Science.gov

Sample records for jet edge lidar

  1. Enhancement of the JET edge LIDAR Thomson scattering diagnostic with ultrafast detectors.

    PubMed

    Kempenaars, M; Flanagan, J C; Giudicotti, L; Walsh, M J; Beurskens, M; Balboa, I

    2008-10-01

    The edge light detection and ranging (LIDAR) Thomson scattering diagnostic at the Joint European Torus fusion experiment uses a 3 J ruby laser to measure the electron density and temperature profile at the plasma edge. The original system used a 1 GHz digitizer and detectors with response times of approximately 650 ps and effective quantum efficiencies <7%. This system has recently been enhanced with the installation of a new 8 GHz digitizer and four new ultrafast GaAsP microchannel plate photomultiplier tube detectors with response times of <300 ps and effective quantum efficiencies in the range of approximately 13%-20% (averaged over lambda=500-700 nm). This upgrade has enabled the spatial resolution to be reduced to approximately 6.3 cm along the laser line of sight for a laser pulse of 300 ps full width at half maximum, which is close to the requirements for the ITER core LIDAR. Performance analysis shows that the new system will have an effective spatial resolution of up to 1 cm in the magnetic midplane via magnetic flux surface mapping.

  2. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  3. Edge effect in fluid jet polishing.

    PubMed

    Guo, Peiji; Fang, Hui; Yu, Jingchi

    2006-09-10

    The edge effect is one of the most important subjects in optical manufacturing. The removal function at different positions of the sample in the process of fluid jet polishing (FJP) is investigated in the experiments. Furthermore, by using finite-element analysis (FEA), the distributions for velocity and pressure of slurry jets are simulated. Experimental results demonstrate that the removal function has a ring-shaped profile, except for a little change in the size at the operated area even if the nozzle extends beyond the edge of the sample. FEA simulations reveal a similar distribution of velocity with a cavity resulting in the ring-shaped profile of material removal at different impact positions. To a certain extent, therefore, the removal function at the edge of the surface of the sample appears similar to that inside of it, so that the classical edge effect can be neglected in FJP.

  4. Edge technique Doppler lidar wind measurements with high vertical resolution.

    PubMed

    Korb, C L; Gentry, B M; Li, S X

    1997-08-20

    We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m /s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m /s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m /s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1 -2-m /s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.

  5. Comparison of edge detection techniques for the automatic information extraction of Lidar data

    NASA Astrophysics Data System (ADS)

    Li, H.; di, L.; Huang, X.; Li, D.

    2008-05-01

    In recent years, there has been much interest in information extraction from Lidar point cloud data. Many automatic edge detection algorithms have been applied to extracting information from Lidar data. Generally they can be divided as three major categories: early vision gradient operators, optimal detectors and operators using parametric fitting models. Lidar point cloud includes the intensity information and the geographic information. Thus, traditional edge detectors used in remote sensed images can take advantage with the coordination information provided by point data. However, derivation of complex terrain features from Lidar data points depends on the intensity properties and topographic relief of each scene. Take road for example, in some urban area, road has the alike intensity as buildings, but the topographic relationship of road is distinct. The edge detector for road in urban area is different from the detector for buildings. Therefore, in Lidar extraction, each kind of scene has its own suitable edge detector. This paper compares application of the different edge detectors from the previous paragraph to various terrain areas, in order to figure out the proper algorithm for respective terrain type. The Canny, EDISON and SUSAN algorithms were applied to data points with the intensity character and topographic relationship of Lidar data. The Lidar data for test are over different terrain areas, such as an urban area with a mass of buildings, a rural area with vegetation, an area with slope, or an area with a bridge, etc. Results using these edge detectors are compared to determine which algorithm is suitable for a specific terrain area. Key words: Edge detector, Extraction, Lidar, Point data

  6. Oscillations of a Turbulent Jet Incident Upon an Edge

    SciTech Connect

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  7. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we

  8. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  9. Edge technique - Theory and application to the lidar measurement of atmospheric wind

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.; Weng, Chi Y.

    1992-01-01

    The paper describes the theory of the edge technique, a powerful method for the detection and measurement of small frequency shifts. It can be employed with a lidar to obtain range-resolved measurements of wind with high accuracy and high vertical resolution. The technique can be applied to measure wind with a lidar by using either the aerosol or molecular backscattered signal. Simulations for a ground-based lidar at 1.06 micron using reasonable instrumental parameters show an accuracy of the vector components of the wind which is better than 0.5 m/s from the ground to an altitude of 20 km for a 100-m vertical resolution and a 100-shot average.

  10. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  11. Entrainment by turbulent jets issuing from sharp-edged inlet round nozzles

    NASA Astrophysics Data System (ADS)

    Trabold, T. A.; Essen, E. B.; Obot, N. T.

    Experiments were carried out to determine entrainment rates by turbulent air jets generated with square-edged inlet round nozzles. A parametric study was made which included the effects of Reynolds number, nozzle length, partial confinement and geometry of the jet plenum chamber. Measurements were made for the region extending from the nozzle exit to 24 jet hole diameters downstream. There is a large difference in entrainment rate between jets generated with relatively short nozzles and those discharged through long tubes.

  12. Double-Edge Molecular Measurement of Lidar Wind Profiles at 355 nm

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence; Hirt, Christian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We built a direct detection Doppler lidar based on the double-edge molecular technique and made the first molecular based wind measurements using the eyesafe 355 nm wavelength. Three etalon bandpasses are obtained with Step etalons on a single pair of etalon plates. Long-term frequency drift of the laser and the capacitively stabilized etalon is removed by locking the etalon to the laser frequency. We use a low angle design to avoid polarization effects. Wind measurements of 1 to 2 m/s accuracy are obtained to 10 km altitude with 5 mJ of laser energy, a 750s integration, and a 25 cm telescope. Good agreement is obtained between the lidar and rawinsonde measurements.

  13. MHD analysis of edge instabilities in the JET tokamak

    NASA Astrophysics Data System (ADS)

    Perez von Thun, Christian Pedro

    2004-03-01

    The aim of nuclear fusion energy research is to demonstrate the feasibility of nuclear fusion reactors as a future energy source. The tokamak is the most advanced fusion machine to date, and is most likely the first system to be converted into a reactor. An important subject of nuclear fusion research is the study of the equilibrium and stability of a plasma with respect to large scale displacements. In a tokamak, several instabilities can occur. A class of edge instabilities that occur in the high confinement regime, H-mode, have been called Edge Localised Modes (ELMs). ELMs are relaxation oscillations that cause quasiperiodic energy and particle losses out of the confined plasma into the scrape-off layer. These losses are of concern for future burning fusion plasmas, such as ITER, due to the large transient heat loads expected on plasma facing components in contact with the scrape-off layer. These heat loads may reduce the target lifetime below tolerable levels. Although the existence of ELMs has been known for many years, their physics is not well understood yet. Much effort has been spent world-wide in an attempt to improve the understanding of these instabilities. A review of the present state of ELM research is given. Empirically, at least three types of ELMs have been identified, which are normally classified as type-I, type-II and type-III ELMs. From the point of view of plasma stability, research has increasingly focussed on the role of certain MHD instabilities, namely (finite-n) ballooning and kink (peeling) modes, as well as coupled ballooning-kink modes, leading to the proposition of a theoretical model called the peeling-ballooning cycle. This thesis presents new insight into ELMs obtained from the analysis of experimental data in the JET tokamak, and compares the observations with present theoretical ELM models. Low frequency coherent type-I ELM precursor modes have been identified. Their properties are studied in detail. Precursors with low toroidal

  14. a Fast and Robust Algorithm for Road Edges Extraction from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Qiu, Kaijin; Sun, Kai; Ding, Kou; Shu, Zhen

    2016-06-01

    Fast mapping of roads plays an important role in many geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance. How to extract various road edges fast and robustly is a challenging task. In this paper, we present a fast and robust algorithm for the automatic road edges extraction from terrestrial mobile LiDAR data. The algorithm is based on a key observation: most roads around edges have difference in elevation and road edges with pavement are seen in two different planes. In our algorithm, we firstly extract a rough plane based on RANSAC algorithm, and then multiple refined planes which only contains pavement are extracted from the rough plane. The road edges are extracted based on these refined planes. In practice, there is a serious problem that the rough and refined planes usually extracted badly due to rough roads and different density of point cloud. To eliminate the influence of rough roads, the technology which is similar with the difference of DSM (digital surface model) and DTM (digital terrain model) is used, and we also propose a method which adjust the point clouds to a similar density to eliminate the influence of different density. Experiments show the validities of the proposed method with multiple datasets (e.g. urban road, highway, and some rural road). We use the same parameters through the experiments and our algorithm can achieve real-time processing speeds.

  15. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  16. Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.; Korb, C. L.; Gentry, Bruce M.; Souilhac, Dominique

    1991-01-01

    The edge technique, a new method for measuring small frequency shifts, is described. The technique allows high-accuracy measurement of atmospheric winds (0.2-1 m/s) with a high vertical resolution (10 m) using currently available technology. With the edge technique, a lidar system can be used to obtain range resolved measurements of the wind in the atmosphere from the ground, aircraft, or spaceborne platforms. The edge technique can be used with different lasers over a broad range of wavelengths.

  17. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  18. On the Existence of Subharmonic Screech in Choked Circular Jets from a Sharp-Edged Orifice

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2014-01-01

    Experiments are performed in choked circular hot and cold nitrogen jets issuing from a 2.44 cm diameter sharp-edged orifice at a fully expanded jet Mach number of 1.85 in an effort to investigate the character of screech phenomenon. The stagnation temperature of the cold and the hot jets are 299 K and 319 K respectively. The axial distribution of the centerline Mach number was obtained with a pitot tube, while the screech data (frequency and amplitude) at different axial and radial stations were measured with the aid of microphones. The fundamental screech frequency of the hot jet is slightly increased relative to that of the cold jet. It is concluded that temperature effects on the screech amplitude are manifested with regard to the fundamental and the subharmonic even at relatively small temperature range considered.

  19. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

  20. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    NASA Astrophysics Data System (ADS)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  1. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  2. Unconfined, melt edge electrospinning from multiple, spontaneous, self-organized polymer jets

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Curtis, Colin K.; Muthuraman Thoppey, Nagarajan; Bochinski, Jason R.; Gorga, Russell E.; Clarke, Laura I.

    2014-12-01

    Commercial grade polyethylene is melt electrospun from a thin film of unconfined molten polymer on a heated, electrically-grounded plate. Under the influence of an applied electric field, the melt spontaneously forms fingering perturbations at the plate edge which then evolve into emitting fiber-forming jets. Jet-to-jet spacing (˜5 mm), which is dependent on the applied voltage amplitude, is in agreement with estimates from a simple theoretical treatment. The broad applicability of the approach is verified by spinning a second polymer—polycaprolactone. In both cases, the fabricated fibers are similar in quality to those obtained under needle melt electrospinning; however for this method, there are no nozzles to clog and an enhanced production rate up to 80 mg min-1 is achieved from approximately 20-25 simultaneous parallel jets. The process of jet formation, effective flow rates, cone-jet diameters, as well as limits on jet density and differences with polymer type are compared with theoretical models. This particular approach allows facile, high throughput micro- and nano-fiber formation from a wide variety of thermoplastics and other high viscosity fluids without the use of solvents or the persistent issues of clogging and pumping that hamper traditional methods, resulting in mechanically strong meso-scale fibers highly desirable for industrial applications.

  3. Lidar

    NASA Technical Reports Server (NTRS)

    Collis, R. T. H.

    1969-01-01

    Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.

  4. Lidar

    NASA Astrophysics Data System (ADS)

    Sage, J.-P.; Aubry, Y.

    1981-09-01

    It is noted that a photodetector at the telescope focal plane of a lidar produces a signal which is processed, giving information on the concentration of the species being monitored. The delay between the emitted and return signals indicates the distance to the interacting volume. Because of the poor efficiency of the interaction processes, the main difficulty in developing a good lidar has to do with the availability of sufficiently efficient lasers. Certain laser characteristics are discussed, and a CNES program for the development of lasers for lidar techniques is presented, future space applications being considered as mid-term objectives. The various components of the laser system developed by CNES are described. These are a dual frequency tunable oscillator, the amplifier chain, the beam control unit and wavelength servo-system, and the harmonic conversion subsystem.

  5. Scattering of turbulent-jet wavepackets by a swept trailing edge.

    PubMed

    Piantanida, Selene; Jaunet, Vincent; Huber, Jérôme; Wolf, William R; Jordan, Peter; Cavalieri, André V G

    2016-12-01

    Installed jet noise is studied by means of a simplified configuration comprising a flat plate in the vicinity of a round jet. The effects of Mach number, jet-plate radial distance, and trailing-edge sweep angle are explored. Acoustic measurements are performed using a traversable 18-microphone azimuthal array, providing pressure data at 360 points on a cylindrical surface surrounding the jet-plate system. Key observations include a decrease, with increasing Mach number, of the relative level of the scattered field in comparison to the uninstalled jet; an exponential dependence of the scattered sound pressure level on the radial jet-plate separation; and considerable sideline noise reductions with increasing sweep angle, with which there is an overall reduction in acoustic efficiency. The measurements are compared with results obtained using a kinematic wavepacket source model, whose radiation is computed in two ways. A TGF for a semi-infinite flat plate is used to provide a low-order approximation of the scattering effect. Use of a more computationally intensive boundary element method provides additional precision. Good agreement between model predictions and experiment, encouraging from the perspective of low-cost prediction strategies, demonstrates that the models comprise the essential sound generation mechanisms.

  6. In situ wavelength calibration of the edge CXS spectrometers on JET

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Hawkes, N.; Biewer, T. M.; O'Mullane, M. G.

    2016-11-01

    A method for obtaining an accurate wavelength calibration over the entire focal plane of the JET edge CXS spectrometers is presented that uses a combination of the fringe pattern created with a Fabry-Pérot etalon and a neon lamp for cross calibration. The accuracy achieved is 0.03 Å, which is the same range of uncertainty as when neglecting population effects on the rest wavelength of the CX line. For the edge CXS diagnostic, this corresponds to a flow velocity of 4.5 km/s in the toroidal direction or 1.9 km/s in the poloidal direction.

  7. EDGE2D Simulations of JET{sup 13}C Migration Experiments

    SciTech Connect

    J.D. Strachan; J.P. Coad; G. Corrigan; G.F. Matthews; J. Spence

    2004-06-16

    Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET{sup 13}C tracer migration experiment. The role of SOL flows upon the migration patterns is identified.

  8. Measurements of Thermal Effects on Acoustic Screech in a Choked Circular Jet Emanating from a Sharp-Edged Orifice

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    Experiments are performed in a 24.4 mm diameter choked circular hot and cold jets issuing from a sharp-edged orifice at a fully expanded jet Mach number of 1.85. The stagnation temperature of the hot and the cold jets are 319 K and 299 K respectively. The results suggest that temperature effects on the screech amplitude and frequency are manifested for the fundamental, with a reduced amplitude and increased frequency for hot jet relative to the cold jet. Temperature effects on the second harmonic are also observed.

  9. Jets.

    PubMed

    Rhines, Peter B.

    1994-06-01

    This is a discussion of concentrated large-scale flows in planetary atmospheres and oceans, argued from the viewpoint of basic geophysical fluid dynamics. We give several elementary examples in which these flows form jets on rotating spheres. Jet formation occurs under a variety of circumstances: when flows driven by external stress have a rigid boundary which can balance the Coriolis force, and at which further concentration can be caused by the beta effect; when there are singular lines like the line of vanishing windstress or windstress-curl, or the Equator; when compact sources of momentum, heat or mass radiate jet-like beta plumes along latitude circles; when random external stirring of the fluid becomes organized by the beta effect into jets; when internal instability of the mass field generates zonal flow which then is concentrated into jets; when bottom topographic obstacles radiate jets, and when frontogenesis leads to shallow jet formation. Essential to the process of jet formation in stratified fluids is the baroclinic life cycle described in geostrophic turbulence studies; there, conversion from potential to kinetic energy generates eddy motions, and these convert to quasibarotropic motions which then radiate and induce jet-like large-scale circulation. Ideas of potential vorticity stirring by eddies generalize the notion of Rossby-wave radiation, showing how jets embedded in an ambient potential vorticity gradient (typically due to the spherical geometry of the rotating planet) gain eastward momentum while promoting broader, weaker westward circulation. Homogenization of potential vorticity is an important limit point, which many geophysical circulations achieve. This well-mixed state is found in subdomains of the terrestrial midlatitude oceans, the high-latitude circumpolar ocean, and episodically in the middle atmosphere. Homogenization expels potential vorticity gradients vertically to the top and bottom of the fluid, and sideways to the edges of

  10. Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion

    SciTech Connect

    Choi, B.C.; Kim, K.N.; Chung, S.H.

    2009-02-15

    Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

  11. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  12. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Delabie, E.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; JET Contributors; EUROfusion Consortium, JET, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

    2016-02-01

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi≈0.4 -0.8 , consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E ×B shear increases. Above the minimum of the L -H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H -mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L -H transition.

  13. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    SciTech Connect

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; Delabie, E.

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.

  14. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while belowmore » the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  15. Features of nocturnal low level jet (NLLJ) observed over a tropical Indian station using high resolution Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Ruchith, R. D.; Ernest Raj, P.

    2015-02-01

    High resolution Doppler wind lidar measurements made during the period 01 April 2012 to 31 March 2014 over Pune (18°32‧N, 73°51‧E, 559 m Above Mean Sea Level), India have been used to study Nocturnal Low Level Jet (NLLJ) occurrence and its characteristics. Vertical profiles of horizontal wind in the altitude range from 100 m to 3000 m (at every 50 m interval) and averaged over 5 min have been used to study time-height variations during local nighttime. On several occasions during nighttime the wind profiles showed a narrow region of strong wind speed below 1000 m altitude from surface, suggesting the presence of the low level jet. Analysis of the data indicates that NLLJ occurs more frequently (~66%) during pre-monsoon season (March-May) and on only 14% of the nocturnal period during SW monsoon season (June-September). Mean jet core heights during pre-monsoon, monsoon, post-monsoon (October-November), and winter (December-February) seasons are found to be 687 m, 691 m, 593 m, and 586 m respectively. Seasonal mean jet core speeds during pre-monsoon and monsoon are higher than those during winter. There are some occasions during monsoon season when hourly mean jet speeds during nighttime are as high as 15-20 ms-1. Horizontal wind directions in the NLLJ during different seasons are consistent with the seasonal mean flow over the tropical Indian region. Most frequently occurring jet core height is in the height range 600-700 m with almost 65% of the cases having jet core heights<700 m and maximum frequency of occurrence of jet speed is in the range 9-11 ms-1. Large east-west temperature gradients, inertial oscillations, stability in the lower atmosphere seem to be some of the factors that play significant role in the formation and sustenance of NLLJ over the location during different seasons.

  16. Laser beam shaping optical system design methods and their application in edge-emitting semiconductor laser-based LIDAR systems

    NASA Astrophysics Data System (ADS)

    Serkan, Mert

    LIDAR (Light Detection And Ranging) systems are employed for numerous applications such as remote sensing, military applications, optical data storage, display technology, and material processing. Furthermore, they are superior to other active remote sensing tools such as RADAR systems, considering their higher accuracy and more precise resolution due to their much shorter wavelengths and narrower beamwidth. Several types of lasers can be utilized as the radiation source of several LIDAR systems. Semiconductor laser-based LIDAR systems have several advantages such as low cost, compactness, broad range of wavelengths, and high PRFs (Pulse Repetition Frequency). However, semiconductor lasers have different origins and angles of divergence in the two transverse directions, resulting in the inherent astigmatism and elliptical beam shape. Specifically, elliptical beam shape is not desirable for several laser-based applications including LIDAR systems specifically designed to operate in the far-field region. In this dissertation, two mirror-based and two lens-based beam shapers are designed to circularize, collimate, and expand an edge-emitting semiconductor laser beam to a desired beam diameter for possible application in LIDAR systems. Additionally, most laser beams including semiconductor laser beams have Gaussian irradiance distribution. For applications that require uniform illumination of an extended target area, Gaussian irradiance distribution is undesirable. Therefore, a specific beam shaper is designed to transform the irradiance distribution from Gaussian to uniform in addition to circularizing, collimating, and expanding the semiconductor laser beam. For the design of beam shapers, aperture sizes of the surfaces are preset for desired power transmission and allowed diffraction level, surface parameters of the optical components and the distances between these surfaces are determined. Design equations specific to these beam shaping optical systems are

  17. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar.

    PubMed

    Huang, Wentao; Chu, Xinzhao; Wiig, Johannes; Tan, Bo; Yamashita, Chihoko; Yuan, T; Yue, J; Harrell, S D; She, C-Y; Williams, B P; Friedman, J S; Hardesty, R M

    2009-05-15

    We report the first (to our knowledge) field demonstration of simultaneous wind and temperature measurements with a Na double-edge magneto-optic filter implemented in the receiver of a three-frequency Na Doppler lidar. Reliable winds and temperatures were obtained in the altitude range of 10-45 km with 1 km resolution and 60 min integration under the conditions of 0.4 W lidar power and 75 cm telescope aperture. This edge filter with a multi-frequency lidar concept can be applied to other direct-detection Doppler lidars for profiling both wind and temperature simultaneously from the lower to the upper atmosphere.

  18. Thermal analysis of an exposed tungsten edge in the JET divertor

    NASA Astrophysics Data System (ADS)

    Arnoux, G.; Coenen, J.; Bazylev, B.; Corre, Y.; Matthews, G. F.; Balboa, I.; Clever, M.; Dejarnac, R.; Devaux, S.; Eich, T.; Gauthier, E.; Frassinetti, L.; Horacek, J.; Jachmich, S.; Kinna, D.; Marsen, S.; Mertens, Ph.; Pitts, R. A.; Rack, M.; Sergienko, G.; Sieglin, B.; Stamp, M.; Thompson, V.

    2015-08-01

    In the recent melt experiments with the JET tungsten divertor, we observe that the heat flux impacting on a leading edge is 3-10 times lower than a geometrical projection would predict. The surface temperature, tungsten vaporisation rate and melt motion measured during these experiments is consistent with the simulations using the MEMOS code, only if one applies the heat flux reduction. This unexpected observation is the result of our efforts to demonstrate that the tungsten lamella was melted by ELM induced transient heat loads only. This paper describes in details the measurements and data analysis method that led us to this strong conclusion. The reason for the reduced heat flux are yet to be clearly established and we provide some ideas to explore. Explaining the physics of this heat flux reduction would allow to understand whether it can be extrapolated to ITER.

  19. Characterization of edge fluctuations on JET during the LH transition studies

    NASA Astrophysics Data System (ADS)

    de Masi, Gianluca; Spagnolo, Silvia; Arnichand, Hugo; Hillesheim, Jon; Meneses, Luis; Meyer, Hendrik; Delabie, Ephrem; Maggi, Costanza

    2015-11-01

    In this contribution we present an experimental characterization of ELM-related edge fluctuations observed during the LH transition experimental campaign on JET. These fluctuations have been detected in both the fast density measurements obtained by the radial correlation reflectometer and the external magnetic measurements: their typical frequency range (40-100 kHz) and their radial position (pedestal top) have been assessed. Moreover, we investigated the relation of the fluctuations amplitude with the relevant pedestal quantities, such as the temperature gradient. A preliminary attempt to reconstruct their toroidal and poloidal structure is also given. Their physical interpretation is finally discussed: they are found to share some features with the pedestal fluctuations observed in different machines such as Alcator C-mod, DIII-D and EAST and interpreted in terms of kinetic-ballooning modes; however, recent observations on MAST of inter-ELM fluctuations, suggest a possible interpretation in terms of microinstabilities.

  20. A statistical investigation of the effects of edge localized models on the equilibrium reconstruction in JET

    NASA Astrophysics Data System (ADS)

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.; Maviglia, F.; Hawkes, N.; Contributors, JET-EFDA

    2012-10-01

    The configuration of magnetic fields is an essential ingredient of tokamak physics. In modern day devices, the magnetic topology is normally derived from equilibrium codes, which solve the Grad-Shafranov equation with constraints imposed by the available measurements. On JET, the main code used for this purpose is EFIT and the more commonly used diagnostics are external pick-up coils. Both the code and the measurements present worse performance during edge localized modes (ELMs). To quantify this aspect, various statistical indicators, based on the values of the residuals and their probability distribution, are defined and calculated. They all show that the quality of EFIT reconstructions is clearly better in the absence of ELMs. To investigate the possible causes of the detrimental effects of ELMs on the reconstruction, the pick-up coils are characterized individually and both the spatial distribution and time behaviour of their residuals are analysed in detail. The coils with a faster time response are the ones reproduced less well by EFIT. The constraints of current and pressure at the separatrix are also varied but the effects of such modifications do not result in decisive improvements in the quality of the reconstructions. The interpretation of this experimental evidence is not absolutely compelling but strongly indicative of deficiencies in the physics model on which the JET reconstruction code is based.

  1. Analysis of noise produced by jet impingement near the trailing edge of a flat and a curved plate

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.

    1975-01-01

    The sound fields produced by the interaction of a subsonic cold gas jet with the trailing edge of a large flat plate and a curved plate were analyzed. The analyses were performed to obtain a better understanding of the dominant noise source and the mechanism governing the peak sound-pressure-level frequencies of the broadband spectra. An analytical expression incorporating an available theory and experimental data predicts sound field data over an arc of approximately 105 deg measured from the upstream jet axis for the two independent sets of data. The dominant noise as detected on the impingement side of either plate results from the jet impact (eighth power of the velocity dependence) rather than a trailing-edge disturbance (fifth or sixth power of the velocity dependence). Also, the frequency of the peak SPL may be governed by a phenomenon which produces periodic formation and shedding of ring vortices from the nozzle lip.

  2. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    PubMed

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  3. Ion target impact energy during Type I edge localized modes in JET ITER-like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Giroud, C.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Moulton, D.; O'Mullane, M.; Stamp, M.

    2015-08-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with ΔW = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (Te) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low Te at the divertor target during ELMs is consistent with the ‘Free-Streaming’ kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.

  4. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  5. PSC4158+2805: A young star with a large edge-on disk and a bipolar jet!

    NASA Astrophysics Data System (ADS)

    Menard, F.; Dougados, C.; Magnier, E.; Cuillandre, J.-C.; Fahlman, G.; Forveille, T.; Lai, O.; Manset, N.; Martin, P.; Veillet, C.

    2001-05-01

    In the course of a large and deep optical imaging survey covering more than 4 square degrees of the Taurus molecular cloud complex, the source PSC4158+2805 was imaged with CFH12k, a wide-field CCD mosaic imager operating at the prime focus of the Canada-France-Hawaii telescope. Images are obtained in RIz and Hα. For the first time the source appears extended, very nebulous, and with a striking bipolar appearance. The dark lane is interpreted in terms of a disk seen quasi edge-on. Surprisingly for Taurus, it also appears in silhouette against the background. A jet is also detected in Hα, perpendicular to the axis of the disk. Both sides of the jet are detected and a bow shock is seen more than 70 arcsecs to the North of the driving source. The jet is resolved and is not linear. PSC4158+2805 is very reminiscent of HH 30, an archetype of the low-mass star formation process. Properties of the disk and jets of this interesting new source will be discussed in details.

  6. Active control of Type-I Edge-Localized Modes with n=1 Perturbation Fields in the JET Tokamak

    SciTech Connect

    Liang, Y.; Koslowski, R.; Thomas, P.; Nardon, E.; Alper, B.; Baranov, Y.; Beurskens, M.; Bigi, M.; Crombe, K.; de la Luna, E.; De Vries, P.; Fundamenski, W.; Rachlew, Elisabeth G; Zimmermann, O.

    2007-06-01

    Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D signal decreased. The energy loss per ELM normalized to the total stored energy, W/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.

  7. Identifying low-dimensional dynamics in type-I edge-localised-mode processes in JET plasmas

    SciTech Connect

    Calderon, F. A.; Chapman, S. C.; Nicol, R. M.; Dendy, R. O.; Webster, A. J.; Alper, B. [EURATOM Collaboration: JET EFDA Contributors

    2013-04-15

    Edge localised mode (ELM) measurements from reproducibly similar plasmas in the Joint European Torus (JET) tokamak, which differ only in their gas puffing rate, are analysed in terms of the pattern in the sequence of inter-ELM time intervals. It is found that the category of ELM defined empirically as type I-typically more regular, less frequent, and having larger amplitude than other ELM types-embraces substantially different ELMing processes. By quantifying the structure in the sequence of inter-ELM time intervals using delay time plots, we reveal transitions between distinct phase space dynamics, implying transitions between distinct underlying physical processes. The control parameter for these transitions between these different ELMing processes is the gas puffing rate.

  8. Modelling of ELM-averaged power exhaust on JET using the EDGE2D code with variable transport coefficients

    NASA Astrophysics Data System (ADS)

    Kirnev, G.; Fundamenski, W.; Corrigan, G.

    2007-06-01

    The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).

  9. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  10. Experimental investigation of cross-over jets in a rib-roughened trailing-edge cooling channel

    NASA Astrophysics Data System (ADS)

    Xue, Fei

    Increasing the rotor inlet temperature can dramatically increase the efficiency and power output of the gas turbine engine. However, the melting point of turbine blade material limits the realistic upper bound of the rotor inlet temperature. As a result, the development of high temperature turbine blade material and advanced turbine blade cooling technology determines the future of turbine blade engine. Adding impingement jet holes and rib turbulators in the inner cooling channel of the gas turbine blades are two effective ways to enhance the cooling effects. The purpose of this study is to figure out the influence of different combinations of jet holes and rib turbulators on the heat transfer efficiency. A tabletop scale test model is used in the study to simulate the cooling cavity of trailing edge and its feed channel in a real gas turbine blade. The Dimensional Analysis Theory is used in the study to eliminate the influence of scaling. Two different crossover slots are tested with 5 different rib arrangements, and each of the test geometries is tested for 6 jet Reynolds numbers ranging from 10,000 to 36,000. The two different crossover slots are the crossover slots with 0 and 5 degree tilt angles. The four different rib arrangements are ribs with 0 degree, 45 degree, 90 degree and 135 degree angles of attack with respect to the flow direction. Furthermore, a smooth test section (no ribs) was also tested. The steady state liquid crystal thermography is used to quantify the heat transfer performance of the target areas. The variation of Nusselt number versus Reynolds number is plotted for each of the 10 geometries. Also, the variation of Nusselt number versus Reynolds number are compared for different rib angles of attack with the same crossover slot tilt angle, and between different crossover slots tilt angles with the same rib angle. The results show that, the area-weighted average Nusselt number increases monotonically with the Reynolds number; the target

  11. Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    SciTech Connect

    Chapman, S. C.; Dendy, R. O.; Todd, T. N.; Webster, A. J.; Morris, J.; Watkins, N. W.; Calderon, F. A.

    2014-06-15

    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.

  12. Influence of atomic physics on EDGE2D-EIRENE simulations of JET divertor detachment with carbon and beryllium/tungsten plasma-facing components

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Pitts, R. A.; Kukushkin, A. S.; Gunn, J. P.; Bucalossi, J.; Arnoux, G.; Belo, P.; Brezinsek, S.; Brix, M.; Corrigan, G.; Devaux, S.; Flanagan, J.; Groth, M.; Harting, D.; Huber, A.; Jachmich, S.; Kruezi, U.; Lehnen, M.; Marchetto, C.; Marsen, S.; Meigs, A. G.; Meyer, O.; Stamp, M.; Strachan, J. D.; Wiesen, S.; Wischmeier, M.; EFDA Contributors, JET

    2014-09-01

    The EDGE2D-EIRENE code is applied for simulation of divertor detachment during matched density ramp experiments in high triangularity, L-mode plasmas in both JET-Carbon (JET-C) and JET-ITER-Like Wall (JET-ILW). The code runs without drifts and includes either C or Be as impurity, but not W, assuming that the W targets have been coated with Be via main chamber migration. The simulations reproduce reasonably well the observed particle flux detachment as density is raised in both JET-C and JET-ILW experiments and can better match the experimental in-out divertor target power asymmetry if the heat flux entering the outer divertor is artificially set at around 2-3 times that entering the inner divertor. A careful comparison between different sets of atomic physics processes used in EIRENE shows that the detachment modelled by EDGE2D-EIRENE relies only on an increase of the particle sinks and not on a decrease of the ionization source. For the rollover and the beginning of the partially detached phase, the particle losses by perpendicular transport and the molecular activated recombination processes are mainly involved. For a deeper detachment with significant target ion flux reduction, volume recombination appears to be the main contributor. The elastic molecule-ion collisions are also important to provide good neutral confinement in the divertor and thus stabilize the simulations at low electron temperature (Te), when the sink terms are strong. Comparison between EDGE2D-EIRENE and SOLPS4.3 simulations of the density ramp in C shows similar detachment trends, but the importance of the elastic ion-molecule collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of increasing the neutral confinement in the divertor should help to improve the modelling of the detachment. A further outcome of this work has been to demonstrate that key JET divertor diagnostic signals—Langmuir probe Te and bolometric tomographic reconstructions—are running beyond

  13. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    NASA Astrophysics Data System (ADS)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  14. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Interpretation of radiative divertor studies with impurity seeding in type-I ELMy H-mode plasmas in JET-ILW using EDGE2D-EIRENE

    NASA Astrophysics Data System (ADS)

    Jaervinen, A. E.; Groth, M.; Airila, M.; Belo, P.; Beurskens, M.; Brezinsek, S.; Clever, M.; Corrigan, G.; Devaux, S.; Drewelow, P.; Eich, T.; Giroud, C.; Harting, D.; Huber, A.; Jachmich, S.; Lawson, K.; Lipschultz, B.; Maddison, G.; Maggi, C.; Makkonen, T.; Marchetto, C.; Marsen, S.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Stamp, M. F.; Wiesen, S.; Wischmeier, M.

    2015-08-01

    Nitrogen seeded JET-ILW H-mode plasmas have been investigated with EDGE2D-EIRENE. The simulations reproduce the experimentally observed factor of 10 reduction in the outer target power deposition when the normalized divertor radiation, Praddiv/PSOL, increases from the unseeded levels of 15% up to the 50% levels required for detachment. At these radiation levels, nitrogen is predicted dominate the total radiation with a contribution of 85%, consistent with previous measurements in JET-C. Due to the low radiative potential of nitrogen at the electron temperatures above 100 eV, more than 80% of the radiation is predicted to occur in the scrape-off layer, making nitrogen a suitable divertor radiator for typical JET divertor conditions with Te around 30 eV. The simulations reproduce the experimentally observed particle flux reduction at the low-field side target without the need for strong recombination. This is due to strong impurity radiation reducing the power levels entering the deuterium ionization front.

  16. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  17. Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles

    NASA Astrophysics Data System (ADS)

    Lawson, K. D.; Groth, M.; Belo, P.; Brezinsek, S.; Corrigan, G.; Czarnecka, A.; Delabie, E.; Drewelow, P.; Harting, D.; Książek, I.; Maggi, C. F.; Marchetto, C.; Meigs, A. G.; Menmuir, S.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, while contributions from D radiative recombination are smaller than expected. Simulations with W divertor plates underestimate the Be content in the divertor, since no allowance is made for Be previously deposited on the plates being re-eroded. An improved version of EDGE2D-EIRENE is used to test the importance of the deposited layer in which the sputtering yield from supposed pure Be divertor plates is reduced to match the spectroscopic signals, while keeping the sputtering yield for the Be main chamber walls unchanged.

  18. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  19. Large-Scale Wind-Tunnel Tests and Evaluation of the Low-Speed Performance of a 35 deg Sweptback Wing Jet Transport Model Equipped with a Blowing Boundary-Layer-Control Flap and Leading-Edge Slat

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Aoyagi, Kiyoshi

    1960-01-01

    A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis.

  20. Lidar Report

    SciTech Connect

    Wollpert.

    2009-04-01

    This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

  1. CFD Analysis of the Aerodynamics of a Business-Jet Airfoil with Leading-Edge Ice Accretion

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Addy, H. E.; Choo, Y. K.

    2004-01-01

    For rime ice - where the ice buildup has only rough and jagged surfaces but no protruding horns - this study shows two dimensional CFD analysis based on the one-equation Spalart-Almaras (S-A) turbulence model to predict accurately the lift, drag, and pressure coefficients up to near the stall angle. For glaze ice - where the ice buildup has two or more protruding horns near the airfoil's leading edge - CFD predictions were much less satisfactory because of the large separated region produced by the horns even at zero angle of attack. This CFD study, based on the WIND and the Fluent codes, assesses the following turbulence models by comparing predictions with available experimental data: S-A, standard k-epsilon, shear-stress transport, v(exp 2)-f, and differential Reynolds stress.

  2. Scaling of the frequencies of the type one edge localized modes and their effect on the tungsten source in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Devynck, P.; Fedorczak, N.; Meyer, O.; Contributors, JET

    2016-12-01

    A database of 250 pulses taken randomly during the experimental campaigns of JET with the ITER-like wall (ILW) is used to study the frequency dependences of the type I edge localized modes (ELM). A scaling of the ELM frequency is presented as a function of the pedestal density drop dN ped and a very simple model to interpret this scaling is discussed. In this model, the frequency of the ELMs is governed by the time needed by the neutral flux to refill the density of the pedestal. The filling rate is the result of a small imbalance between the neutral flux filling the pedestal and the outward flux that expels the particles to the SOL. The ELM frequency can be governed by such a mechanism if the recovery time of the temperature of the pedestal in JET occurs before or at the same time as the one of the density. This is observed to be the case. An effect of the fuelling is measured when the number of injected particles is less than 1  ×  1022 particles s-1. In that case an increase of the inter-ELM time is observed which is related to the slower recovery of the density pedestal. Additionally, a scaling is found for the source of tungsten during the ELMs. The number of tungsten atoms eroded by the ELMs per second is proportional to dN ped multiplied by the ELM frequency. This is possible only if the tungsten sputtering yield is independent of the energy of the impinging particle hitting the divertor. This result is in agreement with Guillemault et al (2015 Plasma Phys. Control. Fusion 57 085006) and is compatible with the D+  ions hitting the divertor having energies above 2 keV. Finally, by plotting the Wcontent/Wsource ratio during ELM crash, a global decreasing behaviour with the ELM frequency is found. However at frequencies below 40 Hz a scatter towards upper values is found. This scatter is found to correlate with the gas injection level. In a narrow ELM frequency band around 20 Hz, it is found that both the ratio Wcontent/Wsource and Wsource

  3. Comparison of multialkali and GaAs photocathode detectors for Joint European Torus edge light detection and ranging Thomson scattering profiles

    NASA Astrophysics Data System (ADS)

    Kempenaars, M.; Nielsen, P.; Pasqualotto, R.; Gowers, C.; Beurskens, M.

    2004-10-01

    The Joint European Torus (JET) tokamak has two light detection and ranging (LIDAR) Thomson scattering systems, one for the core and one dedicated to the edge Te and ne profiles. The LIDAR scheme is unique to JET and is envisaged for use on ITER. The system's spatial resolution is defined by the convolution product of its components: laser pulse duration, detector response time, and digitizer speed. The original multialkali photocathode microchannel plate photomultipliers dictated the response time, resulting in a 12 cm spatial resolution along the line of sight. In the edge LIDAR system, this is improved by aligning the line of sight with the flux surfaces, thus improving the effective spatial resolution to 2 cm depending on the plasma configuration. To meet demands for better edge gradient resolution, an upgrade to higher quantum efficiency detectors was proposed. Four GaAs photocathode detectors have been procured, two of which surpass expectations. These detectors are shown to have a more than two times higher effective quantum efficiency and their response time is at least twice as fast as the multialkali detectors. Combined with a fast digitizer this improves the spatial resolution by a factor of two, down to one centimeter effective, depending on plasma configuration.

  4. Comparison of multialkali and GaAs photocathode detectors for Joint European Torus edge light detection and ranging Thomson scattering profiles

    SciTech Connect

    Kempenaars, M.; Nielsen, P.; Pasqualotto, R.; Gowers, C.; Beurskens, M.

    2004-10-01

    The Joint European Torus (JET) tokamak has two light detection and ranging (LIDAR) Thomson scattering systems, one for the core and one dedicated to the edge T{sub e} and n{sub e} profiles. The LIDAR scheme is unique to JET and is envisaged for use on ITER. The system's spatial resolution is defined by the convolution product of its components: laser pulse duration, detector response time, and digitizer speed. The original multialkali photocathode microchannel plate photomultipliers dictated the response time, resulting in a 12 cm spatial resolution along the line of sight. In the edge LIDAR system, this is improved by aligning the line of sight with the flux surfaces, thus improving the effective spatial resolution to 2 cm depending on the plasma configuration. To meet demands for better edge gradient resolution, an upgrade to higher quantum efficiency detectors was proposed. Four GaAs photocathode detectors have been procured, two of which surpass expectations. These detectors are shown to have a more than two times higher effective quantum efficiency and their response time is at least twice as fast as the multialkali detectors. Combined with a fast digitizer this improves the spatial resolution by a factor of two, down to one centimeter effective, depending on plasma configuration.

  5. Lidar Wind Measurements with the Goddard Lidar Observatory for Winds (GLOW)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Chen, Hualilin; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We report on the development of GLOW (Goddard Lidar Observatory for Winds), a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system employs a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at a wavelength of 1064 run or molecular backscatter at 355 nm. The system is modular in design to allow the incorporation of new technologies as they become available. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. Finally it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the first validated lidar wind profiles obtained with the system using a new molecular 'double edge' receiver.

  6. Local electronic structure of aqueous zinc acetate: oxygen K-edge X-ray absorption and emission spectroscopy on micro-jets.

    PubMed

    Golnak, Ronny; Atak, Kaan; Suljoti, Edlira; Hodeck, Kai F; Lange, Kathrin M; Soldatov, Mikhail A; Engel, Nicholas; Aziz, Emad F

    2013-06-07

    Oxygen K-edge X-ray absorption, emission, and resonant inelastic X-ray scattering spectra were measured to site selectively gain insights into the electronic structure of aqueous zinc acetate solution. The character of the acetate ion and the influence of zinc and water on its local electronic structure are discussed.

  7. Flow Control Over Sharp-Edged Wings

    DTIC Science & Technology

    2007-07-01

    each jet. A constant average mass flow of air was supplied to the jet using a closed-loop servo valve . Their data indicated that maximum lift...and screw angles of 90 and 45 degrees respectively. High-speed flow control valves were used to control the pulsed flow to each jet individually. The...leading edge contained three jet nozzles; however only two were used. The valve open-and-close cycle was manipulated using a computer function

  8. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  9. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  10. GLOW: The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  11. GLOW- The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  12. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  13. A cloud masking algorithm for EARLINET lidar systems

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  14. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    In late 2009, a $14.3 million allocation from the “American Recovery and Reinvestment Act” for new light detection and ranging (lidar) elevation data prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common base specification for all lidar data acquired for The National Map. Released as a draft in 2010 and formally published in 2012, the USGS–NGP “Lidar Base Specification Version 1.0” (now Lidar Base Specification) was quickly embraced as the foundation for numerous state, county, and foreign country lidar specifications. Prompted by a growing appreciation for the wide applicability and inherent value of lidar, a USGS-led consortium of Federal agencies commissioned a National Enhanced Elevation Assessment (NEEA) study in 2010 to quantify the costs and benefits of a national lidar program. A 2012 NEEA report documented a substantial return on such an investment, defined five Quality Levels (QL) for elevation data, and recommended an 8-year collection cycle of Quality Level 2 (QL2) lidar data as the optimum balance of benefit and affordability. In response to the study, the USGS–NGP established the 3D Elevation Program (3DEP) in 2013 as the interagency vehicle through which the NEEA recommendations could be realized. Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  15. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  16. Laser Remote Sensing and Lidar Measurements for Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Spiers, G. D.

    2003-01-01

    Laser Remote Sensing and lidar have been used for earth remote sensing for a number of years however the inefficiency of laser devices has limited their application to planetary sensing where power is at a premium. The potential availability of a large amount of power for the Jupiter Icy Moons Orbiter (JIMO) opens up the potential to implement laser remote sensing for planetary bodies. Lidars have been and can be used to map terrain, measure atmospheric and surface parameters including velocity and composition. In this paper we will provide an overview of the lidar capabilities at the Jet Propulsion Laboratory and address the types of lidar measurements that could be relevant to JIMO science investigations.

  17. Synthetic Fence Jets

    NASA Astrophysics Data System (ADS)

    Sigurdson, Lorenz; Apps, Christopher

    2000-11-01

    "Synthetic Jets" have previously been produced where an oscillating flow with zero net mass flux acts on the edges of an orifice. The resulting flow is similar to a normal jet. We have proposed and verified that another type of jet called a "Synthetic Fence Jet" (SFJ or "fe-je") can also be created. We introduced a fence perpendicular to both a wall and an oscillating velocity field. Under certain conditions a jet was formed by vortices of alternating sign. The vortices were shed from the fence and they induced each other away from it. This phenomenon could be used as a method of flow control. The objective of this project was to use flow visualization to prove the existence of and characterize this jet. A test rig was used which incorporates smoke-wire flow visualization; independent oscillation level and frequency control; and computer- controlled data acquisition. It has been discovered that the jet direction can be vectored by altering the forcing waveform shape. To explain this a theory was developed that is based on the Biot-Savart law of vortex dynamics.

  18. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  19. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  20. Jetting tool

    SciTech Connect

    Szarka, D.D.; Schwegman, S.L.

    1991-07-09

    This patent describes an apparatus for hydraulically jetting a well tool disposed in a well, the well tool having a sliding member. It comprises positioner means for operably engaging the sliding member of the well tool; and a jetting means, connected at a rotatable connection to the positioner means so that the jetting means is rotatable relative to the positioner means and the well tool, for hydraulically jetting the well tool as the jetting means is rotated relative thereto.

  1. Processing LiDAR Data to Predict Natural Hazards

    NASA Technical Reports Server (NTRS)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  2. Entrainment by the jet in HH 47

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Morse, Jon A.; Hartigan, P.; Curiel, S.; Heathcote, Steve

    1994-01-01

    Fabry-Perot images of the HH 47 optical jet show that the velocity decreases from the center toward the edges which is interpreted as evidence for entrainment. Those images can be used to investigate the rate of entrainment required to account for the observed luminosity. Entrainment along the jet can account for only small fractions of the jet mass and the molecular outflow seen in CO. We compare the density, excitation, and velocity structure of the jet with the predictions of viscous entrainment models and models of entrainment by expulsion of jet material by internal shocks, and find that either type of model can explain the general features.

  3. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  4. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  5. Fuzzy jets

    SciTech Connect

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  6. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  7. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  8. Space Lidar and Applications

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, David E. (Technical Monitor)

    2001-01-01

    With advances in lasers and electro-optic technology, lidar is becoming an established technique for remote sensing of the Earth and planets from space. Some of the earliest space-based lidar measurements were made in the early 1970s from lunar orbit using the laser altimeter on the Apollo 15 mission. Space lidar instruments in active use today include the MOLA instrument aboard the Mars Global Surveyor mission and the Near Laser Rangefinder on the Near Earth Asteroid Rendezvous (NEAR) Mission. This talk will review laser remote sensing techniques, critical technologies, and some results from past and present NASA missions. It will also review near term plans for NASA's ICESat and Picasso missions and summarize some concepts for lidar on future missions.

  9. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  10. Measurement intercomparison of the JPL and GSFC stratospheric ozone lidar systems.

    PubMed

    McDermid, I S; Godin, S M; Lindqvist, L O; Walsh, T D; Burris, J; Butler, J; Ferrare, R; Whiteman, D; McGee, T J

    1990-11-01

    For approximately one month during October and November 1988 the NASA Goddard Space Flight Center mobile lidar system was brought to the Jet Propulsion Laboratory, Table Mountain Facility, to make side-byside measurements with the JPL lidar of stratospheric ozone concentration profiles. Measurements were made by both excimer laser DIAL systems on fifteen nights during this period. The results showed good agreement of the ozone profiles measured between 20- and 40-km altitude. This is the first (to the best of our knowledge) reported side-by-side measurement intercomparison of two stratospheric ozone lidar systems.

  11. Parallel algorithm for linear feature detection from airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Mareboyana, Manohar; Chi, Paul

    2006-05-01

    Linear features from airport images correspond to runways, taxiways and roads. Detecting runways helps pilots to focus on runway incursions in poor visibility conditions. In this work, we attempt to detect linear features from LiDAR swath in near real time using parallel implementation on G5-based apple cluster called Xseed. Data from LiDAR swath is converted into a uniform grid with nearest neighbor interpolation. The edges and gradient directions are computed using standard edge detection algorithms such as Canny's detector. Edge linking and detecting straight-line features are described. Preliminary results on Reno, Nevada airport data are included.

  12. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  13. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing.

    The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible.

    The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  15. 69. View towards Manhattan looking over edge of steps down ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. View towards Manhattan looking over edge of steps down length of Promenade with Brooklyn Tower in background. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  16. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2017-03-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  17. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2016-09-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  18. Water Jetting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  19. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  20. Edge Detection,

    DTIC Science & Technology

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  1. Project HyBuJET

    NASA Technical Reports Server (NTRS)

    Ramsay, Tom; Collet, Bill; Igar, Karyn; Kendall, Dewayne; Miklosovic, Dave; Reuss, Robyn; Ringer, Mark; Scheidt, Tony

    1990-01-01

    A conceptual Hypersonic Business Jet (HyBuJet) was examined. The main areas of concentration include: aerodynamics, propulsion, stability and control, mission profile, and atmospheric heating. In order to optimize for cruise conditions, a waverider configuration was chosen for the high lift drag ratio and low wave drag. The leading edge and lower surface of a waverider was mapped out from a known flow field and optimized for cruising at Mach 6 and at high altitudes. The shockwave generated by a waverider remains attached along the entire leading edge, allowing for a larger compression along the lower surface. Three turbofan ramjets were chosen as the propulsion of the aircraft due to the combination of good subsonic performance along with high speed propulsive capabilities. A combination of liquid silicon convective cooling for the leading edges with a highly radiative outer skin material was chosen to reduce the atmospheric heating to acceptable level.

  2. Supersonic Jet Mixing Enhancement due to Natural and Induced Screech

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Raman, G.

    1999-01-01

    Outline of presentation are: (1) Review of experimental apparatus. (2) Effect of natural screech of jet mixing; converging nozzle, underexpanded jet and converging-diverging nozzle, design pressure.(3) Effect of induced screech on jet mixing: produced by paddles in shear layers, similar to edge tones, and converging-diverging nozzle, design pressure. (4) Effect of paddles on near-field jet noise. and (5) Concluding remarks.

  3. OASIS 1.0: Very Large-Aperture High-Power Lidar for Exploring Geospace

    NASA Astrophysics Data System (ADS)

    Chu, X.; Smith, J. A.; Chen, C.; Zhao, J.; Yu, Z.; Gardner, C. S.

    2015-12-01

    A new initiative, namely OASIS (the Observatory for Atmosphere Space Interaction Studies), has called for a very large-aperture high-power (VLAHP) lidar as its first step forward to acquire the unprecedented measurement capabilities for exploring the space-atmosphere interaction region (SAIR). Currently, there exists a serious observational gap of the Earth's neutral atmosphere above 100 km. Information on neutral winds and temperatures and on the plasma-neutral coupling in the SAIR, especially between 100 and 200 km, is either sparse or nonexistent. Fully exploring the SAIR requires measurements of the neutral atmosphere to complement radar observations of the plasma. Lidar measurements of neutral winds, temperatures and species can enable these explorations. Many of these topics will be addressed with the VLAHP lidar. Discoveries of thermospheric neutral Fe, Na and K layers up to nearly 200 km at McMurdo, Antarctica and other locations on Earth, have opened a new door to observing the neutral thermosphere with ground-based instruments. These neutral metal layers provide the tracers for resonance Doppler lidars to directly measure the neutral temperatures and winds in the thermosphere, thus enabling the VLAHP lidar dream! Because the thermospheric densities of these metal atoms are many times smaller than the layer peak densities near 90 km, high power-aperture product lidars, like the VLAHP lidar, are required to derive scientifically useful measurements. Furthermore, several key technical challenges for VLAHP lidar have been largely resolved in the last a few years through the successful development of Fe and Na Doppler lidars at Boulder. By combining Rayleigh and Raman with resonance lidar techniques and strategically operating the VLAHP lidar next to incoherent scatter radar and other complementary instruments, the VLAHP lidar will enable new cutting-edge exploration of the geospace. These new concepts and progresses will be introduced in this paper.

  4. Lidar performance analysis

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.

  5. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  6. Multiple scattering technique lidar

    NASA Technical Reports Server (NTRS)

    Bissonnette, Luc R.

    1992-01-01

    The Bernouilli-Ricatti equation is based on the single scattering description of the lidar backscatter return. In practice, especially in low visibility conditions, the effects of multiple scattering can be significant. Instead of considering these multiple scattering effects as a nuisance, we propose here to use them to help resolve the problems of having to assume a backscatter-to-extinction relation and specifying a boundary value for a position far remote from the lidar station. To this end, we have built a four-field-of-view lidar receiver to measure the multiple scattering contributions. The system has been described in a number of publications that also discuss preliminary results illustrating the multiple scattering effects for various environmental conditions. Reported here are recent advances made in the development of a method of inverting the multiple scattering data for the determination of the aerosol scattering coefficient.

  7. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  8. Wind Profiles Obtained with a Molecular Direct Detection Doppler Lidar During IHOP-2002

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, Savyasachee; Dobler, Jeremy; Hasselbrack, William; Comer, Joseph

    2004-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  9. Visibility and Cloud Lidar

    NASA Astrophysics Data System (ADS)

    Werner, Christian; Streicher, Jürgen; Leike, Ines; Münkel, Christoph

    In summary it can be stated that visibility lidar is an accepted technology wherever impaired vision must be detected to impose speed limits to road or takeoff and landing restrictions to air traffic. Visibility lidars known as ceilometers have reached a degree of maturity to work 24 hours a day in the required fully-automated, hands-off operation mode. The development of much smaller systems for use under restricted space conditions and of systems small and cheap enough to be used as a truck and car accessory is in progress, with good chances to reach full commercial availability soon.

  10. Micropulse Lidar (MPL) Handbook

    SciTech Connect

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  11. Numerical simulation of the edge tone phenomenon

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.

    1994-01-01

    Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.

  12. Bouncing Jets

    NASA Astrophysics Data System (ADS)

    Wadhwa, Navish; Vlachos, Pavlos; Jung, Sunghwan

    2011-11-01

    Contrary to common intuition, free jets of fluid can ``bounce'' off each other on collision in mid-air, through the effect of a lubricating air film that separates the jets. We have developed a simple experimental setup to stably demonstrate and study the non-coalescence of jets on collision. We present the results of an experimental investigation of oblique collision between two silicone oil jets, supported by a simple analytical explanation. Our focus is on elucidating the role of various physical forces at play such as viscous stresses, capillary force and inertia. A parametric study conducted by varying the nozzle diameter, jet velocity, angle of inclination and fluid viscosity reveals the scaling laws for the quantities involved such as contact time. We observed a transition from bouncing to coalescence with an increase in jet velocity and inclination angle. We propose that a balance between the contact time of jets and the time required for drainage of the trapped air film can provide a criterion for transition from non-coalescence to coalescence.

  13. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  14. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  15. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  16. Business Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Citation Jet, developed by Cessna Aircraft Company, Wichita, KS, is the first business jet to employ Langley Research Center's natural laminar flow (NLF) technology. NLF reduces drag and therefore saves fuel by using only the shape of the wing to keep the airflow smooth, or laminar. This reduces friction between the air and wing, and therefore, reduces drag. NASA's Central Industrial Applications Center, Rural Enterprises, Inc., Durant, OK, its Kansas affiliate, and Wichita State University assisted in the technology transfer.

  17. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  18. Spaceborne Simulations of Two Direct-Detection Doppler Lidar Techniques

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Steve X.

    1998-01-01

    Direct-detection (or incoherent) lidar is now a proven technique for measuring winds in the atmosphere. Over the last few years, several types of direct-detection lidar have evolved. These methods rely on Fabry-Perot interferometers(also termed etalons) or other narrow-passband filters to provide the required spectral resolution. One method, now called the edge (EDG) technique, uses a sharply-sloping filter and measures changes in the filter transmission caused by Doppler shifting of the laser wavelength. A variation of the EDG method, called the double-edge (DEDG) technique, uses two filters. The molecular DEDG method was first demonstrated by Chanin et al. for stratospheric measurements and more recently Korb et al. successfully demonstrated the aerosol DEDG through the troposphere. A second method, here termed the multi-channel (MC) technique, measures Doppler shifts by observing angular displacement of a Fabry-Perot fringe in a spatially resolving detector. The EDG technique thus employs the Fabry-Perot to convert the frequency shift into an amplitude signal, while the MC technique uses the Fabry-Perot to resolve the spectral signature which is then fitted to determine the centroid. The focus of this presentation is on the DEDG and MC methods because these are viewed as the current state of the art in direct-detection lidar. Successful ground-based demonstrations of direct-detection wind measurements have resulted in proposals for spaceborne systems. With this new emphasis on spaceborne systems comes the need for accurate prediction of spaceborne direct-detection Doppler lidar performance. Previously, the EDG and MC methods have been compared although only for aerosol Doppler systems. A recent paper by McGill and Spinhirne compares the DEDG and MC methods in a non-system specific manner for both the aerosol and molecular Doppler systems. The purpose of this presentation is to extend the previous work of McGill and Spinhirne to examine the performance of

  19. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  20. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  1. Laser sources for lidar applications

    NASA Astrophysics Data System (ADS)

    Kilmer, J.; Iadevaia, A.; Yin, Y.

    2012-06-01

    Advanced LIDAR applications such as next gen: Micro Pulse; Time of Flight (e.g., Satellite Laser Ranging); Coherent and Incoherent Doppler (e.g., Wind LIDAR); High Spectral Resolution; Differential Absorption (DIAL); photon counting LIDAR (e.g., 3D LIDAR); are placing more demanding requirements on conventional lasers (e.g., increased rep rates, etc.) and have inspired the development of new types of laser sources. Today, solid state lasers are used for wind sensing, 2D laser Radar, 3D scanning and flash LIDAR. In this paper, we report on the development of compact, highly efficient, high power all-solidstate diode pulsed pumped ns lasers, as well as, high average power/high pulse energy sub nanosecond (<1ns) and picosecond (<100ps) lasers for these next gen LIDAR applications.

  2. Analysis of Coherent Lidar Data

    DTIC Science & Technology

    2007-11-02

    for understanding and predicting atmospheric processes. Recent advances in solid-state lasers have produced coherent Doppler lidar with improved...for the spatial statistics. The performance of coherent Doppler lidar in the weak signal regime was deter- mined by computer simulations and from data...reliable comparison of coherent Doppler lidar wind measurements. A new theoretical prediction of the effects of the pulse averaging of the wind field

  3. Advanced Photodetectors for Space Lidar

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Krainak, Michael A.; Abshire, James B.

    2014-01-01

    The detector in a space lidar plays a key role in the instrument characteristics and performance, especially in direct detection lidar. The sensitivity of the detector is usually the limiting factor when determining the laser power and the receiver aperture size, which in turn determines the instrument complexity and cost. The availability of a suitable detector is often a deciding factor in the choice of lidar wavelengths. A direct detection lidar can achieve the highest receiver performance, or the quantum limit, when its detector can detect signals at the single photon

  4. Investigation of Space Based Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    This report describes the work performed over the period of October 1, 1997 through March 31, 2001. Under this contract, UAH/CAO participated in defining and designing the SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission, and developed the instrument's optical subsystem. This work was performed in collaborative fashion with NASA/MSFC engineers at both UAH/CAO and NASA/MSFC facilities. Earlier work by the UAH/CAO had produced a preliminary top-level system design for the Shuttle lidar instrument meeting the proposed mission performance requirements and the Space Shuttle Hitchhiker canister volume constraints. The UAH/CAO system design efforts had concentrated on the optical and mechanical designs of the instrument. The instrument electronics were also addressed, and the major electronic components and their interfaces defined. The instrument design concept was mainly based on the state of the transmitter and local oscillator laser development at NASA Langley Research Center and Jet Propulsion Laboratory, and utilized several lidar-related technologies that were either developed or evaluated by the NASA/MSFC and UAH/CAO scientists. UAH/CAO has developed a comprehensive coherent lidar numerical model capable of analyzing the performance of different instrument and mission concepts. This model uses the instrument configuration, atmospheric conditions and current velocity estimation theory to provide prediction of instrument performance during different phases of operation. This model can also optimize the design parameters of the instrument.

  5. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  6. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the δ-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  7. Landslides Mapped from LIDAR Imagery, Kitsap County, Washington

    USGS Publications Warehouse

    McKenna, Jonathan P.; Lidke, David J.; Coe, Jeffrey A.

    2008-01-01

    Landslides are a recurring problem on hillslopes throughout the Puget Lowland, Washington, but can be difficult to identify in the densely forested terrain. However, digital terrain models of the bare-earth surface derived from LIght Detection And Ranging (LIDAR) data express topographic details sufficiently well to identify landslides. Landslides and escarpments were mapped using LIDAR imagery and field checked (when permissible and accessible) throughout Kitsap County. We relied almost entirely on derivatives of LIDAR data for our mapping, including topographic-contour, slope, and hill-shaded relief maps. Each mapped landslide was assigned a level of 'high' or 'moderate' confidence based on the LIDAR characteristics and on field observations. A total of 231 landslides were identified representing 0.8 percent of the land area of Kitsap County. Shallow debris topples along the coastal bluffs and large (>10,000 m2) landslide complexes are the most common types of landslides. The smallest deposit mapped covers an area of 252 m2, while the largest covers 0.5 km2. Previous mapping efforts that relied solely on field and photogrammetric methods identified only 57 percent of the landslides mapped by LIDAR (61 percent high confidence and 39 percent moderate confidence), although nine landslides previously identified were not mapped during this study. The remaining 43 percent identified using LIDAR have 13 percent high confidence and 87 percent moderate confidence. Coastal areas are especially susceptible to landsliding; 67 percent of the landslide area that we mapped lies within 500 meters of the present coastline. The remaining 33 percent are located along drainages farther inland. The LIDAR data we used for mapping have some limitations including (1) rounding of the interface area between low slope surfaces and vertical faces (that is, along the edges of steep escarpments) which results in scarps being mapped too far headward (one or two meters), (2) incorrect laser

  8. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  9. [Temperature measurements during abrasive water jet osteotomy].

    PubMed

    Schmolke, S; Pude, F; Kirsch, L; Honl, M; Schwieger, K; Krömer, S

    2004-01-01

    Working on bone is a major aspect of orthopaedic surgery. Despite its well-known appreciable thermal effects on the edges of the bone cut, the oscillating bone saw blade the oscillating saw remains the standard instrument both for cutting long bones and creating a bed for an endoprosthesis. The application of abrasive water jets offers the possibility of achieving an extremely precise curved cut in bone with no accompanying thermal effect. The thermographically measured absolute temperature increase at the cut edges seen with the water jet was 13 K maximum. The small process forces permit the application in automated handling systems.

  10. Flash Lidar Data Processing

    NASA Astrophysics Data System (ADS)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  11. Spectral Ratio Biospheric Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Knox, Robert G.

    2004-01-01

    A new active vegetation index measurement technique has been developed and demonstrated using low-power laser diodes to make horizontal-path lidar measurements of nearby deciduous foliage. The two wavelength laser transmitter operates within and adjacent to the 680 nm absorption feature exhibited by all chlorophyll containing vegetation. Measurements from early October through late November 2003 are presented and the results are discussed.

  12. ASCA observations of galactic jet systems

    NASA Astrophysics Data System (ADS)

    Kotani, T.; Kawai, N.; Matsuoka, M.; Dotani, T.; Inoue, H.; Nagase, F.; Tanaka, Y.; Ueda, Y.; Yamaoka, K.; Brinkmann, W.; Ebisawa, K.; Takeshima, T.; White, N. E.; Harmon, A.; Robinson, C. R.; Zhang, S. N.; Tavani, M.; Foster, R.

    1997-05-01

    Recent studies with ASCA have shown very complicated, strange iron K features in the spectra of galactic jet systems. SS 433, the ``classic'' jet, was found to have pairs of Doppler-shifted lines, contrary to the previous belief that the receding X-ray jet is short and hidden behind the accretion disk. The transient jets, GRS 1915+105 and GRO J1655-40, show spectral dips, which have never been observed in any other source and are interpreted as absorption lines or Doppler-shifted absorption edges. If they are resonant absorption lines of helium-like iron, they would be the evidence of highly ionized, anisotropically distributed plasma near the jet engine. These features peculiar to galactic jet systems are expected to be explained in terms of the nature of the sources and the jet-formation mechanisms. Since ASCA was proved to be an excellent tool for diagnostics of jets, observation campaigns of the jet systems were planned and performed. SS 433 was observed about thirty times in the three years of the campaign, covering the phase space of the 162.5-day precession and the 13-day orbital motion. The extracted physics of the system, such as X-ray-jet length ten times longer than previous estimations, jet kinetic luminosity exceeding 1040 erg s-1, etc., draw a highly energetic and stormy, new picture of SS 433. The transient jets, GRS 1915+105 and GRO J1655-40, were also observed several times. GRS 1915+105 was found to be active in ASCA band even months after onsets of outburst. Violent variations were not seen. GRO J1655-40 was observed to be transit between high and low states, and the low state is consistent to occultation of a component. We review ASCA Observations of galactic jet systems and present some topics from recent progresses.

  13. Impact of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.

    2017-01-01

    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  14. Effect of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    van Buren, Tyler; Floryan, Daniel; Brunner, Daniel; Senturk, Utku; Smits, Alexander

    2016-11-01

    We present the effects of the trailing edge shape on the wake and propulsive performance of a pitching panel with an aspect ratio of 1. The trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the streamwise velocity field contains a single jet-like structure. Conversely, convex trailing edges promote wake compression and produce a wake split into four jets. Deviation from the square trailing edge mostly reduces the thrust and efficiency. Supported by the Office of Naval Research under MURI Grant Number N00014-14-1-0533.

  15. [Jet lag].

    PubMed

    Lagarde, D; Doireau, P

    1997-01-01

    Desynchronization of circadian rhythmicity resulting from rapid travel through at least four time zones leads to symptoms known in everyday English as jet-lag. The most detrimental effect of jet-lag is fatigue with poor alertness and psychomotor performance. Severity is subject to individual variation in susceptibility (morning/evening typology, age,...) and environmental factors (direction of travel, number of time zones crossed, psychosocial environment...). Many measures used to prevent or reduce jet lag are inappropriate or ineffective and some may even be dangerous, such as use of melatonin. One of the most reliable preventive techniques consists of reinforcing social synchronizers by maintaining exposure to sunlight and social activity. Only two drugs currently available on the market can be recommended, i.e. non-benzodiazepinic hypnotics which induce high quality sleep to allow quick recovery and a new time-release caffeine agent which has been shown to prolong psychomotor performance.

  16. Analyses of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of reliable and compact coherent lidar systems for a wide range of applications. This research effort is aimed at further developing solid state coherent lidar technology for remote sensing of atmospheric processes such as wind, turbulence and aerosol concentration. The work performed by the UAH personnel under this Delivery Order concentrated on design and analyses of laboratory experiments and measurements, and development of advanced lidar optical subsystems in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. Under this delivery order, a lidar breadboard system was designed and analyzed by considering the major aircraft and space operational requirements. The lidar optical system was analyzed in detail using SYNOPSIS and Code V optical design packages. The lidar optical system include a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. This lidar system is to be used for demonstrating all the critical technologies for the development of a reliable and low-cost space-based instrument capable of measuring global wind fields. A number of laboratory experiments and measurements were performed at the NASA/MSFC Detector Characterization Facility, previously developed by the UAH personnel. These laboratory measurements include the characterization of a 2-micron InGaAs detectors suitable for use in coherent lidars and characterization of Holographic Optical Element Scanners. UAH

  17. Modeling the Performance of Direct-Detection Doppler Lidar Systems in Real Atmospheres

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Hart, William D.; McKay, Jack A.; Spinhirne, James D.

    1999-01-01

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems has assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar systems: the double-edge and the multi-channel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only about 10-20% compared to nighttime performance, provided a proper solar filter is included in the instrument design.

  18. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  19. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2001-01-01

    A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.

  20. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  1. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  2. LiDAR: Providing structure

    USGS Publications Warehouse

    Vierling, Lee A.; Martinuzzi, Sebastián; Asner, Gregory P.; Stoker, Jason M.; Johnson, Brian R.

    2011-01-01

    Since the days of MacArthur, three-dimensional (3-D) structural information on the environment has fundamentally transformed scientific understanding of ecological phenomena (MacArthur and MacArthur 1961). Early data on ecosystem structure were painstakingly laborious to collect. However, as reviewed and reported in recent volumes of Frontiers(eg Vierling et al. 2008; Asner et al.2011), advances in light detection and ranging (LiDAR) remote-sensing technology provide quantitative and repeatable measurements of 3-D ecosystem structure that enable novel ecological insights at scales ranging from the plot, to the landscape, to the globe. Indeed, annual publication of studies using LiDAR to interpret ecological phenomena increased 17-fold during the past decade, with over 180 new studies appearing in 2010 (ISI Web of Science search conducted on 23 Mar 2011: [{lidar AND ecol*} OR {lidar AND fores*} OR {lidar AND plant*}]).

  3. Optimization of polarization lidar structure

    NASA Astrophysics Data System (ADS)

    Abramochkin, Alexander I.; Kaul, Bruno V.; Tikhomirov, Alexander A.

    1999-11-01

    The problems of the polarization lidar transceiver optimization are considered. The basic features and the optimization criteria of lidar polarization units are presented and the comparative analysis of polarization units is fulfilled. We have analyzed optical arrangements of the transmitter to form the desired polarization state of sounding radiation. We have also considered various types of lidar receiving systems: (1) one-channel, providing measurement of Stocks parameters at a successive change of position of polarization analyzers in the lidar receiver, and (2) multichannel, where each channel has a lens, an analyzer, and a photodetector. In the latter case measurements of Stocks parameters are carried out simultaneously. The optimization criteria of the polarization lidar considering the atmospheric state are determined with the purpose to decrease the number of polarization devices needed.

  4. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  5. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  6. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  7. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Mathur, Savy Asachee; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system hich uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (MOP). During the MOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  8. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, S.; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  9. Four-Wavelength Lidar Evaluation of Particle Characteristics and Aerosol Densities

    DTIC Science & Technology

    1985-06-01

    34 Cure2: 11.4% with/witlhot 0.0 OAS Own 3: 25.9% PONameter .0s _ uve :1 %omu-lmlto x -, 0 2 0.01 Tagt 199% ---- Target solution Curve 1: 11.8% Bt-fit...propagation paths. 2. (U) MULTUVELZNGTI LMIAR SYSTIM (U) The multiwavelength lidar systmn is installed within a 6-meter long van to facilitate opera- ti"ms...the, lidar receivers fog application to the Smoke Week VI/SNOW-TWO exparimenta. New extended-range logarithmic amlif jets were ýý -& led on thfý 0.53

  10. Making lidar more photogenic: creating band combinations from lidar information

    USGS Publications Warehouse

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  11. Simulated airline service experience with laminar-flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.

    1987-01-01

    The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.

  12. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  13. Capacitively Stabilized Etalon Technology for Spaceborne Wind Lidar Application

    NASA Technical Reports Server (NTRS)

    Li, Steven X.; Gentry, Bruce M.; Korb, C. Laurance; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Global monitoring by satellites is important for many types of environmental studies. Among these, the wind field is the single most important atmospheric state variable required for understanding atmospheric motion and predicting weather. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 1-5 m/sec is critical for improved numerical weather forecasting. This measurement could be carried out with a spaceborne lidar system sensing the Doppler shift of a laser signal backscattered from the atmosphere. Over the past four years we have developed a ground-based Edge Technique lidar system and demonstrated wind measurements through the troposphere with high accuracy (1-6 m/s) and high spatial resolution. Recently, we began the design of a shuttle based wind measurement system for technology demonstration as part of the Zephyr program. In this paper, we present the characteristics of the high spectral resolution etalon filter technology for lidar wind measurement with the Edge Technique. In conclusion, a spacecraft motion compensation method has been discussed. We demonstrated experimentally that the etalon can be tuned to compensate for any satellite induced Doppler shift to an accuracy of better than 0.6 m/s over a time period of 2.5 ms.

  14. Reconnection and Spire Drift in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as

  15. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  16. Evaluation of optimization of lidar temperature analysis algorithms using simulated data

    NASA Astrophysics Data System (ADS)

    Leblanc, Thierry; McDermid, I. Stuart; Hauchecorne, Alain; Keckhut, Philippe

    1998-03-01

    Temperature lidar data have been simulated in order to test the Jet Propulsion Laboratory (JPL) SO3ANL version 3.2 and Service d'Aeronomie du Centre National de la Recherche Scientifique (CNRS/SA) TEMPER version 2.1 lidar temperature analysis software. Assuming known atmospheric temperature-pressure-density profiles, theoretical raw-photons lidar profiles have been calculated using the actual characteristics of two JPL lidar instruments, located at the Table Mountain Facility (TMF) in California and the Mauna Loa Observatory (MLO), Hawaii, and the CNRS/SA Rayleigh lidar, located at the Observatoire de Haute-Provence (OHP) in France. The simulations were performed for an initial climatological profile taken from the CIRA-86 model and for various profiles derived from this model including realistic atmospheric disturbances. Comparisons between the original and retrieved temperature profiles revealed errors of several kelvins for both the JPL and the CNRS/SA programs. By varying parameters in the simulation, it was possible to determine both the source and the magnitude of these errors. Once identified, the errors were corrected, and the analysis programs were optimized, leading to new operational versions of these programs (SO3ANL version 3.6 and TEMPER version 2.2). An accurate accounting of the temperature lidar analysis errors, before and after this work, is presented.

  17. Comparison of H-mode plasmas in JET-ILW and JET-C with and without nitrogen seeding

    NASA Astrophysics Data System (ADS)

    Jaervinen, A. E.; Giroud, C.; Groth, M.; Belo, P.; Brezinsek, S.; Beurskens, M.; Corrigan, G.; Devaux, S.; Drewelow, P.; Harting, D.; Huber, A.; Jachmich, S.; Lawson, K.; Lipschultz, B.; Maddison, G.; Maggi, C.; Marchetto, C.; Marsen, S.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Sieglin, B.; Stamp, M. F.; Wiesen, S.; Contributors, JET

    2016-04-01

    In high confinement mode, highly shaped plasmas with edge localized modes in JET, and for heating power of 15-17 MW, the edge fluid code EDGE2D-EIRENE predicts transition to detachment assisted by nitrogen at the low field side (LFS) target when more than 50% of the power crossing the separatrix between ELMs is radiated in the divertor chamber, i.e. ~4 MW. This is observed both in the ITER-like wall (JET-ILW) and in the carbon wall (JET-C) configurations and is consistent with experimental observations within their uncertainty. In these conditions, peak heat fluxes below 1 MW m-2 are measured at the LFS target and predicted for both wall configurations. When the JET-C configuration is replaced with the JET-ILW, a factor of two reduction in the divertor radiated power and 25-50% increase in the peak and total power deposited to the LFS divertor plate is predicted by EDGE2D-EIRENE for unseeded plasmas similar to experimental observations. At the detachment threshold, EDGE2D-EIRENE shows that nitrogen radiates more than 80% of the total divertor radiation in JET-ILW with beryllium contributing less than a few %. With JET-C, nitrogen radiates more than 70% with carbon providing less than 20% of the total radiation. Therefore, the lower intrinsic divertor radiation with JET-ILW is compensated by stronger nitrogen radiation contribution in simulations leading to detachment at similar total divertor radiation fractions. 20-100% higher deuterium molecular fraction in the divertor recycling fluxes is predicted with light JET-C materials when compared to heavy tungsten. EDGE2D-EIRENE simulations indicate that the stronger molecular contribution can reduce the divertor peak power deposition in high recycling conditions by 10-20% due to enhanced power dissipation by molecular interaction.

  18. Relating WorldView-2 data to pine plantation lidar metrics

    NASA Astrophysics Data System (ADS)

    Trinder, J. C.; Shamsoddini, A.; Turner, R.

    2013-10-01

    Over last decades, different types of remotely sensed data including lidar, radar and optical data were investigated for forest studies. Undoubtedly, lidar data is one of the promising tools for these purposes; however, the accessibility and cost of this data are the main limitations. In order to overcome these limitations, optical data have been considered for modelling lidar metrics and their use for inferring lidar metrics over areas with no lidar coverage. WorldView-2 (WV-2) data as a high resolution optical data offer 8 bands including four traditional bands, blue, green, red, and infrared, and four new bands including coastal blue, yellow, red edge and a new infrared band whose relationships with lidar metrics were investigated in this study. For this purpose, band reflectance, band ratios, and principal components (PCs) of WV-2 multispectral data along with 23 vegetation indices were extracted. Moreover, the grey level co-occurrence matrix (GLCM) indices of bands, band ratios and PCs were also calculated for different window sizes and orientations. Spectral derivatives and textural attributes of WV-2 were provided for a stepwise multiple-linear regression to model 10 lidar metrics including maximum, mean, variance, 10th, 30th, 60th and 90th height percentiles, standard error of mean, kurtosis and skewness for a Pinus radiata plantation, in NSW, Australia. The results indicated that the textural-based models are significantly more efficient than spectral-based models for predicting lidar metrics. Moreover, the integration of spectral derivatives with textural attributes cannot improve the results derived from textural-based models. The study demonstrates that WV-2 data are efficient for predicting lidar metrics.

  19. A study of marine stratocumulus using lidar and other FIRE aircraft observations

    NASA Technical Reports Server (NTRS)

    Jensen, Jorgen B.; Lenschow, Donald H.

    1990-01-01

    The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.

  20. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  1. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  2. A model problem for sound radiation by an installed jet

    NASA Astrophysics Data System (ADS)

    Nogueira, Petrônio A. S.; Cavalieri, André V. G.; Jordan, Peter

    2017-03-01

    A model for sound generation by a jet in the vicinity of a flat plate, mimicking an exhaust jet installed near an aircraft wing, is presented. An earlier model (Cavalieri et al. J. Sound Vib. 333 (2014) 6516-6531) is further simplified by considering that the sound source is an axially-extended, cylindrical wavepacket concentrated on the jet lipline, and that this source is scattered by the trailing edge of a semi-infinite flat plate; the model is shown to match earlier results and considerably simplifies the analysis. It is used to evaluate how the parameters of the problem influence sound radiation by subsonic jets. We show that the axisymmetric mode of the source is the most acoustically efficient, similarly to what is seen for free jets; but unlike the latter problem, the sound scattered by the trailing edge is only weakly dependent on the details of the wavepacket envelope and on the two-point coherence of the source, the wavepacket phase speed being the salient feature for installed jet noise. We then use the model to evaluate how geometrical parameters of jet-plate configurations modify the radiated sound. The acoustic radiation is particularly sensitive to the jet-plate distance due to the exponential radial decay of near-field disturbances; the relative axial position of jet and trailing edge is shown to play a comparably minor role. Finally, changes in the angle of attack of the plate and in the sweep angle of the trailing edge considerably modify the radiated sound, leading to significant reductions of the acoustic intensity in some directions. The various properties of installed jet noise are further explored by appealing to the wavenumber transform of the tailored Green's function used to compute the scattered field; insight is thus provided on how jet-wing configurations might be designed so as to reduce installation noise.

  3. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  4. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop Hα macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Å snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T ~ 104 - 105 K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  5. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  6. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  7. Lidar applications to pollution studies.

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Fuller, W. H., Jr.

    1971-01-01

    This paper discusses the application of lidar (laser radar) to the measurement of air pollution. Lidar techniques and instrumentation utilizing elastic, Raman, and fluorescence scattering are discussed. Data showing measurements of the mixing of particulate pollutants in the atmosphere are presented. These data include: simultaneous two-wavelength results, isopleths showing the temporal dynamics of particulate mixing, measurements of the top of the earth's mixing layer, and measurements in a valley with restricted circulation and mixing. All measurements are compared with simultaneous radiosonde and/or aircraft-mounted temperature probe support. In addition, a second generation lidar system presently under development is described.

  8. Airborne lidar observations in the wintertime Arctic stratosphere - Ozone

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Carter, A. F.; Butler, C. F.; Fenn, M. A.; Kooi, S. A.; Tuck, A. F.; Toon, O. B.; Loewenstein, M.; Schoeberl, M. R.

    1990-01-01

    Large-scale distributions of ozone (O3) were measured with an airborne lidar system as part of the 1989 Airborne Arctic Stratospheric Expedition. Measurements of O3 distributions were obtained between January 6 and February 15, 1989, on 15 long-range flights into the polar vortex from the Solar Air Station, Norway. The observed O3 distribution was found to clearly indicate the edge of the polar vortex and to be an effective tracer of dynamical processes in the lower stratosphere. On the last two flights of the expedition, large regions with reduced O3 levels were observed by the lidar inside the polar vortex. Ozone had decreased by as much as 17 percent in the center of these areas, and using the in situ measurements made on the ER-2 aircraft, it was concluded that this decline was due to chemical O3 destruction.

  9. Wind Measurements with a 355 nm Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    A Doppler lidar system based on the molecular double edge technique is described. The system is mounted in a modified van to allow deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45cm aperture telescope and a matching azimuth-over-elevation scanner to allow full sky access. Validated atmospheric wind profiles have been measured from 1.8 km to 35 km with a 178 m vertical resolution. The range dependent rms deviation of the horizontal wind speed is 0.4 - 6 m/s. The results of wind speed and direction are in good agreement with balloon sonde wind measurements made simultaneously at the same location.

  10. Randomized SUSAN edge detector

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Wang, Ping; Gao, Ying-Hui; Wang, Peng

    2011-11-01

    A speed up technique for the SUSAN edge detector based on random sampling is proposed. Instead of sliding the mask pixel by pixel on an image as the SUSAN edge detector does, the proposed scheme places the mask randomly on pixels to find edges in the image; we hereby name it randomized SUSAN edge detector (R-SUSAN). Specifically, the R-SUSAN edge detector adopts three approaches in the framework of random sampling to accelerate a SUSAN edge detector: procedure integration of response computation and nonmaxima suppression, reduction of unnecessary processing for obvious nonedge pixels, and early termination. Experimental results demonstrate the effectiveness of the proposed method.

  11. Synthetic jet actuation for load control

    NASA Astrophysics Data System (ADS)

    de Vries, H.; van der Weide, E. T. A.; Hoeijmakers, H. W. M.

    2014-12-01

    The reduction of wind turbine blade loads is an important issue in the reduction of the costs of energy production. Reduction of the loads of a non-cyclic nature requires so-called smart rotor control, which involves the application of distributed actuators and sensors to provide fast and local changes in aerodynamic performance. This paper investigates the use of synthetic jets for smart rotor control. Synthetic jets are formed by ingesting low-momentum fluid from the boundary layer along the blade into a cavity and subsequently ejecting this fluid with a higher momentum. We focus on the observed flow phenomena and the ability to use these to obtain the desired changes of the aerodynamic properties of a blade section. To this end, numerical simulations and wind tunnel experiments of synthetic jet actuation on a non-rotating NACA0018 airfoil have been performed. The synthetic jets are long spanwise slits, located close to the trailing edge and directed perpendicularly to the surface of the airfoil. Due to limitations of the present experimental setup in terms of performance of the synthetic jets, the main focus is on the numerical flow simulations. The present results show that high-frequency synthetic jet actuation close to the trailing edge can induce changes in the effective angle of attack up to approximately 2.9°.

  12. First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

    1998-01-01

    First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

  13. Observations of entrainment and time variability in the HH 47 jet

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Heathcote, Steve; Cecil, Gerald

    1993-01-01

    We present new Fabry-Perot images of the HH 47 jet that show the first clear evidence for entrainment in a jet from a young star. The material in the jet moves faster down the axis of the flow and slower at the edges, similar to viscous flow in a pipe. The higher excitation lines occur along the edges of the jet, as expected if entrainment accelerates and heats the ambient material. We confirm previous observations of multiple bow shocks in this system. Together, time variability and entrainment produce much of the observed shock-excited gas in this object. Our data show that the 'wiggles' along the jet are not caused by jet material tied to a spiraling magnetic field, but instead result from time variability, variable ejection angles, or inhomogeneities in the flow. The gas entrained in the HH 47 jet may be atomic; our results do not provide direct evidence that stellar jets drive molecular outflows.

  14. Extraction of Building Boundary Lines from Airborne LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsing; Hung, Hsiao-Chu

    2016-10-01

    Building boundary lines are important spatial features that characterize the topographic maps and three-dimensional (3D) city models. Airborne LiDAR Point clouds provide adequate 3D spatial information for building boundary mapping. However, information of boundary features contained in point clouds is implicit. This study focuses on developing an automatic algorithm of building boundary line extraction from airborne LiDAR data. In an airborne LiDAR dataset, top surfaces of buildings, such as roofs, tend to have densely distributed points, but vertical surfaces, such as walls, usually have sparsely distributed points or even no points. The intersection lines of roof and wall planes are, therefore, not clearly defined in point clouds. This paper proposes a novel method to extract those boundary lines of building edges. The extracted line features can be used as fundamental data to generate topographic maps of 3D city model for an urban area. The proposed method includes two major process steps. The first step is to extract building boundary points from point clouds. Then the second step is followed to form building boundary line features based on the extracted boundary points. In this step, a line fitting algorithm is developed to improve the edge extraction from LiDAR data. Eight test objects, including 4 simple low buildings and 4 complicated tall buildings, were selected from the buildings in NCKU campus. The test results demonstrate the feasibility of the proposed method in extracting complicate building boundary lines. Some results which are not as good as expected suggest the need of further improvement of the method.

  15. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars

  16. Aircraft wing trailing-edge noise

    NASA Technical Reports Server (NTRS)

    Underwood, R. L.; Hodgson, T. H.

    1981-01-01

    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  17. COANDA Control of a Thick Wall-Jet in the Static Case

    DTIC Science & Technology

    1982-11-01

    conforming to its shape ( Coanda effect ) and induces upstream air on the upper c surface to follow the jet flow. This phenomenon effectively increases the...downward (and in some cases more than 90 degrees downward, producing thrust reversal) when the CC Coanda jet is activated. Experimental research was...ro.r.d~d trailing edge. r Thikcxtes5 of the Coanda jet, It Entrainnment length--the distance between the exit plane of the thick " wall-jet nozzle and

  18. Balloonborne lidar payloads for remote sensing

    NASA Astrophysics Data System (ADS)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  19. Direct Detection Doppler Lidar for Spaceborne Wind Measurement

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Flesia, Cristina

    1999-01-01

    The theory of double edge lidar techniques for measuring the atmospheric wind using aerosol and molecular backscatter is described. Two high spectral resolution filters with opposite slopes are located about the laser frequency for the aerosol based measurement or in the wings of the Rayleigh - Brillouin profile for the molecular measurement. This doubles the signal change per unit Doppler shift and improves the measurement accuracy by nearly a factor of 2 relative to the single edge technique. For the aerosol based measurement, the use of two high resolution edge filters reduces the effects of background, Rayleigh scattering, by as much as an order of magnitude and substantially improves the measurement accuracy. Also, we describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined. A measurement accuracy of 1.2 m/s can be obtained for a signal level of 1000 detected photons which corresponds to signal levels in the boundary layer. For the molecular based measurement, we describe the use of a crossover region where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering and greatly simplifies the measurement. Simulations using a conical scanning spaceborne lidar at 355 nm give an accuracy of 2-3 m/s for altitudes of 2-15 km for a 1 km vertical resolution, a satellite altitude of 400 km, and a 200 km x 200 km spatial.

  20. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  1. Raman Lidar (RL) Handbook

    SciTech Connect

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  2. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  3. Lidar data assimilation for improved analyses of volcanic aerosol events

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  4. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  5. Inclusive Jets in PHP

    NASA Astrophysics Data System (ADS)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  6. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  7. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  8. Backscatter LIDAR signal simulation applied to spacecraft LIDAR instrument design

    NASA Astrophysics Data System (ADS)

    Fochesatto, J.; Ristori, P.; Flamant, P.; Machado, M. E.; Singh, U.; Quel, E.

    2004-01-01

    In the framework of the scientific cooperation between the CEILAP laboratory (Argentina) and IPSL Institut Pierre Simon Laplace (France), devoted to the development of LIDAR techniques for Atmospheric sciences, a new area of scientific research, involving LIDARs, is starting in Argentine space technology. This new research area is under consideration at CEILAP in a joint effort with CONAE, the Argentine space agency, responsible for the development of future space missions. The LIDAR technique is necessary to improve our knowledge of meteorological, dynamic, and radiative processes in the South American region, for the whole troposphere and the lower stratosphere. To study this future mission, a simple model for the prediction of backscatter LIDAR signal from a spacecraft platform has been used to determine dimensions and detection characteristics of the space borne LIDAR instrument. The backscatter signal was retrieved from a modeled atmosphere considering its molecular density profile and taking into account different aerosols and clouds conditions. Signal-to-noise consideration, within the interval of possible dimension of the instrument parameters, allows us to constrain the telescope receiving area and to derive maximum range achievable, integration time and the final spatial and temporal resolutions of backscatter profiles.

  9. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  10. Computer simulation of the micropulse imaging lidar

    NASA Astrophysics Data System (ADS)

    Dai, Yongjiang; Zhao, Hongwei; Zhao, Yu; Wang, Xiaoou

    2000-10-01

    In this paper a design method of the Micro Pulse Lidar (MPL) is introduced, that is a computer simulation of the MPL. Some of the MPL parameters concerned air scattered and the effects on the performance of the lidar are discussed. The design software for the lidar with diode pumped solid laser is programmed by MATLAB. This software is consisted of six modules, that is transmitter, atmosphere, target, receiver, processor and display system. The method can be extended some kinds of lidar.

  11. From Antarctica Lidar Discoveries to Oasis Exploration

    NASA Astrophysics Data System (ADS)

    Chu, Xinzhao; Yu, Zhibin; Fong, Weichun; Chen, Cao; Zhao, Jian; Barry, Ian F.; Smith, John A.; Lu, Xian; Huang, Wentao; Gardner, Chester S.

    2016-06-01

    Stunning new science discoveries including neutral thermospheric metal layers in the 100-200 km altitude from McMurdo lidar campaign and other world lidar observations have led to a new initiative in the middle and upper atmosphere science community—the very large-aperture lidar Observatory for Atmosphere Space Interaction Studies (OASIS). These discoveries and the recent technology breakthroughs in Fe and Na Doppler lidars are presented to illustrate the science drivers and technology foundations forming the basis for OASIS.

  12. Corporate Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Gulfstream Aerospace Corporation, Savannah, GA, used a version of a NASA program called WIBCO to design a wing for the Gulfstream IV (G-IV) which will help to reduce transonic drag (created by shock waves that develop as an airplane approaches the speed of sound). The G-IV cruises at 88 percent of the speed of sound, and holds the international record in its class for round-the-world flight. They also used the STANS5 and Profile programs in the design. They will use the NASA program GASP to help determine the gross weight, range, speed, payload and optimum wing area of an intercontinental supersonic business jet being developed in cooperation with Sukhoi Design Bureau, a Soviet organization.

  13. Lidar extinction measurement in the mid infrared

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  14. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-09-30

    Advanced Digital Signal Processing for Hybrid Lidar William D. Jemison Clarkson University [Technical Section Technical Objectives The technical...objective of this project is the development and evaluation of various digital signal processing (DSP) algorithms that will enhance hybrid lidar ...algorithm as shown in Figure 1. Hardware Platform for Algorithm Implementation + Underwater Channel Characteristics ^ Lidar DSP Algorithm Figure

  15. Fatal Penetrating Injuries Sustained by High-pressure Water Jet Unit.

    PubMed

    Radojevic, Nemanja; Radnic, Bojana; Curovic, Ivana

    2015-11-01

    The high-pressure water jet unit is a generator of frequent burst of water jets. The water jet reaches very high speeds and is able to cause wounds similar to those of high-velocity projectiles. In the presented case, unusual fatal injuries sustained by water jet are presented. Operating with the unit, an untrained worker accidentally activated a high-pressure water jet unit, and the extremely high pressure of water liberated the jet unit from his hand and whirled it around him. A jet stream of water ran across his body and caused fatal penetrating injuries in the femoral region. The edges of the wound were mainly sharp with contusion rings on the skin beyond the edges. Exploring the inside of the canals during the autopsy, the left femoral artery and vein were found to be completely transected. The resemblance to a firearm entry wound and the severity of the internal injury make it a noteworthy entity.

  16. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  17. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  18. Lateral Shock of the R Aquarii Jet

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Kafatos, M.

    1997-01-01

    The R Aqr jet was observed with the VLA B-configuration at two epochs separated by approximately 13.2 yr. Comparison of the resulting 6 cm continuum images show that the radio jet has undergone a lateral counterclockwise rotation of approximately 6 deg-12 deg on the plane of the sky. The model of jet parcels on independent trajectories is difficult to reconcile with these observations and leads us to consider a path-oriented jet (i.e., younger parcels follow the same path as older parcels). Comparison of the most recent radio image with a nearly contemporaneous HST/FOC ultraviolet image at approximately 2330 Angstroms suggests that the ultraviolet emission lies along the leading side of the rotating radio jet. In conjunction with a proper motion analysis of the jet material that yields empirical space-velocity and resulting acceleration-magnitude relationships as a function of distance from the central source, we evaluate the observational results in terms of a schematic model in which the jet emission consists of plane-parallel isothermal shocks along the leading edge of rotation. In such a radiating shock, the ultraviolet-emitting region is consistent with the adiabatic region in the form of a high-temperature, low-density sheath that surrounds the cooled postshock radio-emitting region. Within the context of the schematic model, we obtain the temperatures, densities, and pressures within the preshock, adiabatic, and postshock regions as a function of distance from the central source; the physical parameters so derived compare favorably to previously published estimates. We obtain a total jet mass of 3.1 x 10(exp -5) solar mass and an age of approximately 115 yr. We evaluate the model in the context of its density-boundary condition, its applicability to an episodic or quasi-continuous jet, and angular momentum considerations.

  19. Revisiting Raman lidar: application of new techniques to improve system performance

    NASA Astrophysics Data System (ADS)

    Chen, Carl G.; Sedlacek, Arthur J., III

    1996-11-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants using resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it performance envelope. Chief among these new techniques is the use of pattern recognition to take advantage of the spectral fingerprint and a new laser frequency modulation technique, referred to as Frequency Modulated Excitation Raman Spectroscopy, designed to suppress broadband fluorescence. In the laboratory, broadband fluorescence suppression approaching 3 orders-of-magnitude has been achieved. In addition, the application of a BNL designed knife-edge Rayleigh filter has also bee demonstrated using our LIDAR system where spectral features as close as 200 cm-1 from the excitation line were observed. How all these features help increase the overall performance of Raman LIDAR will be discussed.

  20. Estimates of the potential temperature profile from lidar measurements of boundary layer evolution

    NASA Astrophysics Data System (ADS)

    Holder, H. E.; Eichinger, W. E.

    2006-10-01

    The Soil Moisture-Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek Watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high time resolution, continuous record of the mixed layer height at the edge between a soybean and a corn field. The height and thickness of the entrainment zone are used to estimate the vertical potential temperature profile in the boundary layer using surface energy measurements in the Batchvarova-Gryning mixed layer model. Calculated values of potential temperature compared well to radiosonde measurements taken simultaneously with the lidar measurements. The root-mean-square difference between the lidar-derived values and the balloon-based values is 1.20°C.

  1. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    geometry and pixel locations. Keywords: Amazon, Biomass, Carbon, Forest Structure, Tropical forests, Radar, Polarimetry, Interferometry, Lidar This work is performed partially at the Jet Propulsion Laboratory, California Institute of Technology, under contract from National Aeronautic and Space Administration.

  2. Shuttle atmospheric lidar research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Shuttle atmospheric lidar program is discussed in relation to an understanding of the processes governing the Earth's atmosphere and in the capacity to evaluate the atmospheric susceptibility to manmade and natural perturbations. Applications of the lidar which are discussed are the determination of the global flow of water vapor and pollutants in the troposphere, improvement of chemical and transport models of the stratosphere and mesosphere, evaluation of radiative models of the atmosphere, investigation of chemistry and transport of thermospheric atomic species, and investigation of magnetospheric aspects of sun/weather relationships. The features of the lidar measurements discussed are the high spatial resolution, control of the source wavelength and intensity, and high measurement specificity.

  3. Simultaneous lidar observations of the water vapor and ozone signatures of a stratospheric intrusion during the MOHAVE-2009 campaign

    NASA Astrophysics Data System (ADS)

    Leblanc, T.; McDermid, I. S.; Pérot, K.

    2010-12-01

    Ozone and water vapor signatures of a stratospheric intrusion were simultaneously observed by the Jet Propulsion Laboratory lidars located at Table Mountain Facility, California (TMF, 34.4N, 117.7W) during the Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE-2009) campaign in October 2009. These observations are placed in the context of the meridional displacement and folding of the tropopause, and resulting contrast in the properties of the air masses sampled by lidar. The lidar observations are supported by model data, specifically potential vorticity fields advected by the high-resolution transport model MIMOSA, and by 10-day backward isentropic trajectories. The ozone and water vapor anomalies measured by lidar were largely anti-correlated, and consistent with the assumption of a wet and ozone-poor subtropical upper troposphere, and a dry and ozone-rich extra-tropical lowermost stratosphere. However, it is shown that this anti-correlation relation collapsed just after the stratospheric intrusion event of October 20, suggesting mixed air embedded along the subtropical jet stream and sampled by lidar during its displacement south of TMF (tropopause fold). The ozone-PV expected positive correlation relation held strongly throughout the measurement period, including when a lower polar stratospheric filament passed over TMF just after the stratospheric intrusion. The numerous highly-correlated signatures observed during this event demonstrate the strong capability of the water vapor and ozone lidars at TMF, and provide new confidence in the future detection by lidar of long-term variability of water vapor and ozone in the Upper Troposphere-Lower Stratosphere (UTLS).

  4. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    SciTech Connect

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  5. Variable geometry inlet design for scram jet engine

    NASA Technical Reports Server (NTRS)

    Guinan, Daniel P. (Inventor); Drake, Alan (Inventor); Andreadis, Dean (Inventor); Beckel, Stephen A. (Inventor)

    2005-01-01

    The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap.

  6. Lidar configurations for wind turbine control

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Mann, Jakob

    2016-09-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.

  7. Jet Mixing in a Reacting Cylindrical Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of O2, CO2, CO, and HC are obtained upstream, downstream, and within the orifice plane. O2 profiles indicate jet penetration while CO2, CO, and HC profiles depict the extent of reaction. Jet penetration is observed to be a function of the number of orifices and is found to affect the mixing in the reacting system. The results demonstrate that one module (the 12-hole) produces near-optimal penetration defined here as a jet penetration closest to the module half-radius, and hence the best uniform mixture at a plane one duct radius from the orifice leading edge.

  8. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    PubMed

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  9. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  10. Edge electrospinning: a facile needle-less approach to realize scaled up production of quality nanofibers

    NASA Astrophysics Data System (ADS)

    Bochinski, J. R.; Curtis, C.; Roman, M. P.; Clarke, L. I.; Wang, Q.; Thoppey, N. M.; Gorga, R. E.

    2014-03-01

    Utilizing unconfined polymer fluids (e.g., from solution or melt), edge electrospinning provides a straightforward approach for scaled up production of high quality nanofibers through the formation of many parallel jets. From simple geometries (using solution contained within a sharp-edged bowl or on a flat plate), jets form and spontaneously re-arrange on the fluid surface near the edge. Using appropriate control of the electric field induced feed rate, comparable per jet fabrication as traditional single-needle electrospinning can be realized, resulting in nanofibers with similar diameters, diameter distribution, and collected mat porosity. The presence of multiple jets proportionally enhances the production rate of the system, with minimal experimental complexity and without the possibility of clogging. Extending this needle-less approach to commercial polyethylene polymers, micron scale fibers can be melt electrospun using a similar apparatus. Support from National Science Foundation (CMMI-0800237).

  11. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  12. Development of X-43A Mach 10 Leading Edges

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Glass, David E.; Bruce, Walter E., III; Lindell, Michael C.; Vaughn, Wallace L.; Dirling, R. B., Jr.; Hogenson, P. A.; Nichols, J. M.; Risner, N. W.; Thompson, D. R.

    2005-01-01

    The nose leading edge of the Hyper-X Mach 10 vehicle was orginally anticipated to reach temperatures near 4000 F at the leading-edge stagnation line. A SiC coated carbon/carbon (C/C) leading-edge material will not survive that extreme temperature for even a short duration single flight. To identify a suitable leading edge for the Mach 10 vehicle, arc-jet testing was performed on thirteen leading-edge segments fabricated from different material systems to evaluate their performance in a simulated flight environment. Hf, Zr, Si, and Ir based materials, in most cases as a coating on C/C, were included in the evaluation. Afterwards, MER, Tucson, AZ was selected as the supplier of the flight vehicle leading edges. The nose and the vertical and horizontal tail leading edges were fabricated out of a 3:1 biased high thermal conductivity C/C. The leading edges were coated with a three layer coating comprised of a SiC conversion of the top surface of the C/C, followed by a chemical vapor deposited layer of SiC, followed by a thin chemical vapor deposited layer of HfC. This paper will describe the fabrication of the Mach 10 C/C leading edges and the testing performed to validate performance.

  13. a Data Driven Method for Building Reconstruction from LiDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Sajadian, M.; Arefi, H.

    2014-10-01

    Airborne laser scanning, commonly referred to as LiDAR, is a superior technology for three-dimensional data acquisition from Earth's surface with high speed and density. Building reconstruction is one of the main applications of LiDAR system which is considered in this study. For a 3D reconstruction of the buildings, the buildings points should be first separated from the other points such as; ground and vegetation. In this paper, a multi-agent strategy has been proposed for simultaneous extraction and segmentation of buildings from LiDAR point clouds. Height values, number of returned pulse, length of triangles, direction of normal vectors, and area are five criteria which have been utilized in this step. Next, the building edge points are detected using a new method named "Grid Erosion". A RANSAC based technique has been employed for edge line extraction. Regularization constraints are performed to achieve the final lines. Finally, by modelling of the roofs and walls, 3D building model is reconstructed. The results indicate that the proposed method could successfully extract the building from LiDAR data and generate the building models automatically. A qualitative and quantitative assessment of the proposed method is then provided.

  14. Automatic extraction of building roofs using LIDAR data and multispectral imagery

    NASA Astrophysics Data System (ADS)

    Awrangjeb, Mohammad; Zhang, Chunsun; Fraser, Clive S.

    2013-09-01

    Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups. The first group contains the ground points that are exploited to constitute a 'ground mask'. The second group contains the non-ground points which are segmented using an innovative image line guided segmentation technique to extract the roof planes. The image lines are extracted from the grey-scale version of the orthoimage and then classified into several classes such as 'ground', 'tree', 'roof edge' and 'roof ridge' using the ground mask and colour and texture information from the orthoimagery. During segmentation of the non-ground LIDAR points, the lines from the latter two classes are used as baselines to locate the nearby LIDAR points of the neighbouring planes. For each plane a robust seed region is thereby defined using the nearby non-ground LIDAR points of a baseline and this region is iteratively grown to extract the complete roof plane. Finally, a newly proposed rule-based procedure is applied to remove planes constructed on trees. Experimental results show that the proposed method can successfully remove vegetation and so offers high extraction rates.

  15. Understanding jet noise.

    PubMed

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  16. Mobile Lidar Operations at GSFC

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.

    2003-01-01

    Since the last meeting, the GSFC Stratospheric Ozone Lidar has participated in two campaigns at MLO - an ozone and temperature comparison and a water vapor comparison. The trailer has been returned to GSFC to begin transfer into a sea container, before deployment to Reunion Island in Spring, 2004.

  17. Exicimer lidar measurements of ozone

    NASA Technical Reports Server (NTRS)

    Shibata, T.; Uchino, O.; Maeda, M.

    1985-01-01

    The observation of the atmospheric ozone profile in an altitude range of 3 to 28 km by means of differential absorption lidar in combination with an XeCl laser (308 nm) and SRS pumped by a KrF laser (249 nm) is discussed.

  18. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  19. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical

  20. Acoustic streaming of a sharp edge.

    PubMed

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  1. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  2. Agile robotic edge finishing

    SciTech Connect

    Powell, M.

    1996-08-01

    Edge finishing processes have seemed like ideal candidates for automation. Most edge finishing processes are unpleasant, dangerous, tedious, expensive, not repeatable and labor intensive. Estimates place the cost of manual edge finishing processes at 12% of the total cost of fabricating precision parts. For small, high precision parts, the cost of hand finishing may be as high as 305 of the total part cost. Up to 50% of this cost could be saved through automation. This cost estimate includes the direct costs of edge finishing: the machining hours required and the 30% scrap and rework rate after manual finishing. Not included in these estimates are the indirect costs resulting from cumulative trauma disorders and retraining costs caused by the high turnover rate for finishing jobs.. Despite the apparent economic advantages, edge finishing has proven difficult to automate except in low precision and/or high volume production environments. Finishing automation systems have not been deployed successfully in Department of Energy defense programs (DOE/DP) production, A few systems have been attempted but have been subsequently abandoned for traditional edge finishing approaches: scraping, grinding, and filing the edges using modified dental tools and hand held power tools. Edge finishing automation has been an elusive but potentially lucrative production enhancement. The amount of time required for reconfiguring workcells for new parts, the time required to reprogram the workcells to finish new parts, and automation equipment to respond to fixturing errors and part tolerances are the most common reasons cited for eliminating automation as an option for DOE/DP edge finishing applications. Existing automated finishing systems have proven to be economically viable only where setup and reprogramming costs are a negligible fraction of overall production costs.

  3. Untangling the protostars and jets in HH 900

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan

    2013-02-01

    We propose to obtain high resolution (comparable to HST), narrowband [Fe II] images with GSAOI to disentangle the protostars and jets in HH 900. Recent H-alpha imaging of HH 900 reveals an unusually broad outflow emerging from a small ( 1"), dark globule in Trumpler 16. A bright H-alpha microjet along the western edge of HH 900 may be a second jet-protostar system that was ejected from the dark globule. Strong UV radiation from the many O stars in Trumpler 16 illuminates unshocked material in these jets, making it possible to estimate the jet mass-loss rates and infer the mass accretion history of the driving protostars. Two Spitzer-detected YSOs appear to lie within the globule, although with relatively coarse resolution (2"), Spitzer cannot resolve which protostar drives the jet. However, for HH jets with an associated Spitzer source, we have shown that IR [Fe II] emission traces the jet into the dark globule, connecting the H-alpha jet with the driving protostar. In addition, [Fe II] in these externally irradiated jets is excited in the dense, neutral jet core and may trace most of the mass in the outflow. We also propose to obtain narrowband H_2 images of HH 900 to see if extended H2 emission seen in ground-based images without AO correction corresponds to molecules entrained in the outflow. The associated Spitzer YSOs suggest that HH 900 samples the lower mass end of the jet-driving protostars detectable in Carina. Previous studies of [Fe II] in HH jets in Carina have focused on bright, highly collimated outflows likely driven by more massive, and more evolved protostars. Thus, HH 900 provides an important test of the behavior of lower mass jet driving protostars. These observation will be a chapter in P.I. M. Reiter's PhD thesis.

  4. Temperature climatology of the middle atmosphere from long-term lidar measurements at mid- and low-latitudes

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart; Leblanc, Thierry; Keckhut, Philippe; Hauchecorne, Alain; She, C. Y.; Krueger, David A.

    1998-01-01

    The temperature structure of the middle atmosphere has been studied for several decades using a variety of techniques. However, temperature profiles derived from lidar measurements can provide improved vertical resolution and accuracy. Lidars can also provide long-term data series relatively absent of instrumental drift, and integration of the measurements over several hours removes most of the gravity wave-like short-scale disturbances. This paper describes a seasonal climatology of the middle atmosphere temperature derived from lidar measurements obtained at several mid- and low-latitude locations. Results from the following lidars, which have all obtained a long-term measurement record, were used in this study: the two Rayleigh lidars of the Service d'Aeronomie du CNRS, France, located at the Observatoire de Haute Provence (OHP, 44.0 deg N) and at the Centre d'Essais des Landes (CEL, 44.0 deg N), the two Rayleigh/Raman lidars of the Jet Propulsion Laboratory, USA, located at Table Mountain, California (TMF, 34.4 deg N) and at Mauna Loa, Hawaii (MLO, 19.5 deg N), and the Colorado State University, USA, sodium lidar located at Fort Collins, Colorado (CSU, 40.6 deg N). The overall data set extends from 1978 to 1997 with different periods of measurements depending on the instrument. Three of the instruments are located at primary or complementary stations (OHP, TMF, MLO) within the Network for Detection of Stratospheric Change (NDSC). Several aspects of the temperature climatology obtained by lidar in the middle atmosphere are presented, including the climatological temperature average through the year; the annual and semi-annual components, and the differences compared to the CIRA-86 climatological model.

  5. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  6. Improving lidar turbulence estimates for wind energy

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.

    2016-09-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  7. Left Ventricular Vortex Under Mitral Valve Edge-to-Edge Repair

    PubMed Central

    Hu, Yingying; Shi, Liang; Parameswaran, Siva; Smirnov, Sergey; He, Zhaoming

    2011-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) changes MV geometry by approximation of MV leaflets, and impacts left ventricle (LV) filling fluid mechanics. The purpose of this study was to investigate LV vortex with MV ETER during diastole. A computational MV–LV model was developed with MV ETER at the central free edges of the anterior and posterior leaflets. It was supposed that LV would elongate apically during diastole. The elongation deformation was controlled by the intraventricular flow rate. MV leaflets were modeled as a semi-prolate sphere with two symmetrical circular orifices and fixed at the maximum valve opening. MV chordae were neglected. FLUENT was used to simulate blood flow through the MV and in the LV. MV ETER generated two jets deflected laterally toward the LV wall in rapid LV filling. The jets impinged the LV wall obliquely and moved apically along the LV wall. Jet energy was primarily lost near the impingement. The jet from each MV orifice was surrounded by a vortex ring. The two vortex rings dissipated at the end of diastole. The total energy loss increased inversely with the MV orifice area. The atrio-ventricular pressure gradient was adverse near the end of diastole and possibly in diastasis. Reduction of the total orifice area led to more increment in the transmitral pressure drop than in the transmitral velocity. In conclusion, during diastole, two deflected jets from the MV under ETER impinged the LV wall. Major energy loss occurred around the jet impingement. Two vortex rings dissipated at the end of diastole with little storage of inflow energy for blood ejection in the following process of systole. MV ETER increased energy loss and lowered LV filling efficiency. The maintaining of a larger orifice area after ETER might not significantly increase energy loss in the LV during diastole and the transmitral pressure drop. The adverse pressure gradient from the atrium to the LV might be the mechanism of MV closure in the late diastole. PMID

  8. Glottal jet inertance

    NASA Astrophysics Data System (ADS)

    Mphail, Michael; Krane, Michael

    2016-11-01

    Estimates of an inertive contribution of the glottal jet to glottal aerodynamic resistance is presented. Given that inertance of the flow in a constriction can be expressed in terms of the kinetic energy of the flow, and that a jet is a maximum kinetic energy flow pattern, it is argued that the glottal jet possesses its own inertance which is at least as large as that of the vocal tract. These arguments are supported by estimates of inertance obtained from simulations of an unsteady flow through an axisymmetric orifice, and of a compliant constriction with the approximate shape and mechanical properties of the vocal folds. It is further shown that the inertive effect of the glottal jet depends on the jet path and jet mixing, with a slowly diffusing, symmetric jet showing higher inertance than an asymmetric jet which rapidly mixes with supraglottal air. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  9. Robotic abrasive water jet cutting of aerostructure components

    SciTech Connect

    Davis, D.C.

    1989-01-01

    To reduce tooling and labor costs associated with net trimming of aerostructure components, a system has been designed and implemented which combines the flexibility and accuracy of robotics with the productivity of abrasive water jet cutting. The system is comprised of a large, six-axis gantry robot which uses specially developed abrasive water jet end effectors to trim the edge-of-panel (EOP) and integral stiffener blades. These end effectors employ compact catchers to contain the spent stream, and thereby eliminate the need for large catcher tanks commonly used in abrasive water jet cutting. The robot is offline programmed to perform trimming on large, complex contoured panels.

  10. Evaluation of vegetation fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2013-08-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterize the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently concern by wildfire with low dense shrubs. Using Lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterized by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycenter technique. The smoke plume displacement was determined using a digital video camera coupled with the Lidar. The simulation was performed using a meso-scale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire) taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycenter was systematically below the barycenter derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosols particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  11. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  12. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  13. Overview of the Jet/Surface Interaction Test (JSIT1)

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Brown, Cliff; Bencic, Tim

    2011-01-01

    This material was presented at the Acoustics Technical Working Group Meeting on April22, 2011. It provides an overview of an experiment called the Jet / Surface Interaction Test which was conducted to expand the database available regarding how a planar surface interacts with a jet to shield and/or enhance the jet noise. This presentation focuses on data obtained during Phase 1 of the test, JSIT1, which was conducted using the Small Hot Jet Acoustic Rig located in the Aeroacoustics Propulsion Lab at NASA GRCduring January and February, 2011. A second phase of the test, JSIT2, is planned for 2012.There were two parts of the phase 1 test. In part 1, known as the shielding surface part of the test, a planar surface was placed between the jet and the microphones. In part 2, the reflecting surface part of the test, the surface was placed on the opposite side of the jet so that the jet noise was free to reflect off the surface toward the microphones. Phased array, pressure sensitive paint, and far field acoustic data obtained during JSIT1 are presented. The phased array data illustrate how the jet noise is blocked by the shielding surface. It also shows that the low frequency scrubbing noise generated when the surface is impacted by the jet comes predominantly from the surface trailing edge. The far field data show the trailing edge noise to be a dipole source. The pressure sensitive paint data show how the pressure distribution on the surface varies as the surface is traversed toward jet.This material was presented at the Acoustics Technical Working Group Meeting on April22, 2011. It provides an overview of an experiment called the Jet/Surface Interaction Test which was conducted to expand the database available regarding how a planar surface interacts with a jet to shield and/or enhance the jet noise. This presentation focuses on data obtained during Phase 1 of the test, JSIT1, which was conducted using the Small Hot Jet Acoustic Rig located in the Aeroacoustics

  14. A Parametric Study of Jet Interactions with Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    2004-01-01

    Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.

  15. Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    SciTech Connect

    Ng, Johnny S.T.; Noble, Robert J.; /SLAC

    2005-07-13

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic (longitudinal) plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of two. The results are relevant to understanding the micro-physics at the interface region of an astrophysical jet with the interstellar plasma, for example, the edge of a wide jet or the jet-termination point.

  16. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  17. Fountain-Jet Turbulence.

    DTIC Science & Technology

    1980-09-01

    and 3 times higher than expected from free- jet results. Hill et al., (Reference 6) in work with foun- tain jets impacting fuselage models, detected ...delineate the origins of the turbulent anomalies associated with fountain jets by extending the previous studies. The results are presented herein...jet velocities were detected with a Thermal Systems Inc. Model 1050 dual-channel constant-temperature anemometer equipped with a Thermal Systems Inc

  18. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  19. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  20. a Min-Cut Based Filter for Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Ural, Serkan; Shan, Jie

    2016-06-01

    LiDAR (Light Detection and Ranging) is a routinely employed technology as a 3-D data collection technique for topographic mapping. Conventional workflows for analyzing LiDAR data require the ground to be determined prior to extracting other features of interest. Filtering the terrain points is one of the fundamental processes to acquire higher-level information from unstructured LiDAR point data. There are many ground-filtering algorithms in literature, spanning several broad categories regarding their strategies. Most of the earlier algorithms examine only the local characteristics of the points or grids, such as the slope, and elevation discontinuities. Since considering only the local properties restricts the filtering performance due to the complexity of the terrain and the features, some recent methods utilize global properties of the terrain as well. This paper presents a new ground filtering method, Min-cut Based Filtering (MBF), which takes both local and global properties of the points into account. MBF considers ground filtering as a labeling task. First, an energy function is designed on a graph, where LiDAR points are considered as the nodes on the graph that are connected to each other as well as to two auxiliary nodes representing ground and off-ground labels. The graph is constructed such that the data costs are assigned to the edges connecting the points to the auxiliary nodes, and the smoothness costs to the edges between points. Data and smoothness terms of the energy function are formulated using point elevations and approximate ground information. The data term conducts the likelihood of the points being ground or off-ground while the smoothness term enforces spatial coherence between neighboring points. The energy function is optimized by finding the minimum-cut on the graph via the alpha-expansion algorithm. The resulting graph-cut provides the labeling of the point cloud as ground and off-ground points. Evaluation of the proposed method on

  1. Ozone Lidar Observations for Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.; Sullivan, John T.; Langford, Andrew O.; Senff, Christoph J.; Alvarez, Raul; Eloranta, Edwin

    2015-01-01

    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.

  2. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  3. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  4. LIDAR Surveys for Road Design in Thailand

    DTIC Science & Technology

    2004-11-01

    25th ACRS 2004 Chiang Mai, Thailand 167 New Generation of Sensors and Applications A-4.6 LIDAR SURVEYS FOR... LiDAR , DEM, Road design, Pilot project, Thailand, NBIA ABSTRACT Concerned with environmental and drainage problems associated with road...as hilly, unstable terrain. LiDAR technology is of great interest to DOH as its use can make them save enormous amounts of time and money by providing

  5. Analysis of Lidar Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1999-01-01

    Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.

  6. Improving Lidar Turbulence Estimates for Wind Energy

    DOE PAGES

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less

  7. Towards a Greenhouse Gas Lidar in Space

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Amediek, Axel; Quatrevalet, Mathieu

    Highly accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) by a space-borne lidar will help to substantially improve knowledge of greenhouse gas fluxes. The method of integrated-path differential-absorption lidar for total column measurements has proven to be a suitable means for CH4 detection in natural gas leak surveillance and active remote sensing of CO2. This pioneering work facilitated the instrument development of an advanced greenhouse gas lidar on HALO and set the stage for the development of a CH4-lidar in space instrument foreseen in the Franco-German climate mission MERLIN.

  8. SAR and LIDAR fusion: experiments and applications

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  9. Supporting Indonesia's National Forest Monitoring System with LiDAR Observations

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.

    2015-12-01

    Scientists at Applied GeoSolutions, Jet Propulsion Laboratory, Winrock International, and the University of New Hampshire are working with the government of Indonesia to enhance the National Forest Monitoring System in Kalimantan, Indonesia. The establishment of a reliable, transparent, and comprehensive NFMS has been limited by a dearth of relevant data that are accurate, low-cost, and spatially resolved at subnational scales. In this NASA funded project, we are developing, evaluating, and validating several critical components of a NFMS in Kalimantan, Indonesia, focusing on the use of LiDAR and radar imagery for improved carbon stock and forest degradation information. Applied GeoSolutions and the University of New Hampshire have developed an Open Source Software package to process large amounts LiDAR data quickly, easily, and accurately. The Open Source project is called lidar2dems and includes the classification of raw LAS point clouds and the creation of Digital Terrain Models (DTMs), Digital Surface Models (DSMs), and Canopy Height Models (CHMs). Preliminary estimates of forest structure and forest damage from logging from these data sets support the idea that comprehensive, well documented, freely available software for processing LiDAR data can enable countries such as Indonesia to cost effectively monitor their forests with high precision.

  10. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  11. Large bouncing jets

    NASA Astrophysics Data System (ADS)

    Cardin, Karl; Weislogel, Mark

    2016-11-01

    We experimentally investigate the phenomena of large jet rebound (bounce), a mode of fluid transfer following oblique jet impacts on hydrophobic surfaces. We initially seek to describe the regimes of such jet bounce in tests conducted in the weightless environment of a drop tower. A parametric study reveals the dependence of the rebound mode on the relevant dimensionless groups such as Weber number We⊥ defined on the velocity component perpendicular to the surface. We show that significantly larger diameter jets behave similarly as much smaller jets demonstrated during previous terrestrial investigations when We⊥ 1 . For We⊥ > 1 , large jet impacts create fishbone-like structures. We also explore rebounds from nonplanar substrates. Improving our understanding of such jet rebound opens avenues for unique transport capabilities. NASA Cooperative Agreement NNX12A047A.

  12. Hydroacoustic pulsating jet generator

    NASA Astrophysics Data System (ADS)

    Unrau, A.; Meier, G. E. A.

    1987-04-01

    A high pressure turbulent jet generator connected to a low pressure hydraulic tube is studied to investigate water hammer in tubes with fast flow variations, generating high pressure pulsating water jets. The pulsating jet generator consists of a tube, a hydraulic valve, a spring, and a water container. The jet is the effect of the combination of turbulent pipe flow with a valve for flow nozzle. The jet pressure depends on specific oscillation impedance and flow velocity variations. For inlet pressure of 0.5 to 2 bar the pressure rises to 40 bar. The described pulsating jet generator is more effective than the earlier model. A piezoelectric pressure controller is used to register pressure signals and high speed photos are made of the jet. Test results are consistent with theoretical calculation.

  13. Lidar for Lateral Mixing (LATMIX)

    DTIC Science & Technology

    2013-09-30

    km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the temporal, spatial, and scale variability of...the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale stirring is driven by a cascade of energy down...technical goal of our work is to develop the use of airborne LIDAR surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion

  14. Three-dimension imaging lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J. (Inventor)

    2007-01-01

    This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.

  15. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-08-29

    signal is used with a digital receiver to form a chaotic LIDAR (CLIDAR) ranging system. The design of the chaotic fiber ring laser and the fiber ...the first fiscal year we reported the development of wideband noise-like chaotic signals using low-power fiber ring lasers operating at infrared...ytterbium-doped fiber laser (YDFL), which outputs a >1 GHz noise-like chaotic intensity modulation. This signal is amplified by a 2-stage fiber

  16. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-09-30

    digital receiver to form a chaotic LIDAR (CLIDAR) ranging system. The design of the chaotic fiber ring laser and the fiber amplifiers are guided by...Progress In the first fiscal year we reported the development of wideband noise-like chaotic signals using low-power fiber ring lasers operating... fiber laser (YDFL), which outputs a >1 GHz noise-like chaotic intensity modulation. This signal is amplified by a 2-stage fiber amplifier chain to

  17. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    NASA Technical Reports Server (NTRS)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  18. LIDAR data compression using wavelets

    NASA Astrophysics Data System (ADS)

    Pradhan, B.; Mansor, Shattri; Ramli, Abdul Rahman; Mohamed Sharif, Abdul Rashid B.; Sandeep, K.

    2005-10-01

    The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become a case in point for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original LIDAR data. The results show that this method can be used for significant reduction of data set.

  19. Narrowband sodium lidar for the measurements of mesopause region temperature and wind.

    PubMed

    Li, Tao; Fang, Xin; Liu, Wei; Gu, Sheng-Yang; Dou, Xiankang

    2012-08-01

    We report here a narrowband high-spectral resolution sodium temperature/wind lidar recently developed at the University of Science and Technology of China (USTC) in Hefei, China (31.5 °N, 117 °E). Patterned after the Colorado State University (CSU) narrowband sodium lidar with a dye laser-based transmitter, the USTC sodium temperature/wind lidar was deployed with a number of technical improvements that facilitate automation and ease of operation; these include a home constructed pulsed dye amplifier (PDA), a beam-steering system, a star-tracking program, and an electronic timing control. With the averaged power of ∼1.2 W output from PDA and the receiving telescope diameter of 0.76 m, our lidar system has a power aperture product of ∼0.55 Wm(2) and is comparable to the CSU and the University of Illinois at Urbana-Champaign (UIUC) sodium lidar systems. The uncertainties of typical measurements induced by photon noise and laser locking fluctuation for the temperature and wind with a 2 km vertical and 15 min temporal resolutions under the nighttime clear sky condition are estimated to be ∼1.0 K and ∼1.5 m/s, respectively, at the sodium peak (e.g., 91 km), and 8 K and 10 m/s, respectively, at both sodium layer edges (e.g., 81 km and 105 km). The USTC narrowband sodium lidar has been operated regularly during the night since November 2011. Using the initial data collected, we demonstrate the reliability and suitability of these high resolution and precision datasets for studying the wave perturbations in the mesopause region.

  20. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  1. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  2. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  3. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  4. HUBBLE VIEWS OF THREE STELLAR JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the

  5. New Raman Water Vapor and Temperature Lidar at JPL Table Mountain Facility: Optimization, Validations and Sonde Intercomparison

    NASA Technical Reports Server (NTRS)

    Aspey, R. A.; McDermid, I. S.; Leblanc, T.; Walsh, D.; Howe, J.

    2006-01-01

    Jet Propulsion Laboratory currently operates lidar systems at Table Mountain Facility (TMF), California (34.4 deg N, 117.7 deg W at 2300m) and Mauna Loa Observatory (MLO), Hawaii (19.5 deg N, 155.6 deg W at 3400m) under the Network for the Detection of Atmospheric Composition Change (NDACC, formerly NDSC). To complement existing NDACC lidars at TMF, which acts as a primary site for inter-comparisons, a new water vapor and temperature lidar has begun routine operation with typically 3-4 nightly profiles per week. As water vapor is a key greenhouse gas, and is highly variable on annual and seasonal cycles, accurate long term measurements are necessary for predictions of climate change and to increase our understanding of the atmospheric processes it contributes to. The new TMF lidar has demonstrated high spatial and temporal resolution, with a high degree of optimization being achieved over the past year, although the authors believe further improvement may yet be possible. The lidar has been designed for accuracies of 5% up to 12km in the free troposphere with the capability to measure to the tropopause and lower stratosphere with accuracies of 1 ppm. It is anticipated that the data sets produced will be used for Aura validation and for incorporation into NDACC archives. Validation results for the optimized system are presented with intercomparisons using Vaisala RS92-K radiosondes.

  6. Performance Comparison of Sweeping/Steady Jet Actuators

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Mercier, Justin; Noca, Flavio; Gharib, Morteza

    2015-11-01

    Flow control through the use of steady jet actuators has been used on various aircraft models since the late 1950's. However, the focus of recent studies has shifted towards the use of sweeping jets (fluidic oscillators) rather than steady jet actuators. In this work, experiments using various jet actuator designs were conducted at GALCIT's Lucas Wind Tunnel on a NACA 0012 vertical tail model similar to that of the Boeing 767 vertical stabilizer at Reynolds numbers ranging from 0.5 to 1.2 million. The rudder angle was fixed at 20 degrees. A total of 32 jet actuators were installed along the wingspan perpendicular to the trailing edge and the rudder shoulder of the vertical stabilizer. It is known that these types of flow control prevent separation. However, the goal of this work is to compare different jet designs and evaluate their performance. Parameters such as the number of actuators, their volumetric flow, and the wind tunnel speed were varied. The lift generation capabilities of steady and sweeping jet actuators were then compared. Another set of experiments was conducted to compare a new sweeping jet actuator design with one of the standard versions. Supported by Boeing.

  7. PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS

    SciTech Connect

    Machida, Masahiro N.

    2014-11-20

    A protostellar jet and outflow are calculated for ∼270 yr following the protostar formation using a three-dimensional magnetohydrodynamics simulation, in which both the protostar and its parent cloud are spatially resolved. A high-velocity (∼100 km s{sup –1}) jet with good collimation is driven near the disk's inner edge, while a low-velocity (≲ 10 km s{sup –1}) outflow with a wide opening angle appears in the outer-disk region. The high-velocity jet propagates into the low-velocity outflow, forming a nested velocity structure in which a narrow high-velocity flow is enclosed by a wide low-velocity flow. The low-velocity outflow is in a nearly steady state, while the high-velocity jet appears intermittently. The time-variability of the jet is related to the episodic accretion from the disk onto the protostar, which is caused by gravitational instability and magnetic effects such as magnetic braking and magnetorotational instability. Although the high-velocity jet has a large kinetic energy, the mass and momentum of the jet are much smaller than those of the low-velocity outflow. A large fraction of the infalling gas is ejected by the low-velocity outflow. Thus, the low-velocity outflow actually has a more significant effect than the high-velocity jet in the very early phase of the star formation.

  8. Effect of Compressibility on Contrail Ice Particle Growth in an Engine Jet

    NASA Astrophysics Data System (ADS)

    Garnier, François; Maglaras, Ephi; Morency, François; Vancassel, Xavier

    2014-06-01

    In order to understand the formation process of condensation trails (contrails), the flow in the near field of an aircraft engine jet is studied by using the three-dimensional Large Eddy Simulation technique. The configuration consists of a hot round jet laden with soot particles. The particles are tracked using the Lagrangian approach, and their growth is calculated by a microphysics water vapour deposition model. A series of simulations are performed at a realistic Reynolds number (Re = 3.2 · 106) for two different jet Mach numbers: quasi-incompressible jet flow (M = 0.2) and compressible jet flow (M = 1). Whatever the Mach number used the ice crystals first appear at the edges of the jet where the hot and moist flow mixes with the cold and dry ambient air. Both the thermal transfers and the mass coupling, which are more significant for the quasi-incompressible jet flow, control the growth process.

  9. Investigation of recurrent EUV jets from highly dynamic magnetic field region

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Chandra, Ramesh; Guo, Yang; Magara, Tetsuya; Zhelyazkov, Ivan; Moon, Young-Jae; Uddin, Wahab

    2017-01-01

    In this work, we present observations and interpretations of recurrent extreme ultraviolet (EUV) jets that occurred between 2012 July 1 21:00 UT and 2012 July 2 10:00 UT from the western edge of the NOAA active region 11513. Solar Dynamics Observatory/Atmospheric Imaging Assembly ( SDO/AIA), SDO/Helioseismic and Magnetic Imager ( SDO/HMI) and Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI) observations have been used for the present study. Observations as well as potential-field source-surface (PFSS) extrapolation suggest an open field configuration in the vicinity of the jet activity area. 18 EUV jets were observed from the western edge of the active region along the open field channel. All the jet events appeared to be non-homologous and show different morphological properties and evolution. Some of the jets were small and narrow in size while the others were huge and wide. The average speed of these jets ranges from {˜}47 to {˜}308 km s^{-1}. SDO/AIA 171 Å intensity profiles at the base of these jets show bumps corresponding to each jet, which is an evidence of recurrent magnetic reconnections. The magnetic field observation at the foot points of the jets revealed a very complex and dynamic magnetic activity which includes flux emergence, flux cancellation, dynamic motions, merging, separation, etc. We suggest that the recurrent jets are the result of recurrent magnetic reconnections among the various emerging bipolar fields themselves as well as with the open fields.

  10. Saturn's Rings Edge-on

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.

    For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.

    The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.

    This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).

    Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science

  11. Application of coherent 10 micron imaging lidar

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.

    1997-04-01

    With the continuing progress in mid-IR array detector technology and high bandwidth fan-outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging lidar is becoming a reality. In this paper experimental results are described using a 10 micron coherent imaging lidar.

  12. Lidar: A laser technique for remote sensing

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Hickman, G. D.

    1978-01-01

    Experimental airborne lidar systems proved to be useful for shallow water bathymetric measurements, and detection and identification of oil slicks and algae. Dye fluorescence applications using organic dyes was studied. The possibility of remotely inducing dye flourescence by means of pulsed lasers opens up several hydrospheric applications for measuring water currents, water temperature, and salinity. Aerosol measurements by lidar are also discussed.

  13. CALIPSO lidar ratio retrieval over the ocean.

    PubMed

    Josset, Damien; Rogers, Raymond; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali; Zhai, Peng-Wang

    2011-09-12

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type.

  14. CALIPSO Lidar Ratio Retrieval Over the Ocean

    NASA Technical Reports Server (NTRS)

    Josset, Damien B.; Rogers, Raymond R.; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali H.; Zhai, Peng-Wang

    2011-01-01

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type

  15. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  16. The Inner Urban Edge

    ERIC Educational Resources Information Center

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  17. Constraints on PSC Particle Microphysics Derived From Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Li; Mishchenko, Michael I.

    2001-01-01

    Based on extensive T-matrix computations of light scattering by polydispersions of randomly oriented, rotationally symmetric nonspherical particles, we analyze existing lidar observations of polar stratospheric clouds (PSCs) and derive several constraints on PSC particle microphysical properties. We show that sharp-edged nonspherical particles (finite circular cylinders) exhibit less variability of lidar backscattering characteristics with particle size and aspect ratio than particles with smooth surfaces (spheroids). For PSC particles significantly smaller than the wavelength, the backscatter color index Alpha and the depolarization color index Beta are essentially shape-independent. Observations for type Ia PSCs can be reproduced by spheroids with aspect ratios larger than 1.2, oblate cylinders with diameter-to-length ratios greater than 1.6, and prolate cylinders with length-to-diameter ratios greater than 1.4. The effective equal-volume-sphere radius for type la PSCs is about 0.8 microns or larger. Type Ib PSCs are likely to be composed of spheres or nearly spherical particles with effective radii smaller than 0.8 microns. Observations for type II PSCs are consistent with large ice crystals (effective radius greater than 1 micron modeled as cylinders or prolate spheroids.

  18. Study on characteristics of chirp about Doppler wind lidar system

    NASA Astrophysics Data System (ADS)

    Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang

    2016-11-01

    In the doppler wind lidar, usually every 4MHz frequency error will produce wind error of 1m/s of 532nm laser. In the Doppler lidar system, frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range, with long-time (>4h) frequency-locking accuracy being≤0.5MHz and long-time frequency stability being 10-9 . The experimental result indicated that the seed frequency and the pulse laser frequency have a deviation, which effect is called the laser chirp characteristics. Finally chirp test system was constructed and tested the frequency offset in time. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10MHz, long-time stability deviation was around 5MHz. After experimental testing technology mature, which can monitoring the signal at long-term with corrected the wind speed.

  19. Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Zhou, Yixiao; Fang, Zhi; Yan, Ping; Yang, Wenjin

    2014-07-01

    Plasma jet array is a promising device for producing low-temperature plasma at atmospheric pressure. In our letter, the effect of O2 additive on spatial uniformity of one-dimensional helium plasma jet array is described. The length of the plasma jet in the middle of the array before the injection of O2 additive is less than that on the edges of the array. However, when a small amount of O2 additive is injected into the plasma jet array, the length increases and becomes approximately the same as the length of the plasma jets on the edges of the array. The improvement of spatial uniformity of the plasma jet array is due to the enhancement of the Penning ionization in the plasma jets caused by O2 additive. Too much quantity of O2 additive, however, may lead to discharge quenching in the plasma jet array.

  20. Development of the Wuhan lidar system

    NASA Astrophysics Data System (ADS)

    Hu, Zhilin; Liu, Yiping; Hu, Xiong; Zeng, Xizhi

    1998-08-01

    This paper reports new progress of the Wuhan lidar system. At the present time, our lidar works both at nighttime, to measure the sodium layer in menopause region, and at daytime to measure the aerosol in lower atmosphere region. The daytime working lidar system is equipped with a Faraday Anomalous Dispersion Optical Filter (FADOF), working at the Na resonance line (589 nm) and having an ultra-narrow bandwidth of 2 GHz. The daytime system uses this FADOF to obtain the lidar signal from an altitude of 20 km in our primary experiment. We will also report a comparison of the rms velocity measured by MF radar and Na lidar. A 90% confidence in rms velocity has been achieved.

  1. Reexamination of depolarization in lidar measurements.

    PubMed

    Gimmestad, Gary G

    2008-07-20

    Almost all of the depolarization papers in the lidar literature employ a physically inappropriate notation and they use a definition of the depolarization ratio that is not linear in the quantity of interest. This depolarization lidar legacy is misleading and confusing. In particular, subscripts meaning parallel and perpendicular do not apply to atmospheric parameters, such as the volume backscatter coefficient, because (for linear polarization) the two components of the backscattered light are polarized in the transmitted sense and completely unpolarized; the unpolarized component is not "perpendicular." An analysis of lidar depolarization measurements with a particle scattering matrix recently provided in the literature yields algorithms for retrieving the depolarization parameter from either linear or circular depolarization lidar measurements. The analysis, notation, and definitions recommended here harmonize lidar depolarization analysis with radiative transfer theory, particle scattering theory, and standard polarization measurement techniques.

  2. Components of an Atmospheric Lidar System: Doppler Wind Lidar.

    DTIC Science & Technology

    1987-11-30

    Street Blg 20332-6448 London WCIE 6BT, United Kingdom Boling AFB DC B3-4 3 NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT...necessary and identify by block number) ’ ,EL GROUP SUB- GROUP .%8S7RACT (Continue on reverse if necessary and identify’by block number) Six papers...Another one of these combined units was Integrated temporarily with the complete Lidar system of the Bonn University group at Andoya in August 1987, for

  3. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  4. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    NASA Technical Reports Server (NTRS)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  5. Evaluation of airborne image data and LIDAR main stem data for monitoring physical resources within the Colorado River ecosystem

    USGS Publications Warehouse

    Davis, Philip A.; Rosiek, Mark R.; Galuszka, Donna M.

    2002-01-01

    This study evaluated near-infrared LIDAR data acquired over the main-stem channel at four long-term monitoring sites within the Colorado River ecosystem (CRE) to determine the ability of these data to provide reliable indications in changes in water elevation over time. Our results indicate that there is a good correlation between the LIDAR water-surface elevations and ground measurements of water-edge elevation, but there are also inherent errors in the LIDAR data. The elevation errors amount to about 50 cm and therefore temporal changes in water-surface elevation that exceed this value by the majority of data at a particular location can be deemed significant or real. This study also evaluated airborne image data for producing photogrammetric elevation data and for automated mapping of sand bars and debris flows within the CRE. The photogrammetric analyses show that spatial resolutions of ≤ 10 cm are required to produce vertical accuracies

  6. Evaluation of the contribution of LiDAR data and postclassification procedures to object-based classification accuracy

    NASA Astrophysics Data System (ADS)

    Styers, Diane M.; Moskal, L. Monika; Richardson, Jeffrey J.; Halabisky, Meghan A.

    2014-01-01

    Object-based image analysis (OBIA) is becoming an increasingly common method for producing land use/land cover (LULC) classifications in urban areas. In order to produce the most accurate LULC map, LiDAR data and postclassification procedures are often employed, but their relative contributions to accuracy are unclear. We examined the contribution of LiDAR data and postclassification procedures to increase classification accuracies over using imagery alone and assessed sources of error along an ecologically complex urban-to-rural gradient in Olympia, Washington. Overall classification accuracy and user's and producer's accuracies for individual classes were evaluated. The addition of LiDAR data to the OBIA classification resulted in an 8.34% increase in overall accuracy, while manual postclassification to the imagery+LiDAR classification improved accuracy only an additional 1%. Sources of error in this classification were largely due to edge effects, from which multiple different types of errors result.

  7. Investigating the Feedback Path in a Jet-Surface Resonant Interaction

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul; Fagan, Amy; Bridges, James; Brown, Cliff

    2015-01-01

    A resonant interaction between an 8:1 aspect ratio rectangular jet and flat-plates, placed parallel to the jet, is addressed in this study. For certain relative locations of the plates, the resonance takes place with accompanying audible tones. Even when the tone is not audible the sound pressure level spectra is often marked by conspicuous peaks. The frequencies of the spectral peaks, as functions of the streamwise length of the plate and its relative location to the jet as well as the jet Mach number, are explored in an effort of understand the flow mechanism. It is demonstrated that the tones are not due to a simple feedback between the plates trailing edge and the nozzle exit; the leading edge also comes into play in determining the frequency. An acoustic feedback path, involving diffraction from the leading edge, appears to explain the frequencies of some of the spectral peaks.

  8. Fluidic Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin; Henderson, Brenda; Whitmire, Julia

    2004-01-01

    Chevron mixing devices are used to reduce noise from commercial separate-flow turbofan engines. Mechanical chevron serrations at the nozzle trailing edge generate axial vorticity that enhances jet plume mixing and consequently reduces far-field noise. Fluidic chevrons generated with air injected near the nozzle trailing edge create a vorticity field similar to that of the mechanical chevrons and allow more flexibility in controlling acoustic and thrust performance than a passive mechanical design. In addition, the design of such a system has the future potential for actively controlling jet noise by pulsing or otherwise optimally distributing the injected air. Scale model jet noise experiments have been performed in the NASA Langley Low Speed Aeroacoustic Wind Tunnel to investigate the fluidic chevron concept. Acoustic data from different fluidic chevron designs are shown. Varying degrees of noise reduction are achieved depending on the injection pattern and injection flow conditions. CFD results were used to select design concepts that displayed axial vorticity growth similar to that associated with mechanical chevrons and qualitatively describe the air injection flow and the impact on acoustic performance.

  9. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  10. Automatic Reconstruction of Building Roofs Through Effective Integration of LIDAR and Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Awrangjeb, M.; Zhang, C.; Fraser, C. S.

    2012-07-01

    Automatic 3D reconstruction of building roofs from remotely sensed data is important for many applications including city modeling. This paper proposes a new method for automatic 3D roof reconstruction through an effective integration of LIDAR data and multispectral imagery. Using the ground height from a DEM, the raw LIDAR points are separated into two groups. The first group contains the ground points that are exploited to constitute a 'ground mask'. The second group contains the non-ground points that are used to generate initial roof planes. The structural lines are extracted from the grey-scale version of the orthoimage and they are classified into several classes such as 'ground', 'tree', 'roof edge' and 'roof ridge' using the ground mask, the NDVI image (Normalised Difference Vegetation Index from the multi-band orthoimage) and the entropy image (from the grey-scale orthoimage). The lines from the later two classes are primarily used to fit initial planes to the neighbouring LIDAR points. Other image lines within the vicinity of an initial plane are selected to fit the boundary of the plane. Once the proper image lines are selected and others are discarded, the final plane is reconstructed using the selected lines. Experimental results show that the proposed method can handle irregular and large registration errors between the LIDAR data and orthoimagery.

  11. The jet in crossflowa)

    NASA Astrophysics Data System (ADS)

    Karagozian, Ann R.

    2014-10-01

    The jet in crossflow, or transverse jet, is a flowfield that has relevance to a wide range of energy and propulsion systems. Over the years, our group's studies on this canonical flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer, as a means of explaining jet response to altered types of excitation. The jet's upstream shear layer is demonstrated to exhibit convectively unstable behavior at high jet-to-crossflow momentum flux ratios, transitioning to absolutely unstable behavior at low momentum flux and/or density ratios, with attendant differences in shear layer vorticity evolution and rollup. These differences in stability characteristics are shown to have a significant effect on how one optimally employs external excitation to control jet penetration and spread, depending on the flow regime and specific engineering application. Yet recent unexpected observations on altered transverse jet structure under different flow conditions introduce a host of unanswered questions, primarily but not exclusively associated with the nature of molecular mixing, that make this canonical flowfield one that is of great interest for more extensive exploration.

  12. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    PubMed Central

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1) and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  13. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  14. Superpixel edges for boundary detection

    SciTech Connect

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  15. Shape of patch edges affects edge permeability for meadow voles.

    PubMed

    Nams, Vilis O

    2012-09-01

    Human development typically fragments natural habitats into patches, affecting population and metapopulation dynamics via changes in animal behavior. Emigration from one habitat patch to another has a large effect on population and metapopulation dynamics. One factor that affects emigration is permeability of patch edges. This study looks at the effects of edge shape (convex, concave, and straight) on edge permeability for meadow voles (Microtus pennsylvanicus).. I tested five hypotheses for responses of animal movement to patch shape: (1) neutral edge response; (2) edge attraction; (3) edge avoidance; (4) time-minimizing, in which an animal attempts to minimize the time spent in inhospitable matrix, and thus travels as far as possible in the patch before crossing the edge; and (5) protection, in which an animal attempts to maximize protection while in the inhospitable matrix by keeping the patch close by. These hypotheses were tested by an experimental manipulation of meadow vole habitats. A strip was mowed with different edge shapes through an old field, and vole response was measured by tracking plates. Voles crossed edges at concave treatments twice as often compared to convex and straight shapes. Hypotheses (2) and (5) were supported. Although edge attraction causes a passive effect of a decrease in edge-crossing at concavities, this effect was eclipsed by the active effect of voles choosing to cross at concavities. The results can be generalized to edge tortuosity in general. Conservation biologists should consider edge shapes when exploring the effects of habitat fragmentation on animal populations.

  16. A Pseudorandom Code Modulated LIDAR

    NASA Astrophysics Data System (ADS)

    Hunt, K. P.; Eichinger, W. E.; Kruger, A.

    2009-12-01

    Typical Light Detection and Ranging (LIDAR) uses high power pulsed lasers to ensure a detectable return signal. For short ranges, modulated diode lasers offer an attractive alternative, particularly in the areas of size, weight, cost, eye safety and use of energy. Flexible electronic modulation of the laser diode allows the development of pseudorandom code (PRC) LIDAR systems that can overcome the disadvantage of low output power and thus low signal to noise ratios. Different PRCs have been proposed. For example, so called M-sequences can be generated simply, but are unbalanced: they have more ones than zeros, which results in a residual noise component. Other sequences such as the A1 and A2 sequences are balanced, but have two autocorrelation peaks, resulting in undesirable pickup of signals from different ranges. In this work, we investigate a new code, an M-sequence with a zero added at the end. The result is still easily generated and has a single autocorrelation peak, but is now balanced. We loaded these sequences into a commercial arbitrary waveform generator (ARB), an Agilent 33250A, which then modulates the laser diode. This allows sequences to be changed quickly and easily, permitting us to design and investigate a wide range of PRC sequences with desirable properties. The ARB modulates a Melles Griot 56ICS near infrared laser diode at a 10 MHz chip rate. Backscatter is collected and focused by a telescope and the detected signal is sampled and correlated with the known PRC. We have gathered data from this LIDAR system and experimentally assessed the performance of this new class of codes.

  17. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere.

    PubMed

    Dou, Xiankang; Han, Yuli; Sun, Dongsong; Xia, Haiyun; Shu, Zhifeng; Zhao, Ruocan; Shangguan, Mingjia; Guo, Jie

    2014-08-25

    A mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for measuring wind velocity in the middle atmosphere up to 60 km. The lidar uses three lasers with a mean power of 17.5 W at 355 nm each and three 1 m diameter telescopes to receive the backscattered echo: one points to zenith for vertical wind component and temperature measurement; the two others pointing toward east and north are titled at 30° from the zenith for zonal and meridional wind component, respectively. The Doppler shift of the backscattered echo is measured by inter-comparing the signal detected through each of the double-edge channels of a triple Fabry-Perot interferometer (FPI) tuned to either side of the emitted laser line. The third channel of FPI is used for frequency locking and a locking accuracy of 1.8 MHz RMS (root-mean-square) at 355 nm over 2 hours is realized, corresponding to a systematic error of 0.32 m/s. In this paper, we present detailed technical evolutions on system calibration. To validate the performance of the lidar, comparison experiments was carried out in December 2013, which showed good agreement with radiosondes but notable biases with ECMWF (European Centre for Medium range Weather Forecasts) in the height range of overlapping data. Wind observation over one month performed in Delhi (37.371° N, 97.374° E), northwest of China, demonstrated the stability and robustness of the system.

  18. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  19. Beam optimization for imaging lidar

    NASA Astrophysics Data System (ADS)

    Ruppert, Lyle

    2015-05-01

    Active remote sensing returns information of the highest value at the lowest cost when outgoing energy can be carefully shaped and directed to the task at hand. This paper presents results of lab and airborne testing of an Electronically Steerable Flash Lidar (ESFL) under continuing development by Ball Aerospace and Technologies Corp. The results highlight the adaptive nature of this and other active instruments having fine control of illumination, and show the benefits of combining lab simulation with flight testing in validation of algorithms and control design.

  20. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  1. Circulation control on a rounded trailing-edge wind turbine airfoil using plasma actuators

    NASA Astrophysics Data System (ADS)

    Baleriola, S.; Leroy, A.; Loyer, S.; Devinant, P.; Aubrun, S.

    2016-09-01

    This experimental study focuses on the implementation via plasma actuators of a circulation control strategy on a wind turbine aerofoil with a rounded trailing-edge with the objective of reducing the aerodynamic load fluctuations on blades. Three sets of multi-DBD (Dielectric Barrier Discharge) actuators with different positions around the trailing-edge are studied. These actuators create a tangential jet that adheres to the blade model wall and diffuses along it. According to the jet direction, lift is increased or decreased. Load and pressure measurements as well as Particle Image Velocimetry (PIV) show respectively the actuation effectiveness in terms of load modification and flow topology alteration.

  2. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  3. Jet offset, harmonic content, and warble in the flute.

    PubMed

    Coltman, John W

    2006-10-01

    The effects of jet offset in the flute, directing the jet above or below the edge, were explored by two distinct means-experiments with a Boehm flute sounded by an artificial blower, and time domain simulation. Very large changes in harmonic content and dynamics were observed, changing greatly with blowing pressure. Warble, a modulation of the tone at frequencies of the order of 20 Hz, was observed both in the experiment and in the simulation. The phenomenon is explained as a beat between the frequency of a second harmonic generated by nonlinearity in the jet current and a neighboring partial sustained by jet feedback near the second mode resonance. A second type of warble, in which amplitude modulation occurs in all partials but with different phases, is yet to be explained.

  4. On the anomalies in single-jet hover suckdown data

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Bellavia, David C.; Wardwell, Douglas A.; Corsiglia, Victor R.

    1991-01-01

    The data from nine different investigations of the suckdown induced in ground effect by a single jet issuing from plates of various sizes and shapes have been examined and compared. The results show that the generally accepted method for estimating suckdown significantly underestimated the suckdown for most of the configurations. The study identified several factors that could contribute to the differences. These include ground board size, plate edge effects, jet flow quality, jet impingement angle, the size of the chamber in which the tests were run, and obstructions in the region above the model. Most of these factors have not been investigated and in many cases items such as the size of the test chamber, jet flow quality, ground board size, etc., have not even been shown in the documents reporting the investigation. A program to investigate the effects of these factors is recommended.

  5. Helical magnetic field models for parsec-scale radio jets

    NASA Astrophysics Data System (ADS)

    Papageorgiou, A.

    2006-10-01

    Total intensity and polarization structure of extragalactic radio jets are presented in support of models that jets are threaded by helical magnetic fields. Helical magnetic field models predict the following features i) asymmetric distribution in both or either the total and polarized intensity across the jet, ii)displacement between the maxima of total and polarized intensity distributions, iii) abrupt rotation (90 degrees) of the magnetic field position angle (MVPA) and iv) edge brightening in polarization and total intensity. VLBI observations of parsec-scale jets are presented, showing examples of the above predicted features; in one case all four predicted features are present in one source (1055+018).%T GPS studies during the ENIGMA era

  6. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  7. Fusion of LiDAR and aerial imagery for the estimation of downed tree volume using Support Vector Machines classification and region based object fitting

    NASA Astrophysics Data System (ADS)

    Selvarajan, Sowmya

    The study classifies 3D small footprint full waveform digitized LiDAR fused with aerial imagery to downed trees using Support Vector Machines (SVM) algorithm. Using small footprint waveform LiDAR, airborne LiDAR systems can provide better canopy penetration and very high spatial resolution. The small footprint waveform scanner system Riegl LMS-Q680 is addition with an UltraCamX aerial camera are used to measure and map downed trees in a forest. The various data preprocessing steps helped in the identification of ground points from the dense LiDAR dataset and segment the LiDAR data to help reduce the complexity of the algorithm. The haze filtering process helped to differentiate the spectral signatures of the various classes within the aerial image. Such processes, helped to better select the features from both sensor data. The six features: LiDAR height, LiDAR intensity, LiDAR echo, and three image intensities are utilized. To do so, LiDAR derived, aerial image derived and fused LiDAR-aerial image derived features are used to organize the data for the SVM hypothesis formulation. Several variations of the SVM algorithm with different kernels and soft margin parameter C are experimented. The algorithm is implemented to classify downed trees over a pine trees zone. The LiDAR derived features provided an overall accuracy of 98% of downed trees but with no classification error of 86%. The image derived features provided an overall accuracy of 65% and fusion derived features resulted in an overall accuracy of 88%. The results are observed to be stable and robust. The SVM accuracies were accompanied by high false alarm rates, with the LiDAR classification producing 58.45%, image classification producing 95.74% and finally the fused classification producing 93% false alarm rates The Canny edge correction filter helped control the LiDAR false alarm to 35.99%, image false alarm to 48.56% and fused false alarm to 37.69% The implemented classifiers provided a powerful tool for

  8. Acoustics of Jet Surface Interaction - Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  9. BIPOLAR JETS PRODUCED BY A SPECTROSCOPIC BINARY

    SciTech Connect

    Mundt, Reinhard; Hamilton, Catrina M.; Herbst, William; Johns-Krull, Christopher M.; Winn, Joshua N.

    2010-01-01

    We present evidence that the spectroscopically identified bipolar jets of the pre-main sequence binary KH 15D (P = 48.4 d, {epsilon}{approx} 0.6, periastron separation {approx}18 R{sub A} , M{sub A} = 0.6 M {sub sun}, M{sub B} = 0.7 M {sub sun}) are a common product of the whole binary system, rather than being launched from either star individually. They may be launched from the innermost part of the circumbinary disk (CBD) or may result from the merging of two outflows driven by the individual stars. This evidence is based on high-resolution H{alpha} and [O I]{lambda}6300 line profiles obtained during eclipse phases of this nearly edge-on system. The occultation of star A (the only currently visible star) by the disk strongly suppresses the stellar H{alpha} and continuum emission and allows one to study the faint redshifted and blueshifted emission components of the bipolar jets. The strongest evidence for jet production by the whole binary system comes from the observed radial velocity symmetry of the two jet components relative to the systemic velocity of the binary in combination with current accretion models from the CBD onto a binary system.

  10. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  11. Edge turbulence in tokamaks

    NASA Astrophysics Data System (ADS)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  12. Correction function in the Lidar equation and the solution techniques for CO2 Lidar date reduction

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Lea, T. K.; Schotland, R. M.

    1986-01-01

    For lidar systems with long laser pulses the unusual behavior of the near-range signals causes serious difficulties and large errors in reduction. The commonly used lidar equation is no longer applicable since the convolution of the laser pulse with the atmospheric parameter distributions should be taken into account. It is important to give more insight into this problem and find the solution techniques. Starting from the original equation, a general form is suggested for the single scattering lidar equation where a correction function Cr is introduced. The correction Function Cr(R) derived from the original equation indicates the departure from the normal lidar equation. Examples of Cr(R) for a coaxial CO2 lidar system are presented. The Differential Absorption Lidar (DIAL) errors caused by the differences of Cr(R) for H2O measurements are plotted against height.

  13. Application of lidar to current atmospheric topics

    SciTech Connect

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  14. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    USGS Publications Warehouse

    Athearn, N.D.; Takekawa, J.Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  15. A study of JET carbon impurity sources

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.; Corrigan, G.; Stamp, M.; Spence, J.; Zacks, J.; JET-EFDA Contributors

    2009-06-01

    This paper compares experimental JET carbon and hydrogen visible emission to EDGE2D/NIMBUS calculations. The calculations themselves indicate that: (1) the integrated deuterium ionization in the SOL is proportional to the D α chordal integrated photon flux, (2) the carbon ionization in the SOL or the divertor is proportional to the calculated CIII chordal light, and (3) the ratio of line integrated photon fluxes from a vertical chord to a horizontal chord indicates whether the main chamber SOL content originated primarily from a wall source or from ion flow out of the divertor. Comparison was made to both inter-ELM H-Mode and L-Mode JET gas box divertor plasmas. The calculations infer that the experimental core contamination was caused by carbon sputtering arising primarily from the main chamber. The experimental, main chamber carbon yield was 1-4% in L-Mode and 5-10% in the inter-ELM H-Mode period.

  16. ELM frequency feedback control on JET

    NASA Astrophysics Data System (ADS)

    Lennholm, M.; Beaumont, P. S.; Carvalho, I. S.; Chapman, I. T.; Felton, R.; Frigione, D.; Garzotti, L.; Goodyear, A.; Graves, J.; Grist, D.; Jachmich, S.; Lang, P.; Lerche, E.; de la Luna, E.; Mooney, R.; Morris, J.; Nave, M. F. F.; Rimini, F.; Sips, G.; Solano, E.; Tsalas, M.; EFDA Contributors, JET

    2015-06-01

    This paper describes the first development and implementation of a closed loop edge localized mode (ELM) frequency controller using gas injection as the actuator. The controller has been extensively used in recent experiments on JET and it has proved to work well at ELM frequencies in the 15-40 Hz range. The controller responds effectively to a variety of disturbances, generally recovering the requested ELM frequency within approximately 500 ms. Controlling the ELM frequency has become of prime importance in the new JET configuration with all metal walls, where insufficient ELM frequency is associated with excessive tungsten influx. The controller has allowed successful operation near the minimum acceptable ELM frequency where the best plasma confinement can be achieved. Use of the ELM frequency controller in conjunction with pellet injection has enabled investigations of ELM triggering by pellets while maintaining the desired ELM frequency even when pellets fail to trigger ELMs.

  17. Small-footprint, waveform-resolving lidar estimation of submerged and sub-canopy topography in coastal environments

    USGS Publications Warehouse

    Nayegandhi, A.; Brock, J.C.; Wright, C.W.

    2009-01-01

    The experimental advanced airborne research lidar (EAARL) is an airborne lidar instrument designed to map near-shore submerged topography and adjacent land elevations simultaneously. This study evaluated data acquired by the EAARL system in February 2003 and March 2004 along the margins of Tampa Bay, Florida, USA, to map bare-earth elevations under a variety of vegetation types and submerged topography in shallow, turbid water conditions. A spatial filtering algorithm, known as the iterative random consensus filter (IRCF), was used to extract ground elevations from a point cloud of processed last-surface EAARL returns. Filtered data were compared with acoustic and field measurements acquired in shallow submerged (0-2.5 m water depth) and sub-canopy environments. Root mean square elevation errors (RMSEs) ranged from 10-14 cm for submerged topography to 16-20 cm for sub-canopy topography under a variety of vegetation communities. The effect of lidar sampling angles and global positioning system (GPS) satellite configuration on accuracy was investigated. Results show high RMSEs for data acquired during periods of poor satellite configuration and at large sampling angles along the edges of the lidar scan. The results presented in this study confirm the cross-environment capability of a green-wavelength, waveform-resolving lidar system, making it an ideal tool for mapping coastal environments.

  18. Jet lag modification.

    PubMed

    Simmons, Emily; McGrane, Owen; Wedmore, Ian

    2015-01-01

    Athletes often are required to travel for sports participation, both for practice and competition. A number of those crossing multiple time zones will develop jet lag disorder with possible negative consequences on their performance. This review will discuss the etiology of jet lag disorder and the techniques that are available to shorten or minimize its effects. This includes both pharmacological and nonpharmacological approaches.

  19. Jet measurements in ATLAS

    NASA Astrophysics Data System (ADS)

    Loch, Peter; ATLAS Collaboration

    2011-11-01

    The reconstruction of jets generated in the proton-proton collisions at the Large Hadron Collider (LHC) at a center of mass energy of TeV with the ATLAS detector is discussed. Beginning with a brief review of the calorimeter signal definitions relevant for jet finding, and the use of reconstructed charged particle tracks, the jet reconstruction strategy is described in some detail. Emphasis is put on the jet energy scale (JES) calibration strategy applied for first data, which is based on a short sequence of data driven and simulation based calibrations and corrections to restore the measured jet energy to particle level. The level of understanding of the signal patterns entering the JES corrections is shown for selected variables in comparisons to simulations. The present systematic uncertainties on the JES, which can be as low as 2% for central jets, are presented and analyzed with respect to the individual fractional contributions entering their determination. Some characteristic jet reconstruction performance and selected results from the first year of jet physics with ATLAS in a newly accessible kinematic domain are shown in conclusion.

  20. The need for a national LIDAR dataset

    USGS Publications Warehouse

    Stoker, Jason M.; Harding, David; Parrish, Jay

    2008-01-01

    On May 21st and 22nd 2008, the U.S. Geological Survey (USGS), the National Aeronautics and Space Administration (NASA), and the Association of American State Geologists (AASG) hosted the Second National Light Detection and Ranging (Lidar) Initiative Strategy Meeting at USGS Headquarters in Reston, Virginia. The USGS is taking the lead in cooperation with many partners to design and implement a future high-resolution National Lidar Dataset. Initial work is focused on determining viability, developing requirements and specifi cations, establishing what types of information contained in a lidar signal are most important, and identifying key stakeholders and their respective roles. In February 2007, USGS hosted the fi rst National Lidar Initiative Strategy Meeting at USGS Headquarters in Virginia. The presentations and a published summary report from the fi rst meeting can be found on the Center for Lidar Information Coordination and Knowledge (CLICK) Website: http://lidar.cr.usgs.gov. The fi rst meeting demonstrated the public need for consistent lidar data at the national scale. The goals of the second meeting were to further expand on the ideas and information developed in the fi rst meeting, to bring more stakeholders together, to both refi ne and expand on the requirements and capabilities needed, and to discuss an organizational and funding approach for an initiative of this magnitude. The approximately 200 participants represented Federal, State, local, commercial and academic interests. The second meeting included a public solicitation for presentations and posters to better democratize the workshop. All of the oral presentation abstracts that were submitted were accepted, and the 25 poster submissions augmented and expanded upon the oral presentations. The presentations from this second meeting, including audio, can be found on CLICK at http://lidar.cr.usgs.gov/national_lidar_2008.php. Based on the presentations and the discussion sessions, the following

  1. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  2. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  3. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  4. Jet Lag in Athletes

    PubMed Central

    Lee, Aaron; Galvez, Juan Carlos

    2012-01-01

    Context: Prolonged transmeridian air travel can impart a physical and emotional burden on athletes in jet lag and travel fatigue. Jet lag may negatively affect the performance of athletes. Study Type: Descriptive review. Evidence Acquisition: A Medline search for articles relating to jet lag was performed (1990-present), as was a search relating to jet lag and athletes (1983-January, 2012). The results were reviewed for relevance. Eighty-nine sources were included in this descriptive review. Results: Behavioral strategies are recommended over pharmacological strategies when traveling with athletes; pharmacological aides may be used on an individual basis. Strategic sleeping, timed exposure to bright light, and the use of melatonin are encouraged. Conclusions: There is strong evidence that mood and cognition are adversely affected by jet lag. Some measures of individual and team performance are adversely affected as well. PMID:23016089

  5. Relativistic Jets and Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Woosley, S. E.

    2001-05-01

    In order to study the relativistic jets from collapsars, we have developed a special relativistic multiple-dimensional hydrodynamics code similar to the GENESIS code (Aloy et al., ApJS, 122, 151). The code is based on the PPM interpolation algorithm and Marquina's Riemann solver. Using this code, we have simulated the propagation of axisymmetric jets along the rotational axis of collapsed rotating stars (collapsars). Using the progenitors of MacFadyen, Woosley, and Heger, a relativistic jet is injected at a given inner boundary radius. This radius, the opening angle of the jet, its Lorentz factor, and its total energy are parameters of the problem. A highly collimated, relativistic outflow is observed at the surface of the star several seconds later. We will discuss the hydrodynamical focusing of the jet, it's break out properties, time evolution, and sensitivity to the adopted parameters.

  6. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  7. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1992-01-01

    The instability of rectangular jets is investigated using a vortex sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  8. Jet physics at CDF

    SciTech Connect

    Melese, P.

    1997-05-01

    We present high E{sub T} jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at {radical}s = 1800 GeV with {approximately} 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The {summation}E{sub T} cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at {radical}s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with {radical}s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions.

  9. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-03-31

    project "Advanced Digital Signal Processing for Hybrid Lidar " covering the period of 1/1/2013-3/31/2013. 9LO\\SO^O’IH^’?’ William D. Jemison...Chaotic LIDAR for Naval Applications This document contains a Progress Summary for FY13 Q2 and a Short Work Statement for FY13 Progress Summary for...This technique has the potential to increase the unambiguous range of hybrid lidar -radar while maintaining reasonable range resolution. Proof-of

  10. Infrared lidars for atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1991-01-01

    Lidars using pulsed TEA-CO2 transmitters and coherent receivers have been developed at JPL and used to measure atmospheric backscatter and extinction at wavelengths in the 9-11 micron region. The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of aerosol and cloud backscatter and extinction. An airborne lidar was recently flown on the NASA DC-8 research aircraft for operation during two Pacific circumnavigation missions. The instrument characteristics, as well as representative measurement results, are discussed.

  11. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  12. Wind measurement via direct detection lidar

    NASA Astrophysics Data System (ADS)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  13. The Jets of Enceladus: Locations, Correlations with Thermal Hot Spots, and Jet Particle Vertical Velocities

    NASA Astrophysics Data System (ADS)

    Porco, C.; Ingersoll, A. P.; Dinino, D.; Helfenstein, P.; Roatsch, T.; Mitchell, C. J.; Ewald, S. P.

    2010-12-01

    High resolution images of Enceladus and its south polar jets taken with the Cassini ISS cameras in the last year have provided an opportunity for detailed study of the jetting phenomenon and its relationship to features and thermal hot spots on the moon’s south polar terrain. We have identified ~ 30 individual jets in a series of images, ranging from 43 to 100 m per pixel, taken in November 2009. All jets are found to be erupting through `tiger stripe’ fractures that cross the south polar terrain. The most intense jetting activity generally corresponds to the hottest regions on the fractures. One of the brightest, most prominent jets observed in this image series vents from a region on the Damascus Sulcus fracture that was imaged at 16 m/pixel during Cassini’s August 13, 2010 flyby; it is also one of the hottest places found so far on the south polar region. Several jets were selected for dynamical modeling. These were jets whose source regions were on the limb as seen from Cassini, allowing extraction of brightness profiles down to a few hundred meters of the surface. We infer the velocity distribution of the particles as they leave the surface by modeling the integrated brightness vs. altitude. The particles are assumed to follow ballistic trajectories, and their contribution to the brightness in each thin layer is proportional to the time that they spend in the layer. We find slow jets, fast jets, and jets in between. After a rapid ~ 2-km-scale-height decrease near the surface, the most prominent jet (mentioned above) extends with constant integrated brightness to the edge of the image 25 km above the surface; some of the particles in this jet appear to have mean velocities that exceed the 235 m/sec escape speed from Enceladus. Further analysis of higher-altitude images from the November flyby is in progress to verify this result. The integrated brightness of slow jets falls off with a scale height of 5 km or less, implying mean vertical velocities of

  14. Optimal Jet Finder

    NASA Astrophysics Data System (ADS)

    Grigoriev, D. Yu.; Jankowski, E.; Tkachov, F. V.

    2003-09-01

    We describe a FORTRAN 77 implementation of the optimal jet definition for identification of jets in hadronic final states of particle collisions. We discuss details of the implementation, explain interface subroutines and provide a usage example. The source code is available from http://www.inr.ac.ru/~ftkachov/projects/jets/. Program summaryTitle of program: Optimal Jet Finder (OJF_014) Catalogue identifier: ADSB Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSB Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: Any computer with the FORTRAN 77 compiler Tested with: g77/Linux on Intel, Alpha and Sparc; Sun f77/Solaris (thwgs.cern.ch); xlf/AIX (rsplus.cern.ch); MS Fortran PowerStation 4.0/Win98 Programming language used: FORTRAN 77 Memory required: ˜1 MB (or more, depending on the settings) Number of bytes in distributed program, including examples and test data: 251 463 Distribution format: tar gzip file Keywords: Hadronic jets, jet finding algorithms Nature of physical problem: Analysis of hadronic final states in high energy particle collision experiments often involves identification of hadronic jets. A large number of hadrons detected in the calorimeter is reduced to a few jets by means of a jet finding algorithm. The jets are used in further analysis which would be difficult or impossible when applied directly to the hadrons. Grigoriev et al. [ hep-ph/0301185] provide a brief introduction to the subject of jet finding algorithms and a general review of the physics of jets can be found in [Rep. Prog. Phys. 36 (1993) 1067]. Method of solution: The software we provide is an implementation of the so-called optimal jet definition ( OJD). The theory of OJD was developed by Tkachov [Phys. Rev. Lett. 73 (1994) 2405; 74 (1995) 2618; Int. J. Mod. Phys. A 12 (1997) 5411; 17 (2002) 2783]. The desired jet configuration is obtained as the one that minimizes Ω R, a certain function of the input particles and jet

  15. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  16. Methane Screening in JET Reverse Field Experiments

    SciTech Connect

    J.D. Strachan; B. Alper; G. Corrigan; S.K. Erents; C. Giroud; A. Korotkov; H. Leggate; G.F. Mathews; R.A. Pitts; M. Stamp; J. Spence

    2004-05-17

    JET plasmas with reverse magnetic field feature a different SOL flow than those with normal field. The observed carbon fueling efficiency from injecting methane gas was similar in reverse and normal field. EDGE2D modeling used an externally applied force to create the SOL flows, without specifying the origin of the force. The resulting flow agreed reasonably with the experimental values between the separatrix and 4 cm mid-plane depth in the SOL. The effect of the flow on the calculated carbon screening was 5 to 15% higher carbon fueling efficiency for the low flow velocity with reverse field.

  17. The effect of jet shape on jet injection.

    PubMed

    Park, Geehoon; Modak, Ashin; Hogan, N Catherine; Hunter, Ian W

    2015-01-01

    The effects of the dispersion pattern of a needle-free jet injector are explored. The shape of the jets were compared using a high-speed video camera and jet injections of collimated and dispersed fluid jets with a Lorentz-force actuated jet injector were made into acrylamide gel and post-mortem porcine tissue. A custom-built high-speed X-ray imaging system was used in order to observe the dynamics of the dispersion mechanism for each injection in real time. We show that a collimated jet stream results in greater tissue penetration than a dispersed jet stream.

  18. Miniature Filament Eruptions and their Reconnections in X-Ray Jets: Evidence for a New Paradigm

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    2014-01-01

    We investigate the onset of approximately10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size less than approximately 10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the jet in emission. The jet bright point forms at the location from which the miniature filament is ejected, analogous to the formation of a standard solar flare in the wake of the eruption of a typical larger-scale chromospheric filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions. They are evidently produced the same way as an on-disk coronal jet we observed in Adams et al. (2014); that on-disk jet had no obvious emerging magnetic field in its base. We conclude that, for many jets, the standard idea of X-ray jets forming from reconnection between emerging flux and preexisting coronal field is incorrect. ACS and RLM were supported by funding from NASA/LWS, Hinode, and ISSI.

  19. Polar Sunrise 2008 Comparison of Lidar Water Vapor Measurements from the IASOA PEARL Observatory in Eureka, Canada and ACE Satellite

    NASA Astrophysics Data System (ADS)

    Moss, A. L.; Sica, R. J.; Strawbridge, K. B.; Walker, K. A.; Manney, G. L.; Drummond, J. R.

    2008-12-01

    Water vapor is an important part of the atmosphere due to its roles in the hydrological cycle, greenhouse heating and ozone chemistry. The stratospheric ozone lidar located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80.2° N, 86.4° W) is jointly operated by the Canadian Network for Detection of Atmospheric Change (CANDAC) and Environment Canada. It has recently been upgraded to measure water vapor at 150 m vertical resolution in the polar troposphere up to about six kilometers, with measurements extending above this at lower vertical resolution. Successful validation of these measurements will allow scientific studies to begin with the coincident measurements from the lidar and suite of CANDAC instruments at PEARL. In concert with the lidar's well-established ozone and temperature profiles these new water vapor measurements will allow incidents of stratosphere-troposphere exchange to be monitored as well as, when combined with other measurements from PEARL instrumentation, detailed studies of ozone chemistry to be performed. With the motion of the polar vortex bringing it overhead and away from PEARL during the course of a campaign, it is possible to look at interactions between upper tropospheric jets and the vortex. Water vapor measurements have been taken and analyzed for eleven nights during the Canadian Arctic ACE Validation Campaign in February and March 2008. Calibration of the lidar has been obtained by comparing lidar measurements from seven clear nights to water vapor measurements from the regular radiosonde launches at the Eureka Weather Station. A consistent altitude dependent bias between the two instruments is found, giving us confidence in the calibration. Calibrated lidar measurements are currently being compared to water vapour measurements from overpasses by the Atmospheric Chemistry Experiment (ACE) satellite, as well as compared to the ozone measurements obtained during the campaign.

  20. Silicon photomultiplier detector for atmospheric lidar applications.

    PubMed

    Riu, Jordi; Sicard, Michaël; Royo, Santiago; Comerón, Adolfo

    2012-04-01

    The viability and performance of using a silicon photomultiplier (SiPM) in atmospheric lidar applications is experimentally compared against the well-established use of photomultiplier tubes. By using a modified lidar setup for simultaneous data acquisition of both types of sensors, we demonstrate that a SiPM can offer appropriate qualities for this specific application where the detection of fast, extremely low light pulses and large dynamic range signals are essential capabilities. The experimental results show that the SiPM has an appropriate behaviour offering suitable capabilities for elastic, backscatter aerosol lidars. To the best of our knowledge, this is the first study showing SiPM for atmospheric lidar applications.

  1. Cyclone diagnostics. [rainfall estimation, backscatter, and lidar

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A GOES IR rainfall estimation algorithm was completed and verified. The technique was applied to the South Pacific convergent zone. The NASA earth observation mission series is discussed briefly. Backscatter was investigated using 10.6 micron coherent lidar.

  2. UV fluorescence lidar detection of bioaerosols

    NASA Astrophysics Data System (ADS)

    Christesen, Steven D.; Merrow, Clifton N.; Desha, Michael S.; Wong, Anna; Wilson, Mark W.; Butler, John C.

    1994-06-01

    A UV fluorescence lidar system for the remote detection of bioaerosols has been built and tested. At the heart of the UV- LIDAR Fluorosensor system are a 200 mJ quadrupled Nd:YAG laser at 266 nm and a 16-inch Cassagrain telescope. Operating on three data collection channels, the UV lidar is capable of real time monitoring of 266 nm elastic backscatter, the total fluorescence between 300 and 400 nm, and the dispersed fluorescence spectrum (using a small spectrograph and gated intensified CCD array). Our goal in this effort was to assess the capabilities of biofluorescence for quantitative detection and discrimination of bioaerosols. To this end, the UV-LIDAR Fluorosensor system was tested against the aerosolized bacterial spore Bacillus subtilus var. niger sp. globiggi (BG) and several likely interferences at several ranges from approximately 600 to 3000 m. Our tests with BG indicate a detection limit of approximately 500 mg/cubic meter at a range of 3000 m.

  3. Acousto-optic filtering of lidar signals

    NASA Astrophysics Data System (ADS)

    Kolarov, G.; Deleva, A.; Mitsev, Ts.

    1992-07-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  4. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  5. Requirements for Space-Based Wind Lidar

    NASA Technical Reports Server (NTRS)

    Atlas, Robert M.; Einaudi, Franco (Technical Monitor)

    2002-01-01

    Global wind profiles are needed for a wide range of meteorological applications. Since the 1980's, observing system simulation experiments have been conducted in order to evaluate the potential impact of space-based wind profiler data on numerical weather prediction, and to evaluate trade-offs in lidar design. These experiments indicated tremendous potential for satellite lidar observations to improve atmospheric analyses and forecasts. More recent experiments are aimed at assessing the precise requirements for space-based lidar wind profile data and to evaluate the potential for alternative technologies. At the workshop, OSSE methodology, and results from experiments conducted at the DAO to the define requirements for space-based lidar wind will be presented.

  6. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  7. Holographic optical elements as scanning lidar telescopes

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2006-09-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. Rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  8. Solar coronal jets

    NASA Astrophysics Data System (ADS)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  9. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  10. RECURRENT SOLAR JETS INDUCED BY A SATELLITE SPOT AND MOVING MAGNETIC FEATURES

    SciTech Connect

    Chen, Jie; Su, Jiangtao; Yin, Zhiqiang; Priya, T. G.; Zhang, Hongqi; Xu, Haiqing; Yu, Sijie; Liu, Jihong

    2015-12-10

    Recurrent and homologous jets were observed to the west edge of active region NOAA 11513 at the boundary of a coronal hole. We find two kinds of cancellations between opposite polarity magnetic fluxes, inducing the generation of recurrent jets. First, a satellite spot continuously collides with a pre-existing opposite polarity magnetic field and causes recurrent solar jets. Second, moving magnetic features, which emerge near the sunspot penumbra, pass through the ambient plasma and eventually collide with the opposite polarity magnetic field. Among these recurrent jets, a blowout jet that occurred around 21:10 UT is investigated. The rotation of the pre-existing magnetic field and the shear motion of the satellite spot accumulate magnetic energy, which creates the possibility for the jet to experience blowout right from the standard.

  11. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2004-06-01

    The idea of deploying a lidar system on an Earth-orbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra-Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  12. Improved calibration method for depolarization lidar measurement.

    PubMed

    Liu, Bo; Wang, Zhien

    2013-06-17

    An improved calibration method for lidar depolarization measurement is described. With this method the system constants including the electronic gain ratio of the parallel and perpendicular channels, the optical reflectance and transmission parameters of the polarizing beam splitter, and the linear polarization ratio of the emitting laser beam can be determined conveniently by using lidar measurements with a half-wave plate oriented at selected angles.

  13. Multiple scattering effects on spaceborne lidar

    NASA Technical Reports Server (NTRS)

    Winker, David M.; Poole, Lamont R.

    1992-01-01

    A semianalytic Monte Carlo code originally developed for oceanographic calculations (Poole et al., 1981) has been modified for use in studying multiple scattering of space-based lidar. The approach is very similar to that described by Kunkel and Weinman (1976). The trajectory of each photon is followed from the transmitter through multiple scattering until the photon is either scattered backward out of the atmosphere, scattered forward into the ground and absorbed, or scattered out the sides of the cloud. The probability that the photon will return directly to the detector is computed and summed over all significant scattering events within the field of view of the detector. Multiple scattering of the lidar pulse causes an apparent increase in the transmittance of the medium. Multiple scattering effects for space-based lidar are more significant than for ground-based lidar due to the much larger beam diameter in the atmosphere. These larger diameters are due not only to the greater range between the lidar and the scattering volume, but also the need to maintain relatively large beam divergences to satisfy eye safety restrictions on the laser irradiance at the Earth's surface. The simulations presented here are for a wavelength of 1064 nm and the Deirmendjian C1 phase function, which yields an extinction coefficient of 17.259/km. We have looked at two cases: a space-based lidar at 296 km observing a C1 cloud 293 km from the lidar and, for comparison purposes, a ground-based lidar looking at a C1 cloud with a base height of either 2 km or 5 km. The C1 size distribution roughly approximates that of stratocumulus or altocumulus clouds (aufm Kampe and Weickmann, 1957).

  14. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  15. The new FIRE cloud lidar at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Alvarez, Jose M.; Mccormick, M. P.; Vaughn, M. A.; Kent, G.; Hunt, W. H.; Fuller, W. H.; Rouse, B. R.; Dubinsky, R.

    1990-01-01

    Using the Langley Aircraft Lidar for cirrus cloud observations at Langley Research Center in Hampton, Virginia is overkill both in terms of the actual lidar and the people required to run the system. A small lidar system to be used specifically for cloud probing was designed and constructed at Langley in 1987. This lidar is presently being used to collect the FIRE ETO (Extended Time Observation) data at Langley. A description of the new FIRE Cloud Lidar System is presented. The data collected by this lidar is discussed as well as some of the cloud statistics emerging from the data. A brief synopsis of system performance is also given.

  16. Jet Physics at CDF

    SciTech Connect

    Sally Seidel

    2004-06-28

    Jets have been studied by the CDF Collaboration [1] as a means of searching for new particles and interactions, testing a variety of perturbative QCD predictions, and providing input for the global parton distribution function (PDF) fits. Unless otherwise indicated below, the jets were reconstructed using a cone algorithm [2] with cone radius R = 0.7 from data taken at the Fermilab Tevatron collider in Run 2, 2001-2003, with {radical}s = 1.96 TeV. Central jets, in the pseudorapidity range relative to fixed detector coordinates 0.1 < |{eta}| < 0.7, are used.

  17. Study of Fast, Near-Infrared Photodetectors for the ITER Core LIDAR Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.; Alfier, A.; Beurskens, M.; Kempenaars, M.; Walsh, M. J.

    2008-03-01

    A key component for the ITER core LIDAR Thomson Scattering (TS) diagnostic would be a detector with good sensitivity in the 850-1060 nm near infrared (NIR) spectral region. Covering this spectral region becomes necessary if a Nd:YAG laser system operating at λ = 1.06 μm is used as the laser source, which is a very attractive choice in terms of available energy, repetition rate, reliability and cost. In this paper we review the state of the art of two types of detectors available for the above spectral range: the transferred electron (TE) InGaAs/InP hybrid photodiode and the InxGa1-xAs microchannel plate (MCP) image intensifier and we describe the advancements necessary for a possible application in the ITER LIDAR TS. In addition we describe the preliminary characterization of new GaAsP fast MCP photomultipliers (PMTs) suitable for the detection of the visible part of the LIDAR TS spectrum in JET and ITER.

  18. Detection of high altitude aircraft wake vortices using infrared Doppler lidar: An assessment

    NASA Astrophysics Data System (ADS)

    Estes, Michael J.

    1990-12-01

    The feasibility is studied of air-to-air detection of high altitude aircraft wake vortices at long ranges using infrared Doppler lidar. The purpose of this technique is to detect otherwise stealthy aircraft. Three laser wavelengths were analyzed: 1.064, 2.091, and 9.115 microns. Analysis revealed that the spectral width of the return signal from an aircraft wake presented a good signature for detection. Based on the analysis, a minimum signal-to-noise ratio of 0 db was established. Detection performance was then analyzed using signal-to-noise ratio calculations for backscatter by ambient atmospheric aerosols, jet engine exhaust soot particles, and condensation trail ice particles. Results indicated that atmospheric aerosols alone were not sufficient for detection in clean atmospheric regions. Backscatter enhancement by soot particles did, however, appear to be sufficient for detection out to 80 km. Enhancement by condensed ice particles in wake contrails provided detection well beyond 100 km in range. Interestingly, the shorter wavelength lidars did not perform as well as the 9.115 micron lidar due to degradations from shot noise, wavefront mismatch, refractive turbulence, and atmospheric extinction.

  19. Impact of Fluidic Chevrons on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Kinzie, Kevin W.; Whitmire, Julia; Abeysinghe, Amal

    2005-01-01

    The impact of alternating fluidic core chevrons on the production of jet noise is investigated. Core nozzles for a representative 1/9th scale, bypass ratio 5 model system were manufactured with slots cut near the trailing edges to allow for air injection into the core and fan streams. The injectors followed an alternating pattern around the nozzle perimeter so that the injection alternated between injection into the core stream and injection into the fan stream. For the takeoff condition and a forward flight Mach number of 0.10, the overall sound pressure levels at the peak jet noise angle decrease with increasing injection pressure. Sound pressure levels increase for observation angles less than 110o at higher injection pressures due to increases in high frequency noise. Greater increases in high frequency noise are observed when the number of injectors increases from 8 to 12. When the forward flight Mach number is increased to 0.28, jet noise reduction (relative to the baseline) is observed at aft angles for increasing injection pressure while significant increases in jet noise are observed at forward observation angles due to substantial acoustic radiation at high frequencies. A comparison between inflow and alternating injectors shows that, for equal mass injection rates, the inflow nozzle produces greater low frequency noise reduction (relative to the baseline) than the alternating injectors at 90o and aft observation angles and a forward flight Mach number of 0.28. Preliminary computational fluid dynamic simulations indicate that the spatial decay rate of the hot potential core flow is less for the inflow nozzle than for the alternating nozzles which indicates that gentle mixing may be preferred over sever mixing when fluidic chevrons are used for jet noise reduction.

  20. Infrared lidar overlap function: an experimental determination.

    PubMed

    Guerrero-Rascado, Juan Luis; Costa, Maria João; Bortoli, Daniele; Silva, Ana Maria; Lyamani, Hassan; Alados-Arboledas, Lucas

    2010-09-13

    The most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime. In view of this fact, this work presents a modification of that method, based on the comparison of attenuated backscatter profiles derived from lidar and ceilometer, to retrieve the overlap function for the lidar infrared channel. Similarly to the Raman overlap method, the approach presented here allows to derive the overlap correction without an explicit knowledge of all system parameters. The application of the proposed methodology will improve the potential of Raman lidars to investigate the aerosol microphysical properties in the planetary boundary layer, extending the information of 1064 nm backscatter profiles to the ground and allowing the retrieval of microphysical properties practically close to the surface.

  1. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  2. Use of LIDAR for Measuring Snowpack Depth

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Elder, K.; Cline, D.; Davis, R. E.; Ochs, E.

    2003-12-01

    Airborne LIDAR measurements were made near the date of peak snow accumulation in Colorado as part of the NASA Cold Land Processes Experiment (CLPX). LIDAR (LIght Detection And Ranging) overflights were repeated in the late summer following the experiment to obtain a baseline on the terrain in the areas where wintertime LIDAR data were collected. These areas were also measured for many snowpack parameters, including snow depth, by field crews near the winter overflight date. The surfaces generated by differencing the two LIDAR images produced a high-resolution spatial map of snow depth. The results were compared to point measurements of snow depth collected by the field teams. Results were also compared to modeled continuous distributions of snow cover to obtain differences in volume of snow predicted over the study sites. Absolute accuracy of the LIDAR data was evaluated using portions of the LIDAR imagery that was snow free during both overflights. The CLPX field campaign made on-site measurements at nine 1-km square study sites. Site characteristics varied greatly from subalpine to alpine, from thick forest to grassland, and from complex to flat terrain. The observed snowpacks varied between the deepest found in Colorado to shallow, discontinuous snow cover.

  3. Development of a Raman lidar simulation tool

    NASA Technical Reports Server (NTRS)

    Grasso, R. J.; Hummel, J. R.

    1992-01-01

    Raman Lidar is a useful and powerful tool for remote probing of the atmosphere. With Raman Lidars, one can accurately determine the identity and concentration of a particular molecular specie present in the atmosphere. We present the results from a program to develop a simulation capability of Raman Lidar systems for the remote detection of atmospheric gases and/or air polluting hydrocarbons. Our model, which integrates remote Raman spectroscopy with SPARTA's BACKSCAT atmospheric lidar simulation package, permits accurate determination of the performance of a Raman Lidar system. The accuracy with which our model operates is due to the accurate calculation, at any given excitation wavelength, of the differential scattering cross section for the molecular specie under investigation. We show excellent correlation of our calculated cross section data with experimental data from the published literature. In addition, the use of our BACKSCAT package, which provides a user friendly environment to define the operating conditions, provides an accurate calculation of the atmospheric extinction at both the excitation and Raman shifted wavelengths. Our code can be used to accurately predict the performance of a Raman Lidar system, the concentration and identification of a specie in the atmosphere, or the feasibility of making Raman measurements.

  4. Filter algorithm for airborne LIDAR data

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ma, Hongchao; Wu, Jianwei; Tian, Liqiao; Qiu, Feng

    2007-11-01

    Airborne laser scanning data has become an accepted data source for highly automated acquisition of digital surface models(DSM) as well as for the generation of digital terrain models(DTM). To generate a high quality DTM using LIDAR data, 3D off-terrain points have to be separated from terrain points. Even though most LIDAR system can measure "last-return" data points, these "last-return" point often measure ground clutter like shrubbery, cars, buildings, and the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping application. Various techniques have been proposed to extract the ground surface from airborne LIDAR data. The basic problem is the separation of terrain points from off-terrain points which are both recorded by the LIDAR sensor. In this paper a new method, combination of morphological filtering and TIN densification, is proposed to separate 3D off-terrain points.

  5. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    NASA Astrophysics Data System (ADS)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    unmanaged areas, using high point density lidar collected over transmission line corridors. The lidar metric of quadratic mean height guided our selection of field plots spanning the full range from low to high levels of aboveground biomass across the study region. Before model selection, we minimized two of the major sources of errors in lidar calibration: variance in tree allometry across landscapes and plot edge effects (spatial mismatch between field measurements and lidar points). We tested an assortment of model selection techniques and goodness of fit measures for deriving forest structural metrics of interest. For example, we obtained an R-squared value for aboveground biomass (Mg/ha) of 0.9 using stepwise regression. The forest metrics obtained are being used in the next stage of the project to parameterize biogeochemical models linking terrestrial carbon pools and atmospheric greenhouse gas exchanges.

  6. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  7. Jetting instability mechanisms of particles from explosive dispersal

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.

    2014-05-01

    The formation of post-detonation 'particle' jets is widely observed in many problems associated with explosive dispersal of granular materials and liquids. Jets have been shown to form very early, however the mechanism controlling the number of jetting instabilities remains unresolved despite a number of active theories. Recent experiments involving cylindrical charges with a range of central explosive masses for dispersal of dry solid particles and pure liquid are used to formulate macroscopic numerical models for jet formation and growth. The number of jets is strongly related to the dominant perturbation during the shock interaction timescale that controls the initial fracturing of the particle bed and liquid bulk. Perturbations may originate at the interfaces between explosive, shock-dispersed media, and outer edge of the charge due to Richtmyer-Meshkov instabilities. The inner boundary controls the number of major structures, while the outer boundary may introduce additional overlapping structures and microjets that are overtaken by the major structures. In practice, each interface may feature a thin casing material that breaks up, thereby influencing or possibly dominating the instabilities. Hydrocode simulation is used to examine the role of each interface in conjunction with casing effects on the perturbation leading to jet initiation. The subsequent formation of coherent jet structures requires dense multiphase flow of particles and droplets that interact though inelastic collision, agglomeration, and turbulent flow. Macroscopic multiphase flow simulation shows dense particle clustering and major jet structures overtaking smaller instabilities. Late-time dispersal is controlled by particle drag and evaporation of droplets. Numerical results for dispersal and jetting evolution are compared with experiments.

  8. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-02-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  9. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar.

    PubMed

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O'Dowd, Colin

    2017-02-15

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val.

  10. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar

    PubMed Central

    Gimmestad, Gary; Forrister, Haviland; Grigas, Tomas; O’Dowd, Colin

    2017-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the polar orbiter Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is an elastic backscatter lidar that produces a global uniformly-calibrated aerosol data set. Several Calibration/Validation (Cal/Val) studies for CALIOP conducted with ground-based lidars and CALIOP data showed large aerosol profile disagreements, both random and systematic. In an attempt to better understand these problems, we undertook a series of ground-based lidar measurements in Atlanta, Georgia, which did not provide better agreement with CALIOP data than the earlier efforts, but rather prompted us to investigate the statistical limitations of such comparisons. Meaningful Cal/Val requires intercomparison data sets with small enough uncertainties to provide a check on the maximum expected calibration error. For CALIOP total attenuated backscatter, reducing the noise to the required level requires averaging profiles along the ground track for distances of at least 1,500 km. Representative comparison profiles often cannot be acquired with ground-based lidars because spatial aerosol inhomogeneities introduce systematic error into the averages. These conclusions have implications for future satellite lidar Cal/Val efforts, because planned satellite lidars measuring aerosol backscatter, wind vector, and CO2 concentration profiles may all produce data requiring considerable along-track averaging for meaningful Cal/Val. PMID:28198389

  11. Astrophysics: Cosmic jet engines

    NASA Astrophysics Data System (ADS)

    Young, Andy

    2010-02-01

    In some galaxies, matter falling onto a supermassive black hole is ejected in narrow jets moving at close to the speed of light. New observations provide insight into the workings of these cosmic accelerators.

  12. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  13. Jet propulsion for airplanes

    NASA Technical Reports Server (NTRS)

    Buckingham, Edgar

    1924-01-01

    This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.

  14. Are shrubland birds edge specialists?

    PubMed

    Schlossberg, Scott; King, David I

    2008-09-01

    In studies of forest fragmentation, birds of scrubby, early-successional habitats are considered edge specialists. Because these birds are assumed to thrive in fragmented, edge-dominated areas, their landscape ecology has received little attention from ecologists. With populations of shrubland birds declining throughout the eastern United States, the question of whether or not these birds really prefer edge habitats has important conservation implications. We used a meta-analysis to test how edges affect the abundance of shrubland birds in early-successional habitats. We analyzed data for 17 species from seven studies that compared the abundances of birds in the interiors and edges of regenerating clearcuts surrounded by mature forest. The meta-analysis clearly showed that shrubland birds avoid edges. All 17 species tested had higher abundances in patch centers than along edges, and edge effects were significant for 8 of 17 species. The key implication of this result is that small or irregular patches, dominated by edge, are unlikely to provide suitable habitat for shrubland birds. Thus, management for these declining species should involve providing large patches and minimizing edges. These findings demonstrate the importance of testing widely accepted ecological classifications and the need to view landscape ecology from the perspective of non-forest wildlife.

  15. Pulsed Lidar Performance/Technical Maturity Assessment

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; West, Leanne L.; Wood, Jack W.; Frehlich, Rod

    2004-01-01

    This report describes the results of investigations performed by the Georgia Tech Research Institute (GTRI) and the National Center for Atmospheric Research (NCAR) under a task entitled 'Pulsed Lidar Performance/Technical Maturity Assessment' funded by the Crew Systems Branch of the Airborne Systems Competency at the NASA Langley Research Center. The investigations included two tasks, 1.1(a) and 1.1(b). The Tasks discussed in this report are in support of the NASA Virtual Airspace Modeling and Simulation (VAMS) program and are designed to evaluate a pulsed lidar that will be required for active wake vortex avoidance solutions. The Coherent Technologies, Inc. (CTI) WindTracer LIDAR is an eye-safe, 2-micron, coherent, pulsed Doppler lidar with wake tracking capability. The actual performance of the WindTracer system was to be quantified. In addition, the sensor performance has been assessed and modeled, and the models have been included in simulation efforts. The WindTracer LIDAR was purchased by the Federal Aviation Administration (FAA) for use in near-term field data collection efforts as part of a joint NASA/FAA wake vortex research program. In the joint research program, a minimum common wake and weather data collection platform will be defined. NASA Langley will use the field data to support wake model development and operational concept investigation in support of the VAMS project, where the ultimate goal is to improve airport capacity and safety. Task 1.1(a), performed by NCAR in Boulder, Colorado to analyze the lidar system to determine its performance and capabilities based on results from simulated lidar data with analytic wake vortex models provided by NASA, which were then compared to the vendor's claims for the operational specifications of the lidar. Task 1.1(a) is described in Section 3, including the vortex model, lidar parameters and simulations, and results for both detection and tracking of wake vortices generated by Boeing 737s and 747s. Task 1

  16. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  17. Breakup of metal jets penetrating a volatile liquid. Final report, October 1, 1991--February 28, 1993

    SciTech Connect

    Schneider, J.P.

    1995-07-01

    In a loss of coolant accident, the core may become uncovered, causing the fuel pins to melt. The molten fuel would pour onto the plenum and collect on the reactor pressure vessel (RPV) lower head. The RPV internal structure includes one or more perforated plates in the lower plenum which would divide the molten fuel into small diameter streams or jets, which would break up as they penetrate the coolant in the lower plenum. The breakup of these jets would occur in two phases, each dominated by a distinct fragmentation mechanism. As a fuel jet first penetrates the coolant, a stagnation flow develops at its leading edge, causing the column to spread radially and eject molten fuel into the coolant. The jet fluid in the column is fragmented by pressure fluctuations due to the jet/ambient fluid relative motion, so that a steady jet is reduced to a field of falling drops below a critical depth called the breakup length. The present work includes analyses yielding simple correlations for jet breakup length and jet leading edge penetration.

  18. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  19. Relativistic Jets from Collapsars

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Müller, E.; Ibáñez, J. M.; Martí, J. M.; MacFadyen, A.

    2000-03-01

    Using a collapsar progenitor model of MacFadyen & Woosley, we have simulated the propagation of an axisymmetric jet through a collapsing rotating massive star with the GENESIS multidimensional relativistic hydrodynamic code. The jet forms as a consequence of an assumed (constant or variable) energy deposition in the range of 1050-1051 ergs s-1 within a 30 deg cone around the rotation axis. The jet flow is strongly beamed (approximately less than a few degrees), spatially inhomogeneous, and time dependent. The jet reaches the surface of the stellar progenitor (R*=2.98x1010 cm) intact. At breakout, the maximum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into the circumstellar medium, whose density is assumed to decrease exponentially and then become constant, ρext=10-5 g cm-3. Outside the star, the flow begins to expand laterally also (v~c), but the beam remains very well collimated. At a distance of 2.54 R*, where the simulation ends, the Lorentz factor has increased to 44.

  20. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  1. Axisymmetric wall jet development in confined jet impingement

    NASA Astrophysics Data System (ADS)

    Guo, Tianqi; Rau, Matthew J.; Vlachos, Pavlos P.; Garimella, Suresh V.

    2017-02-01

    The flow field surrounding an axisymmetric, confined, impinging jet was investigated with a focus on the early development of the triple-layered wall jet structure. Experiments were conducted using stereo particle image velocimetry at three different confinement gap heights (2, 4, and 8 jet diameters) across Reynolds numbers ranging from 1000 to 9000. The rotating flow structures within the confinement region and their interaction with the surrounding flow were dependent on the confinement gap height and Reynolds number. The recirculation core shifted downstream as the Reynolds number increased. For the smallest confinement gap height investigated, the strong recirculation caused a disruption of the wall jet development. The radial position of the recirculation core observed at this small gap height was found to coincide with the location where the maximum wall jet velocity had decayed to 15% of the impinging jet exit velocity. After this point, the self-similarity hypothesis failed to predict the evolution of the wall jet further downstream. A reduction in confinement gap height increased the growth rates of the wall jet thickness but did not affect the decay rate of the wall jet maximum velocity. For jet Reynolds numbers above 2500, the decay rate of the maximum velocity in the developing region of the wall jet was approximately -1.1, which is close to previous results reported for the fully developed region of radial wall jets. A much higher decay rate of -1.5 was found for the wall jet formed by a laminar impinging jet at Re = 1000.

  2. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  3. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  4. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  5. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  6. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  7. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2016-09-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  8. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2017-03-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  9. Saddle point of attachment in jet-crossflow interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Chenxing; Shi, Junxiang; Ke, Zhaoqing; Chen, Chung-Lung

    2017-03-01

    Numerical simulation and theoretical analysis were performed to investigate the upstream topology of a jet-crossflow interaction. The numerical results were validated with mathematical theory as well as a juncture flow structure. The upstream critical point satisfies the condition of occurrence for a saddle point of attachment in the horseshoe vortex system. In addition to the classical topology led by a saddle point of separation, a new topology led by a saddle point of attachment was found for the first time in a jet-crossflow interaction. The degeneration of the critical point from separation to attachment is determined by the velocity ratio of the jet over the crossflow, and the boundary layer thickness of the flat plate. When the boundary layer thickness at the upstream edge of the jet is close to one diameter of the jet, the flow topology is led by a saddle point of attachment. Variation of the velocity ratio does not change the topology but the location of the saddle point. When the boundary layer thickness is less than 0.255 of the jet flow diameter, large velocity ratio can generate a saddle point of attachment without spiral horseshoe vortex; continuously decreasing the velocity ratio will change the flow topology to saddle point of the separation. The degeneration of the critical point from attachment to separation was observed.

  10. Resonant Interaction of a Rectangular Jet with a Flat-Plate

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.

    2014-01-01

    A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.

  11. Phototransistors Development and their Applications to Lidar

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.

    2007-01-01

    Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.

  12. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  13. Lidars: a key component of urban biodefense.

    PubMed

    Mayor, Shane D; Benda, Paul; Murata, Christina E; Danzig, Richard J

    2008-03-01

    A biological aerosol attack in a city could infect tens of thousands of people. In the absence of announcements by the attacker or detection by present point detection systems, victims would be unaware of their exposure prior to developing symptoms. Since infections are most effectively countered before the onset of symptoms, detection technologies that provide early awareness of an attack should be given high priority. Current biological point detection (BPD) systems collect environmental air samples and then analyze them in laboratories so as to permit detection within 12-36 hours of an attack. Improvements in the pipeline may reduce this lag time to as little as a few hours. However, BPD systems have inherent weaknesses when used to detect and respond to an aerosol attack. The likelihood of a limited number of BPD systems intercepting an aerosol plume in a vast attack space may be low. Moreover, BPD systems do not provide critical information needed for response, such as the source location, precise time, and geographic reach of an attack. The missing information would invaluably guide prophylaxis distribution, identification of contaminated areas, and criminal apprehension. This article describes how lidars used for real-time observation of aerosol plumes could complement BPD systems by providing fine-scale spatial and temporal information. A lidar system also could be used to corroborate positive BPD system results, to improve reaction to positive results, and/or to provide an independent basis for low-regret protective steps. Lidar systems can resolve key biodefense challenges, and this article describes three compatible concepts of operations. Leveraging lessons from a lidar system now operating at the Pentagon, a test of an expanded lidar network would provide immediate protection for key Washington, DC, assets, demonstrate the synergy of BPD systems and lidars, and provide a test bed for research to improve lidar's shortcomings.

  14. Edge electrospinning for high throughput production of quality nanofibers

    NASA Astrophysics Data System (ADS)

    Thoppey, N. M.; Bochinski, J. R.; Clarke, L. I.; Gorga, R. E.

    2011-08-01

    A novel, simple geometry for high throughput electrospinning from a bowl edge is presented that utilizes a vessel filled with a polymer solution and a concentric cylindrical collector. Successful fiber formation is presented for two different polymer systems with differing solution viscosity and solvent volatility. The process of jet initiation, resultant fiber morphology and fiber production rate are discussed for this unconfined feed approach. Under high voltage initiation, the jets spontaneously form directly on the fluid surface and rearrange along the circumference of the bowl to provide approximately equal spacing between spinning sites. Nanofibers currently produced from bowl electrospinning are identical in quality to those fabricated by traditional needle electrospinning (TNE) with a demonstrated ~ 40 times increase in the production rate for a single batch of solution due primarily to the presence of many simultaneous jets. In the bowl electrospinning geometry, the electric field pattern and subsequent effective feed rate are very similar to those parameters found under optimized TNE experiments. Consequently, the electrospinning process per jet is directly analogous to that in TNE and thereby results in the same quality of nanofibers.

  15. On the mixing of a rectangular jet

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Baganoff, D.; Karamcheti, K.

    1981-01-01

    Hot-wire measurements in an incompressible rectangular jet, issuing into a quiet environment at ambient conditions, are presented. A blow-down-type air supply system was used to provide the airflow to a cylindrical settling chamber 1.75 m in length and 0.6 m in diameter. The measurements were made with constant-temperature anemometers in conjunction with linearizers. The two signals from the linearizers were sent through a sum and difference unit which was calibrated from dc to 100 kHz. The distributions of mean velocity and the turbulence shear stresses were measured in the two central planes of the jet stations up to 115 widths downstream of the nozzle exit. Three distinct regions characterized the jet flow field: a potential core origin, a two-dimensional-type region, and an axisymmetric type region. The onset of the second region appeared to be at a location where the shear layers separated by the short dimension of the nozzle meet; and the third region occurred at a downstream location where the two shear layers from the short edges of the nozzle meet. In the central plane, similarity was found both in the mean velocity and shear stress profiles beyond 30 widths downstream of the nozzle exit; profiles of rms velocity showed similarity in the second, but not the third region.

  16. Cleanup of a jet fuel spill

    NASA Astrophysics Data System (ADS)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  17. Improved confinement in JET hybrid discharges

    NASA Astrophysics Data System (ADS)

    Hobirk, J.; Imbeaux, F.; Crisanti, F.; Buratti, P.; Challis, C. D.; Joffrin, E.; Alper, B.; Andrew, Y.; Beaumont, P.; Beurskens, M.; Boboc, A.; Botrugno, A.; Brix, M.; Calabro', G.; Coffey, I.; Conroy, S.; Ford, O.; Frigione, D.; Garcia, J.; Giroud, C.; Hawkes, N. C.; Howell, D.; Jenkins, I.; Keeling, D.; Kempenaars, M.; Leggate, H.; Lotte, P.; de la Luna, E.; Maddison, G. P.; Mantica, P.; Mazzotta, C.; McDonald, D. C.; Meigs, A.; Nunes, I.; Rachlew, E.; Rimini, F.; Schneider, M.; Sips, A. C. C.; Stober, J. K.; Studholme, W.; Tala, T.; Tsalas, M.; Voitsekhovitch, I.; de Vries, P. C.; EFDA contributors, JET

    2012-09-01

    A new technique has been developed to produce plasmas with improved confinement relative to the H98,y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H98,y2 = 1.35) and good stability (βN ≈ 3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H98,y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.

  18. Heterodyne lidar for chemical sensing

    SciTech Connect

    Oldenborg, R. C.; Tiee, J. J.; Shimada, T.; Wilson, C. W.; Remelius, D. K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging

  19. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and…

  20. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1976-01-01

    An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.

  1. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  2. Applications of KHZ-CW Lidar in Ecological Entomology

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  3. Efficient Open Source Lidar for Desktop Users

    NASA Astrophysics Data System (ADS)

    Flanagan, Jacob P.

    Lidar --- Light Detection and Ranging --- is a remote sensing technology that utilizes a device similar to a rangefinder to determine a distance to a target. A laser pulse is shot at an object and the time it takes for the pulse to return in measured. The distance to the object is easily calculated using the speed property of light. For lidar, this laser is moved (primarily in a rotational movement usually accompanied by a translational movement) and records the distances to objects several thousands of times per second. From this, a 3 dimensional structure can be procured in the form of a point cloud. A point cloud is a collection of 3 dimensional points with at least an x, a y and a z attribute. These 3 attributes represent the position of a single point in 3 dimensional space. Other attributes can be associated with the points that include properties such as the intensity of the return pulse, the color of the target or even the time the point was recorded. Another very useful, post processed attribute is point classification where a point is associated with the type of object the point represents (i.e. ground.). Lidar has gained popularity and advancements in the technology has made its collection easier and cheaper creating larger and denser datasets. The need to handle this data in a more efficiently manner has become a necessity; The processing, visualizing or even simply loading lidar can be computationally intensive due to its very large size. Standard remote sensing and geographical information systems (GIS) software (ENVI, ArcGIS, etc.) was not originally built for optimized point cloud processing and its implementation is an afterthought and therefore inefficient. Newer, more optimized software for point cloud processing (QTModeler, TopoDOT, etc.) usually lack more advanced processing tools, requires higher end computers and are very costly. Existing open source lidar approaches the loading and processing of lidar in an iterative fashion that requires

  4. Giant edge state splitting at atomically precise graphene zigzag edges

    PubMed Central

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron–electron interactions in these localized states. PMID:27181701

  5. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  6. Edge-on View of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.

    In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.

    BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.

    Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.

    The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  7. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  8. Calibration Technique for Polarization-Sensitive Lidars

    NASA Technical Reports Server (NTRS)

    Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.

    2006-01-01

    Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).

  9. Rapid 2-axis scanning lidar prototype

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.

  10. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  11. Compact scanning lidar systems using holographic optics

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.; Guerra, David

    1998-08-01

    Two scanning lidar systems have been built using holographic optical elements (HOE) that function as a scanning telescope primary optic. One is a ground based lidar using a reflection HOE, and uses a frequency doubled Nd:YAG laser transmitter. The other system is an airborne/ground based system that uses a transmission HOE and operates at the 1064 nm fundamental of the Nd:YAG laser. Each HOE has a focal spot on the center- line, normal to the flat disk holding the hologram, and a field of view (FOV) that points approximately 45 degrees from the normal. Rotating the disk effects a conical scan of the FOV. In both systems, the same HOE is also used to collimate and steer the transmitted laser beam. The utility of using the HOEs to save weight and size in scanning lidars is evidenced by the atmospheric backscatter data collected with these systems. They also will lower the cost of commercial systems due to the low cost of replicating HOEs and the simplified mechanical scanning systems. Development of airborne scanning lidar altimeters and other lidars and passive instruments using holographic optics are underway, including the development of a one meter diameter, space qualified holographic scanning telescope for use in the ultraviolet.

  12. Overview of Japan's spaceborne vegetation lidar mission

    NASA Astrophysics Data System (ADS)

    Murooka, Jumpei; Kobayashi, Takashi; Imai, Tadashi; Suzuki, Keiko; Sakaizawa, Daisuke; Yamakawa, Shiro; Sato, Ryota; Sawada, Haruo; Asai, Kazuhiro

    2013-10-01

    Vegetation LIDAR, which measures an accurate canopy height, has been studied by JAXA. Canopy height is a very important parameter to estimate forest biomass, and global measurement of accurate canopy height leads to better understanding of the global carbon cycle. The vegetation LiDAR is designed based on the assumption that it is to be mounted on the Exposed Facility (EF) of the Japanese Experiment Module (JEM, also known as "Kibo") on the International Space Station (ISS). The vegetation LIDAR uses an array detector (2x2) for dividing the ground footprint, making it possible to detect the slope of the ground for improving the accuracy of canopy height measurement. However, dividing the footprint may cause a reduction in reflected lights and signal-to-noise ratio (SNR); hence, the vegetation LiDAR system needs high sensitivity and low-noise array detector module. We made a prototype of the array detector module and it satisfied the tentative target SNR which we set. This presentation will introduce the mission objectives, the LiDAR system including experimental prototypes of array detector module, and some results of the study.

  13. Atmospheric Turbulence Estimates from a Pulsed Lidar

    NASA Technical Reports Server (NTRS)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  14. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    NASA Astrophysics Data System (ADS)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  15. An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hu, X.; Guan, H.; Liu, P.

    2016-06-01

    The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  16. A COMPRESSED SENSING METHOD WITH ANALYTICAL RESULTS FOR LIDAR FEATURE CLASSIFICATION

    SciTech Connect

    Allen, Josef D

    2011-01-01

    We present an innovative way to autonomously classify LiDAR points into bare earth, building, vegetation, and other categories. One desirable product of LiDAR data is the automatic classification of the points in the scene. Our algorithm automatically classifies scene points using Compressed Sensing Methods via Orthogonal Matching Pursuit algorithms utilizing a generalized K-Means clustering algorithm to extract buildings and foliage from a Digital Surface Models (DSM). This technology reduces manual editing while being cost effective for large scale automated global scene modeling. Quantitative analyses are provided using Receiver Operating Characteristics (ROC) curves to show Probability of Detection and False Alarm of buildings vs. vegetation classification. Histograms are shown with sample size metrics. Our inpainting algorithms then fill the voids where buildings and vegetation were removed, utilizing Computational Fluid Dynamics (CFD) techniques and Partial Differential Equations (PDE) to create an accurate Digital Terrain Model (DTM) [6]. Inpainting preserves building height contour consistency and edge sharpness of identified inpainted regions. Qualitative results illustrate other benefits such as Terrain Inpainting s unique ability to minimize or eliminate undesirable terrain data artifacts. Keywords: Compressed Sensing, Sparsity, Data Dictionary, LiDAR, ROC, K-Means, Clustering, K-SVD, Orthogonal Matching Pursuit

  17. Ram-jet Performance

    NASA Technical Reports Server (NTRS)

    Cervenko, A. J.; Friedman, R.

    1956-01-01

    The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram-jet

  18. Recent improvements of the JET lithium beam diagnostic

    SciTech Connect

    Brix, M.; Morgan, P.; Stamp, M.; Zastrow, K.-D.; Dunai, D.; Meszaros, B.; Petravich, G.; Refy, D. I.; Szabolics, T.; Zoletnik, S.; Lupelli, I.; Marsen, S.; Melson, T. F.; Silva, C. [EURATOM Collaboration: JET-EFDA Contributors

    2012-10-15

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  19. Charged-particle acceleration in braking plasma jets.

    PubMed

    Artemyev, A V

    2014-03-01

    In this paper we describe the mechanism of the charged particle acceleration in space plasma systems. We consider the interaction of nonrelativistic particles with a sub-Alfvenic plasma jet originated from the magnetic reconnection. The sharp front with increased magnetic field amplitude forms in the jet leading edge. Propagation of the jet in the inhomogeneous background plasma results in front braking. We show that particles can interact with this front in a resonance manner. Synchronization of particle reflections from the front and the front braking provides the stable trapping of particles in the vicinity of the front. This trapping supports the effective particle acceleration along the front. The mechanism of acceleration is potentially important due to the prevalence of the magnetic reconnection in space and astrophysical plasmas.

  20. The M87 Jet. "Rosetta Stone" of AGN Jets

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Asada, Keiichi

    2013-12-01

    We investigate the structure and dynamics of the M87 jet based on multi-frequency VLBI observations and MHD jet theories. Millimeter VLBI cores are considered as innermost jet emissions. The jet structure up to ~ 105 rs is described as a parabolic streamline, indicating the lateral expansion under a confinement by the stratified ISM. Thus, the jet collimation maintains in five orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 rs. We here examine the jet parabolic structure in order to identify the property of a bulk acceleration; observed sub-to-superluminal motions indicate an MHD acceleration from non-relativistic to relativistic regimes. We propose that the M87 jet consists of Poynting-flux dominated flows, powered by nonlinear torsional Alfvén waves. Future sub-mm VLBI observations play an important role in resolving the origin of the M87 jets.

  1. B-jets and z + b-jets at CDF

    SciTech Connect

    Jeans, Daniel; /Rome U.

    2006-06-01

    The authors present CDF cross-section measurements for the inclusive production of b jets and the production of b jets in association with a Z{sup 0} boson. Both measurements are in reasonable agreement with NLO QCD predictions.

  2. Fluid dynamic aspects of jet noise generation. [noise measurement of jet blast effects from supersonic jet flow in convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Barra, V.; Panunzio, S.

    1976-01-01

    Jet engine noise generation and noise propagation was investigated by studying supersonic nozzle flow of various nozzle configurations in an experimental test facility. The experimental facility was constructed to provide a coaxial axisymmetric jet flow of unheated air. In the test setup, an inner primary flow exhausted from a 7 in. exit diameter convergent--divergent nozzle at Mach 2, while a secondary flow had a 10 in. outside diameter and was sonic at the exit. The large dimensions of the jets permitted probes to be placed inside the jet core without significantly disturbing the flow. Static pressure fluctuations were measured for the flows. The nozzles were designed for shock free (balanced) flow at Mach 2. Data processing techniques and experimental procedures were developed in order to study induced disturbances at the edge of the supersonic flows, and the propagation of those disturbances throughout the flows. Equipment used (specifications are given) to record acoustic levels (far field noise) is described. Results and conclusions are presented and discussed. Diagrams of the jet flow fields are included along with photographs of the test stand.

  3. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  4. Jet propulsion without inertia

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio E.; Lauga, Eric

    2010-08-01

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e., jetting) surfaces are considered and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number, which corresponds to the potential flow created by a source dipole at the sphere center. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.

  5. Jet engine testing apparatus

    SciTech Connect

    Zweifel, T.L.

    1987-03-24

    An apparatus is described for testing jet engines mounted on an aircraft, the jet engines of the type having a high speed rotor and a low speed rotor, comprising: representative signal means for providing first representative signals representative of rotation rates of the low speed rotor in the jet engines and second representative signals representative of rotation rates of the high speed rotor in the jet engines; equivalent signal means coupled to receive the second representative signals for deriving equivalent signals representative of low speed rotor rotation rates of normally operating jet engines having high speed rotor rotation rates represented by the second representative signals; first difference signal means coupled to receive the first representative signals and the equivalent signals for providing first difference signals representative of differences between the first representative signals and the equivalent signals; means for providing threshold signals; first detector means coupled to the threshold signal means and the first difference signal means for comparing the threshold signals and the first difference signals to provide first detected signals representative of values of the first difference signals relative to the threshold signals; and engine failure indicator means coupled to receive the detected signals for determination of engine failures.

  6. Wind shear at turbine rotor heights from Doppler lidar measurements

    NASA Astrophysics Data System (ADS)

    Pichugina, Y.; Banta, R. M.; Kelley, N.; Brewer, A.; Sandberg, S.

    2009-12-01

    As the capacity and size of modern wind turbines increase to take advantage of stronger winds at higher elevations, the confidence in wind resource assessment by “extrapolation method”, routinely used in the wind energy industry, decreases. Error in wind resource approximation at elevated heights can lead to substantial uncertainty in power production and wind farm economics. Remote sensing measurements of wind and turbulence profiles through the entire layer of turbine rotor heights, can provide accurate information on wind flow, thereby improving preliminary evaluation of turbine performance and power production. This paper presents lidar measurements of wind profiles during two experiments in the south-eastern part of the Great Plains and shows mean wind shear at turbine rotor heights as being greater than predicted by the assumption of logarithmic wind profile or power law relation. In addition to the regional climatology over relatively flat terrain, frequent development of the nocturnal Low-Level Jet can lead to significant deviations of wind profile from theoretical extrapolations. Analysis of wind and turbulence characteristics over a wide range of heights, variations of wind shear in time during strong and calm wind nights, along with examples of error in the actual and predicted wind resources will be given.

  7. Experimental study on the use of synthetic jet actuators for lift control

    NASA Astrophysics Data System (ADS)

    Torres, Ricardo Benjamin

    An experimental study on the use of synthetic jet actuators for lift control is conducted. The synthetic jet actuator is placed on the pressure side towards the trailing edge on a NACA 65(2)-415 airfoil representative of the cross section of an Inlet Guide Vane (IGV) in an industrial gas compressor. By redirecting or vectoring the shear layer at the trailing edge, the synthetic jet actuator increases lift and decreases drag on the airfoil without a mechanical device or flap. A compressor map that defines upper and lower bounds on operating velocities and airfoil dimensions, is compared with operating conditions of the low-speed wind tunnel at San Diego State University, to match gas compressor conditions in the wind tunnel. Realistic test conditions can range from Mach=0.12 to Mach= 0.27 and an airfoil chord from c=0.1 m to c=0.3 m. Based on the operating conditions, a final airfoil model is fabricated with a chord of c=0.1m. Several synthetic jet actuator designs are considered. A initial synthetic jet is designed to house a piezoelectric element with a material frequency of 1200 hz in a cavity with a volume of 4.47 cm3, a slot width of 0.25 mm, and a slot depth of 1.5 mm. With these dimensions, the Helmholtz frequency of the design is 1800Hz. Particle Image Velocimetry (PIV) experiments show that the design has a jet with a peak centerline jet velocity of 26 m/s at 750 Hz. A modified slant face synthetic jet is designed so that the cavity fits flush within the NACA airfoil surface. The slanted synthetic jet has a cavity volume of 4.67 cm3, a slot width of 0.25 mm, and a slot depth of 3.45 mm resulting in a Helmholtz frequency of 1170 hz for this design. PIV experiments show that the jet is redirected along the slant face according to the Coanda effect. A final synthetic jet actuator is directly integrated into the trailing edge of an airfoil with a cavity volume of 4.6 cm3, a slot width of 0.2 mm, and a slot depth of 1.6 mm. The Helmholtz frequency is 1450 Hz and

  8. Aeroacoustic Experiments with Twin Jets

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Henderson, Brenda S.

    2012-01-01

    While the noise produced by a single jet is azimuthally symmetric, multiple jets produce azimuthally varying far-field noise. The ability of one jet to shield another reduces the noise radiated in the plane of the jets, while often increasing the noise radiated out of the plane containing the jets. The present study investigates the shielding potential of twin jet configurations over subsonic and over-expanded supersonic jet conditions with simulated forward flight. The experiments were conducted with 2 in. throat diameter nozzles at four jet spacings from 2.6d to 5.5d in center-to-center distance, where d is the nozzle throat diameter. The current study found a maximum of 3 dB reduction in overall sound pressure level relative to two incoherent jets in the peak jet noise direction in the plane containing the jets. However, an increase of 3 dB was found perpendicular to the plane containing the jets. In the sideline direction, shielding is observed for all jet spacings in this study.

  9. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  10. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  11. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  12. Small-Scale Filament Eruptions Leading to Solar X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse; Moore, Ronald; Falconer, David

    2015-04-01

    We investigate the onset of ~10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Å, which detects chromospheric emissions, and 171, 193, and 211 Å, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size <~10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the hotter EUV component of the jet appears in emission. The jet bright point forms at the location from which the miniature filament erupts, analogous to the formation of a standard solar flare arcade in the wake of the eruption of a typical larger-scalechromospheric filament. The spire of the jet forms on open field lines that presumably have undergone interchange reconnection with the erupting field that envelops and carries the miniature filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions via ``internal'' and ``external'' reconnection of the erupting field. This is consistent with what we found for the onset of an on-disk coronal jet we examined in Adams et al. (2014). This work was supported by funding from NASA/LWS, Hinode, and ISSI.

  13. Lidar research activities and observations at NARL site, Gadanki, India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar

    2016-05-01

    The National Atmospheric Research Laboratory (NARL), a unit of Department of Space (DOS), located at Gadanki village (13.5°N, 79.2°E, 370 m AMSL) in India, is involved in the development of lidar remote sensing technologies for atmospheric research. Several advanced lidar technologies employing micropulse, polarization, Raman and scanning have been developed at this site and demonstrated for atmospheric studies during the period between 2008 and 2015. The technology of micropulse lidar, operates at 532 nm wavelength, was successfully transferred to an industry and the commercial version has been identified for Indian Lidar network (I-LINK) programme. Under this lidar network activity, several lidar units were installed at different locations in India to study tropospheric aerosols and clouds. The polarization sensitive lidar technology was realized using a set of mini photomultiplier tube (PMT) units and has the capability to operate during day and night without a pause. The lidar technology uses a compact flashlamp pumped Qswitched laser and employs biaxial configuration between the transmitter and receiver units. The lidar technology has been utilized for understanding the polarization characteristics of boundary layer aerosols during the mixed layer development. The demonstrated Raman lidar technology, uses the third harmonic wavelength of Nd:YAG laser, provides the altitude profiles of aerosol backscattering, extinction and water vapor covering the boundary layer range and allows operation during nocturnal periods. The Raman lidar derived height profiles of aerosol backscattering and extinction coefficient, lidar ratio, and watervapor mixing ratio inform the tropical boundary layer aerosol characteristics. The scanning lidar technology uses a near infrared laser wavelength for probing the lower atmosphere and has been utilized for high resolution cloud profiling during convective periods. The lidar technology is also used for rain rate measurement during

  14. AirJet paper mover: an example of mesoscale MEMS

    NASA Astrophysics Data System (ADS)

    Biegelsen, David K.; Berlin, Andrew A.; Cheung, Patrick; Fromherz, Markus P.; Goldberg, David; Jackson, Warren B.; Preas, Bryan; Reich, James; Swartz, Lars E.

    2000-08-01

    The motion of human scale objects requires MEMS-like device arrays capable of providing reasonable forces ($GTR mN) over human scale distances (10-100 cm). In principle batch fabricated values controlling air jets can satisfy these actuation requirements. By extending printed circuit board technology to include electromechanical actuation, analogous to the extension of VLSI to MEMS, the requirement of low system cost can be achieved through batch fabrication and integration of the transduction elements with computational and communication elements. In this paper we show that modulated air jets arrayed with position sensors can support and accelerate flexible media without physical contact. Precise motion control with three degrees of freedom parallel to the array, using high flow, low pressure air jet arrays is enabled using electrostatic valves having opening and closing times of approximately equals 1 ms. We present results of an exemplary platform based on printed circuit board technologies, having an array of 576 electrostatic flap valvves (1152 for double-sided actuation) and associated oriented jets, and an integrated array of 32,000 optical sensors for high resolution detection of paper edge positions. Under closed loop control edge positioning has a standard deviation of approximately equals 25 microns. Fabrication and control of the system is described.

  15. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  16. The Robotic Edge Finishing Laboratory

    SciTech Connect

    Loucks, C.S.; Selleck, C.B.

    1990-08-01

    The Robotic Edge Finishing Laboratory at Sandia National Laboratories is developing four areas of technology required for automated deburring, chamfering, and blending of machined edges: (1) the automatic programming of robot trajectories and deburring processes using information derived from a CAD database, (2) the use of machine vision for locating the workpiece coupled with force control to ensure proper tool contact, (3) robotic deburring, blending, and machining of precision chamfered edges, and (4) in-process automated inspection of the formed edge. The Laboratory, its components, integration, and results from edge finishing experiments to date are described here. Also included is a discussion of the issues regarding implementation of the technology in a production environment. 24 refs., 17 figs.

  17. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  18. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes.

  19. Horizontal propagation of large-amplitude mountain waves into the polar night jet

    NASA Astrophysics Data System (ADS)

    Ehard, Benedikt; Kaifler, Bernd; Dörnbrack, Andreas; Preusse, Peter; Eckermann, Stephen D.; Bramberger, Martina; Gisinger, Sonja; Kaifler, Natalie; Liley, Ben; Wagner, Johannes; Rapp, Markus

    2017-02-01

    We analyze a large-amplitude mountain wave event, which was observed by a ground-based lidar above New Zealand between 31 July and 1 August 2014. Besides the lidar observations, European Centre for Medium-Range Weather Forecasts (ECMWF) data, satellite observations, and ray tracing simulations are utilized in this study. It is found that the propagation of mountain waves into the middle atmosphere is influenced by two different processes at different stages of the event. At the beginning of the event, instabilities in a weak wind layer cause wave breaking in the lower stratosphere. During the course of the event the mountain waves propagate to higher altitudes and are refracted southward toward the polar night jet due to the strong meridional shear of the zonal wind. As the waves propagate out of the observational volume, the ground-based lidar observes no mountain waves in the mesosphere. Ray tracing simulations indicate that the mountain waves propagated to mesospheric altitudes south of New Zealand where the polar night jet advected the waves eastward. These results underline the importance of considering horizontal propagation of gravity waves, e.g., when analyzing locally confined observations of gravity waves.

  20. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.

    PubMed

    Su, Jia; McCormick, M Patrick; Liu, Zhaoyan; Lee, Robert B; Leavor, Kevin R; Lei, Liqiao

    2012-05-01

    This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

  1. Limits to the information gain from lidar measurements.

    PubMed

    Belmonte, Aniceto

    2015-04-15

    Measurements over the return signal are an integral part of lidar remote sensing by which we gather information about the characteristics of specific targets. But how much information is gained by performing a given lidar measurement? By defining Shannon's mutual information of a lidar observation, here we consider the bits of information content on the measurement and describe mathematically the capacity of lidar estimates to represent a corresponding property in the target. For heterodyne Doppler lidars in particular, we have found simple analytical formulas that consider the information gain in mean-frequency estimates.

  2. Potential Application of Novel Hyperspectral LIDAR for Monitoring Crops Nitrogen Stress

    NASA Astrophysics Data System (ADS)

    Shi, Shuo; Gong, Wei; Du, Lin; Sun, Jia; Yang, Jian

    2016-06-01

    Precision agriculture has always been the research hotspot around the world. And the optimization of nitrogen fertilization for crops is the core concerns. It is not only to improve the productivity of crops but also to avoid the environmental risks caused by over-fertilization. Therefore, accurate estimation of nitrogen status is crucial for determining an nitrogen recommendation. Remote sensing techniques have been widely used to monitor crops for years, and they could offer estimations for stress status diagnosis through obtaining vertical structure parameters and spectral reflectance properties of crops. As an active remote sensing technology, lidar is particularly attractive for 3-dimensional information at a high point density. It has unique edges in obtaining vertical structure parameters of crops. However, capability of spectral reflectance properties is what the current lidar technology lacks because of single wavelength detection. To solve this problem, the concept of novel hyperspectral lidar (HSL), which combines the advantages of hyperspectal reflectance with high 3-dimensional capability of lidar, was proposed in our study. The design of instrument was described in detail. A broadband laser pulse was emitted and reflectance spectrum with 32 channels could be detected. Furthermore, the experiment was carried out by the novel HSL system to testify the potential application for monitoring nitrogen stress. Rice under different levels of nitrogen fertilization in central China were selected as the object of study, and four levels of nitrogen fertilization (N1-N4) were divided. With the detection of novel lidar system, high precision structure parameters of crops could be provided. Meanwhile, spectral reflectance properties in 32 wavebands were also obtained. The high precision structure parameters could be used to evaluate the stress status of crops. And abundant spectral information in 32 wavebands could improve the capacity of lidar system significantly

  3. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  4. Resolving boosted jets with XCone

    NASA Astrophysics Data System (ADS)

    Thaler, Jesse; Wilkason, Thomas F.

    2015-12-01

    We show how the recently proposed XCone jet algorithm [1] smoothly interpolates between resolved and boosted kinematics. When using standard jet algorithms to reconstruct the decays of hadronic resonances like top quarks and Higgs bosons, one typically needs separate analysis strategies to handle the resolved regime of well-separated jets and the boosted regime of fat jets with substructure. XCone, by contrast, is an exclusive cone jet algorithm that always returns a fixed number of jets, so jet regions remain resolved even when (sub)jets are overlapping in the boosted regime. In this paper, we perform three LHC case studies — dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs — that demonstrate the physics applications of XCone over a wide kinematic range.

  5. Analysis of Lidar Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gray D.

    1998-01-01

    An orbiting coherent Doppler lidar for measuring winds is required to provide two basic pieces of data to the user community. The first is the line of sight wind velocity and the second is knowledge of the position at which the measurement was made. In order to obtain this data for targets of interest to the atmospheric community the instrument must also have a level of backscatter sensitivity sufficient to achieve the goal. Sensitivity analyses for the line of sight velocity and position requirements for two lidar instruments, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude , 89 deg. inclination orbit are performed. The issues relating to the backscatter sensitivity of a coherent lidar have been well documented previously and are not discussed here other than to identify a space-specific issue that does not typically need to be considered for ground and aircraft based coherent lidars. Section 2 and appendices A1 and A2 document these sensitivity analyses. This contract was intended to develop requirements for a space shuttle (STS) based coherent lidar however, shortly after the award of this contract NASA MSFC won the SPARCLE program to put a coherent Doppler lidar on STS. Consequently much of the work conducted under this contract has been documented within the development of the SPARCLE project documentation. The relevant portions of the SPARCLE documentation are identified in section 3.0 and included in appendices A3 and A4. Section 4.0 briefly outlines miscellaneous other activities that occurred under this contract.

  6. Two-dimensional over-expanded jet flow parameters in supersonic nozzle lip vicinity

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.; Uskov, V. N.

    2014-04-01

    The mathematical model for two-dimensional (plane or axis-symmetric) over-expanded jet flow parameters analysis in the vicinity of supersonic nozzle lip is proposed. The variation of the key parameters of this problem (e.g., the geometrical curvature of oblique shock emanating from the nozzle edge) is studied parametrically depending of jet flow parameters, such as Mach number, jet incalculability, and the ratio of gas specific heats. It was proved that differential parameters of the flow field crucially depend not only of the key parameters, but on the symmetry type as well.

  7. Time-Accurate Computations of Isolated Circular Synthetic Jets in Crossflow

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Schaeffler, N. W.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2007-01-01

    Results from unsteady Reynolds-averaged Navier-Stokes computations are described for two different synthetic jet flows issuing into a turbulent boundary layer crossflow through a circular orifice. In one case the jet effect is mostly contained within the boundary layer, while in the other case the jet effect extends beyond the boundary layer edge. Both cases have momentum flux ratios less than 2. Several numerical parameters are investigated, and some lessons learned regarding the CFD methods for computing these types of flow fields are summarized. Results in both cases are compared to experiment.

  8. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  9. Control of Asymmetric Jet

    DTIC Science & Technology

    1992-06-30

    with 5hciir Irycr frequencies arnd miodfy th-e preferied mode. Perforte~d steel plateCs "-leed with tempcratuze-resistatr: mnsulativ- mineral wool reduce...Insulation of the Jet facility was initially ... ovid. d 6y ibuiglass, then mineral wool and at the present there is none for health concerns. The...imerior of the jet’s anechoic chamber was also insulated with mineral wool to foitify acoustic damping, however this too has been removed due to portions

  10. LIDAR, Point Clouds, and their Archaeological Applications

    SciTech Connect

    White, Devin A

    2013-01-01

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  11. Fog droplet distribution functions for lidar.

    PubMed

    Mallow, J V

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  12. Fog droplet distribution functions for lidar

    SciTech Connect

    Mallow, J.V.

    1982-04-15

    The interpretation of lidar data on fog has been limited by two obstacles: approximations in the form of the Mie scattering cross sections for water droplets, and droplet size distribution functions whose relationship to the experiment has not been clear. This paper develops a method for generating distribution functions from experimental data. These functions are then used with newly available Mie cross sections to obtain backscattering and extinction coefficients for singly scattered ruby laser pulses in fog. The results show what experimental lidar accuracies are needed to uniquely determine fog droplet size distribution.

  13. Lidar Measurements of Industrial Benzene Emissions

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. C.; van der Hoff, G. R.; Gast, L. F. L.

    2016-06-01

    The ability to measure benzene concentrations was added to the RIVM mobile DIAL system. In a ten-days campaign, it was used to measure benzene emissions in the Rijnmond, a heavily industrialised area in the South-west of the Netherlands with petrochemical industry, petrochemical products storage and the port of Rotterdam. On two of the ten days, benzene emissions were found. Combined with measurements of wind speed and wind direction, the Lidar measurements indicated the possible origins of these emissions. This makes the Lidar a valuable tool, augmenting the data collected at fixed monitoring stations.

  14. Performance in He II of a centrifugal pump with a jet pump inducer

    NASA Astrophysics Data System (ADS)

    Daney, D. E.; Ludtke, P. R.; Kashani, A.

    1989-05-01

    The tendency of turbopumps operating in He II to cavitate makes their use in zero gravity questionable because of the zero net positive suction head (NPSH) available at the pump inlet. This paper investigates a jet pump, positioned at the inlet of a centrifugal pump with a screw inducer, as a means of operating a centrifugal pump at zero or lower NPSH. Pump performance in He II was measured as a function of NPSH for six different combinations of primary and secondary nozzles. Suction heads down to -91 mm were measured for a 3-percent reduction in developed head. These are referenced to the leading edge of the screw inducer, which is 100 mm above the jet pump inlet. Because cavitation at the primary jet always precedes cavitation in the jet pump secondary nozzle, the reverse (pressure driven) flow through a porous plug as a means of obtaining a subcooled primary jet was also tested. These tests were inconclusive.

  15. Jet-launching structure resolved near the supermassive black hole in M87.

    PubMed

    Doeleman, Sheperd S; Fish, Vincent L; Schenck, David E; Beaudoin, Christopher; Blundell, Ray; Bower, Geoffrey C; Broderick, Avery E; Chamberlin, Richard; Freund, Robert; Friberg, Per; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lonsdale, Colin; Marrone, Daniel P; Moran, James M; Oyama, Tomoaki; Plambeck, Richard; Primiani, Rurik A; Rogers, Alan E E; Smythe, Daniel L; SooHoo, Jason; Strittmatter, Peter; Tilanus, Remo P J; Titus, Michael; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Ziurys, Lucy M

    2012-10-19

    Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.

  16. HST observations of 3C 66B - A double-stranded optical jet

    NASA Technical Reports Server (NTRS)

    Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.

    1991-01-01

    The central region of the synchrotron jet in 3C 66B imaged with ultrahigh spatial resolution by the Faint Object Camera on the HST is discussed. A close correspondence between the general characteristics of the smoothed optical image and the radio map is observed, implying that the young and old relativistic particles occupy similar regions to within about 130 pc. Focus is placed on the double-stranded filamentary nature of the jet, and it is speculated that this could reflect edge-brightening effects due to enhanced radiation from a skinlike structure surrounding the jet. It is noted that the similarity of optical and radio morphologies points to the fact that localized particle acceleration occurs along the jet; however, the filamentary structure and a low filling factor of radiation agree with a model in which the electrons are accelerated within the nucleus and are transported along the jet in a channel having low magnetic field.

  17. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†

    PubMed Central

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average

  18. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-06-17

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average

  19. Cooperative Investigation of Jet Flows.

    DTIC Science & Technology

    1982-06-01

    high and low Reynolds number jets. Controlling the jet with pure tone excitation, that enhances the helical mode of its instability, resulted in a... helical modes and upstream influence appear to be key mechanisms in our findings 3.- -- - Disatributio~n/ Availit- UNCLASSIFIED 89CUMIIY CLAWIPCAT OF...and low Reynolds number*’ jets. Controlling the jet with pure tone excitation, that enhances the helical mode of its instability, resulted in a

  20. 'Photonic jets' from dielectric microaxicons

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Panina, E K

    2015-08-31

    We consider a specific spatially localised light structure, namely, a 'photonic jet' formed in the near field upon scattering of an optical wave in a dielectric micron particle. Dimensional parameters and intensity of a photonic jet from microaxicons of different spatial orientation are studied theoretically. It is found for the first time that an axicon-generated photonic jet has in this case a substantially larger length compared with the case of a jet formed on a spherical particle. (scattering of light)

  1. Quantification of LiDAR measurement uncertainty through propagation of errors due to sensor sub-systems and terrain morphology

    NASA Astrophysics Data System (ADS)

    Goulden, T.; Hopkinson, C.

    2013-12-01

    The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future

  2. Quasi-equilibrium Dynamics of Stratified Turbulence In A Model Tropospheric Jet

    NASA Astrophysics Data System (ADS)

    Mahalov, A.; Nicolaenko, B.

    Direct numerical simulations are performed to study the dynamics of an inhomoge- neous stratified shear flow for a model atmospheric jet in the tropopause. The basic state is characterized by a jet centered at the tropopause in which the density strat- ification is vertically non-uniform. Small to moderate background stratifications are selected, a weak background rotation is imposed and simulations are conducted for a range of Reynolds and Froude numbers. A new spectral domain decomposition method that is particularly suitable for simulations of inhomogeneous stratified flows is developed to generate the desired turbulent jet, and quasi-equilibrium flow-fields are obtained after long-time integration of the governing equations. The structure of the mean flow and turbulence fields are calculated, which are interpreted using relevant length scales (Ozmidov, buoyancy, shear, Ellison and Kolmogorov) and Richardson number profiles. The ratios of the Ellison to buoyancy scales are much smaller than unity at the jet core and approach unity at the edges, confirming that mechanical tur- bulence prevails in the jet core, whereas nonlinear waves and stratification effects are significant at the edges. The jet core is found to support sustained mechanical (active) turbulence, outside of which lay a region of intermittent turbulence and non-linear gravity wave activity characterized by spatially decaying velocity fluctuations and strong temperature fluctuations. Detailed energy budgets show how energy is parti- tioned within the flow, including the transport of energy from the jet to its immediate vicinity by non-linear gravity waves.

  3. MATLAB tools for lidar data conversion, visualization, and processing

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhou, Kaijing; Yang, Jie; Lu, Yilong

    2011-10-01

    LIDAR (LIght Detection and Ranging) [1] is an optical remote sensing technology that has gained increasing acceptance for topographic mapping. LIDAR technology has higher accuracy than RADAR and has wide applications. The relevant commercial market for LIDAR has developed greatly in the last few years. LAS format is approved to be the standard data format for interchanging LIDAR data among different software developers, manufacturers and end users. LAS data format reduces the data size compared to ASCII data format. However, LAS data file can only be visualized by some expensive commercial software. There are some free tools available, but they are not user-friendly and have less or poor visualization functionality. This makes it difficult for researchers to investigate and use LIDAR data. Therefore, there is a need to develop an efficient and low cost LIDAR data toolbox. For this purpose we have developed a free and efficient Matlab tool for LIDAR data conversion, visualization and processing.

  4. Micropulse Lidar Cloud Mask Value-Added Product Technical Report

    SciTech Connect

    Sivaraman, C; Comstock, J

    2011-07-25

    Lidar backscattered signal is a useful tool for identifying vertical cloud structure in the atmosphere in optically thin clouds. Cloud boundaries derived from lidar signals are a necessary input for popular ARM data products, such as the Active Remote Sensing of Clouds (ARSCL) product. An operational cloud boundary algorithm (Wang and Sassen 2001) has been implemented for use with the ARM Micropulse Lidar (MPL) systems. In addition to retrieving cloud boundaries above 500 m, the value-added product (VAP) named Micropulse Lidar Cloud Mask (MPLCMASK) applies lidar-specific corrections (i.e., range-square, background, deadtime, and overlap) as described in Campbell et al. (2002) to the measured backscattered lidar. Depolarization ratio is computed using the methodology developed by Flynn et al. (2007) for polarization-capable MPL systems. The cloud boundaries output from MPLCMASK will be the primary lidar cloud mask for input to the ARSCL product and will be applied to all MPL systems, including historical data sets.

  5. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, A; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  6. Lidar extinction-to-backscatter ratio of the ocean.

    PubMed

    Churnside, James H; Sullivan, James M; Twardowski, Michael S

    2014-07-28

    Bio-optical models are used to develop a model of the lidar extinction-to-backscatter ratio applicable to oceanographic lidar. The model is based on chlorophyll concentration, and is expected to be valid for Case 1 waters. The limiting cases of narrow- and wide-beam lidars are presented and compared with estimates based on in situ optical measurements. Lidar measurements are also compared with the model using in situ or satellite estimates of chlorophyll concentration. A modified lidar ratio is defined, in which the properties of pure sea water are removed. This modified ratio is shown to be nearly constant for wide-beam lidar operating in low-chlorophyll waters, so accurate inversion to derive extinction and backscattering is possible under these conditions. This ratio can also be used for lidar calibration.

  7. Jet Noise Research at NASA

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Huff,Dennis

    2009-01-01

    A presentation outlining current jet noise work at NASA was given to the Naval Research Advisory Committee. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.

  8. Jet Noise Research at NASA

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2008-01-01

    A presentation outlining current jet noise work at NASA was given at the NAVAIR Noise Workshop. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.

  9. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  10. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  11. Effects of Nonequilibrium at Edge of Boundary Layer on Convective Heat Transfer to a Blunt Body

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Edwards, Thomas A. (Technical Monitor)

    1996-01-01

    This investigation is a continuation of a previous study on nonequilibrium convective heat transfer to a blunt body. In the previous study, for relatively high Reynolds number flows, it was found that: nonequilibrium convective heat transfer to a blunt body is not strongly dependent on freestream parameters, provided that the thermochemical equilibrium is reached at the edge of boundary layer; and successful testing of convective heat transfer in an arc-jet environment is possible by duplicating the surface pressure and total enthalpy. The nonequilibrium convective heat transfer computations are validated against the results of Fay and Riddell/Goulard theory. Present work investigates low Reynolds number conditions which are typical in an actual arc-jet flow environment. One expects that there will be departures from the Fay and Riddell/Goulard result since certain assumptions of the classical theory are not satisfied. These departures are of interest because the Fay and Riddell/Goulard formulas are extensively used in arc-jet testing (e.g., to determine the enthalpy of the flow and the catalytic efficiency of heat shield materials). For practical sizes of test materials, density of the test flow (and Reynolds number) in an arc-jet is such that thermochemical equilibrium may not be reached at the edge of boundary layer. For blunt body flows of nitrogen and air, computations will be presented to show the effects of thermochemical nonequilibrium at the boundary layer edge on nonequilibrium heat transfer.

  12. Cometary Jet Collimation Without Physical Confinement

    NASA Astrophysics Data System (ADS)

    Steckloff, J. K.; Melosh, H. J.

    2012-12-01

    are tracked. After a set time interval, the particles are allowed to split in half. The particles are assumed to be ice grains emitting H2O molecules isotropically. The resulting repulsive drag force was modeled as a one-time impulse. For our simulation, spherical particles with radii of 1 μm to 1 cm were considered. We observe that, when the vent is level, the overwhelming majority of the particles remain close to the central axis of the active area, forming a well-collimated jet. When the vent was at an angle, the particles emanating from the vent itself rose normal to the vent, with smaller particles reaching escape velocity in this direction while larger particles fell out of the jet and impacted the surface. Material from the non-venting region slumped down the slope, hit the upslope edge of the vent, which then ejected this material in a well-collimated cone roughly normal to the gravitational potential. The calculated opacity from this material overwhelmed the opacity of the material originating from the vent. The degree and angle of collimation depended on the initial particle size and time between splitting events. This mechanism may explain cometary jets, given the physical and observational constraints.

  13. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  14. Jet Inlet Efficiency

    DTIC Science & Technology

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes -Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes -Green Keith Williams John

  15. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  16. Spectroscopy with Supersonic Jets.

    ERIC Educational Resources Information Center

    Skinner, Anne R.; Chandler, Dean W.

    1980-01-01

    Discusses a new technique that enables spectroscopists to study gas phase molecules at temperatures below 1 K, without traditional cryogenic apparatus. This technique uses supersonic jets as samples for gas molecular spectroscopy. Highlighted are points in the theory of supersonic flow which are important for applications in molecular…

  17. The physics of jets

    SciTech Connect

    Hofmann, W.

    1987-09-01

    Recent data on the fragmentation of quarks and gluons is discussed in the context of phenomenological models of parton fragmentation. Emphasis is placed on the experimental evidence for parton showers as compared to a fixed order QCD treatment, on new data on inclusive hadron production and on detailed studies of baryon production in jets.

  18. Jet lag prevention

    MedlinePlus

    ... zones. Jet lag occurs when your body's biological clock is not set with the time zone you ... Your body follows a 24-hour internal clock called a circadian rhythm. It tells your body when to go to sleep and when to wake up. Cues from your environment, such ...

  19. Jet Screech Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.

    2003-01-01

    The near-field screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle is simulated numerically. The self-sustained feedback loop is automatically established in the simulation. The computed shock-cell structure, acoustic wave length, screech tone frequencies, and sound pressure levels in the near field are in good agreement with existing experimental results.

  20. The Jet Travel Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    Airplane travelers are dismayed by the long lines and seemingly chaotic activities that precede boarding a full airplane. Surely, the one who can solve this problem is going to make many travelers happy. This article describes the Jet Travel Challenge, an activity that challenges students to create some alternatives to this now frustrating…

  1. Jet injection into polyacrylamide gels: investigation of jet injection mechanics.

    PubMed

    Schramm-Baxter, Joy; Katrencik, Jeffrey; Mitragotri, Samir

    2004-08-01

    Jet injectors employ high-velocity liquid jets that penetrate into human skin and deposit drugs in the dermal or subdermal region. Although jet injectors have been marketed for a number of years, relatively little is known about the interactions of high-speed jets with soft materials such as skin. Using polyacrylamide gels as a model system, the mechanics of jet penetration, including the dependence of jet penetration on mechanical properties, was studied. Jets employed in a typical commercial injector, (orifice diameter: 152 microm, velocity: 170-180 m/s) were used to inject fluid into polyacrylamide gels possessing Young's moduli in the range of 0.06-0.77 MPa and hardness values in the range of 4-70 H(OO). Motion analysis of jet entry into polyacrylamide gels revealed that jet penetration can be divided into three distinct events: erosion, stagnation, and dispersion. During the erosion phase, the jet removed the gel at the impact site and led to the formation of a distinct cylindrical hole. Cessation of erosion induced a period of jet stagnation ( approximately 600 micros) characterized by constant penetration depth. This stage was followed by dispersion of the liquid into the gel. The dispersion took place by crack propagation and was nearly symmetrical with the exception of injections into 10% acrylamide (Young's modulus of 0.06 MPa). The penetration depth of the jets as well as the rate of erosion decreased with increasing Young's modulus. The mechanics of jet penetration into polyacrylamide gels provides an important tool for understanding jet injection into skin.

  2. Jet substructure using semi-inclusive jet functions in SCET

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-11-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function {{G}}_i^h(z={ω}_J/ω, {z}_h={ω}_h/{ω}_J,{ω}_J,R,μ ) , which depends on the jet radius R and the large light-cone momenta of the parton ` i' initiating the jet ( ω), the jet ( ω J ), and the hadron h ( ω h ). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function {{G}}_i^h(z,{z}_h,{ω}_J,R,μ ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL R ) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL R results for the hadron distribution inside the jet. We present numerical results for pp → (jet h) X in the new framework, and find excellent agreement with existing LHC experimental data.

  3. Review of jet reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Atkin, Ryan

    2015-10-01

    Accurate jet reconstruction is necessary for understanding the link between the unobserved partons and the jets of observed collimated colourless particles the partons hadronise into. Understanding this link sheds light on the properties of these partons. A review of various common jet algorithms is presented, namely the Kt, Anti-Kt, Cambridge/Aachen, Iterative cones and the SIScone, highlighting their strengths and weaknesses. If one is interested in studying jets, the Anti-Kt algorithm is the best choice, however if ones interest is in the jet substructures then the Cambridge/Aachen algorithm would be the best option.

  4. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  5. Analysis of Space Coherent LIDAR Wind Mission

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

  6. Cloud Thickness from Offbeam Returns - Thor Lidar

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Physical thickness of a cloud layer, and sometimes multiple cloud layers, can be estimated from the time delay of off-beam returns from a pulsed laser source illuminating one side of the cloud layer. In particular, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. The halo method works best for thick cloud layers, typically optical thickness exceeding 2, and thus compliments conventional lidar which cannot penetrate thick clouds. Cloud layer top and base have been measured independently over the ARM/SGP site using conventional laser ranging (lidar) and the top minus base thickness are compared with a cloud top halo estimate obtained from the NASA/Goddard THOR System (THOR = THickness from Offbeam Returns). THOR flies on the NASA P3, and measures the halo timings from several km above cloud top, at the same time providing conventional lidar cloud top height. The ARM/SGP micropulse lidar provides cloud base height for validation.

  7. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  8. Optics of the ozone lidar ELSA

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    In order to study the ozone layer in the Arctic, we have to define a new optical concept for a lidar. It was necessary to build a transportable system with a large collecting surface in a minimum of volume. It was too useful to have a multichannel receptor. A description of the Emettor Receptor System, collecting system, and analysis system is provided.

  9. Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Bilbro, J.; Beranek, R.; Fitzjarrald, D.; Mabry, J.

    1987-01-01

    The results of a study to design and accommodate a simplified version of a coherent lidar system capable of performing tropospheric wind measurements are outlined. The following topics are addressed: system sensitivity, orbital analysis, science experiments, preliminary system design, accommodations, and the space qualification of a 2J CO2 laser.

  10. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  11. Speckle noise in satellite based lidar systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1977-01-01

    The lidar system model was described, and the statistics of the signal and noise at the receiver output were derived. Scattering media effects were discussed along with polarization and atmospheric turbulence. The major equations were summarized and evaluated for some typical parameters.

  12. UV fluorescence lidar detection of bioaerosols

    SciTech Connect

    Christesen, S.D.; DeSha, M.S.; Wong, A.; Merrow, C.N.; Wilson, M.W.; Butler, J.

    1994-12-31

    Biological agents (e.g. bacterial spores, viruses, toxins) pose a serious threat to military forces on the modern battlefield. Remote detection of these agents is crucial to providing early warning of an attack and to allow for the avoidance of contaminated areas. Here, a UV fluorescence lidar system for the remote detection of bioaerosols has been built and tested. At the heart of the UV-LIDAR Fluorosensor system are a 200mJ quadrupled ND:YAG laser at 266nm and a 16 inch cassagrain telescope. Operating on three data collection channels, the UV lidar is capable of real time monitoring of 266nm elastic backscatter, the total fluorescence between 300 and 400nm, and the dispersed fluorescence spectrum (using a small spectrograph and gated intensified CCD array). The goal in this effort was to assess the capabilities of biofluorescence for quantitative detection and discrimination of bioaerosols. To this end, the UV-LIDAR Fluorosensor system was tested against the aerosolized bacterial spore Bacillus subtilus var. niger sp. globiggi (BG) and several likely interferences at several ranges from approximately 600 to 3000 meters. The tests with BG indicate a detection limit of approximately 500 mg/cubic meter at a range of 3000m.

  13. Pre-shuttle lidar system research

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Zaghloul, M. E.

    1986-01-01

    Included are the results of the initial phase of a simulation study in connection with photomultiplier tubes (PMT) and associated networks and an analytical study of atmospheric physics (including multiscattering) leading to modeling studies in connection with differential absorption lidar (DIAL) observations. This effort was in support of the ER-2 aircraft DIAL projects.

  14. Off-beam (multiply-scattered) lidar returns from stratus. 1; Cloud-information content and sensitivity to noise

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Cahalan, Robert F.

    1998-01-01

    We review the basic multiple scattering theory of off-beam lidar returns from optically thick clouds using the diffusion approximation. The shape of the temporal signal - the stretched pulse - depends primarily on the physical thickness of the cloud whereas its spatial counterpart - the diffuse spot - conveys specific information on the cloud's optical thickness, as do the absolute returns. This makes observation of the weak off-beam lidar returns an attractive prospect in remote sensing of cloud properties. By estimating the signal-to-noise ratio, we show that night-time measurements can be performed with existing technology. By the same criterion, day-time operation is a challenge that can only be met with a combination of cutting-edge techniques in filtering and in laser sources.

  15. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  16. Interacting jets from binary protostars

    NASA Astrophysics Data System (ADS)

    Murphy, G. C.; Lery, T.; O'Sullivan, S.; Spicer, D.; Bacciotti, F.; Rosen, A.

    2008-02-01

    Aims: We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. Methods: We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. Results: We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. Conclusions: While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly parallel, as in most observed cases, we show that the magnetic field can help the collimation and refocusing of both of the two jets.

  17. Coherent lidar design and performance verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne efficiency using the surface return. The crucial element is a direct detection signal that can be identified for each surface return. This should be satisfied for LAWS but will not be satisfied for descoped LAWS. The performance of algorithms for velocity estimation can be described with two basic parameters: the number of coherently detected photo-electrons per estimate and the number of independent signal samples per estimate. The average error of spectral domain velocity estimation algorithms are bounded by a new periodogram Cramer-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of two improvement in velocity accuracy is possible using non-spectral domain estimators. This improvement has been demonstrated with a maximum-likelihood estimator. The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by assuming all the system design parameters are fixed and the signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The effects of the random backscattered field on estimating the alignment error is a major problem for space based lidar operation, especially if the heterodyne efficiency cannot be estimated. For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5 microseconds instead of 3 microseconds. The numerically errors for simulation of laser propagation in the atmosphere have been determined as a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kolmogorov atmospheric refractive turbulence and an atmospheric refractive turbulence characterized with an inner scale. This permits verification of the simulation procedure which is essential for the evaluation of the effects of

  18. Voxel-Based LIDAR Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  19. Lidar techniques for environmental and ecological monitoring

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2015-04-01

    An overview of optical probing of the atmosphere will be given, where mostly active remote- sensing techniques of the laser-radar type will be covered, but also some passive techniques employing ambient radiation. Atmospheric objects of quite varying sizes can be studied. Mercury is the only pollutant in atomic form in the atmosphere, while other pollutants are either molecular or in particle form. Light detection and ranging (Lidar) techniques allow three-dimensional mapping of such constituents, and examples from atmospheric lidar work in Lund and in Guangzhou will be given. Recently, much larger lidar targets have been studied. Monitoring of flying insects and birds is of considerable ecological interest, and several projects have been pursued in collaboration with biologists. Mostly, elastic backscattering and fluorescence techniques are employed. Some references to recent activities by the author and his colleagues are given below. [1] Z.G. Guan, L. Mei, P. Lundin, G. Somesfalean, and S. Svanberg, Vertical Lidar Sounding of Air Pollutants in a Major Chinese City, Appl. Phys. B 101, 465 (2010) [2] L. Mei, G.Y. Zhou and S. Svanberg, Differential Absorption Lidar System Employed for Background Atomic Mercury Vertical Profiling in South China, Lasers Opt. Eng. 55, 128 (2013) [3] Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, E. Svensson, and S. Svanberg, Insect Monitoring with Fluorescence LIDAR techniques - Field experiments, Appl. Optics 48, 5668 (2010) [4] A. Runemark, M. Wellereuther, H. Jayaweera, S. Svanberg and M. Brydegaard, Rare Events in Remote Dark Field Spectroscopy: An Ecological Case study of Insects, IEEE JSTQE 18, 1573 (2011) [5] L. Mei, Z.G. Guan, H.J. Zhou, J. Lv, Z.R. Zhu, J.A. Cheng, F.J. Chen, C. Löfstedt, S. Svanberg, and G. Somesfalean, Agricultural Pest Monitoring using Fluorescence Lidar Techniques, Applied Physics B 106, 733 (2011) [6] P. Lundin, P. Samuelsson, S. Svanberg, A. Runemark, S. Åkesson, and M. Brydegaard, Remote

  20. On Unified Mode in Grid Mounted Round Jets

    NASA Astrophysics Data System (ADS)

    Parimalanathan, Senthil Kumar; T, Sundararajan; v, Raghavan

    2015-11-01

    The turbulence evolution in a free round jet is strongly affected by its initial conditions. Since the transition to turbulence is moderated by instability modes, the initial conditions seem to play a major role in altering the dynamics of these modes. In the present investigation, grids of different configurations are placed at the jet nozzle exit and the flow field characterization is carried out using a bi-component hot-wire anemometer. The instability modes has been obtained by analyzing the velocity spectral data. Free jets are characterized by the presence of two instability modes, viz., the preferred mode and the shear mode. The preferred mode corresponds to the most amplified oscillations along the jet centerline, while the shear modes are due to the dynamic evolution of vortical structures in the jet shear layer. The presence of grid clearly alters the jet structure, and plays a major role in altering the shear layer mode in particular. In fact, it is observed that close to the nozzle exit, the presence of grids deviate the streamlines inwards around the edge due to the momentum difference between the jet central core and the boundary layer region near the wall. This result in a single unified mode, where there is no distinct preferred or shear mode. This phenomena is more dominant in case of the grids having higher blockage ratio with small grid opening. In the present study, investigation of the physics behind the evolution of unified mode and how the grids affect the overall turbulent flow field evolution has been reported. Experimental Fluid Mechanics.