Sample records for jet drills

  1. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  2. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  3. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  4. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  5. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  6. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  7. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  8. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  9. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a) A...

  10. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...

  11. Method and apparatus for water jet drilling of rock

    DOEpatents

    Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James

    1978-01-01

    Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.

  12. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    NASA Astrophysics Data System (ADS)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e

  13. Laser drilling of thermal barrier coated jet-engine components

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical

  14. Field testing of jet-grouted piles and drilled shafts.

    DOT National Transportation Integrated Search

    2014-01-01

    A field study of deep foundations supporting high mast lighting and signage was undertaken in typical Florida : soils. Three drilled shafts (48 in x12 ft and two 48 in x18 ft) and two jet-grouted piles (28 in x18 ft) were : constructed in Keystone He...

  15. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  16. Design of a water jet drill for development of geothermal resources. Annual progress report, June 1, 1976--May 31, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-05-31

    Research was expanded to the drilling of crystalline rock. Advance rates of 40 inches per minute have been achieved at 16,000 psi, 10 gpm flow rate in a 30,000 psi compressive strength rock using the water alone as the drilling mechanism. The quality of the hole achieved as the jet drilled a variety of rock was found to vary and a hydromechanical drilling bit, combining high pressure water jets with roller cones, has been developed. A field drilling unit has been tested and modified to allow the drilling of holes to 3/sup 1///sub 2/ inch diameter using the hydromechanical drill.more » Preliminary work on the development of a cavitation test for rock is also included.« less

  17. Water jetting for the mitigation of defects in drilled shafts : a laboratory investigation of jetting effectiveness in different deleterious materials.

    DOT National Transportation Integrated Search

    2012-09-01

    Presented in this report are results of a laboratory investigation designed to examine the effectiveness of water : jetting as a means for mitigating defects in drilled shaft foundations. The primary objective of this research was : to establish an e...

  18. Hard-rock jetting. Part 2. Rock type decides jetting economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pols, A.C.

    1977-02-07

    In Part 2, Koninklijke Shell Exploratie en Produktie Laboratorium presents the results of jet-drilling laminated formations. Shell concludes that (1) hard, laminated rock cannot be jet-drilled satisfactorily without additional mechanical cutting aids, (2) the increase in penetration rate with bit-pressure drop is much lower for impermeable rock than it is for permeable rock, (3) drilling mud can have either a positive or a negative effect on penetration rate in comparison with water, depending on the material drilled, and (4) hard, isotropic, sedimentary, impermeable rock can be drilled using jets at higher rates than with conventional means. However, jetting becomes profitablemore » only in the case of expensive rigs.« less

  19. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    PubMed

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  20. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations

    PubMed Central

    He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421

  1. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  2. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  3. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  4. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  5. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  6. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  7. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  8. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  9. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  10. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  11. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  12. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  13. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  14. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  15. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  16. 30 CFR 57.7052 - Drilling positions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  17. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  18. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  19. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  20. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  1. 30 CFR 56.7052 - Drilling positions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  2. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  3. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  4. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  5. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  6. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  7. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  8. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  9. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  10. 30 CFR 56.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...

  11. 30 CFR 57.7004 - Drill mast.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...

  12. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  13. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  14. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  15. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  16. 30 CFR 56.7008 - Moving the drill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving the drill. 56.7008 Section 56.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7008 Moving the drill. When a drill is being moved from one drilling area to another...

  17. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  18. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  19. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  20. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  1. 30 CFR 57.7003 - Drill area inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill area inspection. 57.7003 Section 57.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7003 Drill area inspection. The drilling area shall be...

  2. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  3. 30 CFR 57.7008 - Moving the drill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving the drill. 57.7008 Section 57.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7008 Moving the drill. When a drill is being moved from one...

  4. 30 CFR 57.7008 - Moving the drill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving the drill. 57.7008 Section 57.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7008 Moving the drill. When a drill is being moved from one...

  5. 30 CFR 57.7008 - Moving the drill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving the drill. 57.7008 Section 57.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7008 Moving the drill. When a drill is being moved from one...

  6. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  7. 30 CFR 57.7008 - Moving the drill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving the drill. 57.7008 Section 57.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7008 Moving the drill. When a drill is being moved from one...

  8. 30 CFR 57.7008 - Moving the drill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving the drill. 57.7008 Section 57.7008... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7008 Moving the drill. When a drill is being moved from one...

  9. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  10. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  11. 30 CFR 56.7003 - Drill area inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill area inspection. 56.7003 Section 56.7003... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7003 Drill area inspection. The drilling area shall be inspected for hazards before...

  12. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  13. 30 CFR 56.7012 - Tending drills in operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tending drills in operation. 56.7012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7012 Tending drills in operation. While in operation, drills shall be...

  14. 30 CFR 56.7012 - Tending drills in operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tending drills in operation. 56.7012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7012 Tending drills in operation. While in operation, drills shall be...

  15. 30 CFR 56.7012 - Tending drills in operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tending drills in operation. 56.7012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7012 Tending drills in operation. While in operation, drills shall be...

  16. 30 CFR 56.7012 - Tending drills in operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tending drills in operation. 56.7012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7012 Tending drills in operation. While in operation, drills shall be...

  17. 30 CFR 56.7012 - Tending drills in operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tending drills in operation. 56.7012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7012 Tending drills in operation. While in operation, drills shall be...

  18. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  19. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  20. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  1. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  2. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  3. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  4. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  5. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  6. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  7. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  8. 30 CFR 57.7005 - Augers and drill stems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Augers and drill stems. 57.7005 Section 57.7005... Jet Piercing Drilling-Surface Only § 57.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving...

  9. 30 CFR 57.7005 - Augers and drill stems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Augers and drill stems. 57.7005 Section 57.7005... Jet Piercing Drilling-Surface Only § 57.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving...

  10. 30 CFR 57.7005 - Augers and drill stems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Augers and drill stems. 57.7005 Section 57.7005... Jet Piercing Drilling-Surface Only § 57.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving...

  11. 30 CFR 57.7005 - Augers and drill stems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Augers and drill stems. 57.7005 Section 57.7005... Jet Piercing Drilling-Surface Only § 57.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving...

  12. 30 CFR 57.7005 - Augers and drill stems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Augers and drill stems. 57.7005 Section 57.7005... Jet Piercing Drilling-Surface Only § 57.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving...

  13. 30 CFR 57.7012 - Tending drills in operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tending drills in operation. 57.7012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7012 Tending drills in operation. While in operation...

  14. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  15. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  16. 30 CFR 57.7012 - Tending drills in operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tending drills in operation. 57.7012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7012 Tending drills in operation. While in operation...

  17. 30 CFR 57.7012 - Tending drills in operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tending drills in operation. 57.7012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7012 Tending drills in operation. While in operation...

  18. 30 CFR 57.7012 - Tending drills in operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tending drills in operation. 57.7012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7012 Tending drills in operation. While in operation...

  19. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  20. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  1. 30 CFR 57.7012 - Tending drills in operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tending drills in operation. 57.7012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7012 Tending drills in operation. While in operation...

  2. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  3. 30 CFR 56.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 56.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  4. 30 CFR 57.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 57.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  5. 30 CFR 56.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Covering or guarding drill holes. 56.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  6. 30 CFR 56.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Covering or guarding drill holes. 56.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  7. 30 CFR 57.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Covering or guarding drill holes. 57.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  8. 30 CFR 56.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Covering or guarding drill holes. 56.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  9. 30 CFR 57.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Covering or guarding drill holes. 57.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  10. 30 CFR 56.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Covering or guarding drill holes. 56.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  11. 30 CFR 57.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Covering or guarding drill holes. 57.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  12. 30 CFR 57.7013 - Covering or guarding drill holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Covering or guarding drill holes. 57.7013... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  13. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  14. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  15. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  16. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  17. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  18. 30 CFR 57.7054 - Starting or moving drill equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Starting or moving drill equipment. 57.7054... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7054 Starting or moving drill equipment...

  19. 30 CFR 57.7054 - Starting or moving drill equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Starting or moving drill equipment. 57.7054... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7054 Starting or moving drill equipment...

  20. 30 CFR 57.7054 - Starting or moving drill equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Starting or moving drill equipment. 57.7054... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7054 Starting or moving drill equipment...

  1. 30 CFR 57.7054 - Starting or moving drill equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Starting or moving drill equipment. 57.7054... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7054 Starting or moving drill equipment...

  2. 30 CFR 57.7054 - Starting or moving drill equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Starting or moving drill equipment. 57.7054... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7054 Starting or moving drill equipment...

  3. Numerical Simulation of Bottomhole Flow Field Structure in Particle Impact Drilling

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Huang, Jinsong; Li, Luopeng

    2018-01-01

    In order to quantitatively describe the flow field distribution of the PID drilling bit in the bottomhole working condition, the influence of the fluid properties (pressure and viscosity) on the flow field of the bottom hole and the erosion and wear law of the drill body are compared. The flow field model of the eight - inch semi - vertical borehole drilling bit was established by CFX software. The working state of the jet was returned from the inlet of the drill bit to the nozzle outlet and flowed out at the bottom of the nozzle. The results show that there are irregular three-dimensional motion of collision and bounce after the jetting, resulting in partial impact on the drill body and causing impact and damage to the cutting teeth. The jet of particles emitted by different nozzles interfere with each other and affect the the bottom of the impact pressure; reasonable nozzle position can effectively reduce these interference.

  4. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56.7050 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for...

  5. 30 CFR 56.7051 - Loose objects on the mast or drill platform.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loose objects on the mast or drill platform. 56... Drilling and Rotary Jet Piercing Drilling § 56.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the mast or drill platform. ...

  6. 30 CFR 56.7051 - Loose objects on the mast or drill platform.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Loose objects on the mast or drill platform. 56... Drilling and Rotary Jet Piercing Drilling § 56.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the mast or drill platform. ...

  7. 30 CFR 56.7051 - Loose objects on the mast or drill platform.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Loose objects on the mast or drill platform. 56... Drilling and Rotary Jet Piercing Drilling § 56.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the mast or drill platform. ...

  8. Automation of cutting and drilling of composite components

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1991-01-01

    The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.

  9. 30 CFR 57.7051 - Loose objects on the mast or drill platform.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loose objects on the mast or drill platform. 57... Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the...

  10. 30 CFR 57.7051 - Loose objects on the mast or drill platform.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Loose objects on the mast or drill platform. 57... Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the...

  11. 30 CFR 57.7051 - Loose objects on the mast or drill platform.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Loose objects on the mast or drill platform. 57... Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the...

  12. Percussive Drill Test at JPL

    NASA Image and Video Library

    2018-05-17

    This video clip shows a test of a new percussive drilling technique at NASA's Jet Propulsion Laboratory in Pasadena, California. On May 19, NASA's Curiosity rover is scheduled to test percussive drilling on Mars for the first time since December 2016. The video clip was shot on March 28, 2018. It has been sped up by 50 times. Curiosity's drill was designed to pulverize rocks samples into powder, which can then be deposited into two chemistry laboratories carried inside of the rover. Curiosity's science team is eager to the rover using percussive drilling again; it will approach a clay-enriched area later this year that could shed new light on the history of water in Gale Crater. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22324

  13. First Drilled Sample on Mars Since 2016

    NASA Image and Video Library

    2018-05-23

    NASA's Curiosity rover successfully drilled a hole 2 inches (5.1 centimeters) deep in a target called "Duluth" on May 20, 2018. The hole is about .6 inches (1.6 centimeters) across. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. Engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, had to innovate a new way for the rover to drill in order to restore this ability. The new technique, called Feed Extended Drilling (FED) keeps the drill's bit extended out past two stabilizer posts that were originally used to steady the drill against Martian rocks. It lets Curiosity drill using the force of its robotic arm, a little more like a human would while drilling into a wall at home. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. https://photojournal.jpl.nasa.gov/catalog/PIA22325

  14. Jet impinging onto a laser drilled tapered hole: Influence of tapper location on heat transfer and skin friction at hole surface

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-02-01

    Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.

  15. Surface drilling technologies for Mars

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.; Rowley, J. C.; Cort, G. E.

    1986-01-01

    Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass.

  16. New Rock-Drilling Method in 'Mars Yard' Test

    NASA Image and Video Library

    2017-10-23

    This photo taken in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, on Aug. 1, 2017, shows a step in development of possible alternative techniques that NASA's Curiosity Mars rover might be able to use to resume drilling into rocks on Mars. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks in four years, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22062

  17. Methods and system for subsurface stabilization using jet grouting

    DOEpatents

    Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.

    1999-01-01

    Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

  18. Testing New Techniques for Mars Rover Rock-Drilling

    NASA Image and Video Library

    2017-10-23

    In the summer and fall of 2017, the team operating NASA's Curiosity Mars rover conducted tests in the "Mars Yard" at NASA's Jet Propulsion Laboratory, Pasadena, California, to develop techniques that Curiosity might be able to use to resume drilling into rocks on Mars. JPL robotics engineer Vladimir Arutyunov, in this June 29, 2017, photo, checks the test rover's drill bit at its contact point with a rock. Note that the stabilizer post visible to the right of the bit is not in contact with the rock, unlike the positioning used and photographed by Curiosity when drilling into rocks on Mars in 2013 to 2016. In late 2016, after Curiosity's drill had collected sample material from 15 Martian rocks, the drill's feed mechanism ceased working reliably. That motorized mechanism moved the bit forward or back with relation to the stabilizer posts on either side of the bit. In normal drilling by Curiosity, the stabilizers were positioned on the target rock first, and then the feed mechanism extended the rotation-percussion bit into the rock. In the alternative technique seen here, called "feed-extended drilling," the test rover's stabilizers are not used to touch the rock. The bit is advanced into the rock by motion of the robotic arm rather than the drill's feed mechanism. https://photojournal.jpl.nasa.gov/catalog/PIA22061

  19. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2012-09-04

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  20. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2013-07-02

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  1. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  2. Combining conventional and thermal drilling in order to increase speed and reduce costs of drilling operations to access deep geothermal resources

    NASA Astrophysics Data System (ADS)

    Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.

    2017-04-01

    The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of

  3. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  4. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  5. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  6. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  7. The research of breaking rock with liquid-solid two-phase jet flow

    NASA Astrophysics Data System (ADS)

    Cheng, X. Z.; Ren, F. S.; Fang, T. C.

    2018-03-01

    Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.

  8. Simulations of AGN jets: magnetic kink instability versus conical shocks

    NASA Astrophysics Data System (ADS)

    Barniol Duran, Rodolfo; Tchekhovskoy, Alexander; Giannios, Dimitrios

    2017-08-01

    Relativistic jets in active galactic nuclei (AGN) convert as much as half of their energy into radiation. To explore the poorly understood processes that are responsible for this conversion, we carry out fully 3D magnetohydrodynamic (MHD) simulations of relativistic magnetized jets. Unlike the standard approach of injecting the jets at large radii, our simulated jets self-consistently form at the source and propagate and accelerate outwards for several orders of magnitude in distance before they interact with the ambient medium. We find that this interaction can trigger strong energy dissipation of two kinds inside the jets, depending on the properties of the ambient medium. Those jets that form in a new outburst and drill a fresh hole through the ambient medium fall victim to a 3D magnetic kink instability and dissipate their energy primarily through magnetic reconnection in the current sheets formed by the instability. On the other hand, those jets that form during repeated cycles of AGN activity and escape through a pre-existing hole in the ambient medium maintain their stability and dissipate their energy primarily at MHD recollimation shocks. In both cases, the dissipation region can be associated with a change in the density profile of the ambient gas. The Bondi radius in AGN jets serves as such a location.

  9. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Hole at Buckskin Drilled Days Before Landing Anniversary

    NASA Image and Video Library

    2015-08-05

    NASA's Curiosity Mars Rover drilled this hole to collect sample material from a rock target called "Buckskin" on July 30, 2015, during the 1060th Martian day, or sol, of the rover's work on Mars. The diameter is slightly smaller than a U.S. dime. Curiosity landed on Mars on Aug. 6, 2012, Universal Time (evening of Aug. 5, PDT). The rover took this image with the Mars Hand Lens Imager (MAHLI) camera, which is mounted on the same robotic arm as the sample-collecting drill. Rock powder from the collected sample was subsequently delivered to a laboratory inside the rover for analysis. The rover's drill did not experience any sign during this sample collection of an intermittent short-circuiting issue that was detected earlier in 2015. The Buckskin target is in an area near "Marias Pass" on lower Mount Sharp where Curiosity had detected unusually high levels of silica and hydrogen. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19804

  11. Casing window milling with abrasive fluid jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  12. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...)] Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... defined the subject merchandise as steel drill pipe, and steel drill collars, whether or not conforming to...

  13. Drilling force and temperature of bone under dry and physiological drilling conditions

    NASA Astrophysics Data System (ADS)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  14. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  15. Investigation of the gas-jet ejector in KamAZ trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkret, L.Y.; Berezea, A.I.; Lobkov, A.N.

    1984-03-01

    This article considers the possibility of using gas-jet vacuum pumps in tank trucks for transporting liquids (water) at drilling sites. The discharge system of the KamAZ trucks can be reliably sealed by an engine brake, an important prerequisite of reliable operation of a gas-jet ejector that is switched on when the tank is being filled. The ejector consists of a housing, a Laval nozzle, a front wall with cylindrical neck, a tin-plate diffuser, an air supply pipe, and a flange for attaching the ejector to the flange of the exhaust muffler of the truck. The gas-jet ejectors are driven bymore » the exhaust gas (EG) of the trucks. The dependences of the EG flow rate, fuel expenditure, EG temperature ahead of the ejector, and the rotational frequency of the engine crankshaft on the diameter at different EG pressures. It is recommended that gas-jet ejectors be used on series produced tank trucks instead of rotary vacuum pumps with mechanical drive.« less

  16. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  17. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  18. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less

  19. Metal drilling with portable hand drills

    NASA Technical Reports Server (NTRS)

    Edmiston, W. B.; Harrison, H. W.; Morris, H. E.

    1970-01-01

    Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling.

  20. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  1. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube

  2. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-474 and 731-TA-1176 (Final)] Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in the subject... imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23, and 8431...

  3. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  4. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  5. Drill bit assembly for releasably retaining a drill bit cutter

    DOEpatents

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  6. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, E.; Darny, T.; Dozias, S.

    2015-12-15

    Atmospheric pressure plasma propagation inside long dielectric tubes is analyzed for the first time through nonintrusive and nonperturbative time resolved bi-directional electric field (EF) measurements. This study unveils that plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position usually revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have an amplitude of several kV/cm for helium or neon plasmas and are preserved almost constant along a few tens of cm inside a capillary. All these experimental measurements aremore » in excellent agreement with previous model calculations. The key roles of the voltage pulse polarity and of the target nature on the helium flow patterns when plasma jet is emerging in ambient air are documented from Schlieren visualization. The second part of this work is then dedicated to the development of multi jet systems, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are reported and analyzed from ICCD imaging and time resolved EF measurements. This allows for the design and the feasibility validation of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation, and electrostatic influence between the produced secondary jets.« less

  7. A new drilling method-Earthworm-like vibration drilling.

    PubMed

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  8. Drilling reorganizes

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  9. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  10. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  11. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    PubMed

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P < 0.001). Within the limitations of the study, the short drilling protocol proposed herein may represent a safe approach for implant site preparation.

  12. 31. VIEW OF DRILL HALL FROM NORTH END OF DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF DRILL HALL FROM NORTH END OF DRILL FLOOR FACING SOUTH. SHOWS EAST AND WEST BALCONIES, VEHICLE ENTRANCE AT THE SOUTHWEST CORNER OF THE DRILL FLOOR, THE CONCESSION STAND IN THE SOUTHEAST CORNER OF THE DRILL FLOOR AND THE FOUR WINDOWS IN THE SOUTH TRUSS SPACE. NOTE CRACKS IN THE UPPER RIGHT CORNER (WEST) OF THE SOUTH WALL. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  13. Numerical investigation on the expansion of supercritical carbon dioxide jet

    NASA Astrophysics Data System (ADS)

    Lv, Q.; Long, X. P.; Kang, Y.; Xiao, L. Z.; Wu, W.

    2013-12-01

    Supercritical carbon dioxide (SC-CO2) fluid is characterized by low rock breaking threshold pressure and high rock breaking rate. Meanwhile, SC-CO2 fluid has relatively low viscosity near to gas and high density near to liquid. So, it has great advantages in drilling and rock breaking over water. In this paper, numerical study of SC-CO2 flowing through a nozzle is presented. The purpose of this simulation is to ascertain why the SC-CO2 jet flow has better ability in drilling and rock breaking than the water jet flow. The simulation model was controlled by the RANS equations together with the continuity equation as well as the energy equation. The realizable k-epsilon turbulence model was adopted to govern the turbulent characteristics. Pressure boundary conditions were applied to the inlet and outlet boundary. The properties of carbon dioxide and water were described by UDF. It is found that: (1) under the same boundary conditions, the decay of dimensionless central axial velocity and dynamic pressure of water is quicker than that of the SC-CO2, and the core length of SC-CO2 jet is about 4.5 times of the nozzle diameter, which is 1 times longer than that of the water; (2) With the increase of inlet pressure or the decrease of outlet pressure, the dimensionless central axial velocity and dynamic pressure attenuation of water keeps the same, while the decay of central axial velocity of SC-CO2 turns gentle; (3) the change of central axial temperature of SC-CO2 is more complex than that of the water.

  14. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    PubMed

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p < 0.05). The comparison of T Max within the test groups showed that drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p < 0.042). Temperature behavior at crestal and apical areas was similar being lower for slow drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p < 0.05). A single-drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time

  15. HPC simulations of grain-scale spallation to improve thermal spallation drilling

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Lomov, I.; Wideman, T. W.; Potter, J.

    2012-12-01

    Thermal spallation drilling and related hard-rock hole opening techniques are transformative technologies with the potential to dramatically reduce the costs associated with EGS well drilling and improve the productivity of new and existing wells. In contrast to conventional drilling methods that employ mechanical means to penetrate rock, thermal spallation methods fragment rock into small pieces ("spalls") without contact via the rapid transmission of heat to the rock surface. State-of-the-art constitutive models of thermal spallation employ Weibull statistical failure theory to represent the relationship between rock heterogeneity and its propensity to produce spalls when heat is applied to the rock surface. These models have been successfully used to predict such factors as penetration rate, spall-size distribution and borehole radius from drilling jet velocity and applied heat flux. A properly calibrated Weibull model would permit design optimization of thermal spallation drilling under geothermal field conditions. However, although useful for predicting system response in a given context, Weibull models are by their nature empirically derived. In the past, the parameters used in these models were carefully determined from laboratory tests, and thus model applicability was limited by experimental scope. This becomes problematic, for example, if simulating spall production at depths relevant for geothermal energy production, or modeling thermal spallation drilling in new rock types. Nevertheless, with sufficient computational resources, Weibull models could be validated in the absence of experimental data by explicit small-scale simulations that fully resolve rock grains. This presentation will discuss how high-fidelity simulations can be used to inform Weibull models of thermal spallation, and what these simulations reveal about the processes driving spallation at the grain-scale - in particular, the role that inter-grain boundaries and micro-pores play in the

  16. Study on the influence of parameters of medical drill on bone drilling temperature

    NASA Astrophysics Data System (ADS)

    XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao

    2018-03-01

    During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.

  17. Drill drive mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressel, M.O.

    1979-10-30

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less

  18. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  19. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  20. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less

  1. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  2. Effect of coating material on heat transfer and skin friction due to impinging jet onto a laser producedhole

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-07-01

    Jet impingement onto a two-layer structured hole in relation to laser drilling is investigated. The hole consists of a coating layer and a base material. The variations in the Nusselt number and the skin friction are predicted for various coating materials. The Reynolds stress turbulent model is incorporated to account for the turbulence effect of the jet flow and nitrogen is used as the working fluid. The study is extended to include two jet velocities emanating from the conical nozzle. It is found that coating material has significant effect on the Nusselt number variation along the hole wall. In addition, the skin friction varies considerably along the coating thickness in thehole.

  3. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in the... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... Government of China.\\2\\ \\1\\ The record is defined in sec. 207.2(f) of the Commission's Rules of Practice and...

  4. Curiosity Drill After Drilling at Telegraph Peak

    NASA Image and Video Library

    2015-03-06

    This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows the rover's drill just after finishing a drilling operation at a target rock called "Telegraph Peak" on Feb. 24, 2015, the 908th Martian day, or sol, of the rover's work on Mars. Three sols later, a fault-protection action by the rover halted a process of transferring sample powder that was collected during this drilling. The image is in raw color, as recorded directly by the camera, and has not been white-balanced. The fault-protection event, triggered by an irregularity in electrical current, led to engineering tests in subsequent days to diagnose the underlying cause. http://photojournal.jpl.nasa.gov/catalog/PIA19145

  5. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    1996-12-31

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less

  6. Comparison of heat generation during implant drilling using stainless steel and ceramic drills.

    PubMed

    Sumer, Mahmut; Misir, A Ferhat; Telcioglu, N Tuba; Guler, Ahmet U; Yenisey, Murat

    2011-05-01

    The purpose of this study was to compare the heat generated from implant drilling using stainless steel and ceramic drills. A total of 40 fresh bovine femoral cortical bone samples were used in this study. A constant drill load of 2.0 kg was applied throughout the drilling procedures via a drilling rig at a speed of 1,500 rpm. Two different implant drill types (stainless steel and ceramic) were evaluated. Heat was measured with type K thermocouple from 3 different depths. Data were subjected to the independent-sample t test and Pearson correlation analysis. The α level was set a priori at 0.05. The mean maximum temperatures at the depths of 3 mm, 6 mm, and 9 mm with the stainless steel drill were 32.15°C, 35.94°C, and 37.05°C, respectively, and those with the ceramic drill were 34.49°C, 36.73°C, and 36.52°C, respectively. A statistically significant difference was found at the depth of 3 mm (P = .014) whereas there was no significant difference at the depths of 6 and 9 mm (P > .05) between stainless steel and ceramic drills. Within the limitations of the study, although more heat was generated in the superficial part of the drilling cavity with the ceramic drill, heat modifications seemed not to be correlated with the drill type, whether stainless steel or ceramic, in the deep aspect of the cavity. Further clinical studies are required to determine the effect of drill type on heat generation. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    PubMed

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  8. A new drilling method—Earthworm-like vibration drilling

    PubMed Central

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  9. Data on cost analysis of drilling mud displacement during drilling operation.

    PubMed

    Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E

    2018-08-01

    The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.

  10. Drilling cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capuano, L.E. Jr.

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  11. DAME: planetary-prototype drilling automation.

    PubMed

    Glass, B; Cannon, H; Branson, M; Hanagud, S; Paulsen, G

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  12. DAME: Planetary-Prototype Drilling Automation

    NASA Astrophysics Data System (ADS)

    Glass, B.; Cannon, H.; Branson, M.; Hanagud, S.; Paulsen, G.

    2008-06-01

    We describe results from the Drilling Automation for Mars Exploration (DAME) project, including those of the summer 2006 tests from an Arctic analog site. The drill hardware is a hardened, evolved version of the Advanced Deep Drill by Honeybee Robotics. DAME has developed diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The DAME drill automation tested from 2004 through 2006 included adaptively controlled drilling operations and the downhole diagnosis of drilling faults. It also included dynamic recovery capabilities when unexpected failures or drilling conditions were discovered. DAME has developed and tested drill automation software and hardware under stressful operating conditions during its Arctic field testing campaigns at a Mars analog site.

  13. Remote drill bit loader

    DOEpatents

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  14. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, James A.

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotationmore » of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.« less

  15. Remote drill bit loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokos, J.A.

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.« less

  16. Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.

    2012-12-01

    Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.

  17. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  18. Drilling informatics: data-driven challenges of scientific drilling

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny

    2017-04-01

    The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.

  19. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    NASA Astrophysics Data System (ADS)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  20. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  1. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  2. Combination drilling and skiving tool

    DOEpatents

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  3. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jetsmore » that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.« less

  4. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  5. Jet in jet in M87

    NASA Astrophysics Data System (ADS)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  6. Steam jet ejectors for the process industries. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, R.B.

    1994-01-01

    Steam jet ejectors were for many years the workhorse of the chemical process industries for producing vacuum. With increasing emphasis on stricter pollution control, their use was curtailed. There are still many applications, however, such as those with large capacity requirements, where ejectors are the only equipment that can produce sufficient vacuum. Chapter 1 is a short overview on how to use the text. Chapter 2 discusses what an ejector is and how it works. How ejector stages work is reviewed in Chapter 3. Engineering calculations for ejector stages is thoroughly discussed in Chapter 4. In Chapter 5, contact andmore » surface condensers are reviewed, and calculation procedures are presented. The various types of pressure control are discussed in Chapter 6. Chapter 7 is an excellent review of installation of ejector vacuum systems. The final chapter of Part 2 (Chapters 3--8) thoroughly covers all aspects of operation, testing, troubleshooting and maintenance. Part 3, consisting of two chapters, is devoted to specifying and purchasing steam jet ejectors. Part 4 on other ejector applications and upgrading ejector usage also consists of two chapters. Chapter 11 reviews steam-jet refrigeration, steam-jet and gas-jet compressors, liquid jet eductors, desuperheaters, special design situations, and designing one's own systems. Upgrading of existing ejector procedures and hardware is reviewed in Chapter 12. The 12 appendixes cover: physical properties of common fluids; handy vacuum engineering data and rules of thumb; SI unit conversions; sizing air and steam metering orifices for testing; drill sizes; ejector operating costs and design optimization; forms for ejector calculations, tests, and inspections; instructions for preparing ejector specifications; test kit contents list; ejector manufacturers and suppliers of referenced hardware and information; and failure modes and symptoms.« less

  7. Drilling mud additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemer, P.; Downhour, R. Jr.

    1970-06-30

    A drilling mud additive prepared from farinaceous material contains relatively high gluten and fat contents and has between 30 and 40% water soluble solids on a dry basis. The product is particularly useful in rotary drilling as an additive to the drilling mud to inhibit water loss. The key to achieving the desired product is pretreatment of the raw flour and control of moisture. (2 claims)

  8. The behavior of enclosed-type connection of drill pipes during percussive drilling

    NASA Astrophysics Data System (ADS)

    Shadrina, A.; Saruev, L.

    2015-11-01

    Percussion drilling is the efficient method to drill small holes (≥ 70 mm) in medium- hard and harder rocks. The existing types of drill strings for geological explorations are not intended for strain wave energy transfer. The description of the improved design of the drill string having enclosed-type nipple connections is given in this paper presents. This nipple connection is designed to be used in drilling small exploration wells with formation sampling. Experimental findings prove the effectiveness of the enclosed nipple connection in relation to the load distribution in operation. The paper presents research results of the connection behavior under quasistatic loading (compression-tension). Loop diagrams are constructed and analyzed in force-displacement coordinates. Research results are obtained for shear stresses occurred in the nipple connection. A mechanism of shear stress distribution is described for the wave strain propagation over the connecting element. It is shown that in the course of operation the drill pipe tightening reduces the shear stress three times.

  9. 13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  10. Chuck for delicate drills

    NASA Technical Reports Server (NTRS)

    Copeland, C. S.

    1972-01-01

    Development of oil film technique to couple power between drive spindle and drill chuck for delicate drilling operations is discussed. Oil film permits application of sufficient pressure, but stops rotating when drill jams. Illustration of equipment is provided.

  11. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  12. Ultrasonically assisted drilling of rocks

    NASA Astrophysics Data System (ADS)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  13. Drilling Productivity Report

    EIA Publications

    2017-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  14. Subsurface drill string

    DOEpatents

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  15. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  16. New drilling rigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tubb, M.

    1981-02-01

    Friede and Goldman Ltd. of New Orleans, Louisiana has a successful drilling rig, the L-780 jack-up series. The triangular-shaped drilling vessel measures 180 x 176 ft. and is equipped with three 352 ft legs including spud cans. It is designed to work in up to 250 ft waters and drill to 20,000 ft depths. The unit is scheduled to begin initial drilling operations in the Gulf of Mexico for Arco. Design features are included for the unit. Davie Shipbuilding Ltd. has entered the Mexican offshore market with the signing of a $40,000,000 Canadian contract for a jack-up to work inmore » 300 ft water depths. Baker Marine Corporation has contracted with the People's Republic of China for construction of two self-elevating jack-ups. The units will be built for Magnum Marine, headquartered in Houston. Details for the two rigs are given. Santa Fe International Corporation has ordered a new jack-up rig to work initially in the Gulf of Suez. The newly ordered unit, Rig 136, will be the company's fourth offshore drilling rig now being built in the Far East. Temple Drilling Company has signed a construction contract with Bethlehem Steel for a jack-up to work in 200 ft water depths. Penrod Drilling Company has ordered two additional cantilever type jack-ups for Hitachi Shipbuilding and Engineering Co. Ltd. of Japan. Two semi-submersibles, capable of working in up to 2000 ft water depths, have been ordered by two Liberian companies. Details for these rigs are included. (DP)« less

  17. The Final Phase of Drilling of the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Stolper, E.; Depaolo, D.; Thomas, D.; Garcia, M.; Haskins, E.; Baker, M.

    2008-12-01

    The principal goal of the Hawaii Scientific Drilling Project (HSDP) was to core continuously deep into the flank of a Hawaiian volcano and to investigate the petrology, geochemisty, geochronology, magnetics, etc. of the recovered samples. Drilling in Hilo, on the island of Hawaii proceeded in three phases. A 1.06 km pilot hole was core-drilled in 1993; a second hole was core-drilled to 3,098 meters below sea level (mbsl) in 1999, then deepened in 2004-2007 to 3,509 mbsl. Although the final phase of drilling was at times technically challenging, core recovery was close to 100%. All rocks from the final phase of drilling were emplaced below sea level and are from the Mauna Kea volcano. On-site core logging identified 45 separate units (the 1999 phase of drilling yielded 345 units). Five lithologies were identified: pillows (~60%); pillow breccias (~10%); massive lavas (~12%); hyaloclastites (~17%); intrusives (~1%; these are mostly multiple thin (down to cm scale) fingers of magma with identical lithologies occurring over narrow depth intervals). The rocks are primarily tholeiitic, ranging from aphyric to highly olivine-phyric lavas (up to ~25% olivine phenocrysts), with considerable fresh glass and olivine; clays and zeolites are present throughout the core. Forty whole-rock samples were collected as a reference suite and sent to multiple investigators for study. Additionally, glass was collected at roughly 3 m intervals for electron microprobe analysis. Although continuous and consistent with the shallower rocks from the previous phase of coring, there are several noteworthy features of the deepest core: (1) Glasses from shallower portions of the core exhibited bimodal silica contents, a low SiO2 group (~48-50 wt.%) and a high SiO2 group (~50.5- 52 wt.%). Glasses from the last phase of drilling are essentially all in the high-silica group and are somewhat more evolved than the high-silica glasses from the shallower portion of the core (5.1-7.6 vs. 5.1-10.4 wt.% Mg

  18. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  19. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  20. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    NASA Technical Reports Server (NTRS)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  1. In-process and post-process measurements of drill wear for control of the drilling process

    NASA Astrophysics Data System (ADS)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  2. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  3. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  4. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  5. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  6. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  7. 46 CFR 199.250 - Drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drills. 199.250 Section 199.250 Shipping COAST GUARD... CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.250 Drills. (a) An abandon-ship drill and a fire drill, as described in § 199.180, must be conducted on each passenger vessel at...

  8. Contamination Control for Scientific Drilling Operations.

    PubMed

    Kallmeyer, J

    2017-01-01

    Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited

    NASA Astrophysics Data System (ADS)

    Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri

    2017-05-01

    In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

  10. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Kassab, Steve (Inventor); Bao, Xiaoqi (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  11. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  12. Curiosity Successfully Drills "Duluth"

    NASA Image and Video Library

    2018-05-23

    A close-up image of a 2-inch-deep hole produced using a new drilling technique for NASA's Curiosity rover. The hole is about 0.6 inches (1.6 centimeters) in diameter. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. Curiosity drilled this hole in a target called "Duluth" on May 20, 2018. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. https://photojournal.jpl.nasa.gov/catalog/PIA22326

  13. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  14. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  15. 30 CFR 33.34 - Drilling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  16. Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

    2014-05-01

    The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific

  17. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  18. Self-Advancing Step-Tap Drills

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.

    2007-01-01

    Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of

  19. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  20. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  1. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  2. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  3. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    PubMed

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  4. Experimental analysis of drilling process in cortical bone.

    PubMed

    Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing

    2014-02-01

    Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. The Auto-Gopher Deep Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  6. Effect of pre-drilling on intraosseous temperature during self-drilling mini-implant placement in a porcine mandible model.

    PubMed

    Gurdán, Zsuzsanna; Vajta, László; Tóth, Ákos; Lempel, Edina; Joób-Fancsaly, Árpád; Szalma, József

    2017-03-31

    This in vitro study investigated intraos seous heat production during insertion, with and without pre-drilling, of a self-drilling orthodontic mini-implant. To measure temperature changes and drilling times in pig ribs, a special testing apparatus was used to examine new and worn pre-drills at different speeds. Temperatures were measured during mini-implant placement with and without pre-drilling. The average intraosseous temperature increase during manual mini-implant insertion was similar with and without pre-drilling (11.8 ± 2.1°C vs. 11.3 ± 2.4°C, respectively; P = 0.707). During pre-drilling the mean temperature increase for new drills was 2.1°C at 100 rpm, 2.3°C at 200 rpm, and 7.6°C at 1,200 rpm. Temperature increases were significantly higher for worn drills at the same speeds (2.98°C, 3.0°C, and 12.3°C, respectively), while bone temperatures at 100 and 200 rpm were similar for new and worn drills (P = 0.345 and 0.736, respectively). Baseline bone temperature was approximated within 30 s after drilling in most specimens. Drilling time at 100 rpm was 2.1 ± 0.9 s, but was significantly shorter at 200 rpm (1.1 ± 0.2 s) and 1,200 rpm (0.1 ± 0.03 s). Pre-drilling did not decrease intraosseous temperatures. In patients for whom pre-drilling is indicated, speeds of 100 or 200 rpm are recommended, at least 30 s after pilot drilling.

  7. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  8. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigmamore » STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.« less

  9. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs).

    PubMed

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone

    2010-08-01

    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  10. Overhead drilling: Comparing three bases for aligning a drilling jig to vertical

    PubMed Central

    Rempel, David; Star, Demetra; Barr, Alan; Janowitz, Ira

    2010-01-01

    Problem Drilling overhead into concrete or metal ceilings is a strenuous task done by construction workers to hang ductwork, piping, and electrical equipment. The task is associated with upper body pain and musculoskeletal disorders. Previously, we described a field usability evaluation of a foot lever and inverted drill press intervention devices that were compared to the usual method for overhead drilling. Both interventions were rated as inferior to the usual method based on poor setup time and mobility. Method Three new interventions, which differed on the design used for aligning the drilling column to vertical, were compared to the usual method for overhead drilling by commercial construction workers (n=16). Results The usual method was associated with the highest levels of regional body fatigue and the poorest usability ratings when compared to the three interventions. Conclusion Overall, the ‘Collar Base’ intervention design received the best usability ratings. Impact on Industry Intervention designs developed for overhead drilling may reduce shoulder fatigue and prevent subsequent musculoskeletal disorders. These designs may also be useful for other overhead work such as lifting and supporting materials (e.g., piping, ducts) that are installed near the ceiling. Workplace health and safety interventions may require multiple rounds of field-testing prior to achieving acceptable usability ratings by the end users. PMID:20630276

  11. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provide information and data on the fitness of the drilling unit to perform the proposed drilling... rated capacity of the unit. (c) Oceanographic, meteorological, and drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees...

  12. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    PubMed

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  13. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    PubMed Central

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  14. Drilling of bone: A comprehensive review

    PubMed Central

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  15. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  16. 30 CFR 56.4331 - Firefighting drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Firefighting drills. 56.4331 Section 56.4331 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Firefighting Procedures/alarms/drills § 56.4331 Firefighting drills. Emergency firefighting drills...

  17. 30 CFR 56.4331 - Firefighting drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Firefighting drills. 56.4331 Section 56.4331 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Firefighting Procedures/alarms/drills § 56.4331 Firefighting drills. Emergency firefighting drills...

  18. 30 CFR 56.4331 - Firefighting drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Firefighting drills. 56.4331 Section 56.4331 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Firefighting Procedures/alarms/drills § 56.4331 Firefighting drills. Emergency firefighting drills...

  19. 30 CFR 56.4331 - Firefighting drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Firefighting drills. 56.4331 Section 56.4331 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Firefighting Procedures/alarms/drills § 56.4331 Firefighting drills. Emergency firefighting drills...

  20. Heat accumulation during sequential cortical bone drilling.

    PubMed

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Issues and Concerns in Robotic Drilling

    NASA Technical Reports Server (NTRS)

    Glass, Brian

    2003-01-01

    Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.

  2. Portable Horizontal-Drilling And Positioning Device

    NASA Technical Reports Server (NTRS)

    Smigocki, Edmund; Johnson, Clarence

    1988-01-01

    Portable horizontal-drilling and positioning device, constructed mainly of off-the-shelf components, accurately drills horizontal small holes in irregularly shaped objects. Holes precisely placed and drilled in objects that cannot be moved to shop area. New device provides three axes of movement while maintaining horizontal drilling.

  3. Curiosity Self-Portrait at Big Sky Drilling Site

    NASA Image and Video Library

    2015-10-13

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Big Sky" site, where its drill collected the mission's fifth taste of Mount Sharp. The scene combines dozens of images taken during the 1,126th Martian day, or sol, of Curiosity's work during Mars (Oct. 6, 2015, PDT), by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover's robotic arm. The rock drilled at this site is sandstone in the Stimson geological unit inside Gale Crater. The location is on cross-bedded sandstone in which the cross bedding is more evident in views from when the rover was approaching the area, such as PIA19818. The view is centered toward the west-northwest. It does not include the rover's robotic arm, though the shadow of the arm is visible on the ground. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rocknest" (PIA16468), "John Klein" (PIA16937) and "Windjana" (PIA18390). This portrait of the rover was designed to show the Chemistry and Camera (ChemCam) instrument atop the rover appearing level. This causes the horizon to appear to tilt toward the left, but in reality it is fairly flat. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. The drilled hole in the rock, appearing grey near the lower left corner of the image, is 0.63 inch (1.6 centimeters) in diameter. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http

  4. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  5. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  6. THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Cámara, D.; Lazzati, Davide; Morsony, Brian J., E-mail: diego@astro.unam.mx

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected bymore » the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.« less

  7. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig

  8. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The drill...

  10. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The drill...

  11. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The drill...

  12. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The drill...

  13. 33 CFR 146.125 - Emergency drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Emergency drills. 146.125 Section... CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned OCS Facilities § 146.125 Emergency drills. (a) Emergency drills shall be conducted at least once each month by the person in charge of the manned facility. The drill...

  14. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining.

    PubMed

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj

    2015-03-01

    Drilling through the bone is a complicated process in orthopaedic surgery. It involves human as a part of the work so it needs better perfection and quality which leads to the sustainability. Different studies were carried out on this curious topic and some interesting results were obtained, which help the orthopaedic surgeon on the operation table. Major problems faced during bone drilling were crack initiation, thermal necrosis and burr formation. The surface topography of the bone is an indirect indication for the sustainability of bone joint. In this study, a comparison is made between conventional and a loose abrasive unconventional drilling technique for the surface characterization of the bone. The attempt has been made to show the feasibility of bone drilling with non-conventional technique and its aftereffect on the bone structure. The burr formation during conventional bone drilling was found to be more which leads to problems such as crack initiation and thermal necrosis. Scanning electrode microscope and surface roughness tester were used to characterize the surface of the fine drilled bone specimen and the results testified quite better surface finish and least crack formation while drilling with loose abrasive unconventional technique. © IMechE 2015.

  15. Reducing temperature elevation of robotic bone drilling.

    PubMed

    Feldmann, Arne; Wandel, Jasmin; Zysset, Philippe

    2016-12-01

    This research work aims at reducing temperature elevation of bone drilling. An extensive experimental study was conducted which focused on the investigation of three main measures to reduce the temperature elevation as used in industry: irrigation, interval drilling and drill bit designs. Different external irrigation rates (0 ml/min, 15 ml/min, 30 ml/min), continuously drilled interval lengths (2 mm, 1 mm, 0.5 mm) as well as two drill bit designs were tested. A custom single flute drill bit was designed with a higher rake angle and smaller chisel edge to generate less heat compared to a standard surgical drill bit. A new experimental setup was developed to measure drilling forces and torques as well as the 2D temperature field at any depth using a high resolution thermal camera. The results show that external irrigation is a main factor to reduce temperature elevation due not primarily to its effect on cooling but rather due to the prevention of drill bit clogging. During drilling, the build up of bone material in the drill bit flutes result in excessive temperatures due to an increase in thrust forces and torques. Drilling in intervals allows the removal of bone chips and cleaning of flutes when the drill bit is extracted as well as cooling of the bone in-between intervals which limits the accumulation of heat. However, reducing the length of the drilled interval was found only to be beneficial for temperature reduction using the newly designed drill bit due to the improved cutting geometry. To evaluate possible tissue damage caused by the generated heat increase, cumulative equivalent minutes (CEM43) were calculated and it was found that the combination of small interval length (0.5 mm), high irrigation rate (30 ml/min) and the newly designed drill bit was the only parameter combination which allowed drilling below the time-thermal threshold for tissue damage. In conclusion, an optimized drilling method has been found which might also enable drilling in more

  16. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud

  17. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  18. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  19. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  20. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  1. 30 CFR 77.1009 - Drill; operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men shall not drill from positions that hinder their access to the control levers, or from insecure footing...

  2. Investigating Curiosity Drill Area

    NASA Image and Video Library

    2013-02-09

    NASA Mars rover Curiosity used its Mast Camera Mastcam to take the images combined into this mosaic of the drill area, called John Klein, where the rover ultimately performed its first sample drilling.

  3. Lunar drill and test apparatus

    NASA Technical Reports Server (NTRS)

    Norrington, David W.; Ardoin, Didier C.; Alexander, Stephen G.; Rowland, Philip N.; Vastakis, Frank N.; Linsey, Steven L.

    1988-01-01

    The design of an experimental lunar drill and a facility to test the drill under simulated lunar conditions is described. The drill utilizes a polycrystalline diamond compact drag bit and an auger to mechanically remove cuttings from the hole. The drill will be tested in a vacuum chamber and powered through a vacuum seal by a drive mechanism located above the chamber. A general description of the design is provided followed by a detailed description and analysis of each component. Recommendations for the further development of the design are included.

  4. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, makingmore » them an effective way to access the U.S. energy resources currently locked under hard rock formations.« less

  5. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  6. Core drill's bit is replaceable without withdrawal of drill stem - A concept

    NASA Technical Reports Server (NTRS)

    Rushing, F. C.; Simon, A. B.

    1970-01-01

    Drill bit is divided into several sectors. When collapsed, the outside diameter is forced down the drill stem, when it reaches bottom the sectors are forced outward and form a cutting bit. A dulled bit is retracted by reversal of this procedure.

  7. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  8. Geothermal well drilling manual at Cerro Prieto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez P., A.; Flores S., M.

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimizemore » hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.« less

  9. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.

    PubMed

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj; Ghai, Aman

    2016-09-01

    Orthopaedic surgery involves drilling of bones to get them fixed at their original position. The drilling process used in orthopaedic surgery is most likely to the mechanical drilling process and there is all likelihood that it may harm the already damaged bone, the surrounding bone tissue and nerves, and the peril is not limited at that. It is very much feared that the recovery of that part may be impeded so that it may not be able to sustain life long. To achieve sustainable orthopaedic surgery, a surgeon must try to control the drilling damage at the time of bone drilling. The area around the holes decides the life of bone joint and so, the contiguous area of drilled hole must be intact and retain its properties even after drilling. This study mainly focuses on optimization of drilling parameters like rotational speed, feed rate and the type of tool at three levels each used by Taguchi optimization for surface roughness and material removal rate. The confirmation experiments were also carried out and results found with the confidence interval. Scanning electrode microscopy (SEM) images assisted in getting the micro level information of bone damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conformable apparatus in a drill string

    DOEpatents

    Hall, David R [Provo, UT; Hall, Jr., H. Tracy; Pixton, David S [Lehi, UT; Fox, Joe [Spanish Fork, UT

    2007-08-28

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  11. Neurosurgical robotic arm drilling navigation system.

    PubMed

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Cutting process simulation of flat drill

    NASA Astrophysics Data System (ADS)

    Tamura, Shoichi; Matsumura, Takashi

    2018-05-01

    Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.

  13. Self-propelled instrumented deep drilling system

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor); Gorevan, Stephen (Inventor)

    2006-01-01

    An autonomous subsurface drilling device has spaced-apart forward and rearward feet sections coupled to an axial thruster mechanism between them to operate using an inchworm method of mobility. In one embodiment, forward and rearward drill sections are carried on forward and rearward feet sections for drilling into material in the borehole in both forward and rearward directions, to allow the device to maneuver in any direction underground. In another embodiment, a front drill section has a drill head for cutting into the borehole and conveying cuttings through a center spine tube to an on-board depository for the cuttings. The feet sections of the device employ a foot scroll drive unit to provide radial thrust and synchronous motion to the feet for gripping the borehole wall. The axial thrust mechanism has a tandem set of thrusters in which the second thruster is used to provide the thrust needed for drilling, but not walking. A steering mechanism composed of concentric inner and outer eccentric rings provided with the rearward feet section allow small corrections in both direction and magnitude to the drilling direction as drilling commences.

  14. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  15. Sea Bed Drilling Technology MARUM-MeBo: Overview on recent scientific drilling campaigns and technical developments

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Bergenthal, Markus; Bohrmann, Gerhard; Pape, Thomas; Kopf, Achim; Huhn-Frehers, Katrin; Gohl, Karsten; Wefer, Gerold

    2017-04-01

    The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for a drilling depth of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2016 it was deployed on 17 research expeditions and drilled about 3 km into different types of geology including carbonate and crystalline rocks, gas hydrates, glacial tills, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of about 70 %. We used the development and operational experiences of MARUM-MeBo70 for the development of a second generation drill rig MARUM-MeBo200. This drill rig is dedicated for conducting core drilling down to 200 m below sea floor. After successful sea trials in the North Sea in October 2014 the MeBo200 was used on a scientific expedition on the research vessel RV SONNE (SO247) in March/April 2016. During 12 deployments we drilled altogether 514 m in hemipelagic sediments with volcanic ashes as well as in muddy and sandy slide deposits off New Zealand. The average core recovery was about 54%. The maximum drilling depth was 105 m below sea floor. Developments for the MeBo drilling technology include the development of a pressure core barrel that was successfully deployed on two research expeditions so far. Bore hole logging adds to the coring capacity. Several autonomous logging probes have been developed in the last years for a deployment with MeBo in the logging while tripping mode - a sonic probe measuring in

  16. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  17. Drilling report and core logs for the 1981 drilling of Kilauea Iki lava lake, Kilauea volcano, Hawaii, with comparative notes on earlier (1967-1979) drilling experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helz, R.T.; Wright, T.L.

    1983-01-01

    The purpose is: (1) to describe the 1981 drilling of Kilauea Iki lava lake, (2) to present the logs for the drill core recovered during the 1981 drilling, and (3) to present a summary of some of the field observations made during the 1967, 1975, 1976 and 1979 drillings that are relevant to the crystallization history of Kilauea Iki lava lake. This report supplements logs for the 1967-1979 core presented in Helz et al. (1980). 21 references, 4 figures, 4 tables.

  18. Counter-Rotating Tandem Motor Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially

  19. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    NASA Astrophysics Data System (ADS)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Véronique; Tazibt, Abdel

    2011-01-01

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  20. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  1. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  2. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  3. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  4. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  5. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  6. 46 CFR 131.535 - Firefighting training and drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Firefighting training and drills. 131.535 Section 131... OPERATIONS Tests, Drills, and Inspections § 131.535 Firefighting training and drills. (a) A fire drill must... drill, nor immediately before or after the abandon-ship drill. If none can be held on schedule, because...

  7. Cortical bone drilling: An experimental and numerical study.

    PubMed

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  8. New drilling rigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tubb, M.

    1981-03-01

    Rig builders maintain their frantic work pace to meet drilling contractors' orders for new mobile units - principally the jack-up and semis now so popular. Leading new rig client is Santa Fe Drilling, which has ordered its seventh new offshore unit. The order includes two Enhanced 9500 Pacesetter Series semis, each scheduled to cost $80 million, to be built by Daewoo Shipbuilding and Heavy Machinery in Korea.

  9. Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Rangaswamy, T.

    2018-04-01

    Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.

  10. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  11. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  12. Chemical Speciation of Chromium in Drilling Muds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-02-02

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. Wemore » have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.« less

  13. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  14. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  15. Standards in collaborative international disaster drills: a case study of two international search and rescue drills.

    PubMed

    Rokach, Ariel; Pinkert, Moshe; Nemet, Dani; Goldberg, Avishay; Bar-Dayan, Yaron

    2008-01-01

    During the last few decades, various global disasters have rendered nations helpless (such as Thailand's tsunami and earthquakes in Turkey, Pakistan, Iran, and India). A lack of knowledge and resources make it difficult to address such disasters. Preparedness for a national disaster is expensive, and in most cases, unachievable even for modern countries. International collaboration might be useful for coping with large-scale disasters. Preparedness for international collaboration includes drills. Two such drills held by the Israeli Home Front Command and other military and civilian bodies with the nations of Greece and Turkey are described in this article. The data were gathered from formal debriefings of the Israeli teams collaborating in two separate drills with Greek and Turkish teams. Preparations began four months before the drills were conducted and included three meetings between Israeli and foreign officials. The Israeli and foreign officials agreed upon the drill layout, logistics, communications, residence, real-time medicine, hardware, and equipment. The drills took place in Greece and Turkey and lasted four days. The first day included meetings between the teams and logistics preparations. The second and third days were devoted to exercises. The drills included evacuating casualties from a demolition zone and treating typical injuries such as crush syndrome. Every day ended with a formal debriefing by the teams' commanders. The fourth day included a ceremony and transportation back home. Members in both teams felt the drills improved their skills and had an important impact on creating common language that would enhance cooperation during a real disaster. A key factor in the management of large-scale disasters is coordination between countries. International drills are important to create common language within similar regulations.

  16. Ocean Drilling Program: Public Information: News

    Science.gov Websites

    site ODP's main web site ODP/TAMU Science Operator Home Ocean Drilling Program News The Ocean Drilling Program was succeeded in 2003 by the Integrated Ocean Drilling Program (IODP). The IODP U.S. Implementing

  17. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    PubMed

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  18. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical

  19. 30 CFR 57.4331 - Surface firefighting drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface firefighting drills. 57.4331 Section 57... and Control Firefighting Procedures/alarms/drills § 57.4331 Surface firefighting drills. Emergency firefighting drills shall be held at least once every six months for persons assigned surface firefighting...

  20. 30 CFR 57.4331 - Surface firefighting drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface firefighting drills. 57.4331 Section 57... and Control Firefighting Procedures/alarms/drills § 57.4331 Surface firefighting drills. Emergency firefighting drills shall be held at least once every six months for persons assigned surface firefighting...

  1. 30 CFR 57.4331 - Surface firefighting drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface firefighting drills. 57.4331 Section 57... and Control Firefighting Procedures/alarms/drills § 57.4331 Surface firefighting drills. Emergency firefighting drills shall be held at least once every six months for persons assigned surface firefighting...

  2. 30 CFR 57.4331 - Surface firefighting drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface firefighting drills. 57.4331 Section 57... and Control Firefighting Procedures/alarms/drills § 57.4331 Surface firefighting drills. Emergency firefighting drills shall be held at least once every six months for persons assigned surface firefighting...

  3. The Marskhod Egyptian Drill Project

    NASA Astrophysics Data System (ADS)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  4. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  5. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  6. 30 CFR 250.1612 - Well-control drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Well-control drills. 250.1612 Section 250.1612 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL...-control drills. Well-control drills shall be conducted for each drilling crew in accordance with the...

  7. 30 CFR 250.1612 - Well-control drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Well-control drills. 250.1612 Section 250.1612 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL...-control drills. Well-control drills shall be conducted for each drilling crew in accordance with the...

  8. 30 CFR 250.1612 - Well-control drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Well-control drills. 250.1612 Section 250.1612 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL...-control drills. Well-control drills shall be conducted for each drilling crew in accordance with the...

  9. 30 CFR 250.1612 - Well-control drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Well-control drills. 250.1612 Section 250.1612 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... § 250.1612 Well-control drills. Well-control drills shall be conducted for each drilling crew in...

  10. Optical coherence tomography guided dental drill

    DOEpatents

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  11. Continental Scientific Drilling Program Data Base

    NASA Astrophysics Data System (ADS)

    Pawloski, Gayle

    The Continental Scientific Drilling Program (CSDP) data base at Lawrence Livermore National Laboratory is a central repository, cataloguing information from United States drill holes. Most holes have been drilled or proposed by various federal agencies. Some holes have been commercially funded. This data base is funded by the Office of Basic Energy Sciences of t he Department of Energy (OBES/DOE) to serve the entire scientific community. Through the unrestricted use of the database, it is possible to reduce drilling costs and maximize the scientific value of current and planned efforts of federal agencies and industry by offering the opportunity for add-on experiments and supplementing knowledge with additional information from existing drill holes.

  12. Drill System Development for the Lunar Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson

    Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.

  13. High Temperature 300°C Directional Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more

  14. Drilling Damage in Composite Material.

    PubMed

    Durão, Luís Miguel P; Tavares, João Manuel R S; de Albuquerque, Victor Hugo C; Marques, Jorge Filipe S; Andrade, Oscar N G

    2014-05-14

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results-bearing test and delamination onset test-and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  15. Volume requirements for aerated mud drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, B.; Rajtar, J.M.

    1995-09-01

    Aerated mud drilling has been recognized as having many advantages over conventional mud drilling, such ass higher penetration rate, less formation damage, minimized lost circulation, and lower drilling cost. In some areas, the use of aerated mud as a circulating medium for drilling oil and gas wells is becoming an attractive practice. Maintaining an optimum combination of liquid and air flow rates is important in aerated drilling operations. However, most drilling operators are unclear on what constitutes the ``optimum combination of the liquid and air flow rates.`` Guo et al. presented a mathematical approach to determining the flowing bottomhole pressuremore » (BHP) for aerated mud drilling. This paper addresses the use of Guo et al.`s mathematical model to determine liquid and air volume requirements considering wellbore stability, pipe sticking, and formation damage as well as the cuttings-carry capacity of the aerated mud. For a formation-damage-prevention point of view, the liquid fraction in the fluid stream should e as low as possible. However, a sufficient mud flow rate is always required to make the hole stable and to maintain the cuttings-carrying capacity of the aerated mud without injecting much air volume. This paper provides a simple approach to determining the liquid and air volume requirements for aerated mud drilling.« less

  16. Ocean drilling ship chosen

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The Sedco/BP 471, owned jointly by Sedco, Inc., of Dallas, Tex., and British Petroleum, has been selected as the drill ship for the Ocean Drilling Program (ODP). The contract, with a specified initial term of 4 years with 10 1-year options after that, is expected to be signed by mid March by Texas A&M University, the ODP science operator, and Sedco, Inc. Texas A&M will develop the design for scientific and laboratory spaces aboard the Sedco/BP 471 and will oversee the ship conversion. Testing and shakedown of the ship is scheduled for the coming autumn; the first scientific cruise is scheduled for next January.One year ago, the commercial drilling market sagged, opening up the option for leasing a commercial drill ship (Eos, February 22, 1983, p. 73). Previously, the ship of choice had been the Glomar Explorer; rehabilitating the former CIA salvage ship would have been extremely expensive, however.

  17. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  18. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  19. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  20. 30 CFR 57.4361 - Underground evacuation drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground evacuation drills. 57.4361 Section... Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At least once every six months, mine evacuation drills shall be held to assess the ability of all persons...

  1. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  2. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  3. Communication adapter for use with a drilling component

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Hall,; Jr,; Tracy, H [Provo, UT; Bradford, Kline [Orem, UT; Rawle, Michael [Springville, UT

    2007-04-03

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  4. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Can my operations plan, drilling permit... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can my operations plan, drilling permit, and drilling program apply to more than one well? (a) Your...

  5. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... District Manager. (3) The lessee shall provide information and data on the fitness of the drilling unit to... drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the...

  6. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... District Manager. (3) The lessee shall provide information and data on the fitness of the drilling unit to... drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the...

  7. 30 CFR 250.1605 - Drilling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... District Manager. (3) The lessee shall provide information and data on the fitness of the drilling unit to... drilling unit performance data. Where oceanographic, meteorological, and drilling unit performance data are not otherwise readily available, lessees shall collect and report such data upon request to the...

  8. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  9. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  10. Portable rapid and quiet drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mireca (Inventor); Chang, Zenshea (Inventor); Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor)

    2010-01-01

    A hand-held drilling device, and method for drilling using the device, has a housing, a transducer within the housing, with the transducer effectively operating at ultrasonic frequencies, a rotating motor component within the housing and rigid cutting end-effector rotationally connected to the rotating motor component and vibrationally connected to the transducer. The hand-held drilling device of the present invention operates at a noise level of from about 50 decibels or less.

  11. Ocean Drilling Program: Drilling Services

    Science.gov Websites

    Drilling operations team Material services team Development engineering team ODP/TAMU Science Operator Home Services department consists of three team-oriented project groups, which also work to improve the existing team. A member of this team sails with each cruise to provide expertise for the shipboard scientific

  12. Western USA groundwater drilling

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Perrone, D.

    2016-12-01

    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  13. 21 CFR 872.4130 - Intraoral dental drill.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  14. 21 CFR 872.4130 - Intraoral dental drill.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  15. 21 CFR 872.4130 - Intraoral dental drill.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  16. 21 CFR 872.4130 - Intraoral dental drill.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  17. 21 CFR 872.4130 - Intraoral dental drill.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  18. 43 CFR 3107.1 - Extension by drilling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Extension by drilling. 3107.1 Section 3107... § 3107.1 Extension by drilling. Any lease on which actual drilling operations were commenced prior to the... or operation upon which such drilling takes place, shall be extended for 2 years subject to the...

  19. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1

  1. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and the...

  2. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and the...

  3. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and the...

  4. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and the...

  5. Drilling Damage in Composite Material

    PubMed Central

    Durão, Luís Miguel P.; Tavares, João Manuel R.S.; de Albuquerque, Victor Hugo C.; Marques, Jorge Filipe S.; Andrade, Oscar N.G.

    2014-01-01

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability. PMID:28788650

  6. Synthesis of engineering designs of drilling facilities

    NASA Astrophysics Data System (ADS)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  7. 30 CFR 256.71 - Directional drilling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Directional drilling. 256.71 Section 256.71..., and Extensions § 256.71 Directional drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the...

  8. The reverse laser drilling of transparent materials

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.; Lindner, P. A.

    1980-01-01

    Within a limited range of incident laser-beam intensities, laser drilling of a sapphire wafer initiates on the surface of the wafer where the laser beam exits and proceeds upstream in the laser beam to the surface where the laser beam enters the wafer. This reverse laser drilling is the result of the constructive interference between the laser beam and its reflected component on the exit face of the wafer. Constructive interference occurs only at the exit face of the sapphire wafer because the internally reflected laser beam suffers no phase change there. A model describing reverse laser drilling predicts the ranges of incident laser-beam intensity where no drilling, reverse laser drilling, and forward laser drilling can be expected in various materials. The application of reverse laser drilling in fabricating feed-through conductors in silicon-on-sapphire wafers for a massively parallel processer is described.

  9. External cooling efficiently controls intraosseous temperature rise caused by drilling in a drilling guide system: an in vitro study.

    PubMed

    Boa, Kristof; Varga, Endre; Pinter, Gabor; Csonka, Akos; Gargyan, Istvan; Varga, Endre

    2015-12-01

    The purpose of this study was to measure the rise in intraosseous temperature caused by drilling through a drilling guide system. We compared the rise in temperature generated, and the number of increases of more than 10 °C, between drills that had been cooled with saline at room temperature (25 °C) and those that had not been cooled, for every step of the drilling sequence. Cortical layers of bovine ribs were used as specimens, and they were drilled through 3-dimensional printed surgical guides. Heat was measured with an infrared thermometer. The significance of differences was assessed with either a two-sample t test or Welch's test, depending on the variances. The mean rises (number of times that the temperature rose above 10 °C) for each group of measurements were: for the 2mm drill, 4.8 °C (0/48) when cooled and 7.0 °C (8/48) when not cooled; with the 2.5mm drill, 5.2 °C (1/48) when cooled and 8.5 °C (17/48) when not cooled (2 mm canal); with the 3 mm drill, 3.3 °C when cooled (0/48) and 8.5 °C (18/24) when not cooled (2.5 mm canal); and with the 3.5 mm drill, 4.8 °C when cooled (0/24) and 9.4 °C when not cooled (10/23) (3 mm canal). The temperature rose significantly less with cooling at every step of the drilling sequence (p<0.001). We conclude that external cooling can maintain the intraosseous temperature within the safe range while drilling through an implant guide system, whereas drilling without irrigation can lead to temperatures that exceed the acceptable limit. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is

  11. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  12. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining

  13. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance ofmore » drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.« less

  14. Drilling resistance: A method to investigate bone quality.

    PubMed

    Lughmani, Waqas A; Farukh, Farukh; Bouazza-Marouf, Kaddour; Ali, Hassan

    2017-01-01

    Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.

  15. 30 CFR 56.7005 - Augers and drill stems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Augers and drill stems. 56.7005 Section 56.7005... Piercing Drilling § 56.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. ...

  16. 30 CFR 56.7005 - Augers and drill stems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Augers and drill stems. 56.7005 Section 56.7005... Piercing Drilling § 56.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. ...

  17. 30 CFR 56.7005 - Augers and drill stems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Augers and drill stems. 56.7005 Section 56.7005... Piercing Drilling § 56.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. ...

  18. 30 CFR 56.7005 - Augers and drill stems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Augers and drill stems. 56.7005 Section 56.7005... Piercing Drilling § 56.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. ...

  19. 30 CFR 56.7005 - Augers and drill stems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Augers and drill stems. 56.7005 Section 56.7005... Piercing Drilling § 56.7005 Augers and drill stems. Drill crews and others shall stay clear of augers or drill stems that are in motion. Persons shall not pass under or step over a moving stem or auger. ...

  20. 46 CFR 169.833 - Fire and boat drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire and boat drills. 169.833 Section 169.833 Shipping... Operations Tests, Drills, and Inspections § 169.833 Fire and boat drills. (a) When the vessel is operating, the master shall conduct a fire and boat drill each week. The scheduling of drills is at the...

  1. 46 CFR 169.833 - Fire and boat drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire and boat drills. 169.833 Section 169.833 Shipping... Operations Tests, Drills, and Inspections § 169.833 Fire and boat drills. (a) When the vessel is operating, the master shall conduct a fire and boat drill each week. The scheduling of drills is at the...

  2. 46 CFR 169.833 - Fire and boat drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire and boat drills. 169.833 Section 169.833 Shipping... Operations Tests, Drills, and Inspections § 169.833 Fire and boat drills. (a) When the vessel is operating, the master shall conduct a fire and boat drill each week. The scheduling of drills is at the...

  3. 46 CFR 169.833 - Fire and boat drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire and boat drills. 169.833 Section 169.833 Shipping... Operations Tests, Drills, and Inspections § 169.833 Fire and boat drills. (a) When the vessel is operating, the master shall conduct a fire and boat drill each week. The scheduling of drills is at the...

  4. 46 CFR 169.833 - Fire and boat drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire and boat drills. 169.833 Section 169.833 Shipping... Operations Tests, Drills, and Inspections § 169.833 Fire and boat drills. (a) When the vessel is operating, the master shall conduct a fire and boat drill each week. The scheduling of drills is at the...

  5. DPSSL for direct dicing and drilling of dielectrics

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Schwagmeier, M.

    2007-02-01

    New strategies in laser micro processing of glasses and other optically transparent materials are being developed with increasing interest and intensity using diode pumped solid state laser (DPSSL) systems generating short or ultra-short pulses in the optical spectra at good beam quality. Utilizing non-linear absorption channels, it can be demonstrated that ns green (532 nm) laser light can scribe, dice, full body cut and drill (flat) borofloat and borosilicate glasses at good quality. Outside of the correct choice in laser parameters, an intelligent laser beam management plays an important role in successful micro processing of glass. This application characterizes a very interesting alternative where standard methods demonstrate severe limitations such as diamond dicing, CO2 laser treatment or water jet cutting, especially for certain type of optical materials and/or geometric conditions. Application near processing examples using different DPSSL systems generating ns pulsed light at 532 nm in TEM 00 at average powers up to 10 W are presented and discussed in respect to potential applications in display technology, micro electronics and optics.

  6. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  7. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbank, Brian D.; Smith, Nicole

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2more » drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology

  8. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less

  9. Effects of drilling variables on burr properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, L.K.

    1976-09-01

    An investigation utilizing 303Se stainless steel, 17-4PH stainless steel, 1018 steel, and 6061-T6 aluminum was conducted to determine the influence of drilling variables in controlling burr size to minimize burr-removal cost and improve the quality and reliability of parts for small precision mechanisms. Burr thickness can be minimized by reducing feedrate and cutting velocity, and by using drills having high helix angles. High helix angles reduce burr thickness, length, and radius, while most other variables reduce only one of these properties. Radial-lip drills minimize burrs from 303Se stainless steel when large numbers of holes are drilled; this material stretches 10more » percent before drill-breakthrough. Entrance burrs can be minimized by the use of subland drills at a greatly increased tool cost. Backup-rods used in cross-drilled holes may be difficult to remove and may scratch the hole walls.« less

  10. 25 CFR 226.33 - Line drilling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  11. 25 CFR 226.33 - Line drilling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  12. 25 CFR 226.33 - Line drilling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  13. 25 CFR 226.33 - Line drilling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  14. 25 CFR 226.33 - Line drilling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  15. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be flushed with a...

  16. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  17. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be flushed with a...

  18. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  19. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  20. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  1. Ocean Drilling Program: Mirror Sites

    Science.gov Websites

    Publication services and products Drilling services and tools Online Janus database Search the ODP/TAMU web information, see www.iodp-usio.org. ODP | Search | Database | Drilling | Publications | Science | Cruise Info

  2. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  3. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the

  4. Confidence Hills -- The First Mount Sharp Drilling Site

    NASA Image and Video Library

    2014-11-04

    This image shows the first holes drilled by NASA Mars rover Curiosity at Mount Sharp. The loose material near the drill holes is drill tailings and an accumulation of dust that slid down the rock during drilling.

  5. Selection of Marine Corps Drill Instructors

    DTIC Science & Technology

    1980-03-01

    8 4. ., ey- Construction and Cross-Validation Statistics for Drill Instructor School Performance Success Keys...Race, and School Attrition ........... ............................. ... 15 13. Key- Construction and Cross-Validation Statistics for Drill... constructed form, the Alternation Ranking of Series Drill Instruc- tors. In this form, DIs in a Series are ranked from highest to lowest in terms of their

  6. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  7. Mechatronical system for testing small diameter drills

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevichius, Mindaugas; Daktariunas, Algis

    2008-08-01

    This paper describes a technique and mechatronical system for testing drills of a small diameter at different stages of production. The goal is to realize a system for drill testing which automatically increases the load applied to a drill under testing conditions and measure the drill's breaking torsion moment and deflection angle before a break occurs. The system's apparatus part and algorithms for the control of actuators and data acquisition from sensors are explained in the article. Also, a testing technique was applied in theoretical investigations to define the stress concentrations in dangerous places of the drill. The proposed technique and system have been verified by testing the drills of a small diameter at different stages of production—after thermal, mechanical treatment, and for quality control of the finished product.

  8. Loaded Transducer Fpr Downhole Drilling Component

    DOEpatents

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  9. Loaded transducer for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  10. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC codedmore » daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  11. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  12. Mars Drilling Status

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  13. Advantages and limitations of remotely operated sea floor drill rigs

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional

  14. Drilling Regolith: Why Is It So Difficult?

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2017-10-01

    The Apollo rotary percussive drill system penetrated the lunar regolith with reasonable efficiency; however, extraction of the drill core stem proved to be very difficult on all three missions. Retractable drill stem flutes may solve this problem.

  15. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    NASA Astrophysics Data System (ADS)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  16. Biological Evaluation of Implant Drill Made from Zirconium Dioxide.

    PubMed

    Akiba, Yosuke; Eguchi, Kaori; Akiba, Nami; Uoshima, Katsumi

    2017-04-01

    Zirconia is a good candidate material in the dental field. In this study, we evaluated biological responses against a zirconia drill using a bone cavity healing model. Zirconia drills, stainless steel drills, and the drilled bone surface were observed by scanning electron microscopy (SEM), before and after cavity preparation. For the bone cavity healing model, the upper first and second molars of Wistar rats were extracted. After 4 weeks, cavities were prepared with zirconia drills on the left side. As a control, a stainless steel drill was used on the right side. At 3, 7, and 14 days after surgery, micro-CT images were taken. Samples were prepared for histological staining. SEM images revealed that zirconia drills maintained sharpness even after 30 drilling procedures. The bone surface was smoother with the zirconia drill. Micro-CT images showed faster and earlier bone healing in the zirconia drill cavity. On H-E staining, at 7 days, the zirconia drill defect had a smaller blank lacunae area. At 14 days, the zirconia drill defect was filled with newly formed bone. The zirconia drill induces less damage during cavity preparation and is advantageous for bone healing. (197 words). © 2016 The Authors Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

  17. Use of Hardware Battery Drill in Orthopedic Surgery.

    PubMed

    Satish, Bhava R J; Shahdi, Masood; Ramarao, Duddupudi; Ranganadham, Atmakuri V; Kalamegam, Sundaresan

    2017-03-01

    Among the power drills (Electrical/Pneumatic/Battery) used in Orthopedic surgery, battery drill has got several advantages. Surgeons in low resource settings could not routinely use Orthopedic battery drills (OBD) due to the prohibitive cost of good drills or poor quality of other drills. "Hardware" or Engineering battery drill (HBD) is a viable alternative to OBD. HBD is easy to procure, rugged in nature, easy to maintain, durable, easily serviceable and 70 to 75 times cheaper than the standard high end OBD. We consider HBD as one of the cost effective equipment in Orthopedic operation theatres.

  18. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  19. Downhole drilling network using burst modulation techniques

    DOEpatents

    Hall,; David R. , Fox; Joe, [Spanish Fork, UT

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  20. A composite lithology log while drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, E.; Sutcliffe, B.; Franks, A.

    A new method for producing a computerized composite lithology log (CLL) while drilling by integrating MWD (measurement while drilling) and surface data is described. The CLL integrates three types of data (MWD mechanical, MWD geophysical, and surface cuttings) acquired during drilling, in three time stages: (1) Real Time. MWD drilling mechanical data including the rate of penetration and the downhole torque. This stage would provide bed boundaries and some inferred lithology. This would assist the driller with immediate drilling decisions and determine formation tops for coring, casing point, and correlation. (2) MWD Time. Recomputation of the above by adding MWDmore » geophysical data (gamma-ray, resistivity, neutron-density). This stage would upgrade the lithology inference, and give higher resolution of bed boundaries. (3) Lag Time. Detailed analysis of surface cuttings to confirm the inferred lithologies. This last input will result in a high-quality CLL with accurate lithologies and bed boundaries. The log will serve the geologist as well as the driller, petrophysicist, and reservoir engineer. It will form the basis for more comprehensive formation evaluation while drilling by adding hydrocarbon and MWD log data.« less

  1. 46 CFR 109.213 - Emergency training and drills.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...

  2. 46 CFR 109.213 - Emergency training and drills.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...

  3. 46 CFR 109.213 - Emergency training and drills.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...

  4. 46 CFR 109.213 - Emergency training and drills.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...

  5. 46 CFR 109.213 - Emergency training and drills.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Emergency training and drills. 109.213 Section 109.213 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.213 Emergency training and drills. (a) Training materials...

  6. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pneumatic cranial drill motor. 882.4370 Section... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power source used with removable rotating surgical cutting tools or drill bits on a patient's skull. (b...

  7. 33 CFR 106.225 - Drill and exercise requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Drill and exercise requirements...) Facility Security Requirements § 106.225 Drill and exercise requirements. (a) General. (1) Drills and... Security Officer (FSO) to identify any related security deficiencies that need to be addressed. (2) A drill...

  8. 33 CFR 106.225 - Drill and exercise requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Drill and exercise requirements...) Facility Security Requirements § 106.225 Drill and exercise requirements. (a) General. (1) Drills and... Security Officer (FSO) to identify any related security deficiencies that need to be addressed. (2) A drill...

  9. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pneumatic cranial drill motor. 882.4370 Section... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power source used with removable rotating surgical cutting tools or drill bits on a patient's skull. (b...

  10. 33 CFR 106.225 - Drill and exercise requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Drill and exercise requirements...) Facility Security Requirements § 106.225 Drill and exercise requirements. (a) General. (1) Drills and... Security Officer (FSO) to identify any related security deficiencies that need to be addressed. (2) A drill...

  11. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pneumatic cranial drill motor. 882.4370 Section... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power source used with removable rotating surgical cutting tools or drill bits on a patient's skull. (b...

  12. 33 CFR 106.225 - Drill and exercise requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Drill and exercise requirements...) Facility Security Requirements § 106.225 Drill and exercise requirements. (a) General. (1) Drills and... Security Officer (FSO) to identify any related security deficiencies that need to be addressed. (2) A drill...

  13. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer

  14. Curiosity Conducting Mini-Drill Test at Mojave

    NASA Image and Video Library

    2015-01-14

    This view NASA Curiosity Mars Rover shows the rover drill in position for a mini-drill test to assess whether a rock target called Mojave is appropriate for full-depth drilling to collect a sample. It was taken on Jan. 13, 2015.

  15. Accuracy study of computer-assisted drilling: the effect of bone density, drill bit characteristics, and use of a mechanical guide.

    PubMed

    Hüfner, T; Geerling, J; Oldag, G; Richter, M; Kfuri, M; Pohlemann, T; Krettek, C

    2005-01-01

    This study was designed to determine the clinical relevant accuracy of CT-based navigation for drilling. Experimental model. Laboratory. Twelve drills of varying lengths and diameters were tested with 2 different set-ups. Group 1 used free-hand navigated drilling technique with foam blocks equipped with titanium target points. Group 2 (control) used a newly developed 3-dimensional measurement device equipped with titanium target points with a fixed entry for the navigated drill to minimize bending forces. One examiner performed 690 navigated drillings using solely the monitor screen for control in both groups. The difference between the planned and the actual starting and target point (up to 150 mm distance) was measured (mm). Levene test and a nonpaired t test. Significance level was set as P < 0.05. The core accuracy of the navigation system measured with the 3-dimensional device was 0.5 mm. The mean distance from planned to actual entry points in group 1 was 1.3 (range, 0.6-3.4 mm). The mean distance between planned and actual target point was 3.4 (range, 1.7-5.8 mm). Free-hand navigated drilling showed an increased difference with increased length of the drill bits as well as with increased drilling channel for drill bits 2.5 and 3.2 mm and not for 3.5 and 4.5 mm (P < 0.05). The core accuracy of the navigation system is high. Compared with the navigated free-hand technique, the results suggest that drill bit deflection interferes directly with the precision. The precision is decreased when using small diameter and longer drill bits.

  16. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  17. Reinforcement and Drill by Microcomputer.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  18. Environment-friendly drilling operation technology

    NASA Astrophysics Data System (ADS)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  19. Preliminary Research on Possibilities of Drilling Process Robotization

    NASA Astrophysics Data System (ADS)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  20. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  1. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential

  2. The Newberry Deep Drilling Project (NDDP)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  3. A novel drill design for photoacoustic guided surgeries

    NASA Astrophysics Data System (ADS)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  4. Factorization for jet radius logarithms in jet mass spectra at the LHC

    DOE PAGES

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.; ...

    2016-12-14

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  5. Can a surgeon drill accurately at a specified angle?

    PubMed Central

    Brioschi, Valentina; Cook, Jodie; Arthurs, Gareth I

    2016-01-01

    Objectives To investigate whether a surgeon can drill accurately a specified angle and whether surgeon experience, task repetition, drill bit size and perceived difficulty influence drilling angle accuracy. Methods The sample population consisted of final-year students (n=25), non-specialist veterinarians (n=22) and board-certified orthopaedic surgeons (n=8). Each participant drilled a hole twice in a horizontal oak plank at 30°, 45°, 60°, 80°, 85° and 90° angles with either a 2.5  or a 3.5 mm drill bit. Participants then rated the perceived difficulty to drill each angle. The true angle of each hole was measured using a digital goniometer. Results Greater drilling accuracy was achieved at angles closer to 90°. An error of ≤±4° was achieved by 84.5 per cent of participants drilling a 90° angle compared with approximately 20 per cent of participants drilling a 30–45° angle. There was no effect of surgeon experience, task repetition or drill bit size on the mean error for intended versus achieved angle. Increased perception of difficulty was associated with the more acute angles and decreased accuracy, but not experience level. Clinical significance This study shows that surgeon ability to drill accurately (within ±4° error) is limited, particularly at angles ≤60°. In situations where drill angle is critical, use of computer-assisted navigation or custom-made drill guides may be preferable. PMID:27547423

  6. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denninger, Kate; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drillingmore » reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.« less

  7. Microhole Drilling Tractor Technology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiledmore » Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a

  8. State-of-the-art in coalbed methane drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less

  9. Considerations, constraints and strategies for drilling on Mars

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2006-04-01

    The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.

  10. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  11. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  12. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  13. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  14. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  15. Geothermal drilling in Cerro Prieto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez A., Bernardo

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of controlmore » have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.« less

  16. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    NASA Astrophysics Data System (ADS)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  17. Drilling Automation Tests At A Lunar/Mars Analog Site

    NASA Technical Reports Server (NTRS)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  18. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  19. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  20. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  1. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  2. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  3. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  4. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  5. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  6. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  7. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  8. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  9. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  10. Method and apparatus of assessing down-hole drilling conditions

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  11. Resonance: The science behind the art of sonic drilling

    NASA Astrophysics Data System (ADS)

    Lucon, Peter Andrew

    The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on

  12. Drill pipe threaded nipple connection design development

    NASA Astrophysics Data System (ADS)

    Saruev, A. L.; Saruev, L. A.; Vasenin, S. S.

    2015-11-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but also the automation of making-up and breaking-out drill pipes.

  13. Ultrasonic/Sonic Mechanisms for Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Dolgin, Benjamin; Askin, Steve; Peterson, Thomas M.; Bell, Bill; Kroh, Jason; Pal, Dharmendra; Krahe, Ron; Du, Shu

    2003-01-01

    Two apparatuses now under development are intended to perform a variety of deep-drilling, coring, and sensing functions for subsurface exploration of rock and soil. These are modified versions of the apparatuses described in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. In comparison with the drilling equipment traditionally used in such exploration, these apparatuses weigh less and consume less power. Moreover, unlike traditional drills and corers, these apparatuses function without need for large externally applied axial forces.

  14. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOEpatents

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  15. 30 CFR 77.1011 - Drill holes; guarding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  16. 30 CFR 58.620 - Drill dust control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill dust control. 58.620 Section 58.620... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.620 Drill dust control. Holes shall be collared and drilled wet, or other effective dust control measures shall be used, when...

  17. 30 CFR 77.1011 - Drill holes; guarding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  18. 30 CFR 77.1011 - Drill holes; guarding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  19. 30 CFR 58.620 - Drill dust control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill dust control. 58.620 Section 58.620... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.620 Drill dust control. Holes shall be collared and drilled wet, or other effective dust control measures shall be used, when...

  20. 30 CFR 58.620 - Drill dust control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill dust control. 58.620 Section 58.620... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.620 Drill dust control. Holes shall be collared and drilled wet, or other effective dust control measures shall be used, when...

  1. 30 CFR 77.1011 - Drill holes; guarding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  2. 30 CFR 58.620 - Drill dust control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill dust control. 58.620 Section 58.620... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.620 Drill dust control. Holes shall be collared and drilled wet, or other effective dust control measures shall be used, when...

  3. 30 CFR 77.1011 - Drill holes; guarding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  4. 30 CFR 58.620 - Drill dust control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill dust control. 58.620 Section 58.620... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.620 Drill dust control. Holes shall be collared and drilled wet, or other effective dust control measures shall be used, when...

  5. 43 CFR 3107.1 - Extension by drilling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Extension by drilling. 3107.1 Section 3107..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Continuation, Extension or Renewal § 3107.1 Extension by drilling. Any lease on which actual drilling operations were commenced prior to the...

  6. 43 CFR 3107.1 - Extension by drilling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Extension by drilling. 3107.1 Section 3107..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Continuation, Extension or Renewal § 3107.1 Extension by drilling. Any lease on which actual drilling operations were commenced prior to the...

  7. 43 CFR 3107.1 - Extension by drilling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Extension by drilling. 3107.1 Section 3107..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Continuation, Extension or Renewal § 3107.1 Extension by drilling. Any lease on which actual drilling operations were commenced prior to the...

  8. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  9. Ocean Drilling Program: Cruise Information

    Science.gov Websites

    Morgan. Cruise Information The Ocean Drilling Program ended on 30 September 2003 and has been succeeded by the Integrated Ocean Drilling Program (IODP). The U.S. Implementing Organization (IODP-USIO ) (Consortium for Ocean Leadership, Lamont-Doherty Earth Observatory, and Texas A&M University) continues to

  10. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can...

  11. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can...

  12. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can...

  13. Active control of continuous air jet with bifurcated synthetic jets

    NASA Astrophysics Data System (ADS)

    Dančová, Petra; Vít, Tomáš; Jašíková, Darina; Novosád, Jan

    The synthetic jets (SJs) have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.

  14. Ejector subassembly for dual wall air drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolle, J.J.

    1996-09-01

    The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less

  15. Intra-jet shocks in two counter-streaming, weakly collisional plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.

    2012-07-15

    Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of themore » particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the 'stiff' opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al.[Phys. Plasmas 19, 056501 (2012)].« less

  16. Rapid Confined Mixing Using Transverse Jets Part 2: Multiple Jets

    NASA Astrophysics Data System (ADS)

    Forliti, David; Salazar, David

    2012-11-01

    An experimental study has been conducted at the Air Force Research Laboratory at Edwards Air Force Base to investigate the properties of confined mixing devices that employ transverse jets. The experiment considers the mixing of water with a mixture of water and fluorescein, and planar laser induced fluorescence was used to measure instantaneous mixture fraction distributions in the cross section view. Part one of this study presents the scaling law development and results for a single confined transverse jet. Part two will describe the results of configurations including multiple transverse jets. The different regimes of mixing behavior, ranging from under to overpenetration of the transverse jets, are characterized in terms of a new scaling law parameter presented in part one. The level of unmixedness, a primary metric for mixing device performance, is quantified for different jet diameters, number of jets, and relative flow rates. It is apparent that the addition of a second transverse jet provides enhanced scalar uniformity in the main pipe flow cross section compared to a single jet. Three and six jet configurations also provide highly uniform scalar distributions. Turbulent scalar fluctuation intensities, spectral features, and spatial eigenfunctions using the proper orthogonal decomposition will be presented. Distribution A: Public Release, Public Affairs Clearance Number: 12656.

  17. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Technical Reports Server (NTRS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  18. Drilling into molten rock at Kilauea Iki

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.; Okamura, R.T.

    1978-01-01

    The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less

  19. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  20. Ocean Drilling Program: TAMU Staff Directory

    Science.gov Websites

    products Drilling services and tools Online Janus database Search the ODP/TAMU web site ODP's main web site Employment Opportunities ODP | Search | Database | Drilling | Publications | Science | Cruise Info | Public