED (From - To) Oct 2010 – Dec 2011 4. TITLE AND SUBTITLE Evaluation of the Occupational Risks from

  5. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  6. Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterizationmore » of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.« less

  7. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  8. Minimum-fuel, 3-dimensional flightpath guidance of transfer jets

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1984-01-01

    Minimum fuel, three dimensional flightpaths for commercial jet aircraft are discussed. The theoretical development is divided into two sections. In both sections, the necessary conditions of optimal control, including singular arcs and state constraints, are used. One section treats the initial and final portions (below 10,000 ft) of long optimal flightpaths. Here all possible paths can be derived by generating fields of extremals. Another section treats the complete intermediate length, three dimensional terminal area flightpaths. Here only representative sample flightpaths can be computed. Sufficient detail is provided to give the student of optimal control a complex example of a useful application of optimal control theory.

  9. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible

  11. Air impacts from three alternatives for producing JP-8 jet fuel.

    PubMed

    Kositkanawuth, Ketwalee; Gangupomu, Roja Haritha; Sattler, Melanie L; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-10-01

    To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. The United States currently imports two

  12. The liquid fuel jet in subsonic crossflow

    NASA Technical Reports Server (NTRS)

    Nguyen, T. T.; Karagozian, A. R.

    1990-01-01

    An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.

  13. Urinary polycyclic aromatic hydrocarbon (OH-PAH) metabolite concentrations and the effect of GST polymorphisms among US Air Force personnel exposed to jet fuel.

    PubMed

    Rodrigues, Ema G; Smith, Kristen; Maule, Alexis L; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D

    2014-05-01

    To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment interaction was observed with glutathione S-transferase mu-1. USAF personnel experience inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene.

  14. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    DTIC Science & Technology

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  15. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    DTIC Science & Technology

    2016-01-28

    49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A

  16. The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft

    NASA Astrophysics Data System (ADS)

    Kovtun, V. S.

    2012-12-01

    Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of motion control systems (MCS). The efficiency of propellant fuel consumption depends not only on the operation of the MCS, but also, to one extent or another, on all systems functioning on board of a spacecraft, and on processes that occur in them and involve conversion of variable management of propellant fuel consumption by JPEs as a constituent part of the control of the complex process of spacecraft flight.

  17. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  18. Review of Biojet Fuel Conversion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less

  19. Oxygen and Fuel Jet Diffusion Flame Studies in Microgravity Motivated by Spacecraft Oxygen Storage Fire Safety

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.

    2003-01-01

    Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.

  20. Characterization of a Heated Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Wiest, Heather K.

    The liquid jet in crossflow (LJICF) is a widely utilized fuel injection method for airbreathing propulsion devices such as low NO x gas turbine combustors, turbojet afterburners, scramjet/ramjet engines, and rotating detonation engines (RDE's). This flow field allows for efficient fuel-air mixing as aerodynamic forces from the crossflow augment atomization. Additionally, increases in the thermal demands of advanced aeroengines necessitates the use of fuel as a primary coolant. The resulting higher fuel temperatures can cause flash atomization of the liquid fuel as it is injected into a crossflow, potentially leading to a large reduction in the jet penetration. While many experimental works have characterized the overall atomization process of a room temperature liquid jet in an ambient temperature and pressure crossflow, the aggressive conditions associated with flash atomization especially in an air crossflow with elevated temperatures and pressures have been less studied in the community. A successful test campaign was conducted to study the effects of fuel temperature on a liquid jet injected transversely into a steady air crossflow at ambient as well as elevated temperature and pressure conditions. Modifications were made to an existing optically accessible rig, and a new fuel injector was designed for this study. Backlit imaging was utilized to record changes in the overall spray characteristics and jet trajectory as fuel temperature and crossflow conditioners were adjusted. Three primary analysis techniques were applied to the heated LJICF data: linear regression of detected edges to determine trajectory correlations, exploratory study of pixel intensity variations both temporally as well as spatially, and modal decomposition of the data. The overall objectives of this study was to assess the trajectory, breakup, and mixing of the LJICF undery varying jet and crossflow conditions, develop a trajectory correlation to predict changes in jet penetration due to

  1. Refining and blending of aviation turbine fuels.

    PubMed

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.

  2. [Aviation fuels and aircraft emissions. A risk characterization for airport neighbors using Hamburg Airport as an example].

    PubMed

    Tesseraux, I; Mach, B; Koss, G

    1998-06-01

    Aviation fuels are well characterised regarding their physical and chemical properties. Health effects of fuel vapours and of liquid fuel are described after occupational exposure and in animal studies. Exposure of the general population (airport visitors and people living in the vicinity of airports) may occur during fuel supply particularly in warm summers (odour). Aircraft emissions vary with the engine type and the kind of fuel. Combustion of aviation fuel results in CO2, H2O, CO, C, NOx and a great number of organic compounds. Among the emitted polyaromatic hydrocarbons (PAH) no compound characteristic for jet engines (tracer) could be detected so far. Hardly any data exist on the toxicology of jet engine emissions. According to analyses of their chemical composition, however, they contain various toxicologically relevant compounds including carcinogenic substances. Measurements in ambient air around the Hamburg Airport show no elevated pollutant levels. However, no such data exist on aldehydes, black smoke or fine particles. Annoying odours have been stated in some areas around the airport, which were mainly attributed to the aircraft engine emissions rather than to fuel vapours.

  3. Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1977-01-01

    Tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 300,000 Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5 percent purity propane was used. The combustion efficiency for 99.8-percent purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppm of bound nitrogen and consequently produced the highest NOx emissions of the three fuels. As much as 85 percent of the bound nitrogen was converted to NOx. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8-percent purity propane. With that fuel, a minimum temperature of 1480 K was required.

  4. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    PubMed

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes. Copyright © 2010

  5. A review of the neurotoxicity risk of selected hydrocarbon fuels.

    PubMed

    Ritchie, G D; Still, K R; Alexander, W K; Nordholm, A F; Wilson, C L; Rossi, J; Mattie, D R

    2001-01-01

    Over 1.3 million civilian and military personnel are occupationally exposed to hydrocarbon fuels, emphasizing gasoline, jet fuel, diesel fuel, or kerosene. These exposures may occur acutely or chronically to raw fuel, vapor, aerosol, or fuel combustion exhaust by dermal, respiratory inhalation, or oral ingestion routes, and commonly occur concurrently with exposure to other chemicals and stressors. Hydrocarbon fuels are complex mixtures of 150-260+ aliphatic and aromatic hydrocarbon compounds containing varying concentrations of potential neurotoxicants including benzene, n-hexane, toluene, xylenes, naphthalene, and certain n-C9-C12 fractions (n-propylbenzene, trimethylbenzene isomers). Due to their natural petroleum base, the chemical composition of different hydrocarbon fuels is not defined, and the fuels are classified according to broad performance criteria such as flash and boiling points, complicating toxicological comparisons. While hydrocarbon fuel exposures occur typically at concentrations below permissible exposure limits for their constituent chemicals, it is unknown whether additive or synergistic interactions may result in unpredicted neurotoxicity. The inclusion of up to six performance additives in existing fuel formulations presents additional neurotoxicity challenge. Additionally, exposures to hydrocarbon fuels, typically with minimal respiratory or dermal protection, range from weekly fueling of personal automobiles to waist-deep immersion of personnel in raw fuel during maintenance of aircraft fuel tanks. Occupational exposures may occur on a near daily basis for from several months to over 20 yr. A number of published studies have reported acute or persisting neurotoxic effects from acute, subchronic, or chronic exposure of humans or animals to hydrocarbon fuels, or to certain constituent chemicals of these fuels. This review summarizes human and animal studies of hydrocarbon fuel-induced neurotoxicity and neurobehavioral consequences. It is

  6. Techno-Economic Analysis of Camelina-Derived Hydroprocessed Renewable Jet Fuel and its Implications on the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    Although the aviation industry contributes toward global economic growth via transportation of passengers and cargo, the increasing demand for air transportation causes concern due to the corresponding increase in aircraft engine exhaust emissions. Use of alternative fuels is one pathway that has been explored for reducing emissions in the aviation industry. Hydroprocessed renewable jet (HRJ) (also known as Hydroprocessed Esters and Fatty Acids - HEFA) fuels have been approved for blending with traditional jet fuel up to 50% by volume to be used as drop-in fuels. However, limited information exists on the economic viability of these fuels. While techno-economic studies have been conducted on the HRJ production process using soybean oil, different vegetable oils possess different hydrocarbon structures that affect the yield of HRJ fuels. This study involves the techno-economic analysis of producing Camelina-derived HRJ fuel using the option of hydro-deoxygenation (HDO). The hydrodeoxygenation option requires extra hydrogen and hence affects the overall cost of HRJ fuel production. Similar studies have been conducted on the production of Camelina-derived HRJ fuels using the same path of hydrodeoxygenation with minor contributions from both decarbonylation and decarboxylation reactions. This study, however, employs the UOP Honeywell procedure using the hydrodeoxygenation chemical reaction to estimate the breakeven price of Camelina-derived HRJ fuel. In addition, the study treats the cultivation of Camelina oilseeds, extraction of oilseeds, and the conversion of HRJ fuel as separate entities. The production of Camelina oilseed, Camelina oil, and finally Camelina-derived HRJ fuel is modeled in order to estimate the breakeven price of the fuel. In addition, the information obtained from the techno-economic analysis is used to assess the breakeven carbon price. All costs are analyzed based on 2016 US dollars. The breakeven price of Camelina oilseeds is found to be 228

  7. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of eachmore » distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.« less

  8. Gum and deposit formation from jet turbine and diesel fuels at 100/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, B.Y.

    1987-02-01

    Rates of oxidation and gum formation for six hydrocarbons, three jet turbine fuels and three diesel fuels have been measured at 100/sup 0/C in the presence of t-Bu/sub 2/O/sub 2/ as initiator. Four of the six fuels oxidize faster at 100/sup 0/C than in previous work at 130/sup 0/C without initiator. For any single substrate, the amount of gum produced for the oxygen absorbed is similar at 100 and 130/sup 0/C, even with large changes in rates and t-Bu/sub 2/O/sub 2/ concentrations. In general, the pure hydrocarbons have long kinetic chains and give good yields of hydroperoxides.

  9. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    NASA Astrophysics Data System (ADS)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  10. Hydrogen enrichment for low-emission jet combustion

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1978-01-01

    Simultaneous gaseous pollutant emission indexes (g pollutant/kg fuel) for a research combustor with inlet air at 120,900 N/sq m (11.9 atm) pressure and 727 K (849 F) temperature are as low as 1.0 for NOx and CO and 0.5 for unburned HC. Emissions data are presented for hydrogen/jet fuel (JP-5) mixes and for jet fuel only for premixed equivalence ratios from lean blowout to 0.65. Minimized emissions were achieved at an equivalence ratio of 0.38 using 10-12 mass percent hydrogen in the total fuel to depress the lean blowout limit. They were not achievable with jet fuel alone because of the onset of lean blowout at an equivalence ratio too high to reduce the NOx emission sufficiently.

  11. Urinary Polycyclic Aromatic Hydrocarbon (OH-PAH) Metabolite Concentrations and the Effect of GST Polymorphisms Among US Air Force Personnel Exposed to Jet Fuel

    PubMed Central

    Rodrigues, Ema G.; Smith, Kristen; Maule, Alexis L.; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D.

    2016-01-01

    Objective To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Methods Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Results Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment interaction was observed with glutathione S-transferase mu-1. Conclusions USAF personnel experience inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene. PMID:24806557

  12. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    PubMed

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  13. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... this section, any diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading... diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading terminal, that...

  14. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... this section, any diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading... diesel fuel, other than jet fuel or kerosene that is downstream of a truck loading terminal, that...

  15. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  16. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli.

    PubMed

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; Molinas, Margaux; Baidoo, Edward E K; Wang, George; Chan, Leanne J G; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek S

    2017-08-01

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  18. Opposed Jet Burner Approach for Characterizing Flameholding Potentials of Hydrocarbon Scramjet Fuels

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Convery, Janet L.; Wilson, Lloyd G.

    2006-01-01

    Opposed Jet Burner (OJB) tools have been used extensively by the authors to measure Flame Strength (FS) extinction limits of laminar H2/N2 air and (recently) hydrocarbon (HC) air Counterflow Diffusion Flames (CFDFs) at one atm. This paper details normalization of FSs of N2- diluted H2 and HC systems to account for effects of fuel composition, temperature, pressure, jet diameter, inflow Reynolds number, and inflow velocity profile (plug, contoured nozzle; and parabolic, straight tube). Normalized results exemplify a sensitive accurate means of validating, globally, reduced chemical kinetic models at approx. 1 atm and the relatively low temperatures approximating the loss of non-premixed idealized flameholding, e.g., in scramjet combustors. Laminar FS is defined locally as maximum air input velocity, U(sub air), that sustains combustion of a counter-jet of g-fuel at extinction. It uniquely characterizes a fuel. And global axial strain rate at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or (sub t)) can be compared directly with computed extinction limits, determined using either a 1-D Navier Stokes stream-function solution, using detailed transport and finite rate chemistry, or (better yet) a detailed 2-D Navier Stokes numerical simulation. The experimental results define an idealized flameholding reactivity scale that shows wide ranging (50 x) normalized FS s for various vaporized-liquid and gaseous HCs, including, in ascending order: JP-10, methane, JP-7, n-heptane, n-butane, propane, ethane, and ethylene. Results from H2 air produce a unique and exceptionally strong flame that agree within approx. 1% of a recent 2-D numerically simulated FS for a 3 mm tube-OJB. Thus we suggest that experimental FS s and/or FS ratios, for various neat and blended HCs w/ and w/o additives, offer accurate global tests of chemical kinetic models at the Ts and Ps of extinction. In conclusion, we argue the FS approach is more direct and fundamental, for

  19. Use of bacteriophage to prevent Pseudomonas aeruginosa contamination and fouling in Jet A aviation fuel.

    PubMed

    Bojanowski, Caitlin L; Crookes-Goodson, Wendy J; Robinson, Jayne B

    2016-11-01

    In the present study, the use of bacteriophages to prevent growth and/or biofouling by Pseudomonas aeruginosa PAO1 was investigated in microcosms containing Jet A aviation fuel as the carbon source. Bacteriophages were found to be effective at preventing biofilm formation but did not always prevent planktonic growth in the microcosms. This result was at odds with experiments conducted in nutrient-rich medium, demonstrating the necessity to test antimicrobial and antifouling strategies under conditions as near as possible to the 'real world'. The success of the bacteriophages at preventing biofilm formation makes them potential candidates as antifouling agents for fuel systems.

  20. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731

  1. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae

    PubMed Central

    Brennan, Timothy C. R.; Williams, Thomas C.; Schulz, Benjamin L.; Palfreyman, Robin W.; Nielsen, Lars K.

    2015-01-01

    Monoterpenes are liquid hydrocarbons with applications ranging from flavor and fragrance to replacement jet fuel. Their toxicity, however, presents a major challenge for microbial synthesis. Here we evolved limonene-tolerant Saccharomyces cerevisiae strains and sequenced six strains across the 200-generation evolutionary time course. Mutations were found in the tricalbin proteins Tcb2p and Tcb3p. Genomic reconstruction in the parent strain showed that truncation of a single protein (tTcb3p1-989), but not its complete deletion, was sufficient to recover the evolved phenotype improving limonene fitness 9-fold. tTcb3p1-989 increased tolerance toward two other monoterpenes (β-pinene and myrcene) 11- and 8-fold, respectively, and tolerance toward the biojet fuel blend AMJ-700t (10% cymene, 50% limonene, 40% farnesene) 4-fold. tTcb3p1-989 is the first example of successful engineering of phase tolerance and creates opportunities for production of the highly toxic C10 alkenes in yeast. PMID:25746998

  2. Estimating diesel fuel exposure for a plumber repairing an underground pipe.

    PubMed

    Finn, Mary; Stenzel, Mark; Ramachandran, Gurumurthy

    2017-04-01

    We estimated the diesel fuel exposure of a plumber repairing an underground water line leak at a truck stop. The repair work was performed over three days during which the plumber spent most of his time in a pit filled with a mixture of water and diesel fuel. Thus, the plumber was exposed via both the inhalation and dermal routes. While previously asymptomatic, he was diagnosed with acute renal failure 35 days after working at this site. No measurements were available for estimating either inhalation or dermal exposures or the cumulative dose and, therefore, two different approaches were used that were based on simple models of the exposure scenario. The first approach used the ideal gas law with the vapor pressure of the diesel fuel mixture to estimate a saturation vapor concentration, while the second one used a mass balance of the petroleum hydrocarbon component of diesel fuel in conjunction with the Henry's Law constant for this mixture. These inhalation exposure estimates were then adjusted to account for the limited ventilation in a confined space. The inhalation exposure concentrations predicted when handling the water layer alone is much lower than that expected from the organic layer. This case study illustrates the large differences in inhalation exposure associated with volatile organic layers and aqueous solution containing these chemicals. The estimate of dermal exposure was negligible compared to the inhalation exposure because the skin presents a much smaller surface area of exposure to the contaminant compared to the lungs. The methodology presented here is useful for situations where little information is available for more formal mathematical exposure modeling, but where adjustments to the worst-case exposures, estimated simply, can provide reasonable exposure estimates.

  3. Cellulosic Biomass Sugars to Advantaged Jet Fuel – Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy

    The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less

  4. DEFE0023863 Final Report, Technology for GHG Emission Reduction and CostCompetitive MilSpec Jet Fuel Production using CTL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartvigsen, Joseph J; Dimick, Paul; Laumb, Jason D

    Ceramatec Inc, in collaboration with IntraMicron (IM), the Energy & Environmental Research Center (EERC) and Sustainable Energy Solutions, LLC (SES), have completed a three-year research project integrating their respective proprietary technologies in key areas to demonstrate production of a jet fuel from coal and biomass sources. The project goals and objectives were to demonstrate technology capable of producing a “commercially-viable quantity” of jet fuel and make significant progress toward compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements. The Ceramatec led team completed the demonstration of nominalmore » 2 bbl/day Fischer-Tropsch (FT) synthesis pilot plant design, capable of producing a nominal 1 bbl/day in the Jet-A/JP-8 fraction. This production rate would have a capacity of 1,000 gallons of jet fuel per month and provide the design basis of a 100 bbl/day module producing over 2,000 gallons of jet fuel per day. Co-gasification of coal-biomass blends enables a reduction of lifecycle greenhouse gas emissions from equivalent conventional petroleum derived fuel basis. Due to limits of biomass availability within an economic transportation range, implementation of a significant biomass feed fraction will require smaller plants than current world scale CTL and GTL FT plants. Hence a down-scaleable design is essential. The pilot plant design leverages Intramicron’s MicroFiber Entrapped Catalyst (MFEC) support which increases the catalyst bed thermal conductivity two orders of magnitude, allowing thermal management of the FT reaction exotherm in much larger reactor tubes. In this project, single tube reactors having 4.5 inch outer diameter and multi-tube reactors having 4 inch outer diameters were operated, with productivities as high as 1.5 gallons per day per linear foot of reactor tube. A significant reduction in tube count results from the use of large

  5. Effect of swirler-mounted mixing venturi on emissions of flame-tube combustor using jet A fuel

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.

    1979-01-01

    Six headplate modules in a flame-tube combustor were evaluated. Unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were measured for three types of fuel injectors both with and without a mixing venturi. Tests were conducted using jet A fuel at an inlet pressure of 0.69 megapascal, an inlet temperature of 478 K, and an isothermal static pressure drop of 3 percent. Oxides of nitrogen were reduced by over 50 percent with a mixing venturi with no performance penalties in either other gaseous emissions or pressure drop.

  6. Quantitating the Absorption, Partitioning and Toxicity of Hydrocarbon Components of JP-8 Jet Fuel

    DTIC Science & Technology

    2007-08-24

    with the skin. AFOSR Jet Fuel Toxicology Workshop. Tucson, AZ. October, 2004. 5. Basak SC, Riviere JE, Baynes RE, Xia XR, Gute BD. A hierarchical QSAR ... Toxicology Workshop, Tucson, AZ, 2005. 12. Basak SC, Riviere J, Baynes R, Gute BD: Theoretical descriptor based QSARs in predicting skin penetration of...NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Center for Chemical Toxicology Research and Pharmacokinetics College of Veterinary

  7. NASA Alternative Aviation Fuel Research

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  8. Public health, climate, and economic impacts of desulfurizing jet fuel.

    PubMed

    Barrett, Steven R H; Yim, Steve H L; Gilmore, Christopher K; Murray, Lee T; Kuhn, Stephen R; Tai, Amos P K; Yantosca, Robert M; Byun, Daewon W; Ngan, Fong; Li, Xiangshang; Levy, Jonathan I; Ashok, Akshay; Koo, Jamin; Wong, Hsin Min; Dessens, Olivier; Balasubramanian, Sathya; Fleming, Gregg G; Pearlson, Matthew N; Wollersheim, Christoph; Malina, Robert; Arunachalam, Saravanan; Binkowski, Francis S; Leibensperger, Eric M; Jacob, Daniel J; Hileman, James I; Waitz, Ian A

    2012-04-17

    In jurisdictions including the US and the EU ground transportation and marine fuels have recently been required to contain lower concentrations of sulfur, which has resulted in reduced atmospheric SO(x) emissions. In contrast, the maximum sulfur content of aviation fuel has remained unchanged at 3000 ppm (although sulfur levels average 600 ppm in practice). We assess the costs and benefits of a potential ultra-low sulfur (15 ppm) jet fuel standard ("ULSJ"). We estimate that global implementation of ULSJ will cost US$1-4bn per year and prevent 900-4000 air quality-related premature mortalities per year. Radiative forcing associated with reduction in atmospheric sulfate, nitrate, and ammonium loading is estimated at +3.4 mW/m(2) (equivalent to about 1/10th of the warming due to CO(2) emissions from aviation) and ULSJ increases life cycle CO(2) emissions by approximately 2%. The public health benefits are dominated by the reduction in cruise SO(x) emissions, so a key uncertainty is the atmospheric modeling of vertical transport of pollution from cruise altitudes to the ground. Comparisons of modeled and measured vertical profiles of CO, PAN, O(3), and (7)Be indicate that this uncertainty is low relative to uncertainties regarding the value of statistical life and the toxicity of fine particulate matter.

  9. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  10. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  11. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.

    PubMed

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.

  12. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  13. Jet fuel instability mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1985-01-01

    The mechanisms of the formation of fuel-insoluble deposits were studied in several real fuels and in a model fuel consisting of tetralin in dodecane solution. The influence of addition to the fuels of small concentrations of various compounds on the quantities of deposits formed and on the formation and disappearance of oxygenated species in solution was assessed. The effect of temperature on deposit formation was also investigated over the range of 308-453 K.

  14. Gum and deposit formation from jet-turbine and diesel fuels at 100 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, B.Y.

    1987-01-01

    Rates of oxidation and gum formation for six hydrocarbons, three jet-turbine fuels and three diesel fuels have been measured at 100 C in the presence of t-Bu2O2 tert-butyl-peroxide as initiator. Four of six fuels oxidize faster at 100 C than in previous work at 130 C with initiator. Four any single substrate, the amount of gum produced for the oxygen absorbed is similar at 100 and 130 C even with large changes in rates and t-Bu2O2 concentrations. Thus, one mechanism of gum formation is intimately associated with oxidation. The effects of t-Bu2O2 concentration on the rates of oxygen absorption andmore » gum formation show that gum formation is associated with chain termination by two peroxy radicals. In general, the pure hydrocarbons have long kinetic chains and give good yields of hydroperoxides. The fuels give short kinetic chains and produce little hydroperoxide but but much more gum formation is the coupling of substrates by peroxides in the absence of oxygen. The mechanism, condensation of oxidation products from alkylnaphthalenes, is also proposed.« less

  15. Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Beyersdorf, A. J.; Corr, C.; Herndon, S. C.; Knighton, W. B.; Miake-Lye, R. C.; Thornhill, K. L., II; Winstead, E.; Yu, Z.; Ziemba, L. D.; Anderson, B. E.

    2015-12-01

    We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA McDonnell Douglas DC-8 CFM56-2-C1 engines burning fifteen different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the volatile aerosol fraction dominates the number and volume emissions indices (EIs) over all engine powers, which are driven by changes in fuel aromatic and sulfur content. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the non-volatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature, and show that reducing both fuel sulfur content and napththalenes to near-zero levels would result in roughly a ten-fold decrease in aerosol number emitted per kg of fuel burn. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer-Tropsch production pathways.

  16. Speed of sound measurements and mixing characterization of underexpanded fuel jets with supercritical reservoir condition using laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Baab, S.; Förster, F. J.; Lamanna, G.; Weigand, B.

    2016-11-01

    The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The technique's capability to quantify the nonisothermal, turbulent mixing zone of small-scale jets is demonstrated for the first time. Consistent radially resolved speed of sound profiles are presented for different axial positions and varying injection temperatures. Furthermore, an adiabatic mixing model based on nonideal thermodynamic properties is presented to extract mixture composition and temperature from the experimental speed of sound data. High fuel mass fractions of up to 94 % are found for the centerline at an axial distance of 55 diameters from the nozzle followed by a rapid decay in axial direction. This is attributed to a supercritical fuel state at the nozzle exit resulting in the injection of a high-density fluid. The obtained concentration data are complemented by existing measurements and collapsed in a similarity law. It allows for mixture prediction of underexpanded jets with supercritical reservoir condition provided that nonideal thermodynamic behavior is considered for the nozzle flow. Specifically, it is shown that the fuel concentration in the farfield zone is very sensitive to the thermodynamic state at the nozzle exit. Here, a transition from supercritical fluid to subcritical vapor state results in strongly varying fuel concentrations, which implies high impact on the mixture formation and, consequently, on the combustion characteristics.

  17. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Li, Ning; Wang, Wentao; Li, Lin; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2016-09-01

    Jet fuel range branched cycloalkanes with high density (0.82 g mL-1) and low freezing point (217-219 K) was first prepared by the solvent-free intramolecular aldol condensation of the trione from the hydrolysis of the alkylation product of mesityl oxide and 2-methylfuran (or the one-pot reaction of mesityl oxide, 2-methylfuran and water), followed by hydrodeoxygenation (HDO).

  18. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose.

    PubMed

    Li, Shanshan; Li, Ning; Wang, Wentao; Li, Lin; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2016-09-01

    Jet fuel range branched cycloalkanes with high density (0.82 g mL(-1)) and low freezing point (217-219 K) was first prepared by the solvent-free intramolecular aldol condensation of the trione from the hydrolysis of the alkylation product of mesityl oxide and 2-methylfuran (or the one-pot reaction of mesityl oxide, 2-methylfuran and water), followed by hydrodeoxygenation (HDO).

  19. Jet Fuel Thermal Stability

    NASA Technical Reports Server (NTRS)

    Taylor, W. F. (Editor)

    1979-01-01

    Various aspects of the thermal stability problem associated with the use of broadened-specification and nonpetroleum-derived turbine fuels are addressed. The state of the art is reviewed and the status of the research being conducted at various laboratories is presented. Discussions among representatives from universities, refineries, engine and airframe manufacturers, airlines, the Government, and others are presented along with conclusions and both broad and specific recommendations for future stability research and development. It is concluded that significant additional effort is required to cope with the fuel stability problems which will be associated with the potentially poorer quality fuels of the future such as broadened specification petroleum fuels or fuels produced from synthetic sources.

  20. Evaluation of Fatty Acid Methyl Ester (FAME) Contamination on the Thermal Stability Characteristics of Military Jet Fuels (JP-8 And JP-5)

    DTIC Science & Technology

    2013-12-01

    of increased contamination levels of FAME in Jet A, FAME material will likely be transported in the same conveyance as JP-5 – bringing with it the...is a blend of four common biodiesel (FAME) fuels from different feedstocks. All FAME contaminated fuels were prepared with this FAME material at a

  1. Simplified jet-A kinetic mechanism for combustor application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  2. Gaseous Surrogate Hydrocarbons for a Hifire Scramjet that Mimic Opposed Jet Extinction Limits for Cracked JP Fuels

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2008-01-01

    This paper describes, first, the top-down methodology used to define simple gaseous surrogate hydrocarbon (HC) fuel mixtures for a hypersonic scramjet combustion subtask of the HiFIRE program. It then presents new and updated Opposed Jet Burner (OJB) extinction-limit Flame Strength (FS) data obtained from laminar non-premixed HC vs. air counterflow diffusion flames at 1-atm, which follow from earlier investigations. FS represents a strain-induced extinction limit based on cross-section-average air jet velocity, U(sub air), that sustains combustion of a counter jet of gaseous fuel just before extinction. FS uniquely characterizes a kinetically limited fuel combustion rate. More generally, Applied Stress Rates (ASRs) at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or t) can directly be compared with extinction limits determined numerically using either a 1-D or (preferably) a 2-D Navier Stokes simulation with detailed transport and finite rate chemistry. The FS results help to characterize and define three candidate surrogate HC fuel mixtures that exhibit a common FS 70% greater than for vaporized JP-7 fuel. These include a binary fuel mixture of 64% ethylene + 36% methane, which is our primary recommendation. It is intended to mimic the critical flameholding limit of a thermally- or catalytically-cracked JP-7 like fuel in HiFIRE scramjet combustion tests. Our supporting experimental results include: (1) An idealized kinetically-limited ASR reactivity scale, which represents maximum strength non-premixed flames for several gaseous and vaporized liquid HCs; (2) FS characterizations of Colket and Spadaccini s suggested ternary surrogate, of 60% ethylene + 30% methane + 10% n-heptane, which matches the ignition delay of a typical cracked JP fuel; (3) Data showing how our recommended binary surrogate, of 64% ethylene + 36% methane, has an identical FS; (4) Data that characterize an alternate surrogate of 44% ethylene + 56% ethane with identical

  3. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose

    PubMed Central

    Li, Shanshan; Li, Ning; Wang, Wentao; Li, Lin; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2016-01-01

    Jet fuel range branched cycloalkanes with high density (0.82 g mL−1) and low freezing point (217–219 K) was first prepared by the solvent-free intramolecular aldol condensation of the trione from the hydrolysis of the alkylation product of mesityl oxide and 2-methylfuran (or the one-pot reaction of mesityl oxide, 2-methylfuran and water), followed by hydrodeoxygenation (HDO). PMID:27582417

  4. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  5. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  6. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae.

    PubMed

    Brennan, Timothy C R; Turner, Christopher D; Krömer, Jens O; Nielsen, Lars K

    2012-10-01

    Monoterpenes are a diverse class of compounds with applications as flavors and fragrances, pharmaceuticals and more recently, jet fuels. Engineering biosynthetic pathways for monoterpene production in microbial hosts has received increasing attention. However, monoterpenes are highly toxic to many microorganisms including Saccharomyces cerevisiae, a widely used industrial biocatalyst. In this work, the minimum inhibitory concentration (MIC) for S. cerevisiae was determined for five monoterpenes: β-pinene, limonene, myrcene, γ-terpinene, and terpinolene (1.52, 0.44, 2.12, 0.70, 0.53 mM, respectively). Given the low MIC for all compounds tested, a liquid two-phase solvent extraction system to alleviate toxicity during fermentation was evaluated. Ten solvents were tested for biocompatibility, monoterpene distribution, phase separation, and price. The solvents dioctyl phthalate, dibutyl phthalate, isopropyl myristate, and farnesene showed greater than 100-fold increase in the MIC compared to the monoterpenes in a solvent-free system. In particular, the MIC for limonene in dibutyl phthalate showed a 702-fold (308 mM, 42.1 g L(-1) of limonene) improvement while cell viability was maintained above 90%, demonstrating that extractive fermentation is a suitable tool for the reduction of monoterpene toxicity. Finally, we estimated that a limonane to farnesane ratio of 1:9 has physicochemical properties similar to traditional Jet-A aviation fuel. Since farnesene is currently produced in S. cerevisiae, its use as a co-product and extractant for microbial terpene-based jet fuel production in a two-phase system offers an attractive bioprocessing option. Copyright © 2012 Wiley Periodicals, Inc.

  7. Computational Thermochemistry of Jet Fuels and Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Crawford, T. Daniel

    2002-01-01

    The design of new high-energy density molecules as candidates for jet and rocket fuels is an important goal of modern chemical thermodynamics. The NASA Glenn Research Center is home to a database of thermodynamic data for over 2000 compounds related to this goal, in the form of least-squares fits of heat capacities, enthalpies, and entropies as functions of temperature over the range of 300 - 6000 K. The chemical equilibrium with applications (CEA) program written and maintained by researchers at NASA Glenn over the last fifty years, makes use of this database for modeling the performance of potential rocket propellants. During its long history, the NASA Glenn database has been developed based on experimental results and data published in the scientific literature such as the standard JANAF tables. The recent development of efficient computational techniques based on quantum chemical methods provides an alternative source of information for expansion of such databases. For example, it is now possible to model dissociation or combustion reactions of small molecules to high accuracy using techniques such as coupled cluster theory or density functional theory. Unfortunately, the current applicability of reliable computational models is limited to relatively small molecules containing only around a dozen (non-hydrogen) atoms. We propose to extend the applicability of coupled cluster theory- often referred to as the 'gold standard' of quantum chemical methods- to molecules containing 30-50 non-hydrogen atoms. The centerpiece of this work is the concept of local correlation, in which the description of the electron interactions- known as electron correlation effects- are reduced to only their most important localized components. Such an advance has the potential to greatly expand the current reach of computational thermochemistry and thus to have a significant impact on the theoretical study of jet and rocket propellants.

  8. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  9. Human exposure limits to hypergolic fuels

    NASA Technical Reports Server (NTRS)

    Garcia, H. D.; James, J. T.; Limero, T. F.

    1992-01-01

    Over the past four decades, many studies have been conducted on the toxicities of the rocket propellants hydrazine (HZ) and monomethylhydrazine (MH). Numerous technical challenges have made it difficult to unambiguously interpret the results of these studies, and there is considerable divergence between results obtained by different investigators on the inhalation concentrations (MAC's) for each toxic effect inducible by exposure to hypergolic fuels in spacecraft atmospheres, NASA undertook a critical review of published and unpublished investigations on the toxicities of these compounds. The current state of the art practices for similar studies. While many questions remain unanswered, MAC's were determined using the best available data for a variety of toxic endpoints for potential continuous exposure durations ranging from 1 hour to 180 days. Spacecraft MAC's (SMAC's) were set for each compound based on the most sensitive toxic endpoint at each exposure duration.

  10. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  11. The study of the plasma jets of lead and silver simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Gavrikov, A. V.; Smirnov, V. P.; Liziakin, G. D.; Usmanov, R. A.; Vorona, N. A.; Timirkhanov, R. A.

    2018-01-01

    One of the tasks that must be solved to develop a spent nuclear fuel (SNF) plasma separation method is a creation of plasma source of substances simulating SNF components. Plasma of the diffuse arc discharge in a magnetic field with an incandescent cathode was considered in this paper, as such source. The discharge was initiated in a model substances vapor (lead and silver). Evaporation was carried out by crucible induction heating. Current- voltage characteristics of the discharge were obtained. Spectral analysis of the plasma jets radiation and double probe characteristics measurements in the area behind the anode were carried out. The minimum potential difference between the anode and cathode reached a value of about 7 V at current of about 1 A. When the potential difference in the discharge gap was close to 30 V (4.5 A) and 10 V (5.2 A) electron temperature in the plasma jet was 5-7 eV and 1-3 eV, respectively. Plasma density in jets took the value from 1011 cm-3 to 1012 cm-3. The obtained results indicate the possibility of using this type of discharge for the SNF plasma separation method approbation.

  12. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... and Security Act of 2007 (EISA) to reduce the use of fossil fuels and encourage increased production... renewable fuel to replace or reduce the quantity of fossil fuel present in transportation fuel. Under EPA's... quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel...

  13. Factors affecting the silver corrosion performance of jet fuel from the Merox process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viljoen, C.L.; Hietkamp, S.; Marais, B.

    1995-05-01

    The Natref refinery at Sasolburg, South Africa, which is 63,6% owned by Sasol and 36,5% by Total, is producing Jet A-1 fuel at a rate of 80 m{sup 3}/h by means of a UOP Merox process. A substantial part of the crude oil slate is made up from crudes which have been stored for considerable times in underground mines. Since the 1970`s, Natref has experienced sporadic non-conformance of its treated jet fuel to the silver corrosion (IP 227) test. Various causes and explanations for the sporadic silver corrosion occurrence have been put forward but a direct causal link has remainedmore » obscure. The paper addresses these possible causes for silver corrosion and some of the process changes which have been made to alleviate the problem. Emphasis is placed on the most recent approaches which were taken to identify the origin of the sporadic silver corrosion. An inventory of all the potential causes was made, such a bacterial action, elemental sulphur formation in storage, etc. and experiments designed to test the validity of these causes, are discussed. A statistical evaluation which was done of the historical process data over a 2 year period, failed to link the use of mine crudes directly to Ag-corrosion occurrence. However, a correlation between elemental sulphur and H{sub 2}S levels in the feed to the Merox reactor and Ag-corrosion was observed. Finally, the outcome of the experiments are discussed, as well as the conclusions which were reached from the observed results.« less

  14. Skeletal Mechanism Generation of Surrogate Jet Fuels for Aeropropulsion Modeling

    NASA Astrophysics Data System (ADS)

    Sung, Chih-Jen; Niemeyer, Kyle E.

    2010-05-01

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with skeletal reductions of two important hydrocarbon components, n-heptane and n-decane, relevant to surrogate jet fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each previous method, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal.

  15. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  16. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  17. Exotic interactions among C-jets and Pb-jets

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The C-jets and Pb-jets were surveyed on the part of Chacaltaya emulsion chamber No.19 amounting to an exposure of 28.8 sq m yr. It is shown that the adopted events make up an unbiased sample of C-jets for sigma sub E gamma TeV. Mini-Centauro interaction gives the most natural explanation for the eight pinaught-less C-jets with three or more constituent shower core. Out of the eight double-cored pinaught-less events, three are found to have visible invariant masses 1.8 GeV/c. Three Pb-jets-lower are composed of double cores whose respective visible transverse momenta are greater than 0.5 GeV/c, suggesting that they are of Geminion origin or chiron origin. The energies of the parent particles are estimated to be 100 to 200 TeV for all three kinds of events. The implications of this energy estimate and the frequency of observed exotic events are discussed.

  18. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  19. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  20. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    USGS Publications Warehouse

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

  1. Effect of prenatal exposure to kitchen fuel on birth weight.

    PubMed

    Kadam, Yugantara Ramesh; Mimansa, Anugya; Chavan, Pragati Vishnu; Gore, Alka Dilip

    2013-10-01

    Maternal exposure to kitchen fuel smoke may lead to impaired fetal growth. To study the effect of exposure to various kitchen fuels on birth weight. Retrospective analytical. Hospital based. Mothers and their newborns. Mothers registered in first trimester with minimum 3 visits, non-anemic, full-term, and singleton delivery. History of Pregnancy Induced Hypertension (PIH), Diabetes Mellitus (DM), tobacco chewers or mishri users. 328 mothers and their new-borne. Six months. Study tools: Chi-square, Z-test, ANOVA, and binary logistic regression. Effect of confounders on birth weight was tested and found to be non-significant. Mean ± SD of birth weight was 2.669 ± 0.442 in Liquid Petroleium Gas (LPG) users (n = 178), 2.465 ± 0.465 in wood users (n = 94), 2.557 ± 0.603 in LPG + wood users (n = 27) and 2.617 ± 0.470 in kerosene users (n = 29). Infants born to wood users had lowest birth weight and averagely 204 g lighter than LPG users (F = 4.056, P < 0.01). Percentage of newborns with low birth weight (LBW) in wood users was 44.68% which was significantly higher than in LPG users (24.16%), LPG + wood users (40.74%) and in kerosene users (34.48%) (Chi-square = 12.926, P < 0.01). As duration of exposure to wood fuel increases there is significant decline in birth weight (F = 3.825, P < 0.05). By using logistic regression type of fuel is only best predictor. Cooking with wood fuel is a significant risk-factor for LBW, which is modifiable.

  2. Service the Two-Piece Flo-Jet Carburetor. Fuel System. Student Manual 3. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual, part of a small-engine repair series on servicing fuel systems, is designed for use by special needs students in Texas. The manual explains in pictures and short sentences, written on a low reading level, the job of servicing two-piece flo-jet carburetors. Along with the steps of this repair job, specific safety and caution…

  3. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  4. Spontaneous ignition temperature limits of jet A fuel in research-combustor segment

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1974-01-01

    The effects of inlet-air pressure and reference velocity on the spontaneous-ignition temperature limits of Jet A fuel were determined in a combustor segment with a primary-zone length of 0.076 m (3 in.). At a constant reference velocity of 21.4 m/sec (170 ft/sec), increasing the inlet-air pressure from 21 to 207 N/sq cm decreased the spontaneous-ignition temperature limit from approximately 700 to 555 K. At a constant inlet-air pressure of 41 N/sq cm, increasing the reference velocity from 12.2 to 30.5 m/sec increased the spontaneous-ignition temperature limit from approximately 575 to 800 K. Results are compared with other data in the literature.

  5. Life-cycle analysis of alternative aviation fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum

  6. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with

  7. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality.

    PubMed

    Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2014-04-01

    To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    PubMed

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  10. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    DTIC Science & Technology

    2012-06-01

    Shear-Coaxial Jets Experimental Facility: Piping and Instrumentation Diagram . . . . . . . . . . . . . . . . . . . . . . 196 B Shear-Coaxial Jets...facility piping and instrumentation diagram. . . . . . . . . 197 A.2 Expanded view of section A in Figure A.1. . . . . . . . . . . . . . . . . . 198 A.3...certified to be used in flexible fuel vehicles (FFVs) with engines specifically designed for this fuel. As for possible aviation fuel replacements

  11. The Collection of Ice in Jet A-1 Fuel Pipes

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas C.

    Ice collection and blockages in fuel systems have been of interest to the aerospace community since their discovery in the late 1950's when a B-52 crashed. A recent growth of interest was provoked by several incidents that occurred within the last few years. This study seeks to understand the underlying principles of ice growth in fuel flow systems. Tests were performed in a recirculated fuel system with a fuel tank that held approximately 115 gallons of Jet A-1 fuel and ice accumulation was observed in two removable test pipes. The setup was in an altitude chamber capable of -60 °F and the experiments involved full scale flow components. Initially, tests were done to better understand the system and variables that effected accumulation. First, initial conditions within the test pipes were varied. Next, pipe geometry, pipe surface properties, initial water content of the fuel and heat transfer from the fuel pipe were varied. As a result of the tests, observations were made about other effects involved in the study. The effects include: the result of sequentially run tests, the effect of the fuel on the freezing temperature of the entrained water, the effect of ice accumulation on pipe welds, and the effect of the test pipe entrance and exit flow conditions on ice accumulation. The results of initial tests were qualitative. Later quantitative tests were done to demonstrate the dependence of temperature, Reynolds number, and heat transfer on ice accumulation. Tests were quantified with a pressure increase across the pipe sections that was normalized by the expected theoretical initial pressure. As a result of these tests the effect of contamination in the fuel was revealed. For ease of reference, the initial tests were called "stage I" and the later tests were called "stage II". The results of stage I showed that accumulation of soft ice was greatest when a layer of hard ice had initially formed on the pipe surface. Stainless steel collected more ice than Teflon

  12. JP-8 and Other Military Fuels

    DTIC Science & Technology

    2011-12-01

    Fermentation Jet Fuel-Like Product sugarcane Alcohol Oligomerization Conventional Refinery ProcessesSugar switchgrass Dehydration Pyrolysis Fermentation...PolymerizationOlefins Lignocellulose corn stover forest waste Jet Fuel-Like ProductBio-CrudePyrolysis Hydroprocessing Unclassified Back Up Slides

  13. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  14. Rise and Fall of the Regional Jet

    NASA Astrophysics Data System (ADS)

    Sedghi, Brian K.

    Over the course of more than two decades, the aviation industry has seen the introduction of the regional jet and witnessed the many operational benefits that it has presented airlines. Its future, however, hangs in the balance as record fuel prices and other economic and operational factors seem to threaten its existence in the capacity that it holds today. This research paper attempts to explore some of the factors that have both helped the regional jet find its place within the industry and also factors that have been linked to the threat against its future use. One of the two factors discussed in this paper will be the effect of fuel cost on the operational costs between a time that regional jets were considered viable and present day. The other will be the effect on market capacity that has been presented by the regional jet since its introduction more than two decades ago. In addition to these factors, other reasons for the potential discontinuation of the regional jet will be discussed including the effects of pilot unions on airline operations.

  15. Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO(x)/SiO2 catalyst.

    PubMed

    Chen, Fang; Li, Ning; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2015-07-28

    For the first time, jet fuel range C8-C9 aromatic hydrocarbons were synthesized in high carbon yield (∼80%) by the catalytic conversion of isophorone over MoO(x)/SiO2 at atmospheric pressure. A possible reaction pathway was proposed according to the control experiments and the intermediates generated during the reaction.

  16. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  17. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  18. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... evolution from the fuel results in the fuel tank or compartment exceeding the inert level. The applicant must include any times when oxygen evolution from the fuel in the tank or compartment under evaluation...

  19. Deposit formation in liquid fuels. II - The effect of selected compounds on the storage stability of Jet A turbine fuel

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.

    1981-01-01

    The influence of substituted pyridines, pyrroles, indoles, and quinolines on the storage stability of conventional Jet A turbine fuel is evaluated. Significant increases in the amount of deposit formed in accelerated storage tests are found upon addition of these compounds at levels as low as one ppm nitrogen. While the effect is correlated with basicity of the nitrogen compound within a given compound class, the correlation does not hold between classes (pyridines, quinolines, etc.). Steric hindrance at the nitrogen atom greatly inhibits deposit promotion. The characteristics, but not the elemental composition, of deposits vary with the identity of the added nitrogen compound and with deposition temperature.

  20. Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures

    PubMed Central

    Tracey, Rebecca; Haque, Md. M.; Skinner, Michael K.

    2012-01-01

    Environmental factors during fetal development can induce a permanent epigenetic change in the germ line (sperm) that then transmits epigenetic transgenerational inheritance of adult-onset disease in the absence of any subsequent exposure. The epigenetic transgenerational actions of various environmental compounds and relevant mixtures were investigated with the use of a pesticide mixture (permethrin and insect repellant DEET), a plastic mixture (bisphenol A and phthalates), dioxin (TCDD) and a hydrocarbon mixture (jet fuel, JP8). After transient exposure of F0 gestating female rats during the period of embryonic gonadal sex determination, the subsequent F1–F3 generations were obtained in the absence of any environmental exposure. The effects on the F1, F2 and F3 generations pubertal onset and gonadal function were assessed. The plastics, dioxin and jet fuel were found to promote early-onset female puberty transgenerationally (F3 generation). Spermatogenic cell apoptosis was affected transgenerationally. Ovarian primordial follicle pool size was significantly decreased with all treatments transgenerationally. Differential DNA methylation of the F3 generation sperm promoter epigenome was examined. Differential DNA methylation regions (DMR) were identified in the sperm of all exposure lineage males and found to be consistent within a specific exposure lineage, but different between the exposures. Several genomic features of the DMR, such as low density CpG content, were identified. Exposure-specific epigenetic biomarkers were identified that may allow for the assessment of ancestral environmental exposures associated with adult onset disease. PMID:22389676

  1. Synthesis and analysis of jet fuels from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1976-01-01

    The technical problems involved in converting a significant portion of a barrel of either a shale oil or coal syncrude into a suitable aviation turbine fuel were studied. TOSCO shale oil, H-Coal and COED coal syncrudes were the starting materials. They were processed by distillation and hydrocracking to produce two levels of yield (20 and 40 weight percent) of material having a distillation range of approximately 422 to 561 K (300 F to 550 F). The full distillation range 311 to 616 K (100 F to 650 F) materials were hydrotreated to meet two sets of specifications (20 and 40 volume percent aromatics, 13.5 and 12.75 weight percent H, 0.2 and 0.5 weight percent S, and 0.1 and 0.2 weight percent N). The hydrotreated materials were distilled to meet given end point and volatility requirements. The syntheses were carried out in laboratory and pilot plant equipment scaled to produce thirty-two 0.0757 cu m (2-gal)samples of jet fuel of varying defined specifications. Detailed analyses for physical and chemical properties were made on the crude starting materials and on the products.

  2. Hydroprocessed Esters and Fatty Acids (HEFA) Bio-Based Jet Fuels: Sensory Irritation Study and Human Health Hazard Assessment

    DTIC Science & Technology

    2013-06-30

    AFRL-RH-FS-TR-2014-0001 Hydroprocessed Esters and Fatty Acids (HEFA) Bio -Based Jet Fuels: Sensory Irritation Study and Human Health Hazard...Karen L. Mumy Brian A. Wong R. Arden James James Reboulet Brian Sharits Michael Grimm Nathan Gargas Naval Medical Research Unit - Dayton...Wright-Patterson AFB OH Richard C. Striebich AFRL/RQTF Wright-Patterson AFB OH David R. Mattie Bioeffects Division Molecular Bioeffects Branch

  3. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  4. Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel.

    PubMed

    Gunasekera, Thusitha S; Striebich, Richard C; Mueller, Susan S; Strobel, Ellen M; Ruiz, Oscar N

    2013-01-01

    Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel. We have used DNA-microarrays and RT-PCR to characterize the transcriptional response of P. aeruginosa to fuel. Transcriptomics revealed that genes essential for medium- and long-chain n-alkane degradation including alkB1 and alkB2 were transcriptionally induced. Gas chromatography confirmed that P. aeruginosa possesses pathways to degrade different length n-alkanes, favoring the use of n-C11-18. Furthermore, a gamut of synergistic metabolic pathways, including porins, efflux pumps, biofilm formation, and iron transport, were transcriptionally regulated. Bioassays confirmed that efflux pumps and biofilm formation were required for growth in jet fuel. Furthermore, cell homeostasis appeared to be carefully maintained by the regulation of porins and efflux pumps. The Mex RND efflux pumps were required for fuel tolerance; blockage of these pumps precluded growth in fuel. This study provides a global understanding of the multiple metabolic adaptations required by bacteria for survival and proliferation in fuel-containing environments. This information can be applied to improve the fuel bioremediation properties of bacteria.

  5. Effect of some nitrogen compounds thermal stability of jet A

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    The effect of known concentrations of some nitrogen containing compounds on the thermal stability of a conventional fuel, namely, Jet A was investigated. The concentration range from 0.01 to 0.1 wt% nitrogen was examined. Solutions were made containing, individually, pyrrole, indole, quinoline, pyridine, and 4 ethylpyridine at 0.01, 0.03, 0.06, and 0.1 wt% nitrogen concentrations in Jet A. The measurements were all made by using a standard ASTM test for evaluating fuel thermal oxidation behavior, namely, ASTM D3241, 'thermal oxidation stability of turbine fuels (JFTOT procedure).' Measurements were made at two temperature settings, and 'breakpoint temperatures' were determined. The results show that the pyrrole and indole solutions have breakpoint temperatures substantially lower than those of the Jet A used.

  6. OVERVIEW OF EPA HUMAN EXPOSURE MEASUREMENTS PROJECTS AS APPLIED TO JP-8 JET FUEL

    EPA Science Inventory

    One of the many responsibilities of the National Exposure Research Laboratory (NERL) of the U.S. Environmental Protection Agency (EPA) is the development and demonstration of methodology for assessing human exposure to environmental pollutants. As such, personnel from the Human E...

  7. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  8. Military Jet Fuels, 1944-1987

    DTIC Science & Technology

    1987-11-01

    first high density, synthetic hydrocarbon missile fuel. Developed by the US Navy, RJ-4 was used in the mid-1960s in the ramjet-powered Tales missile...High Density Synthetic Hydrocarbon Type. Grades 7P-9 and JP-10, covers two fuels currently in use in the Air Launched Cruise Missile (ALCM). JP-9...revealed that a significant quantity of copper was in the fuel, carried over from a copper- sweetening process. The copper was chelated by the metal

  9. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    PubMed Central

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.

    2015-01-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557

  10. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  11. Supersonic liquid jets: Their generation and shock wave characteristics

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.

    The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.

  12. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  13. FAA Center of Excellence for Alternative Jet Fuels & Environment : Annual Technical Report : December, 2016 : For the period September 13, 2013 - September 30, 2015

    DOT National Transportation Integrated Search

    2015-12-01

    This report covers the period between the initial establishment of the FAA Center of Excellence for Alternative Jet Fuels and Environment on September 13, 2013 through September 30, 2015. The Center was established by the authority of FAA solicitatio...

  14. Comet Wild 2 - Jet Release

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This composite image was taken by the navigation camera during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter. To create this image, a short exposure image showing tremendous surface detail was overlain on a long exposure image taken just 10 seconds later showing jets. Together, the images show an intensely active surface, jetting dust and gas streams into space and leaving a trail millions of kilometers long.

  15. Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks

    DOE PAGES

    Tao, Ling; Markham, Jennifer N.; Haq, Zia; ...

    2016-12-30

    Here, this study summarizes the detailed techno-economic analysis of the ethanol-to-jet (ETJ) process based on two different feedstocks (corn grain and corn stover) at the plant scale of 2000 dry metric tons per day. Ethanol biologically derived from biomass is upgraded catalytically to jet blendstocks via alcohol dehydration, olefin oligomerization, and hydrotreating. In both pathways, corn-grain-derived ethanol to jet (corn mill ETJ) and corn-stover-derived ethanol to jet (corn stover ETJ), there are portions of gasoline and diesel produced as coproducts. Two cost bases are used in this study: the minimum jet fuel selling prices (MJSP) for jet-range blendstocks and themore » minimum fuel selling prices (MFSP) for all the hydrocarbons (gasoline, jet, and diesel) produced using a gallon gasoline equivalent (GGE) basis. The n th-plant MJSPs for the two pathways are estimated to be 4.20 per gal for corn mill and 6.14 per gal for corn stover, while MFSPs are 3.91 per GGE for corn mill and 5.37 per GGE for corn stover. If all of the hydrocarbon products (gasoline, jet, and diesel ranges) can be considered as fuel blendstocks using a GGE basis, the total hydrocarbon yield for fuel blendstock is 49.6 GGE per dry ton biomass for corn stover and 71.0 GGE per dry ton biomass for corn grain. The outcome of this study shows that the renewable jet fuel could be cost competitive with fossil derived jet fuel if further improvements could be made to increase process yields (particularly yields of sugars, sugar to ethanol, and ethanol to hydrocarbons), research and development of sustainable feedstocks, and more effective catalytic reaction kinetics. Pioneer plant analysis, which considers the increased capital investment and the decreased plant performance over the nth-plant analysis, is also performed, showing a potential 31%–178% increase in cost compared to the n th-plant assumptions for the dry mill pathway, but with a much wider range of 69%–471% cost increase over the

  16. Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Markham, Jennifer N.; Haq, Zia

    Here, this study summarizes the detailed techno-economic analysis of the ethanol-to-jet (ETJ) process based on two different feedstocks (corn grain and corn stover) at the plant scale of 2000 dry metric tons per day. Ethanol biologically derived from biomass is upgraded catalytically to jet blendstocks via alcohol dehydration, olefin oligomerization, and hydrotreating. In both pathways, corn-grain-derived ethanol to jet (corn mill ETJ) and corn-stover-derived ethanol to jet (corn stover ETJ), there are portions of gasoline and diesel produced as coproducts. Two cost bases are used in this study: the minimum jet fuel selling prices (MJSP) for jet-range blendstocks and themore » minimum fuel selling prices (MFSP) for all the hydrocarbons (gasoline, jet, and diesel) produced using a gallon gasoline equivalent (GGE) basis. The n th-plant MJSPs for the two pathways are estimated to be 4.20 per gal for corn mill and 6.14 per gal for corn stover, while MFSPs are 3.91 per GGE for corn mill and 5.37 per GGE for corn stover. If all of the hydrocarbon products (gasoline, jet, and diesel ranges) can be considered as fuel blendstocks using a GGE basis, the total hydrocarbon yield for fuel blendstock is 49.6 GGE per dry ton biomass for corn stover and 71.0 GGE per dry ton biomass for corn grain. The outcome of this study shows that the renewable jet fuel could be cost competitive with fossil derived jet fuel if further improvements could be made to increase process yields (particularly yields of sugars, sugar to ethanol, and ethanol to hydrocarbons), research and development of sustainable feedstocks, and more effective catalytic reaction kinetics. Pioneer plant analysis, which considers the increased capital investment and the decreased plant performance over the nth-plant analysis, is also performed, showing a potential 31%–178% increase in cost compared to the n th-plant assumptions for the dry mill pathway, but with a much wider range of 69%–471% cost increase over the

  17. The regimes of twin-fluid jet-in-crossflow at atmospheric and jet-engine operating conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zu Puayen; Bibik, Oleksandr; Shcherbik, Dmitriy; Zinn, Ben T.; Patel, Nayan

    2018-02-01

    The "Twin-Fluid Jet-in-Crossflow (TF-JICF)" is a nascent variation of the classical JICF, in which a liquid jet is co-injected with an annular sleeve of gas into a gaseous crossflow. Jet-engine designers are interested in using TF-JICF for liquid-fuel injection and atomization in the next-generation combustors because it is expected to minimize combustor-damaging auto-ignition and fuel-coking tendencies. However, experimental data of TF-JICF are sparse. Furthermore, a widely accepted TF-JICF model that correlates the spray's penetration to the combined liquid-gas momentum-flux ratio (Jeff) is increasingly showing discrepancy with emerging results, suggesting a gap in the current understanding of TF-JICF. This paper describes an investigation that addressed the gap by experimentally characterizing the TF-JICF produced by a single injector across wide ranges of operating conditions (i.e., jet-A injectant, crossflow of air, crossflow Weber number = 175-1050, crossflow pressure Pcf = 1.8-9.5 atm, momentum-flux ratio J = 5-40, and air-nozzle dP = 0%-150% of Pcf). These covered the conditions previously used to develop the Jeff model, recently reported conditions that produced Jeff discrepancies, and high-pressure conditions found in jet-engines. Dye-based shadowgraph was used to acquire high-resolution (13.52 μm/pixel) images of the TF-JICF, which revealed wide-ranging characteristics such as the disrupted Rayleigh-Taylor jet instabilities, air-induced jet corrugations, spray-bifurcations, and prompt-atomization. Analyses of the data showed that contrary to the literature, the TF-JICF's penetration is not monotonically related to Jeff. A new conceptual framework for TF-JICF is proposed, where the flow configuration is composed of four regimes, each having different penetration trends, spray structures, and underlying mechanisms.

  18. On the structure of pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  19. Experimental test results of a generalized parameter fuel control

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.; Gold, H.

    1973-01-01

    Considerable interest has been generated recently in low cost jet propulsion systems. One of the more complicated components of jet engines is the fuel control. Results of an effort to develop a simpler hydromechanical fuel control are presented. This prototype fuel control was installed on a J85-GE-13 jet engine. Results show that the fuel control provided satisfactory engine performance at sea level static conditions over its normal nonafterburning operating range, including startup. Results of both bench and engine tests are presented; the difficulties encountered are described.

  20. Fuel system design concepts for broad property fuels

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.

    1984-01-01

    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  1. Effect of Aromatic Concentration of a Fischer-Tropsch Fuel on Thermal Stability

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer­ Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of Fischer-Tropsch fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  2. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways

    DOE PAGES

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-24

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing

  3. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.

    PubMed

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-01

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol

  4. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing

  5. The effects of organosulfur compounds upon the storage stability of Jet A fuel. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Heneman, F. C.

    1981-01-01

    This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.

  6. Military utility of very large airplanes and alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Stanley, W.L.

    1977-09-01

    Synthetic chemical fuels and nuclear fuels were evaluated for use in very large airplanes (VLA's). Candidate fuels included synthetic jet fuel, liquid hydrogen, liquid methane, methanol, ethanol, ammonia, and gasoline. Airplane life-cycle costs and life-cycle energy consumption are estimated, and energy and cost effectiveness are evaluated. It is concluded that a synthetic conventional hydrocarbon jet fuel remains the most attractive for military aircraft. (PMA)

  7. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  8. Indoor fuel exposure and the lung in both developing and developed countries: An update

    PubMed Central

    2012-01-01

    Synopsis Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema and chronic bronchitis), acute respiratory tract infections, and lung cancer (primarily coal use) and weakly associated with asthma, tuberculosis, and interstitial lung disease. Tobacco use further potentiates the development of respiratory disease among subjects exposed to solid fuel smoke. There is a need to perform additional interventional studies in this field. It is also important to increase awareness about the health effects of solid fuel smoke inhalation among physicians and patients as well as trigger preventive actions through education, research, and policy change in both developing and developed countries. PMID:23153607

  9. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogatemore » fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically

  10. Comet Wild 2 - Jet Release

    NASA Image and Video Library

    2004-03-18

    This composite image was taken by the navigation camera during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter. To create this image, a short exposure image showing tremendous surface detail was overlain on a long exposure image taken just 10 seconds later showing jets. Together, the images show an intensely active surface, jetting dust and gas streams into space and leaving a trail millions of kilometers long. http://photojournal.jpl.nasa.gov/catalog/PIA05578

  11. Ammonia chemistry in a flameless jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicalsmore » which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)« less

  12. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  13. Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow

    NASA Astrophysics Data System (ADS)

    Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike

    2008-11-01

    The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.

  14. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  15. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B

    2015-07-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    DOE PAGES

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; ...

    2015-05-11

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  17. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  18. Indoor Air Pollution and Health in Ghana: Self-Reported Exposure to Unprocessed Solid Fuel Smoke.

    PubMed

    Armah, Frederick A; Odoi, Justice O; Luginaah, Isaac

    2015-06-01

    Most countries in Sub-Saharan Africa including Ghana still depend extensively on unprocessed solid cooking fuels with many people exposed on a daily basis to harmful emissions and other health risks. In this study, using complementary log-log multivariate models, we estimated the health effects of exposure to smoke from unprocessed wood in four regions of Ghana while controlling for socio-environmental and socio-demographic factors. The results show that the distribution of self-reported exposure to smoke was highest among participants in the Northern region, rural dwellers, the 25-49 age groups, individuals with no education, and married women. As expected, exposure to smoke was higher in crowded households and in communities without basic social amenities. Region, residential locality, housing quality (type of roofing, floor and exterior materials), self-reported housing condition, and access to toilet facilities were associated with self-reported exposure to solid fuel smoke. Participants living in urban areas were less likely (OR = 0.82, ρ ≤ 0.01) to be exposed to solid fuel smoke compared to their rural counterparts. An inverse relationship between self-reported housing condition and exposure to solid fuel smoke was observed and persisted even after adjustments were made for confounding variables in the demographic model. In Ghana, the cost and intermittent shortages of liquefied petroleum gas and other alternative fuel sources hold implications for the willingness of the poor to shift to their use. Thus, the poorest rural populations with nearly no cash income and electricity, but with access to wood and/or agricultural waste, are unlikely to move to clean fuels or use significantly improved stoves without large subsidies, which are usually not sustainable. However, there appears to be large populations between these extremes that can be targeted by efforts to introduce improved stoves.

  19. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  20. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  1. X-ray vision of fuel sprays.

    PubMed

    Wang, Jin

    2005-03-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.

  2. Wildfire exposure and fuel management on western US national forests.

    PubMed

    Ager, Alan A; Day, Michelle A; McHugh, Charles W; Short, Karen; Gilbertson-Day, Julie; Finney, Mark A; Calkin, David E

    2014-12-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework. Published by Elsevier Ltd.

  3. The flame structure and vorticity generated by a chemically reacting transverse jet

    NASA Technical Reports Server (NTRS)

    Karagozian, A. R.

    1986-01-01

    An analytical model describing the behavior of a turbulent fuel jet injected normally into a cross flow is developed. The model places particular emphasis on the contrarotating vortex pair associated with the jet, and predicts the flame length and shape based on entrainment of the oxidizer by the fuel jet. Effects of buoyancy and density variations in the flame are neglected in order to isolate the effects of large-scale mixing. The results are compared with a simulation of the transverse reacting jet in a liquid (acid-base) system. For a wide range of ratios of the cross flow to jet velocity, the model predicts flame length quite well. In particular, the observed transitional behavior in the flame length between cross-flow velocity to jet velocity of orifice ratios of 0.0 to 0.1, yielding an approximate minimum at the ratio 0.05, is reproduced very clearly by the present model. The transformation in flow structure that accounts for this minimum arises from the differing components of vorticity dominant in the near-field and far-field regions of the jet.

  4. Acute and Short-Term Inhalation Toxicity Study of FT Fuel

    DTIC Science & Technology

    2011-02-01

    Nasopharyngeal duct goblet cell hypertrophy/hyperplasia is evident in both sexes of rats exposed to the two highest doses of jet fuel. 47 Distribution A...findings in lung, nose and liver and, in male rats, kidneys. Inflammatory foci were evident in the lungs of both sexes of rat exposed to the two...highest doses of jet fuel. Olfactory epithelial degeneration was evident in both sexes of rats exposed to the two highest doses of jet fuel. An

  5. Prediction and validation of blowout limits of co-flowing jet diffusion flames -- effect of dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbasi, M.; Wierzba, I.

    1996-10-01

    The blowout limits of a co-flowing turbulent methane jet diffusion flame with addition of diluent in either jet fuel or surrounding air stream is studied both analytically and experimentally. Helium, nitrogen and carbon dioxide were employed as the diluents. Experiments indicated that an addition of diluents to the jet fuel or surrounding air stream decreased the stability limit of the jet diffusion flames. The strongest effect was observed with carbon dioxide as the diluent followed by nitrogen and then by helium. A model of extinction based on recognized criterion of the mixing time scale to characteristic combustion time scale ratiomore » using experimentally derived correlations is proposed. It is capable of predicting the large reduction of the jet blowout velocity due to a relatively small increase in the co-flow stream velocity along with an increase in the concentration of diluent in either the jet fuel or surrounding air stream. Experiments were carried out to validate the model. The predicted blowout velocities of turbulent jet diffusion flames obtained using this model are in good agreement with the corresponding experimental data.« less

  6. Pulsed jet combustion generator for premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  7. Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle

    NASA Technical Reports Server (NTRS)

    Hall, Eldon W

    1944-01-01

    A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.

  8. Microalgae Feedstocks for Aviation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigmosta, Mark S.; Coleman, Andre; Venteris, Erik

    There is significant global interest in developing, testing, and using alternative jet fuels for both commercial and military use in an effort to create a sustainable and stable fuel supply while reducing greenhouse gas emissions. Currently, the aviation industry is entirely dependent on a finite-supply of petroleum based fuel sourced in part by politically and economically unstable regions of the world. Commercial jet fuel use within the contiguous United States (CONUS) was 17.8 billion gallons per year (BGY) in 2009, while jet fuel use in 2010 by the U.S. Air Force (USAF), Navy, and Army was 1.5 BGY, 0.6 BGY,more » and 0.8 BGY, respectively (Carter et al., 2011). U.S. commercial and military aviation sectors have set ambitious near-term alternative fuel and environmental performance targets. This includes a tentative Federal Aviation Administration (FAA) goal of 1 BGY alternative fuel use by commercial aircraft by 2018. The USAF has set a target of 50% for USAF domestic aviation via alternative fuels by 2016 (0.73 BGY), and 50% of the Navy’s total energy consumption afloat (0.3 BGY) will come from alternative fuels by 2020 (Carter et al., 2011). If these targets become policy, at least 2 BGY of domestically-produced alternative jet fuel will be required by 2020. The Energy Independence and Security Act (EISA) of 2007 established production requirements for domestic alternative fuels under the Renewable Fuel Standard (RFS). For example, 36 billion gallons of renewable fuel must be produced by 2022, of which 21 billion gallons shall be advanced biofuels. EISA defines advanced biofuels as non-corn starch derived biofuels having lifecycle greenhouse gas emissions 50% lower than gasoline. There a number of potential fuel pathways for meeting the RFS. One of these is biomass-based diesel, including jet fuel (Schnepf and Yacobucci, 2013). The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) has a stated goal in its 2013 Multi-Year Program Plan

  9. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  10. Biomarker Discovery After Occupational Exposure To Volatile Organic Compounds And Aerosols In F-15 and C-130 Flight Line Crews: Examination of ProInflammatory Cytokines in Serum

    DTIC Science & Technology

    2014-08-29

    about exposure to spills of any kind, direct dermal exposure to jet fuel or solvent or other exposures such as cleaning fluids and smoking (if a smoker ...additives, may influence toxicity during exposure. JP-8 was found to be non -irritating in the rabbit primary eye irritation test (Smith et al...1981; Kinkead et al., 1992a). Results in the corresponding rabbit skin irritation test ranged from non -irritating (Smith et al., 1981; Wolfe et al

  11. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less

  12. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    NASA Astrophysics Data System (ADS)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  13. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process energy 6 F Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual... biomass and petroleum 4 G Biodiesel, heating oil Canola/Rapeseed oil Trans-Esterification using natural gas or biomass for process energy 4 H Biodiesel, renewable diesel, jet fuel and heating oil Soy bean...

  14. Transportation Fuels Markets, PADD 5

    EIA Publications

    2015-01-01

    This study examines supply, demand, and distribution of transportation fuels in Petroleum Administration for Defense District (PADD) 5, a region that includes the western states of California, Arizona, Nevada, Oregon, Washington, Alaska, and Hawaii. For this study, transportation fuels include gasoline, diesel fuel, and jet fuel.

  15. Numerical Simulation of an Enclosed Laminar Jet Diffusion Flame in Microgravity Environment: Comparison with ELF Data

    NASA Technical Reports Server (NTRS)

    Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der

    2001-01-01

    Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. The diffusion flame is found at the surface where the fuel jet and oxygen meet, react, and consume each other. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. Flame stability is strongly dependent on the fuel jet velocity. When the fuel jet velocity is sufficiently low, the diffusion flame anchors at the burner rim. When the fuel jet velocity is increased, the flame base gradually moves downstream. However, when the fuel jet velocity increases beyond a critical value, the flame base abruptly jumps downstream. When this "jump" occurs, the flame is said to have reached its lift-off condition and the critical fuel jet velocity is called the lift-off velocity. While lifted, the flame is not attached to the burner and it appears to float in mid-air. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the fuel jet velocity is further increased, the flame will eventually extinguish at its blowout condition. In contrast, if the fuel jet velocity of a lifted flame is reduced, the flame base moves upstream and abruptly returns to anchor at the burner rim. The fuel jet velocity at reattachment can be much lower than that at lift off, illustrating the hysteresis effect present in flame stability. Although there have been numerous studies of flame stability, the controlling mechanisms are not well understood. This uncertainty is described by Pitts in his review of various competing theories of lift off and blow out in turbulent jet diffusion flames. There has

  16. Women's personal and indoor exposures to PM 2.5 in Mysore, India: Impact of domestic fuel usage

    NASA Astrophysics Data System (ADS)

    Andresen, Penny Rechkemmer; Ramachandran, Gurumurthy; Pai, Pramod; Maynard, Andrew

    In traditional societies, women are more likely to be adversely affected by exposures to fine particulates from domestic fuel combustion due to their role in the family as the primary cooks. In this study, 24-h gravimetric personal and indoor PM 2.5 exposures were measured for 15 women using kerosene and another 15 women using liquefied petroleum gas (LPG) as their main cooking fuel in Mysore, India. The women also answered a detailed questionnaire regarding their residential housing characteristics, health status, cooking practices and socioeconomic status. Repeated measurements were obtained during two seasons. The main objective of this study was to determine whether exposures to PM 2.5 differed according to fuel usage patterns. A repeated-measures general linear model (GLM) was used to analyze the data. Women using kerosene as their primary cooking fuel had significantly higher exposures. During summer, the arithmetic mean (± standard error) for kerosene users personal exposure was 111±13 and 71±15 μg m -3 for LPG users. Kerosene users had higher exposures in winter (177±21 μg m -3) compared to summer exposures. However, for LPG users there was no difference in their seasonal geometric mean exposures at 71±13 μg m -3. Indoor concentrations followed similar patterns. In summer, kerosene-using households had an arithmetic mean concentration of 98±9 μg m -3 and LPG-using households had an arithmetic mean concentration of 71±9 μg m -3. Winter concentrations were significantly higher than summer concentrations for kerosene users (155±13 μg m -3). Again, LPG users showed only slightly higher indoor concentrations (73±6 μg m -3) than kerosene users. Socioeconomic status, age, season and income were significant predictors of cooking fuel choice.

  17. Electron spin resonance study of thermal instability reactions in jet fuels

    NASA Technical Reports Server (NTRS)

    Zeldes, H.; Livingston, R.

    1984-01-01

    Free radicals were studied by electron spin resonance (ESR) using model compounds that are representative of constituents of jet fuels. Radical formation was initiated with peroxides and hydroperoxides by using UV photolysis at and near room temperature and thermal initiation at higher temperatures. Both oxygen free and air saturated systems were studied. N-Dodecane was frequently used as a solvent, and a mixture of n-dodecyl radicals was made with a peroxide initiator in n-dodecane (free of oxygen) thermally at 212 C and photolytically at room temperature. Hydrogen abstraction from the 3,4,5 and 6-positions gives radicals that are sufficiently alike that their spectra are essentially superimposed. The radical formed by abstract of hydrogen from the 2-position gives a different spectrum. ESR parameters for these radicals were measured. The radical formed by abstraction of a primary hydrogen was not observed. Similar radicals are formed from n-decane. A variety of exploratory experiments were carried out with systems that give free radical spectra to which was added small amounts of 2,5-dimethylpyrrole.

  18. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  19. Dynamic interaction of a downward plane jet and a cough jet with respect to particle transmission: An analytical and experimental study.

    PubMed

    Cao, Guangyu; Liu, Shichao; Boor, Brandon E; Novoselac, Atila

    2017-08-01

    A cough jet can travel beyond the breathing zone of the source person, and thus, infectious viral- and bacterial-laden particles can be transported from the source person to others in close proximity. To reduce the interpersonal transmission of coughed particles, the objective of this study was to analytically and experimentally investigate the performance of downward plane jets with various discharge velocities. Chamber measurements were conducted to examine the interaction between a transient cough jet (discharge velocities of 12 m/sec and 16 m/sec) and a steady downward plane jet (discharge velocities from 1.0-8.5 m/sec) with respect to the transport of and human exposure to coughed particles. The results show that a relatively high-speed cough can easily penetrate a downward plane jet with a discharge velocity of less than 6 m/sec. A downward plane jet with a discharge velocity of 8.5 m/sec can bend the cough jet to a certain extent. In this study, momentum comparison of the cough jet and the downward plane jet shows that the value of personal exposure to coughed particles depends on the ratio of jet momentums. The results show that when the two momentums are equivalent or if the downward plane jet has a greater momentum, the cough jet is deflected downward and does not reach the breathing zone of the target thermal dummy. Using the ratio of the two momentums, it may be estimated whether the transmission of a cough jet can be controlled. A trajectory model was developed based on the ratio of the two momentums of a cough jet and a downward jet and was validated using the experimental data. In addition, the predicted trajectory of the cough jet agreed well with the results from smoke visualization experiments. This model can be used to guide the design of downward plane jet systems for protection of occupants from coughed particles.

  20. Investigation of turbulent swirling jet-flames by PIV / OH PLIF / HCHO PLIF

    NASA Astrophysics Data System (ADS)

    Lobasov, A. S.; Chikishev, L. M.

    2018-03-01

    The present paper reports on the investigation of fuel-lean and fuel-rich turbulent combustion in a high-swirl jet. Swirl rate of the flow exceeded a critical value for breakdown of the swirling jet’s vortex core and formation of the recirculation zone at the jet axis. The measurements were performed by the stereo PIV, OH PLIF and HCHO PLIF techniques, simultaneously. The Reynolds number based on the flow rate and viscosity of the air was fixed as 5 000 (the bulk velocity was U 0 = 5 m/s). Three cases of the equivalence ratio ϕ of the mixture issuing from the nozzle-burner were considered, viz., 0.7, 1.4 and 2.5. The latter case corresponded to a lifted flame of fuel-rich swirling jet flow, partially premixed with the surrounding air. In all cases the flame front was subjected to deformations due to large-scale vortices, which rolled-up in the inner (around the central recirculation zone) and outer (between the annular jet core and surrounding air) mixing layers.

  1. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treatedmore » by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.« less

  2. Biomass fuel smoke exposure was associated with adverse cardiac remodeling and left ventricular dysfunction in Peru.

    PubMed

    Burroughs Peña, M S; Velazquez, E J; Rivera, J D; Alenezi, F; Wong, C; Grigsby, M; Davila-Roman, V G; Gilman, R H; Miranda, J J; Checkley, W

    2017-07-01

    While household air pollution from biomass fuel combustion has been linked to cardiovascular disease, the effects on cardiac structure and function have not been well described. We sought to determine the association between biomass fuel smoke exposure and cardiac structure and function by transthoracic echocardiography. We identified a random sample of urban and rural residents living in the high-altitude region of Puno, Peru. Daily biomass fuel use was self-reported. Participants underwent transthoracic echocardiography. Multivariable linear regression was used to examine the relationship of biomass fuel use with echocardiographic measures of cardiac structure and function, adjusting for age, sex, height, body mass index, diabetes, physical activity, and tobacco use. One hundred and eighty-seven participants (80 biomass fuel users and 107 non-users) were included in this analysis (mean age 59 years, 58% women). After adjustment, daily exposure to biomass fuel smoke was associated with increased left ventricular internal diastolic diameter (P=.004), left atrial diameter (P=.03), left atrial area (four-chamber) (P=.004) and (two-chamber) (P=.03), septal E' (P=.006), and lateral E' (P=.04). Exposure to biomass fuel smoke was also associated with worse global longitudinal strain in the two-chamber view (P=.01). Daily biomass fuel use was associated with increased left ventricular size and decreased left ventricular systolic function by global longitudinal strain. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  4. Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Handschuh, R. F.

    1985-01-01

    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.

  5. Chronic exposure to biomass fuel smoke and markers of endothelial inflammation

    PubMed Central

    Caravedo, Maria A; Herrera, Phabiola M; Mongilardi, Nicole; de Ferrari, Aldo; Davila-Roman, Victor G; Gilman, Robert H; Wise, Robert A; Miele, Catherine H; Miranda, J Jaime; Checkley, William

    2016-01-01

    Indoor smoke exposure may affect cardiovascular disease (CVD) risk via lung-mediated inflammation, oxidative stress, and endothelial inflammation. We sought to explore the association between indoor smoke exposure from burning biomass fuels and a selected group of markers for endothelial inflammation. We compared serum concentrations of amyloid A protein, E-selectin, soluble ICAM-1 and VCAM-1, von Willebrand factor (VWF), and high sensitivity C-reactive protein (hs-CRP) in 228 biomass exposed vs. 228 non-exposed participants living in Puno, Peru. Average age was 56 years (SD=13), average BMI was 26.5 kg/m2 (SD=4.4), 48% were male, 59.4% completed high school and 2% reported a physician diagnosis of CVD. In unadjusted analysis, serum levels of soluble ICAM-1 (330 vs. 302 ng/mL; p<0.001), soluble VCAM-1 (403 vs. 362 ng/mL; p<0.001), and E-selectin (54.2 vs. 52.7 ng/mL; p=0.05) were increased in biomass exposed vs. non-exposed participants, respectively; whereas serum levels of vWF (1148 vs. 1311 mU/mL; p<0.001) and hs-CRP (2.56 vs. 3.12 mg/L; p<0.001) were decreased, respectively. In adjusted analyses, chronic exposure to biomass fuels remained positively associated with serum levels of soluble ICAM-1 (p=0.03) and VCAM-1 (p=0.05) and E-selectin (p=0.05), and remained negatively associated with serum levels of vWF (p=0.02) and hs-CRP (p<0.001). Daily exposure to biomass fuel smoke was associated with important differences in specific biomarkers of endothelial inflammation and may help explain accelerated atherosclerosis among those who are chronically exposed. PMID:26476302

  6. Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Valasek, John

    2006-01-01

    Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.

  7. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  8. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  9. Influence of fuels, weather and the built environment on the exposure of property to wildfire

    USGS Publications Warehouse

    Penman, Trent D.; Collins, Luke S.; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.

    2014-01-01

    Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates.

  10. Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire

    PubMed Central

    Penman, Trent D.; Collins, Luke; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.

    2014-01-01

    Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates. PMID:25360741

  11. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  12. Sulfur Speciation and Extraction in Jet A (Briefing Charts)

    DTIC Science & Technology

    2015-08-16

    Extraction fluid: denatured ethanol from Fisher Scientific and deionized water – Jet A fuel , approximately 500-800 ppm sulfur by weight – Data...Outline • Background • Experimental Setup – Extraction of sulfur compounds from fuel to alcohol/water extraction fluid – Each rinse is...Hydrophobic / Oleophillic Membrane Oleophobic / Hydrophillic Membrane Emulsion Phase Fuel Phase Water (Extraction Fluid) Phase DISTRIBUTION A

  13. Hydrogen for the subsonic transport. [aircraft design and fuel requirements

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.; Snow, D. B.

    1975-01-01

    Relations between air travel and fuel requirements are examined. Alternate fuels considered in connection with problems related to a diminishing supply of petroleum include synthetic jet fuel, methane, and hydrogen. A cruise flight of a subsonic aircraft on a hydrogen-fueled jet engine was demonstrated in 1957. However, more development work is required to provide a sound engineering base for a complete air transportation system using hydrogen as fuel. Aircraft designs for alternate fuels are discussed, giving attention to hydrogen-related technology already available and new developments which are needed.

  14. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  15. Biomass fuel exposure and asthma symptoms among rural school children in Nigeria.

    PubMed

    Oluwole, Oluwafemi; Arinola, Ganiyu O; Huo, Dezheng; Olopade, Christopher O

    2017-05-01

    Approximately 70% of rural Nigerian households rely on biomass fuels for cooking. The International Study of Asthma and Allergies in Childhood (ISAAC) estimates the prevalence of current wheeze among children in Nigeria to have risen from 10.7% in 1999 to approximately 20% in 2014. To examine the effects of biomass smoke exposure on asthma symptom prevalence in rural children in Nigeria. We conducted a cross-sectional survey in rural communities in Nigeria. Asthma symptoms were defined according to ISAAC definitions. Biomass smoke exposure was determined by the types of fuel used for cooking. Logistic regression was used to explore associations between biomass smoke and asthma symptoms. The study population comprised 1,690 school children, of which 865 lived in households cooking with biomass and 825 lived in households not using biomass. Asthma symptoms were reported in 481 (28.5%) children. Biomass fuel was associated with increased odds of asthma symptoms. Adjusted odds ratios (aORs) were 1.38 (95% CI: 1.05-1.80) for nocturnal cough, 1.26 (95% CI: 1.00-1.61) for current wheeze, and 1.33 (95% CI: 1.05-1.69) for report of any asthma-related symptoms. Sex modified the associations between asthma symptoms with biomass fuel: aORs were stronger and significant for males (nocturnal cough = 1.85, 95% CI: 1.24-2.76; current wheeze = 1.48, 95% CI: 1.03-2.13; report of any asthma-related symptoms = 1.60, 95% CI: 1.12-2.28), but weaker and non-significant for females. The risk of asthma symptoms related to biomass smoke exposure appears to differ by sex.

  16. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Delivery Order 0011: Production Demonstration and Laboratory Evaluation of R-8 and R-8X Hydroprocessed Renewable Jet (HRJ) Fuel for the DoD Alternative Fuels Program

    DTIC Science & Technology

    2010-05-01

    alternative fuel from halophyte (Salicornia oil from sea plants) was also produced by the Syntroleum Corporation and termed R- 8X. Syntroleum processed...these bio- oils without catalyst change-out or processing optimization. Only a portion of the fit for purpose and characterization testing was...jet fuel, up to 50 volume %, just as F-T SPK is allowed to be used in MIL-DTL-83133F. b) The R-8 feedstock of fats, oils , and grease (FOG) was

  17. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  18. Atomization of a High Speed Jet

    NASA Astrophysics Data System (ADS)

    Xu, Zhiliang; Samulyak, Roman; Li, Xiaolin; Tzanos, Constantine

    2005-11-01

    We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. Many parameters such as the nuzzle shape, the velocity and the turbulence of the jet and the thermodynamic states of liquid and gas could be contributing causes for jet breakup. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. In order to resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. We model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. On the liquid/vapor interface, a phase transition problem is solved numerically.

  19. Altitude-chamber performance of British Rolls-Royce Nene II engine III : 18.00-inch-diameter jet nozzle

    NASA Technical Reports Server (NTRS)

    Grey, Ralph E; Brightwell, Virginia L; Barson, Zelmar; NACA

    1950-01-01

    An altitude-chamber investigation of British Rolls-Royce Nene II turbojet engine was conducted over range of altitudes from sea level to 65,000 feet and ram pressure ratios from 1.10 to 3.50, using an 18.00-inch-diameter jet nozzle. The 18.00-inch-diameter jet nozzle gave slightly lower values of net-thrust specific fuel consumption than either the 18.41- or the standard 18.75-inch-diameter jet nozzles at high flight speeds. At low flight speeds, the 18.41-inch-diameter jet nozzle gave the lowest value of net-thrust specific fuel consumption.

  20. Improving the fuel economy of stoichiometrically fueled S.I. engines by means of EGR and enhanced ignition -- A comparison of gasoline, methanol and natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neame, G.R.; Gardiner, D.P.; Mallory, R.W.

    1995-12-31

    This paper describes an experimental study in which the potential for fuel economy improvements with EGR was investigated using an automotive V6 engine. Steady state engine dynamometer tests were run at 2,000 rpm and 200 kPa Brake Mean Effective Pressure (BMEP). The engine was fueled with gasoline, methanol or natural gas. Plasma jet ignition was evaluated as a means of improving EGR tolerance. EGR tolerance with methanol was found to be better than with gasoline, while natural gas showed the poorest EGR tolerance. Plasma jet ignition extended EGR limits for all three fuels. Fuel economy benefits were realized with naturalmore » gas and gasoline at low EGR rates and without EGR but plasma jet ignition provided no improvements with methanol until over 10% EGR was used. Plasma jet ignition made stable operation possible with methanol at 40% EGR, where fuel economy improvements were ultimately limited by the slow burning associated with the high EGR rate. Both slow burning and high cyclic variation affected gasoline at high EGR rates, while stability limits to spark advance with natural gas caused fuel economy to degrade at relatively low EGR rates.« less

  1. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    NASA Astrophysics Data System (ADS)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  2. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  3. Occupational exposure to mineral turpentine and heavy fuels: a possible risk factor for Alzheimer's disease.

    PubMed

    Helou, Rafik; Jaecker, Pierre

    2014-05-01

    The association between solvents and Alzheimer's disease (AD) has been the subject of several studies. Yet, only few studies have examined the various solvents separately, and the controls have rarely been monitored long enough. For these reasons and others, we believe that further studies are required. The objective of this study was to identify solvents associated with the clinicoradiological diagnostic of AD or mixed-type dementia (MD). A retrospective case-control study was performed in 156 patients followed up at the Memory Diagnostic Center of Bertinot Juel Hospital (France). The inclusion criteria were known occupation(s), a Mini-Mental State Examination (MMSE) score ≥10 at the first visit, a neuropsychological evaluation performed and a diagnosis established in our Memory Diagnostic Center. The diagnostics were crossed with 9 solvents belonging to two classes of solvents. Exposure was evaluated using French national job-exposure matrices. Certain petroleum-based solvents and fuels (i.e. mineral turpentine, diesel fuel, fuel oil and kerosene) were associated with a diagnosis of AD or MD. This association was still significant after adjustment for age, sex and education (adjusted OR: 6.5; 95% CI: 2-20). Occupational exposure to mineral turpentine and heavy fuels may be a risk factor for AD and MD.

  4. Bronchial anthracofibrosis: an emerging pulmonary disease due to biomass fuel exposure.

    PubMed

    Gupta, A; Shah, A

    2011-05-01

    1) To document current knowledge of bronchial anthracofibrosis (BAF), an emerging pulmonary disease recognised just over a decade ago; 2) to highlight the demographic profile, and clinical, radiological and bronchoscopic features peculiar to BAF; and 3) to discuss the postulated causes and clinical conditions associated with BAF, emphasising the need to characterise and recognise it as a distinct clinical disorder. An extensive search of the literature was performed in Medline/PubMed and other databases with key terms 'anthracosis', 'biomass fuels', 'bronchial anthracofibrosis' and 'pulmonary tuberculosis'. The bibliographies of papers identified were searched for further relevant articles. A total of 17 studies and six case series/reports describing 1320 patients with bronchoscopically confirmed BAF were documented. BAF was predominantly observed in elderly housewives in rural areas with prolonged exposure to biomass fuel, and was associated with respiratory diseases such as tuberculosis (TB), chronic obstructive pulmonary disease, pneumonia and malignancy. Exposure to biomass fuel smoke emerged as the main causative factor, but the possibility of an occupational lung disorder was also raised. Characteristic clinical, thorax computed tomography and bronchoscopic features of BAF were identified and its differentiation from endobronchial TB and bronchogenic carcinoma was described. As a pulmonary disease, BAF is yet to be highlighted in both developing and industrialised countries. BAF is currently diagnosed only on bronchoscopy, whereas a suitable non-invasive diagnostic modality would enable rapid diagnosis and increased recognition. Approaches for patients with BAF need to be developed and the serious hazards of biomass fuel use should be emphasised.

  5. Transverse jet shear layer instabilities and their control

    NASA Astrophysics Data System (ADS)

    Karagozian, Ann

    2013-11-01

    The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.

  6. Inhalation Exposure to Jet Fuel (JP8) Among U.S. Air Force Personnel

    DTIC Science & Technology

    2010-10-01

    less Ihan 25 ft > grrater tlulII 25 I t). primary job (entranl > (IIItlldomirum.er/jireglloro > Oil /side IWllgar), (HId performillg I"Orious tasks...collect vapor samples on coconut shell chareoal in tWQ.scction (100 mg/50 mg) glass sorbcnt tubes (Anasorb; SKC Inc .. Eighty Four. Pa.) at a now...dermal JP8 exposure study (~) assessed three body surfaces, additional body regions were not assessed in this study to minimize the burden Oil study

  7. Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.; Thomas, I.

    1977-01-01

    An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.

  8. Application of jet-shear-layer mixing and effervescent atomization to the development of a low-NO(x) combustor. Ph.D. Thesis - Purdue Univ.

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato Olaf

    1993-01-01

    An investigation was conducted to develop appropriate technologies for a low-NO(x), liquid-fueled combustor. The combustor incorporates an effervescent atomizer used to inject fuel into a premixing duct. Only a fraction of the combustion air is used in the premixing process to avoid autoignition and flashback problems. This fuel-rich mixture is introduced into the remaining combustion air by a rapid jet-shear-layer-mixing process involving radial fuel-air jets impinging on axial air jets in the primary combustion zone. Computational analysis was used to provide a better understanding of the fluid dynamics that occur in jet-shear-layer mixing and to facilitate a parametric analysis appropriate to the design of an optimum low-NO(x) combustor. A number of combustor configurations were studied to assess the key combustor technologies and to validate the modeling code. The results from the experimental testing and computational analysis indicate a low-NO(x) potential for the jet-shear-layer combustor. Key parameters found to affect NO(x) emissions are the primary combustion zone fuel-air ratio, the number of axial and radial jets, the aspect ratio and radial location of the axial air jets, and the radial jet inlet hole diameter. Each of these key parameters exhibits a low-NO(x) point from which an optimized combustor was developed. Using the parametric analysis, NO(x) emissions were reduced by a factor of 3 as compared with the emissions from conventional, liquid-fueled combustors operating at cruise conditions. Further development promises even lower NO(x) with high combustion efficiency.

  9. Behaviour of conductivity improvers in jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dacre, B.; Hetherington, J.I.

    1995-05-01

    Dangerous accumulation of electrostatic charge can occur due to high speed pumping and microfiltration of fuel. This can be avoided by increasing the electrical conductivity of the fuel using conductivity improver additives. However, marked variations occur in the conductivity response of different fuels when doped to the same level with conductivity improver. This has been attributed to interactions of the conductivity improver with other fuel additives or fuel contaminants. The present work concentrates on the effects of fuel contaminants, in particular polar compounds, on the performance of the conductivity improver. Conductivity is the fuel property of prime interest. The conductivitymore » response of model systems of the conductivity improver STADIS 450 in dodecane has been measured and the effect on this conductivity of additions of model polar contaminants sodium naphthenate, sodium dodecyl benzene sulphonate, and sodium phenate have been measured. The sodium salts have been found to have a complex effect on the performance of STADIS 450, reducing the conductivity at low concentrations to a minimum value and then increasing the conductivity at high concentrations of sodium salts. This work has focused on characterising this minimum in the conductivity values and on understanding the reason for its occurrence. The effects on the minimum conductivity value of the following parameters are investigated: (a) time, (b) STADIS 450 concentration, (c) sodium salt concentration, (d) mixed sodium salts, (e) experimental method, (f) a phenol, (g) individual components of STADIS 450. The complex conductivity response of the STADIS 450 to sodium salt impurities is discussed in terms of possible inter-molecular interactions.« less

  10. Economic impact of fuel properties on turbine powered business aircraft

    NASA Technical Reports Server (NTRS)

    Powell, F. D.

    1984-01-01

    The principal objective was to estimate the economic impact on the turbine-powered business aviation fleet of potential changes in the composition and properties of aviation fuel. Secondary objectives include estimation of the sensitivity of costs to specific fuel properties, and an assessment of the directions in which further research should be directed. The study was based on the published characteristics of typical and specific modern aircraft in three classes; heavy jet, light jet, and turboprop. Missions of these aircraft were simulated by computer methods for each aircraft for several range and payload combinations, and assumed atmospheric temperatures ranging from nominal to extremely cold. Five fuels were selected for comparison with the reference fuel, nominal Jet A. An overview of the data, the mathematic models, the data reduction and analysis procedure, and the results of the study are given. The direct operating costs of the study fuels are compared with that of the reference fuel in the 1990 time-frame, and the anticipated fleet costs and fuel break-even costs are estimated.

  11. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1972-01-01

    Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.

  12. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  13. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru

    PubMed Central

    Peña, Melissa Burroughs; Romero, Karina M.; Velazquez, Eric J.; Davila-Roman, Victor G.; Gilman, Robert H.; Wise, Robert A; Miranda, J. Jaime; Checkley, William

    2015-01-01

    Household air pollution from biomass fuel use affects three billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity (FVC) were conducted to evaluate for effect modification. Data from 1004 individuals (mean age 55.3 years, 51.7% female) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio 5.0, 95% CI 2.6 to 9.9) and hypertension (adjusted relative risk ratio 3.5, 95% CI 1.7 to 7.0). Biomass fuel users had a higher SBP (7.01 mmHg, 95% CI 4.4 to 9.6) and a higher DBP (5.9 mmHg, 95% CI 4.2 to 7.6) when compared to nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted FVC for either SBP or DBP. Biomass fuel use was associated with an increased risk of hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention. PMID:25753976

  14. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru.

    PubMed

    Burroughs Peña, Melissa; Romero, Karina M; Velazquez, Eric J; Davila-Roman, Victor G; Gilman, Robert H; Wise, Robert A; Miranda, J Jaime; Checkley, William

    2015-05-01

    Household air pollution from biomass fuel use affects 3 billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥ 35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity were conducted to evaluate for effect modification. Data from 1004 individuals (mean age, 55.3 years; 51.7% women) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio, 5.0; 95% confidence interval, 2.6-9.9) and hypertension (adjusted relative risk ratio, 3.5; 95% confidence interval, 1.7-7.0). Biomass fuel users had a higher systolic blood pressure (7.0 mm Hg; 95% confidence interval, 4.4-9.6) and a higher diastolic blood pressure (5.9 mm Hg; 95% confidence interval, 4.2-7.6) when compared with nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted forced vital capacity for either systolic blood pressure or diastolic blood pressure. Biomass fuel use was associated with a higher likelihood of having hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention. © 2015 American Heart Association, Inc.

  15. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  16. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions.

    PubMed

    Mehus, Aaron A; Reed, Rustin J; Lee, Vivien S T; Littau, Sally R; Hu, Chengcheng; Lutz, Eric A; Burgess, Jefferey L

    2015-07-01

    To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting-lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use.

  17. Deep desulfurization of hydrocarbon fuels

    DOEpatents

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  18. PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina

    2013-10-10

    The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adoptmore » spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.« less

  19. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    NASA Technical Reports Server (NTRS)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  20. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    PubMed

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.