Sample records for jet electron temperature

  1. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  2. Development of a Method for Local Electron Temperature and Density Measurements in the Divertor of the JET Tokamak

    NASA Technical Reports Server (NTRS)

    Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.

    2004-01-01

    Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)<1 eV) and at high electron density (n(sub e)>10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.

  3. Measurement of electron temperature and density of the edge plasma of JET by ECE and microwave reflectometry

    NASA Astrophysics Data System (ADS)

    Bartlett, D. V.; Costley, A. E.; Porte, L.; Prentice, R.; Salmon, N. A.; Sips, G.

    1990-12-01

    The potential of electron cyclotron emission and microwave reflectometry as techniques for measuring the electron temperature and density in the edge region of tokamak plasmas is investigated. Experiments to realize this potential on JET are described and some illustrative results presented.

  4. Determination of temperature maps of EUV coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Patsourakos, Spiros; Bothmer, Volker; Zimbardo, Gaetano

    2011-11-01

    Coronal hole jets are fast ejections of plasma occurring within coronal holes, observed at Extreme-UltraViolet (EUV) and X-ray wavelengths. Recent observations of jets by the STEREO and Hinode missions show that they are transient phenomena which occur at much higher rates than large-scale impulsive phenomena like flares and Coronal Mass Ejections (CMEs). In this paper we describe some typical characteristics of coronal jets observed by the SECCHI instruments of STEREO spacecraft. We show an example of 3D reconstruction of the helical structure for a south pole jet, and present how the angular distribution of the jet position angles changes from the Extreme-UltraViolet-Imager (EUVI) field of view to the CORonagraph1 (COR1) (height ∼2.0 R⊙ heliocentric distance) field of view. Then we discuss a preliminary temperature determination for the jet plasma by using the filter ratio method at 171 and 195 Å and applying a technique for subtracting the EUV background radiation. The results show that jets are characterized by electron temperatures ranging between 0.8 and 1.3 MK. We present the thermal structure of the jet as temperature maps and we describe its thermal evolution.

  5. Electron Jet of Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  6. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. Frommore » the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.« less

  7. Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    NASA Astrophysics Data System (ADS)

    Stefanikova, E.; Frassinetti, L.; Saarelma, S.; Loarte, A.; Nunes, I.; Garzotti, L.; Lomas, P.; Rimini, F.; Drewelow, P.; Kruezi, U.; Lomanowski, B.; de la Luna, E.; Meneses, L.; Peterka, M.; Viola, B.; Giroud, C.; Maggi, C.; contributors, JET

    2018-05-01

    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (δ) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.

  8. On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    NASA Astrophysics Data System (ADS)

    Prevosto, L.; Kelly, H.; Mancinelli, B. R.

    2014-05-01

    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N2 gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10 900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 1022 m-3 were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.

  9. On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B R

    2014-05-01

    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N2 gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10,900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 10(22) m(-3) were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.

  10. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    PubMed

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  11. Intrinsic Brightness Temperatures of AGN Jets

    NASA Astrophysics Data System (ADS)

    Homan, D. C.; Kovalev, Y. Y.; Lister, M. L.; Ros, E.; Kellermann, K. I.; Cohen, M. H.; Vermeulen, R. C.; Zensus, J. A.; Kadler, M.

    2006-05-01

    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of active galactic nuclei (AGNs). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGNs to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time, as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, Tint~=3×1010 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2×1011 K, which is well in excess of the equipartition temperature. In this state, we estimate that the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~105. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature, the assumption of equipartition, or both may lead to large scatter or systematic errors in the derived values.

  12. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    NASA Astrophysics Data System (ADS)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  13. Electron Beams Escaping the Sun: Hard X-ray Diagnostics of Jet-related Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Musset, S.; Saint-Hilaire, P.; Fleishman, G. D.; Krucker, S.; Christe, S.; Shih, A. Y.

    2017-12-01

    Coronal jets, which arise via an interaction between closed and open magnetic field, offer a convenient configuration for accelerated electrons to escape the low corona. Jets occur in all regions of the Sun, but those flare-related jets that occur in active regions are associated with bremsstrahlung hard X-rays (HXRs) from accelerated electrons. However, HXR measurement of the escaping beams themselves is elusive as it requires extremely high sensitivity. Jets are strongly correlated with Type III radio bursts in the corona and in interplanetary space. In this poster we present RHESSI observations of HXRs from flare-related jets, including multiwavelength analysis (with extreme ultraviolet and radio emission) and modeling of the emitting electron populations. We also present predicted observations of Type III-emitting electron beams by the FOXSI Small Explorer, which is currently undergoing a NASA Phase A concept study. FOXSI will measure HXRs from jets and flares in the low corona, providing quantitative diagnostics of accelerated electron beams at their origin. These same electron beams will be measured at higher altitudes by instruments aboard NASA's Parker Solar Probe and ESA's Solar Orbiter. With a planned launch in the rising phase of Solar Cycle 25, FOXSI will be ideally timed and optimized for collaborative study of electron beams escaping the Sun.

  14. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  15. Electronics Demonstrated for Low- Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.

  16. Electron Jet Detected by MMS at Dipolarization Front

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.

    2018-01-01

    Using MMS high-resolution measurements, we present the first observation of fast electron jet (Ve 2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness ( 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron-jet-driven current (E ṡ je ≈ 2 E ṡ ji), rather than the ion current suggested in previous studies.

  17. A new prototype of an electronic jet-ventilator and its humidification system

    PubMed Central

    Kraincuk, Paul; Kepka, Anton; Ihra, Gerald; Schabernig, Christa; Aloy, Alexander

    1999-01-01

    Background: Adequate humidification in long-term jet ventilation is a critical aspect in terms of clinical safety. Aim: To assess a prototype of an electronic jet-ventilator and its humidification system. Methods: Forty patients with respiratory insufficiency were randomly allocated to one of four groups. The criterion for inclusion in this study was respiratory insufficiency exhibiting a Murray score above 2. The four groups of patients were ventilated with three different respirators and four different humidification systems. Patients in groups A and B received superimposed high-frequency jet ventilation (SHFJV) by an electronic jet-ventilator either with (group A) or without (group B) an additional humidification system. Patients in group C received high-frequency percussive ventilation (HFPV) by a pneumatic high-frequency respirator, using a hot water humidifier for warming and moistening the inspiration gas. Patients in group D received conventional mechanical ventilation using a standard intensive care unit respirator with a standard humidification system. SHFJV and HFPV were used for a period of 100 h (4days). Results: A significantly low inspiration gas temperature was noted in patients in group B, initially (27.2 ± 2.5°C) and after 2 days (28.0 ± 1.6°C) (P < 0.05). The percentage of relative humidity of the inspiration gas in patients in group B was also initially significantly low (69.8 ± 4.1%; P < 0.05) but rose to an average of 98 ± 2.8% after 2 h. The average percentage across all four groups amounted to 98 ± 0.4% after 2 h. Inflammation of the tracheal mucosa was found in patients in group B and the mucosal injury score (MIS) was significantly higher than in all the other groups. Patients in groups A, C and D showed no severe evidence of airway damage, exhibiting adequate values of relative humidity and temperature of the inspired gas. Conclusion: The problems of humidification associated with jet ventilation can be fully prevented by using

  18. Prediction of Turbulent Temperature Fluctuations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Debonis, James R.

    2017-01-01

    Large-eddy simulations were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver, WRLES, was used to compute the flow from a 2-inch round nozzle. Several different flow conditions, consisting of different jet Mach numbers and temperature ratios, were examined. Predictions of mean and fluctuating velocities were compared to previously obtained particle image velocimetry data. Predictions of mean and fluctuating temperature were compared to new data obtained using Raman spectroscopy. Based on the good agreement with experimental data for the individual quantities, the combined quantity turbulent heat flux was examined.

  19. EFFECT OF CORONAL TEMPERATURE ON THE SCALE OF SOLAR CHROMOSPHERIC JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima; Yokoyama, T.H., E-mail: h.iijima@eps.s.u-tokyo.ac.jp

    2015-10-20

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing an LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projectedmore » farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromospheric shock waves. However, when the coronal temperature is low, the gravitational deceleration becomes more important and the chromospheric jets approach ballistic motion.« less

  20. Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas A.; Nawaz, Anuscheh

    2013-01-01

    The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.

  1. Characterization and validation of an anechoic facility for high-temperature jet noise studies

    NASA Astrophysics Data System (ADS)

    Craft, Joseph

    In response to the increasing demand for jet noise studies performed at realistic conditions, the Florida Center For Advanced Aero-Propulsion at Florida State University has recently brought online an upgraded Anechoic High-Temperature Jet Facility. The function of this facility is to accurately simulate and characterize the aeroacoustic properties of exhaust from jet engines at realistic temperatures and flow speeds. This new addition is a blow-down facility supplied by a 3500 kPa, 114 cubic meter compressed dry air system and a sudden-expansion ethylene burner that is capable of producing ideally expanded jets up to Mach 2.6 and stagnation temperatures up to 1500 K. The jet exhausts into a fully anechoic chamber which is equipped to acquire acoustic and flow measurements including the temperature and pressure of the jet. The facility is capable of operating under free jet as well as in various impinging jet configurations pertinent to sea- and land-based aircraft, such as the F-35B. Compared to the original facility, the updated rig is capable of longer run times at higher temperatures. In this paper we demonstrate the facility's experimental capabilities and document jet aeroacoustic characteristics at various flow and temperature conditions. The anechoic chamber was characterized using ISO (3745:2003) guidelines and the lower cutoff frequency of the chamber was determined to be 315 Hz. Aeroacoustic properties of jets operating at subsonic conditions and supersonic Mach numbers ranging from 1.2 to 2.1 at temperatures of 300 K to 1300 K are documented. Where available, very good agreement was found when the present results were compared with data in the jet noise literature.

  2. Development of a Temperature Sensor for Jet Engine and Space Mission Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis

    2008-01-01

    Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.

  3. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  4. Streaked Thomson Scattering on Laboratory Plasma Jets

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Rocco, Sophia; Kusse, Bruce; Hammer, David

    2017-10-01

    Streaked Thomson scattering measurements have been performed on plasma jets created from a 15 μm thick radial Al or Ti foil load on COBRA, a 1 MA pulsed power machine. The goal was to measure the electron temperatures inside the center of the plasma jet created by the radial foil. The laser used for these measurements had a maximum energy of 10 J at 526.5 nm in a 3 ns duration pulse. Early experiments showed using the full energy significantly heats the 5 ×1018 cm-3 jet by inverse bremsstrahlung radiation. Here we used a streak camera to record the scattered spectrum and measure the evolving electron temperature of this laser heated jet. Analysis of the streak camera image showed that the electron temperature of the Al jet was increased from about 25 eV to 80-100 eV within about 2 ns. The Ti jets showed even stronger interaction with the laser, being heated to over 150 eV, and showed some heating even when only 1 J of laser energy was used. Also, the ion-acoustic peaks in the scattered spectrum from the Ti jets were significantly narrower than those from Al jets. Initial results will also be presented with scattered spectra taken at two different times within a single experiment by splitting the probe beam. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  5. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  6. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasingmore » trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.« less

  7. Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian

    2015-11-01

    Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.

  8. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  9. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  10. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  11. Z-pinch Plasma Temperature and Implosion Velocity from Laboratory Plasma Jets using Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Kusse, Bruce; Hammer, David

    2016-10-01

    We discuss the use of collective Thomson scattering to determine the implosion velocity and other properties of laboratory plasma jets. The plasma jet is created using a 1 MA pulsed power machine with a 15 μm Al radial foil load. The Thomson scattering laser has a maximum energy of 10 J at 526.5 nm with a pulse duration of 3 ns. Using a time gated ICCD camera and spectrometer system we are able to record the scattered spectrum from 9 or 18 regions along the laser path with sub-mm spatial resolution. Collecting scattered radiation from the same area at two different angles simultaneously enables determination of both the radial and azimuthal velocities. The scattered spectrum for non-magnetized jets indicates a radial implosion velocity of 27 km/s into the jets. A determination of ion and electron temperatures from the scattered spectrum is in progress. Comparing results using a laser energy of 10 J and 1 J shows noticeable effects on plasma jet properties when using 10 J. Therefore the lower laser energy must be used to determine the plasma properties. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  12. Rotational Raman-based temperature measurements in a high-velocity, turbulent jet

    NASA Astrophysics Data System (ADS)

    Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.

    2018-01-01

    Spontaneous rotational Raman scattering spectroscopy is used to acquire measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing non-linear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5% for temperature, and rms variations in temperature between  ±2.2% at 296 K and  ±4.5% at 850 K. The mean and normalized rms temperatures measured here were then compared to NASA’s Consensus data set of PIV velocity and turbulence measurements in similar jet flows. The results of this and planned follow-on studies will support NASA GRC’s development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.

  13. An Electron-positron Jet Model for the Galactic Center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  14. An electron-positron jet model for the Galactic center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  15. An electron-positron jet model for the Galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-07-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  16. An electron-positron jet model for the galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-03-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  17. Atmospheric Pressure Plasma Jet as a Dry Alternative to Inkjet Printing in Flexible Electronics

    NASA Technical Reports Server (NTRS)

    Gandhiraman, Ram Prasad; Lopez, Arlene; Koehne, Jessica; Meyyappan, M.

    2016-01-01

    We have developed an atmospheric pressure plasma jet printing system that works at room temperature to 50 deg C unlike conventional aerosol assisted techniques which require a high temperature sintering step to obtain desired thin films. Multiple jets can be configured to increase throughput or to deposit multiple materials, and the jet(s) can be moved across large areas using a x-y stage. The plasma jet has been used to deposit carbon nanotubes, graphene, silver nanowires, copper nanoparticles and other materials on substrates such as paper, cotton, plastic and thin metal foils.

  18. An Empirical Temperature Variance Source Model in Heated Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  19. Measurement of atmospheric pressure microplasma jet with Langmuir probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kunning G., E-mail: gabe.xu@uah.edu; Doyle, Steven J.

    2016-09-15

    A radio frequency argon microplasma jet at atmospheric-pressure is characterized using Langmuir probes. While optical methods are the typical diagnostic for these small scale plasmas, the simplicity and low cost of Langmuir probes makes them an attractive option. The plasma density and electron temperature are measured using existing high-pressure Langmuir probe theories developed for flames and arcs. The density and temperature vary from 1 × 10{sup 16} to 1 × 10{sup 19} m{sup −3} and 2.3 to 4.4 eV, respectively, depending on the operating condition. The density decreases while the electron temperature increases with axial distance from the jet exit. Themore » applicability of the probe theories as well as the effect of collisionality and jet mixing is discussed.« less

  20. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processesmore » inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.« less

  1. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  2. Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.

    1999-01-01

    The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.

  3. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  4. Time-Averaged Velocity, Temperature and Density Surveys of Supersonic Free Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.

    2005-01-01

    A spectrally resolved molecular Rayleigh scattering technique was used to simultaneously measure axial component of velocity U, static temperature T, and density p in unheated free jets at Mach numbers M = 0.6,0.95, 1.4 and 1.8. The latter two conditions were achieved using contoured convergent-divergent nozzles. A narrow line-width continuous wave laser was passed through the jet plumes and molecular scattered light from a small region on the beam was collected and analyzed using a Fabry-Perot interferometer. The optical spectrum analysis air density at the probe volume was determined by monitoring the intensity variation of the scattered light using photo-multiplier tubes. The Fabry-Perot interferometer was operated in the imaging mode, whereby the fringe formed at the image plane was captured by a cooled CCD camera. Special attention was given to remove dust particles from the plume and to provide adequate vibration isolation to the optical components. The velocity profiles from various operating conditions were compared with that measured by a Pitot tube. An excellent comparison within 5m's demonstrated the maturity of the technique. Temperature was measured least accurately, within 10K, while density was measured within 1% uncertainty. The survey data consisted of centerline variations and radial profiles of time-averaged U, T and p. The static temperature and density values were used to determine static pressure variations inside the jet. The data provided a comparative study of jet growth rates with increasing Mach number. The current work is part of a data-base development project for Computational Fluid Dynamics and Aeroacoustics codes that endeavor to predict noise characteristics of high speed jets. A limited amount of far field noise spectra from the same jets are also presented. Finally, a direct experimental validation was obtained for the Crocco-Busemann equation which is commonly used to predict temperature and density profiles from known velocity

  5. Effect of nitrogen seeding on the energy losses and on the time scales of the electron temperature and density collapse of type-I ELMs in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Dodt, D.; Beurskens, M. N. A.; Sirinelli, A.; Boom, J. E.; Eich, T.; Flanagan, J.; Giroud, C.; Jachmich, M. S.; Kempenaars, M.; Lomas, P.; Maddison, G.; Maggi, C.; Neu, R.; Nunes, I.; Perez von Thun, C.; Sieglin, B.; Stamp, M.; Contributors, JET-EFDA

    2015-02-01

    The baseline type-I ELMy H-mode scenario has been re-established in JET with the new tungsten MKII-HD divertor and beryllium on the main wall (hereafter called the ITER-like wall, JET-ILW). The first JET-ILW results show that the confinement is degraded by 20-30% in the baseline scenarios compared to the previous carbon wall JET (JET-C) plasmas. The degradation is mainly driven by the reduction in the pedestal temperature. Stored energies and pedestal temperature comparable to the JET-C have been obtained to date in JET-ILW baseline plasmas only in the high triangularity shape using N2 seeding. This work compares the energy losses during ELMs and the corresponding time scales of the temperature and density collapse in JET-ILW baseline plasmas with and without N2 seeding with similar JET-C baseline plasmas. ELMs in the JET-ILW differ from those with the carbon wall both in terms of time scales and energy losses. The ELM time scale, defined as the time to reach the minimum pedestal temperature soon after the ELM collapse, is ˜2 ms in the JET-ILW and lower than 1 ms in the JET-C. The energy losses are in the range ΔWELM/Wped ≈ 7-12% in the JET-ILW and ΔWELM/Wped ≈ 10-20% in JET-C, and fit relatively well with earlier multi-machine empirical scalings of ΔWELM/Wped with collisionality. The time scale of the ELM collapse seems to be related to the pedestal collisionality. Most of the non-seeded JET-ILW ELMs are followed by a further energy drop characterized by a slower time scale ˜8-10 ms (hereafter called slow transport events), that can lead to losses in the range ΔWslow/Wped ≈ 15-22%, slightly larger than the losses in JET-C. The N2 seeding in JET-ILW significantly affects the ELMs. The JET-ILW plasmas with N2 seeding are characterized by ELM energy losses and time scales similar to the JET-C and by the absence of the slow transport events.

  6. Electron spin resonance study of thermal instability reactions in jet fuels

    NASA Technical Reports Server (NTRS)

    Zeldes, H.; Livingston, R.

    1984-01-01

    Free radicals were studied by electron spin resonance (ESR) using model compounds that are representative of constituents of jet fuels. Radical formation was initiated with peroxides and hydroperoxides by using UV photolysis at and near room temperature and thermal initiation at higher temperatures. Both oxygen free and air saturated systems were studied. N-Dodecane was frequently used as a solvent, and a mixture of n-dodecyl radicals was made with a peroxide initiator in n-dodecane (free of oxygen) thermally at 212 C and photolytically at room temperature. Hydrogen abstraction from the 3,4,5 and 6-positions gives radicals that are sufficiently alike that their spectra are essentially superimposed. The radical formed by abstract of hydrogen from the 2-position gives a different spectrum. ESR parameters for these radicals were measured. The radical formed by abstraction of a primary hydrogen was not observed. Similar radicals are formed from n-decane. A variety of exploratory experiments were carried out with systems that give free radical spectra to which was added small amounts of 2,5-dimethylpyrrole.

  7. Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.

    2017-01-01

    Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.

  8. Velocity and Temperature Measurement in Supersonic Free Jets Using Spectrally Resolved Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2004-01-01

    The flow fields of unheated, supersonic free jets from convergent and convergent-divergent nozzles operating at M = 0.99, 1.4, and 1.6 were measured using spectrally resolved Rayleigh scattering technique. The axial component of velocity and temperature data as well as density data obtained from a previous experiment are presented in a systematic way with the goal of producing a database useful for validating computational fluid dynamics codes. The Rayleigh scattering process from air molecules provides a fundamental means of measuring flow properties in a non-intrusive, particle free manner. In the spectrally resolved application, laser light scattered by the air molecules is collected and analyzed using a Fabry-Perot interferometer (FPI). The difference between the incident laser frequency and the peak of the Rayleigh spectrum provides a measure of gas velocity. The temperature is measured from the spectral broadening caused by the random thermal motion and density is measured from the total light intensity. The present point measurement technique uses a CW laser, a scanning FPI and photon counting electronics. The 1 mm long probe volume is moved from point to point to survey the flow fields. Additional arrangements were made to remove particles from the main as well as the entrained flow and to isolate FPI from the high sound and vibration levels produced by the supersonic jets. In general, velocity is measured within +/- 10 m/s accuracy and temperature within +/- 10 K accuracy.

  9. Prediction of Turbulent Temperature Fluctuations in Hot Jets

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2017-01-01

    Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.

  10. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  11. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  12. Stability of a relativistic rotating electron-positron jet: non-axisymmetric perturbations

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.; Pariev, V. I.

    1996-07-01

    We investigate the linear stability of a hydrodynamic relativistic flow of magnetized plasma in the simplest case where the energy density of the electromagnetic fields is much greater than the energy density of the matter (including the rest mass energy). This is the force-free approximation. We consider the case of a light cylindrical jet in a cold and dense environment, so that the jet boundary remains at rest. Continuous and discrete spectra of frequencies are investigated analytically. An infinite sequence of eigenfrequencies is found near the edge of the Alfven continuum. Numerical calculations show that modes having reasonable values of azimuthal wavenumber m and radial number n are stable and their attenuation increment gamma is small. The dispersion curves omega=omega(k_----) have a minimum for k_----0~=1/R (R is the jet radius). This results in the accumulation of perturbations inside the jet with wavelengths of the order of the jet radius. The wave crests of the perturbation pattern formed in such a way move along the jet with a velocity exceeding the speed of light. If one has relativistic electrons emitting synchrotron radiation inside the jet, then this pattern will be visible. This provides us with a new type of superluminal source. If the jet is oriented close to the line of sight, then the observer will see knots moving backward to the core.

  13. Liquid Jets in Crossflow at Elevated Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Amighi, Amirreza

    An experimental study on the characterization of liquid jets injected into subsonic air crossflows is conducted. The aim of the study is to relate the droplet size and other attributes of the spray, such as breakup length, position, plume width, and time to flow parameters, including jet and air velocities, pressure and temperature as well as non-dimensional variables. Furthermore, multiple expressions are defined that would summarize the general behavior of the spray. For this purpose, an experimental setup is developed, which could withstand high temperatures and pressures to simulate conditions close to those experienced inside gas turbine engines. Images are captured using a laser based shadowgraphy system similar to a 2D PIV system. Image processing is extensively used to measure droplet size and boundaries of the spray. In total 209 different conditions are tested and over 72,000 images are captured and processed. The crossflow air temperatures are 25°C, 200°C, and 300°C; absolute crossflow air pressures are 2.1, 3.8, and 5.2 bars. Various liquid and gas velocities are tested for each given temperature and pressure in order to study the breakup mechanisms and regimes. Effects of dimensional and non-dimensional variables on droplet size are presented in detail. Several correlations for the mean droplet size, which are generated in this process, are presented. In addition, the influence of non-dimensional variables on the breakup length, time, plume area, angle, width and mean jet surface thickness are discussed and individual correlations are provided for each parameter. The influence of each individual parameter on the droplet sizes is discussed for a better understanding of the fragmentation process. Finally, new correlations for the centerline, windward and leeward trajectories are presented and compared to the previously reported correlations.

  14. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  15. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

    NASA Astrophysics Data System (ADS)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

    2018-05-01

    Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

  16. Dynamic response of induced pressures, suckdown, and temperatures for two tandem jet STOVL configurations

    NASA Technical Reports Server (NTRS)

    Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.

    1992-01-01

    NASA Ames Research Center has been conducting a program to improve the methods for predicting the jet-induced lift loss (suckdown) and hot gas ingestion on jet Short Takeoff and Vertical Landing (STOVL) aircraft during hover near the ground. As part of that program, small-scale hover tests were conducted to expand the current data base and to improve upon the current empirical methods for predicting jet-induced lift loss and hot gas ingestion (HGI) effects. This report is one of three data reports covering data obtained from hover tests conducted at Lockheed Aeronautical Systems, Rye Canyon Facility. It will include dynamic (time dependent) test data for both lift loss and HGI parameters (height, nozzle temperature, nozzle pressure ratio, and inlet location). The flat plate models tested were tandem jet configurations with three planform variations and variable position side-by-side sucking inlets mounted above the planform. Temperature time lags from 8-15 seconds were observed before the model temperatures stabilize. This was larger than the expected 1.5-second lag calculated from literature. Several possible explanations for the flow temperatures to stabilize may include some, or all, of the following: thermocouple lag, radiation to the model surface, and heat loss to the ground board. Further investigations are required to understand the reasons for this temperature lag.

  17. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    NASA Astrophysics Data System (ADS)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Véronique; Tazibt, Abdel

    2011-01-01

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  18. Algorithm for Estimating the Plume Centerline Temperature and Ceiling Jet Temperature in the Presence of a Hot Upper Layer

    NASA Technical Reports Server (NTRS)

    Davis, William D.; Notarianni, Kathy A.; Tapper, Phillip Z.

    1998-01-01

    The experiments were designed to provide insight into the behavior of jet fuel fires in aircraft hangars and to study the impact of these fires on the design and operation of a variety of fire protection systems. As a result, the test series included small fires designed to investigate the operation of UV/IR detectors and smoke detectors as well as large fires which were used to investigate the operation of ceiling mounted heat detectors and sprinklers. The impact of the presence or absence of draft curtains was also studied in the 15 m hangar. It is shown that in order to predict the plume centerline temperature within experimental uncertainty, the entrainment of the upper layer gas must be modeled. For large fires, the impact of a changing radiation fraction must also be included in the calculation. The dependence of the radial temperature profile of the ceiling jet as a function of layer development is demonstrated and a ceiling jet temperature algorithm which includes the impact of a growing layer is developed.

  19. Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Robert, H.; Merbahi, N.; Fontagné-Faucher, C.; Yousfi, M.; Romain, C. E.; Eichwald, O.; Rondel, C.; Gabriel, B.

    2012-08-01

    This work is devoted to the evaluation of the efficiency of a new low-temperature plasma jet driven in ambient air by a dc-corona discharge to inactivate adherent cells and biofilms of Gram-positive bacteria. The selected microorganisms were lactic acid bacteria, a Weissella confusa strain which has the particularity to excrete a polysaccharide polymer (dextran) when sucrose is present. Both adherent cells and biofilms were treated with the low-temperature plasma jet for different exposure times. The antimicrobial efficiency of the plasma was tested against adherent cells and 48 h-old biofilms grown with or without sucrose. Bacterial survival was estimated using both colony-forming unit counts and fluorescence-based assays for bacterial cell viability. The experiments show the ability of the low-temperature plasma jet at atmospheric pressure to inactivate the bacteria. An increased resistance of bacteria embedded within biofilms is clearly observed. The resistance is also significantly higher with biofilm in the presence of sucrose, which indicates that dextran could play a protective role.

  20. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  1. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    PubMed

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  2. Investigation of Temperature Ratio Effect on the Low-Frequency Acoustic Spectra of Heated Jets

    NASA Astrophysics Data System (ADS)

    Karam, Sofia

    Jet noise remains one of the most important problems in the aviation industry, and its reduction is sought in the context of both commercial and military aircraft. In this thesis, an investigation of the jet noise is conducted in terms of the effect of temperature and Mach number on low frequency acoustic spectra. A low-order model derived from the generalized acoustic analogy method via a low-frequency asymptotic approach is utilized, where the mean flow and pertinent statistical quantities are obtained from RANS simulations. The study involves a combination of seven acoustic Mach numbers ranging from 0.3 to 1.5 and five temperature ratios (TR) ranging from 1 to 3. The model is calibrated with existing experimental measurements of a Mach 0.9 and TR = 1 jet. The results show that the sound pressure level increases with the increase in Mach number, and decreases with the decrease in temperature ratios.

  3. Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Ling; Chou, J. K.; Tsai, L. Y.; Chen, A. B.; Su, H. T.; Hsu, R. R.; Cummer, S. A.; Frey, H. U.; Mende, S. B.; Takahashi, Y.; Lee, L. C.

    2009-04-01

    This article reports the first high time resolution measurements of gigantic jets from the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment. The velocity of the upward propagating fully developed jet stage of the gigantic jets was ˜107 m s-1, which is similar to that observed for downward sprite streamers. Analysis of spectral ratios for the fully developed jet emissions gives a reduced E field of 400-655 Td and average electron energy of 8.5-12.3 eV. These values are higher than those in the sprites but are similar to those predicted by streamer models, which implies the existence of streamer tips in fully developed jets. The gigantic jets studied here all contained two distinct photometric peaks. The first peak is from the fully developed jet, which steadily propagates from the cloud top (˜20 km) to the lower ionosphere at ˜90 km. We suggest that the second photometric peak, which occurs ˜1 ms after the first peak, is from a current wave or potential wave-enhanced emissions that originate at an altitude of ˜50 km and extend toward the cloud top. We propose that the fully developed jet serves as an extension of the local ionosphere and produces a lowered ionosphere boundary. As the attachment processes remove the charges, the boundary of the local ionosphere moves up. The current in the channel persists and its contact point with the ionosphere moves upward, which produces the upward surging trailing jets. Imager and photometer data indicate that the lightning activity associated with the gigantic jets likely is in-cloud, and thus the initiation of the gigantic jets is not directly associated with cloud-to-ground discharges.

  4. Perspectives on dilution jet mixing. [in creating temperature patterns at combustor exits in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  5. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  6. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    NASA Astrophysics Data System (ADS)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  7. Validation of multi-temperature nozzle flow code NOZNT

    NASA Technical Reports Server (NTRS)

    Park, Chul; Lee, Seung-Ho

    1993-01-01

    A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.

  8. Heat transfer characteristics within an array of impinging jets. Effects of crossflow temperature relative to jet temperature

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Su, C. C.

    1985-01-01

    Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.

  9. Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet

    NASA Astrophysics Data System (ADS)

    Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.

    2017-12-01

    Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.

  10. Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun

    2018-06-01

    A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.

  11. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  12. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  13. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.

    2002-01-01

    Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.

  14. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Elizabeth C., E-mail: emerritt@lanl.gov; Adams, Colin S.; University of New Mexico, Albuquerque, New Mexico 87131

    We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].

  15. Stable electron beams from laser wakefield acceleration with few-terawatt driver using a supersonic air jet

    NASA Astrophysics Data System (ADS)

    Boháček, K.; Kozlová, M.; Nejdl, J.; Chaulagain, U.; Horný, V.; Krůs, M.; Ta Phuoc, K.

    2018-03-01

    The generation of stable electron beams produced by the laser wakefield acceleration mechanism with a few-terawatt laser system (600 mJ, 50 fs) in a supersonic synthetic air jet is reported and the requirements necessary to build such a stable electron source are experimentally investigated in conditions near the bubble regime threshold. The resulting electron beams have stable energies of (17.4 ± 1.1) MeV and an energy spread of (13.5 ± 1.5) MeV (FWHM), which has been achieved by optimizing the properties of the supersonic gas jet target for the given laser system. Due to the availability of few-terawatt laser systems in many laboratories around the world these stable electron beams open possibilities for applications of this type of particle source.

  16. Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán

    2016-10-01

    We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.

  17. Proton deflectometry of laser-driven relativistic electron jet from thin foil target

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Palaniyappan, S.; Gautier, D. C.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Near critical density relativistic electron jets from laser solid interaction carry currents approaching the Alfvén-limit and tens of kilo-Tesla magnetic fields. Such jets are often found in kinetic simulations with low areal density targets, but have not been confirmed experimentally. They may be used for X/gamma-ray generation and is also important for the understanding of post-transparency plasma dynamics. With a short-pulse probe beam at the Trident laser facility, we employed proton deflectometry to infer the jet's properties, structure and the long-time dynamics. We develop corresponding GEANT4 simulation model of the proton deflectometry, with input from the kinetic PIC simulations in 2D and quasi-3D geometry, to compare with the experimental radiography images. Detail comparison of the experimental and simulation features in the deflectometry will be discussed. Work supported by the LDRD program at LANL.

  18. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    PubMed

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  19. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    PubMed Central

    Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278

  20. Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tarraf Kojok, Ali

    This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.

  1. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.

    2016-06-15

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  2. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE PAGES

    Steinke, I.; Walther, M.; Lehmkühler, F.; ...

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  3. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  4. Non-intrusive acoustic measurement of flow velocity and temperature in a high subsonic Mach number jet

    NASA Astrophysics Data System (ADS)

    Otero, R., Jr.; Lowe, K. T.; Ng, W. F.

    2018-01-01

    In previous studies, sonic anemometry and thermometry have generally been used to measure low subsonic Mach flow conditions. Recently, a novel configuration was proposed and used to measure unheated jet velocities up to Mach 0.83 non-intrusively. The objective of this investigation is to test the novel configuration in higher temperature conditions and explore the effects of fluid temperature on mean velocity and temperature measurement accuracy. The current work presents non-intrusive acoustic measurements of single-stream jet conditions up to Mach 0.7 and total temperatures from 299 K to 700 K. Comparison of acoustically measured velocity and static temperature with probe data indicate root mean square (RMS) velocity errors of 2.6 m s-1 (1.1% of the maximum jet centerline velocity), 4.0 m s-1 (1.2%), and 8.5 m s-1 (2.4%), respectively, for 299, 589, and 700 K total temperature flows up to Mach 0.7. RMS static temperature errors of 7.5 K (2.5% of total temperature), 8.1 K (1.3%), and 23.3 K (3.3%) were observed for the same respective total temperature conditions. To the authors’ knowledge, this is the first time a non-intrusive acoustic technique has been used to simultaneously measure mean fluid velocity and static temperatures in high subsonic Mach numbers up to 0.7. Overall, the findings of this work support the use of acoustics for non-intrusive flow monitoring. The ability to measure mean flow conditions at high subsonic Mach numbers and temperatures makes this technique a viable candidate for gas turbine applications, in particular.

  5. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  6. Experimental investigation on the effect of plasma jet in the triggered discharge process of a gas switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tie, W., E-mail: twh.110.666@163.com, E-mail: 84470220@qq.com; Xi'an Jiaotong University, Xi'an 710049; Liu, S.

    The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 10{sup 6 }cm/s. The electron temperature decreased from 2.0 eVmore » to 1.3 eV, and the electron density increased from 3.1 × 10{sup 15}/cm{sup 3} to 6.3 × 10{sup 15}/cm{sup 3} at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.« less

  7. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix

    2018-05-01

    The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

  8. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán

    2016-10-01

    We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  9. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy.

    PubMed

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán

    2016-10-07

    We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  10. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  11. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    technological solution in the early to late 1990s of confining atmospheric plasmas in a small volume of plasma generation (i.e. with a small volume-to-surface ratio) and then extending it towards a downstream sample [7]-[9]. These are among the first low-temperature atmospheric plasmas aimed particularly at the exploitation of their ability to invoke the active and rich reactive chemistry close to ambient temperature. The main applications of these early devices are precision surface modification of low-temperature dielectric materials, for example thin film deposition and etching [7]-[9]. Variations of the early plasma jets include atmospheric plasma sheet jets [10] for the treatment of largely planar objects (e.g. polymeric sheets) as well as large arrays of many plasma jets for the treatment of complex-structured objects (e.g. surgical tools and open human wounds) [11]. As a material processing technology, the sub-100oC atmospheric-pressure plasma jet has benefited over the years from many innovations. Whilst a detailed account and analysis of these is clearly outside the scope of this Editorial, it is worth stating that there are different avenues with which to maintain a moderate electron density at the plasma core so as to keep the gas temperature at the sample point below a ceiling level. Most of the early studies employed excitation at radio frequencies above 10 MHz, at which electrons are largely confined in the plasma generation region, and this limits the current flow to and gas heating in the plume region of the plasma jet. Other techniques of current limitation have since been shown to be effective, including the use of dielectric barriers across a very large frequency range of 1 kHz--50 MHz, sub-microsecond pulses sustained at kHz frequencies, pulse-modulated radio frequencies and dual-frequency excitation [12]-[15]. These and other techniques have considerably advanced the atmospheric-pressure plasma jet technology. The period of some 15 years since the above

  12. Superfast Cosmic Jet "Hits the Wall"

    NASA Astrophysics Data System (ADS)

    1999-01-01

    -288. The jet travelled quickly until its advance suddenly was stopped and the endpoint of the jet became brighter than the core. "This fast-moving material obviously hit something," Hjellming said. What did it it hit? "Probably a mixture of external material plus material from a previous jet ejection." Further studies of the collision could yield new information about the physics of cosmic jets. Such jets are believed to be powered by black holes into which material is being drawn. The exact mechanism by which the black hole's gravitational energy accelerates particles to nearly the speed of light is not well understood. There is even dispute about the types of particles ejected. Competing models call for either a mixture of electrons and protons or a mixture of electrons and positrons. Because protons are more than 1,800 times more massive than electrons or positrons (the positively-charged antiparticle of the electron), the electron-proton mixture would be much more massive than the electron-positron pair. Thus, an electron-proton jet is called a heavy jet and an electron-positron jet is called a light jet. A light jet would be much more easily slowed or stopped by tenuous interstellar material than a heavy jet, so the collision of XTE J1748-288's jet may indicate that it is a light jet. "There's still a lot more work to do before anyone can conclude that, but the collision offers the possibility of answering the light-heavy jet question," Hjellming said. A 1998 VLA study by John Wardle of Brandeis University and his colleagues indicated that the jet of a distant quasar is a light, electron-positron jet. Though the black holes in quasars are supermassive, usually millions of times more massive than the Sun, the physics of jet production in them is thought to be similar to the physics of jet production by smaller black holes, only a few times more massive than the sun, such as the one possibly in XTE J1748-288. The VLA is an instrument of the National Radio Astronomy

  13. Impact of the Hall effect on high-energy-density plasma jets.

    PubMed

    Gourdain, P-A; Seyler, C E

    2013-01-04

    Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Péclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it.

  14. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. A pulsed plasma jet with the various Ar/N2 mixtures

    NASA Astrophysics Data System (ADS)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N.

    2017-12-01

    In this paper, using the Optical Emission Spectroscopy technique, the physical properties of a fabricated pulsed DBD plasma jet are studied. Ar/N2 gaseous mixture is taken as operational gas, and Ar contribution in Ar/N2 mixture is varied from 75 to 95%. Through the optical emission spectra analysis of the pulsed DBD plasma jet, the rotational, vibrational and excitation temperatures and density of electrons in plasma medium of the pulsed plasma jet are obtained. It is seen that, at the wavelength of 750.38 nm, the radiation intensity from the Ar 4p → 4 s transition increases at the higher Ar contributions in Ar/N2 mixture. It is found that, for 95% of Ar presence in the mixture, the emission intensities from argon and molecular nitrogen are higher, and the emission line intensities will increase nonlinearly. In addition, it is observed that the quenching of Ar* by N2 results in the higher intensities of N2 excited molecules. Moreover, at the higher percentages of Ar in Ar/N2 mixture, while all the plasma temperatures are increased, the plasma electron density is reduced.

  16. Free compressible jet investigation

    NASA Astrophysics Data System (ADS)

    De Gregorio, Fabrizio

    2014-03-01

    The nozzle pressure ratio (NPR) effect on a supersonic turbulent jet was investigated. A dedicated convergent/divergent nozzle together with a flow feeding system was designed and manufactured. A nozzle Mach exit of M j = 1.5 was selected in order to obtain a convective Mach number of M c = 0.6. The flow was investigated for over-expanded, correctly expanded and under-expanded jet conditions. Mach number, total temperature and flow velocity measurements were carried out in order to characterise the jet behaviour. The inlet conditions of the jet flow were monitored in order to calculate the nozzle exit speed of sound and evaluate the mean Mach number distribution starting from the flow velocity data. A detailed analysis of the Mach results obtained by a static Pitot probe and by a particle image velocimetry measurement system was carried out. The mean flow velocity was investigated, and the axial Mach decay and the spreading rate were associated with the flow structures and with the compressibility effects. Aerodynamics of the different jet conditions was evaluated, and the shock cells structures were detected and discussed correlating the jet structure to the flow fluctuation and local turbulence. The longitudinal and radial distribution of the total temperature was investigated, and the temperature profiles were analysed and discussed. The total temperature behaviour was correlated to the turbulent phenomena and to the NPR jet conditions. Self-similarity condition was encountered and discussed for the over-expanded jet. Compressibility effects on the local turbulence, on the turbulent kinetic energy and on the Reynolds tensor were discussed.

  17. Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tae; Romanelli, M.; Voitsekhovitch, I.; Koskela, T.; Conboy, J.; Giroud, C.; Maddison, G.; Joffrin, E.; contributors, JET

    2015-06-01

    A consistent deterioration of global confinement in H-mode experiments has been observed in JET [1] following the replacement of all carbon plasma facing components (PFCs) with an all metal (‘ITER-like’) wall (ILW). This has been correlated to the observed degradation of the pedestal confinement, as lower electron temperature (Te) values are routinely measured at the top of the edge barrier region. A comparative investigation of core heat transport in JET-ILW and JET-CW (carbon wall) discharges has been performed, to assess whether core confinement has also been affected by the wall change. The results presented here have been obtained by analysing a set of discharges consisting of high density JET-ILW H-mode plasmas and comparing them against their counterpart discharges in JET-CW having similar global operational parameters. The set contains 10 baseline ({βN}=1.5∼ 2 ) discharge-pairs with 2.7 T toroidal magnetic field, 2.5 MA plasma current, and 14 to 17 MW of neutral beam injection (NBI) heating. Based on a Te profile analysis using high resolution Thomson scattering (HRTS) data, the Te profile peaking (i.e. core Te (ρ = 0.3) / edge Te (ρ = 0.7)) is found to be similar, and weakly dependent on edge Te, for both JET-ILW and JET-CW discharges. When ILW discharges are seeded with N2, core and edge Te both increase to maintain a similar peaking factor. The change in core confinement is addressed with interpretative TRANSP simulations. It is found that JET-ILW H-mode plasmas have higher NBI power deposition to electrons and lower NBI power deposition to ions as compared to the JET-CW counterparts. This is an effect of the lower electron temperature at the top of the pedestal. As a result, the core electron energy confinement time is reduced in JET-ILW discharges, but the core ion energy confinement time is not decreased. Overall, the core energy confinement is found to be the same in the JET-ILW discharges compared to the JET-CW counterparts.

  18. Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2008-01-01

    A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  19. Development of a temperature measurement system with application to a jet in a cross flow experiment

    NASA Technical Reports Server (NTRS)

    Wark, C.; Foss, J. F.

    1985-01-01

    A temperature measurement system, which allows the simultaneous sampling of up to 80 separate thermocouples, was developed. The minimum resolution for the system corresponds to + or - 0.16 C per least significant bit of the A/D converter. The time constant values lambda, for each of the 64 thermocouples, were determined experimentally at 7 mps. Software routines were used to correct the measured temperatures for the effect of lambda for each thermocouple. The temperature measurement system was utilized to study the thermal field of a heated jet discharging perpendicularly into a low and a high disturbance level cross stream for a given momentum flux ratio and for three overheated values. The peak instantaneous temperatures reveal that strong molecular diffusion was operative. Various measures of the thermal field, for the disturbed case, suggest that the jet column remains relatively compact while being buffeted by the ambient turbulence field and that its penetration, into the cross wind, is inhibited by the presence of the strong disturbance field.

  20. Velocity field near the jet orifice of a round jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Benson, J. P.

    1979-01-01

    Experimentally determined velocities at selected locations near the jet orifice are presented and analyzed for a round jet in crossflow. Jet-to-crossflow velocity ratios of four and eight were studied experimentally for a round subsonic jet of air exhausting perpendicularly through a flat plate into a subsonic crosswind of the same temperature. Velocity measurements were made in cross sections to the jet plume located from one to four jet diameters from the orifice. Jet centerline and vortex properties are presented and utilized to extend the results of a previous study into the region close to the jet orifice.

  1. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  2. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    PubMed

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  3. Spontaneous ignition temperature limits of jet A fuel in research-combustor segment

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1974-01-01

    The effects of inlet-air pressure and reference velocity on the spontaneous-ignition temperature limits of Jet A fuel were determined in a combustor segment with a primary-zone length of 0.076 m (3 in.). At a constant reference velocity of 21.4 m/sec (170 ft/sec), increasing the inlet-air pressure from 21 to 207 N/sq cm decreased the spontaneous-ignition temperature limit from approximately 700 to 555 K. At a constant inlet-air pressure of 41 N/sq cm, increasing the reference velocity from 12.2 to 30.5 m/sec increased the spontaneous-ignition temperature limit from approximately 575 to 800 K. Results are compared with other data in the literature.

  4. Comparison of Inboard-Outboard Pedestal Temperature Measurements in JET Using ECE Diagnostics

    NASA Astrophysics Data System (ADS)

    Barrera, L.; de la Luna, E.; Figini, L.

    2008-03-01

    Despite considerable effort, both theoretically and experimentally, a complete physical model to describe the particle and energy losses during ELMs is far from complete. On the experimental front, improved description of the spatial structure (poloidal asymmetry, radial distribution) and the dynamics of the ELM crash is a key requirement to answer some of the basic outstanding questions concerning the physics of ELMs. A significant number of diagnostics is now capable of fast measurements of the pedestal profile during an ELM, however, there is a lack of data from the inboard midplane, so assumptions of poloidal symmetry on the flux surfaces have often to be made. The aim of this work is to explore the capabilities of the electron cyclotron emission (ECE) diagnostics to provide simultaneous measurements of the edge temperature for both inboard and outboard plasma midplane. Access to the inboard region of the plasma is achieved in JET by using 1 harmonic/O-mode polarization, as it is not affected by harmonic overlap with the 2nd harmonic. This paper focuses on the validation of the inboard ECE data and the identification of the limitations of the measurements and the data analysis.

  5. Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Mielke, Amy F.; Elam, Kristie A.

    2009-10-01

    A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  6. Single-Inclusive Jet Production In Electron-Nucleon Collisions Through Next-To-Next-To-Leading Order In Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abelof, Gabriel; Boughezal, Radja; Liu, Xiaohui

    2016-10-17

    We compute the Oσ 2σ 2 s perturbative corrections to inclusive jet production in electron-nucleon collisions. This process is of particular interest to the physics program of a future Electron Ion Collider (EIC). We include all relevant partonic processes, including deep-inelastic scattering contributions, photon-initiated corrections, and parton-parton scattering terms that first appear at this order. Upon integration over the final-state hadronic phase space we validate our results for the deep-inelastic corrections against the known next-to-next-to-leading order (NNLO) structure functions. Our calculation uses the N-jettiness subtraction scheme for performing higher-order computations, and allows for a completely differential description of the deep-inelasticmore » scattering process. We describe the application of this method to inclusive jet production in detail, and present phenomenological results for the proposed EIC. The NNLO corrections have a non-trivial dependence on the jet kinematics and arise from an intricate interplay between all contributing partonic channels.« less

  7. Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.

    2017-10-01

    Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.

  8. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS

    NASA Astrophysics Data System (ADS)

    Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.

    2016-12-01

    Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.

  9. [The Characteristic Research of ·OH Induced by Water on an Argon Plasma Jet].

    PubMed

    Liu, Kun; Liao, Hua; Zheng, Pei-chao; Wang, Chen-ying; Liu, Hong-di; Danil, Dobrynin

    2015-07-01

    ·OH plays a crucial role in many fields, having aroused wide public concern in the world. Atmospheric Pressure Plasma Jet, which can be achieved by portable device due to working without the vacuum environment, has the advantages of high concentration of reactive species, high electron temperature and low gas temperature. It has become an important research topic in the field of gas discharge with a strong prospect. Especially, how to induce plasma jet to produce ·OH has become a new hotpot in the field of low-temperature plasma. It has been reported that mass ·OH can be induced successfully when water vapor is added to the working gas, but it will be unstable when the concentrate of water reaches a certain degree. Thus, a device of argon plasma jet with a Ring-to-Ring Electrode Configuration has been designed to interact with water in the surrounding air to generate ·OH under atmospheric pressure. In order to increase the production of ·OH, ultrasonic atomizing device is introduced to promote water concentration around the plasma plume. The generating rule of OH(A2J) induced by water has been extensively studied under different voltages and flow rate. ·OH output induced by the plasma has been tested by emission spectrometry, and at the meanwhile, Ar atomic spectral lines at 810.41 and 811.48 nm are also recorded in order to calculate the electron temperature in argon plasma plume. The results show that the water surrounding the plasma plume can be induced to produce ·OH, and OH(A2 ∑+) output increases with the electrode voltage rising from 20 to 28 kV. When the flow rate increases from 100 to 200 L x h(-1), the OH(A2∑+) output increases, but from 200 to 600 L x h(-1), it decreases. The production rules of OH(A2∑+) is the same as that of electron temperature. Therefore, the presumption is proved that ·OH output mainly affected by electron temperature.

  10. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  11. Vorticity generation and jetting caused by a laser-induced optical breakdown

    NASA Astrophysics Data System (ADS)

    Wang, Jonathan; Buchta, David; Freund, Jonathan

    2017-11-01

    A focused laser can cause optical breakdown of a gas that absorbs energy and can seed ignition. The local hydrodynamics are complex. The breakdown is observed to produce vorticity that subsequently collects into a jetting flow towards the laser source. The strength and the very direction of the jet is observed to be sensitive to the plasma kernel geometry. We use detailed numerical simulations to examine the short-time (< 1 μ s) dynamics leading to this vorticity and jetting. The simulation employs a two-temperature model, free-electron generation by multi-photon ionization, absorption of laser energy by inverse Bremsstrahlung, and 11 charged and neutral species for air. We quantify the early-time contributions of different thermodynamic and gas-dynamic effects to the baroclinic torque. It is found that the breakdown produces compression waves within the plasma kernel, and that the mismatch in their strengths precipitates the involution of the plasma remnants and yields the net vorticity that ultimately develops into the jet. We also quantify the temperature distribution and local strain rates and demonstrate their importance in seeding ignition in non-homogeneous hydrogen/air mixtures.

  12. Development of a Temperature Sensor for Jet Engine and Space Missions Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik

    2008-01-01

    Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.

  13. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    PubMed

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  14. Destruction of {alpha}-synuclein based amyloid fibrils by a low temperature plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, Erdinc; Laroussi, Mounir; Munyanyi, Agatha

    2010-10-04

    Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the 'plasma pencil', a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.

  15. Python based integration of GEM detector electronics with JET data acquisition system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy

    2014-11-01

    This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.

  16. Intra-jet shocks in two counter-streaming, weakly collisional plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.

    2012-07-15

    Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of themore » particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the 'stiff' opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al.[Phys. Plasmas 19, 056501 (2012)].« less

  17. Multiple jet study

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Kors, D. L.

    1973-01-01

    Test data is presented which allows determination of jet penetration and mixing of multiple cold air jets into a ducted subsonic heated mainstream flow. Jet-to-mainstream momentum flux ratios ranged from 6 to 60. Temperature profile data is presented at various duct locations up to 24 orifice diameters downstream of the plane of jet injection. Except for two configurations, all geometries investigated had a single row of constant diameter orifices located transverse to the main flow direction. Orifice size and spacing between orifices were varied. Both of these were found to have a significant effect on jet penetration and mixing. The best mixing of the hot and cold streams was achieved with duct height.

  18. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  19. Electron temperatures and densities in the venus ionosphere: pioneer venus orbiter electron temperature probe results.

    PubMed

    Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A

    1979-02-23

    Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.

  20. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  1. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  2. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  3. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  4. Statistics of fully turbulent impinging jets

    NASA Astrophysics Data System (ADS)

    Wilke, Robert; Sesterhenn, Jörn

    2017-08-01

    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the entire wall jet. The turbulent heat flux and Reynolds stress tensor are analysed and brought into coherence with the primary and secondary ring vortices of the wall jet. Budget terms of the Reynolds stress tensor are given as data base for the improvement of turbulence models.

  5. Packaging Technology for SiC High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  6. Characterization of a Heated Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Wiest, Heather K.

    The liquid jet in crossflow (LJICF) is a widely utilized fuel injection method for airbreathing propulsion devices such as low NO x gas turbine combustors, turbojet afterburners, scramjet/ramjet engines, and rotating detonation engines (RDE's). This flow field allows for efficient fuel-air mixing as aerodynamic forces from the crossflow augment atomization. Additionally, increases in the thermal demands of advanced aeroengines necessitates the use of fuel as a primary coolant. The resulting higher fuel temperatures can cause flash atomization of the liquid fuel as it is injected into a crossflow, potentially leading to a large reduction in the jet penetration. While many experimental works have characterized the overall atomization process of a room temperature liquid jet in an ambient temperature and pressure crossflow, the aggressive conditions associated with flash atomization especially in an air crossflow with elevated temperatures and pressures have been less studied in the community. A successful test campaign was conducted to study the effects of fuel temperature on a liquid jet injected transversely into a steady air crossflow at ambient as well as elevated temperature and pressure conditions. Modifications were made to an existing optically accessible rig, and a new fuel injector was designed for this study. Backlit imaging was utilized to record changes in the overall spray characteristics and jet trajectory as fuel temperature and crossflow conditioners were adjusted. Three primary analysis techniques were applied to the heated LJICF data: linear regression of detected edges to determine trajectory correlations, exploratory study of pixel intensity variations both temporally as well as spatially, and modal decomposition of the data. The overall objectives of this study was to assess the trajectory, breakup, and mixing of the LJICF undery varying jet and crossflow conditions, develop a trajectory correlation to predict changes in jet penetration due to

  7. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.

    2017-10-01

    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  8. Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Frassinetti, L.; Horvath, L.; Lunniss, A.; Saarelma, S.; Wilson, H.; Flanagan, J.; Leyland, M.; Lupelli, I.; Pamela, S.; Urano, H.; Garzotti, L.; Lerche, E.; Nunes, I.; Rimini, F.; Contributors, JET

    2017-11-01

    The pedestal structure of type I ELMy H-modes has been analysed for JET with the ITER-like Wall (JET-ILW). The electron pressure pedestal width is independent of ρ * and increases proportionally to  √β pol,PED. Additional broadening of the width is observed, at constant β pol, PED, with increasing ν * and/or neutral gas injection and the contribution of atomic physics effects in setting the pedestal width cannot as yet be ruled out. Neutral penetration alone does not determine the shape of the edge density profile in JET-ILW. The ratio of electron density to electron temperature scale lengths in the edge transport barrier region, η e, is of order 2-3 within experimental uncertainties. Existing understanding, represented in the stationary linear peeling-ballooning mode stability and the EPED pedestal structure models, is extended to the dynamic evolution between ELM crashes in JET-ILW, in order to test the assumptions underlying these two models. The inter-ELM temporal evolution of the pedestal structure in JET-ILW is not unique, but depends on discharge conditions, such as heating power and gas injection levels. The strong reduction in p e,PED with increasing D 2 gas injection at high power is primarily due to clamping of \

  9. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  10. Energy-filtered cold electron transport at room temperature.

    PubMed

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  11. Energy-filtered cold electron transport at room temperature

    PubMed Central

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-01-01

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839

  12. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    NASA Technical Reports Server (NTRS)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  13. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  14. Model analysis and electrical characterization of atmospheric pressure cold plasma jet in pin electrode configuration

    NASA Astrophysics Data System (ADS)

    Deepak, G. Divya; Joshi, N. K.; Prakash, Ram

    2018-05-01

    In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.

  15. Dilution jet mixing program, supplementary report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1986-01-01

    The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.

  16. ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.

    2016-08-01

    Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less

  17. Perspectives on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  18. General relativistic magnetohydrodynamical κ-jet models for Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Davelaar, J.; Mościbrodzka, M.; Bronzwaer, T.; Falcke, H.

    2018-04-01

    Context. The observed spectral energy distribution of an accreting supermassive black hole typically forms a power-law spectrum in the near infrared (NIR) and optical wavelengths, that may be interpreted as a signature of accelerated electrons along the jet. However, the details of acceleration remain uncertain. Aim. In this paper, we study the radiative properties of jets produced in axisymmetric general relativistic magnetohydrodynamics (GRMHD) simulations of hot accretion flows onto underluminous supermassive black holes both numerically and semi-analytically, with the aim of investigating the differences between models with and without accelerated electrons inside the jet. Methods: We assume that electrons are accelerated in the jet regions of our GRMHD simulation. To model them, we modify the electrons' distribution function in the jet regions from a purely relativistic thermal distribution to a combination of a relativistic thermal distribution and the κ-distribution function (the κ-distribution function is itself a combination of a relativistic thermal and a non-thermal power-law distribution, and thus it describes accelerated electrons). Inside the disk, we assume a thermal distribution for the electrons. In order to resolve the particle acceleration regions in the GRMHD simulations, we use a coordinate grid that is optimized for modeling jets. We calculate jet spectra and synchrotron maps by using the ray tracing code RAPTOR, and compare the synthetic observations to observations of Sgr A*. Finally, we compare numerical models of jets to semi-analytical ones. Results: We find that in the κ-jet models, the radio-emitting region size, radio flux, and spectral index in NIR/optical bands increase for decreasing values of the κ parameter, which corresponds to a larger amount of accelerated electrons. This is in agreement with analytical predictions. In our models, the size of the emission region depends roughly linearly on the observed wavelength

  19. Physical structure and dust reprocessing in a sample of HH jets

    NASA Astrophysics Data System (ADS)

    Podio, L.; Medves, S.; Bacciotti, F.; Eislöffel, J.; Ray, T.

    2009-11-01

    Context: Stellar jets are an essential ingredient of the star formation process and a wealth of information can be derived from their characteristic emission-line spectra. Aims: We investigate the physical structure and dust reprocessing in the shocks along the beam of a number of classical Herbig-Haro (HH) jets in the Orion and Lupus molecular clouds (HH 111, HH 1/2, HH 83, HH 24 M/A/E/C, and Sz68). Parameters describing plasma conditions, as well as dust content, are derived as a function of distance from the source and, for HH 111, of gas velocity. Methods: Spectral diagnostic techniques are applied to obtain the jet physical conditions (the electron and total density, ne and n_H, the ionisation fraction, x_e, and the temperature, T_e) from the ratios of selected forbidden lines. The presence of dust grains is investigated by estimating the gas-phase abundance of calcium with respect to its solar value. Results: We find the electron density varies between 0.05-4×103 cm-3, the ionisation fraction xe from 0.01-0.7, the temperature ranges between 0.6-3×104 K, and the hydrogen density between 0.01-6×104 cm-3. Interestingly, in the HH 111 jet, n_e, x_e, and Te peak in the high velocity interval (HVI) of the strongest working surfaces, confirming a prediction from shocks models. Calcium turns out to be depleted with respect to its solar value, but its gas-phase abundance is higher than estimates for the interstellar medium in Orion. The depletion is high (up to 80%) along the low-excited jets, while low or no depletion is measured in those jets which show higher excitation conditions. Moreover, for HH 111 the depletion is lower in the HVI of the fastest shock. Conclusions: Our results confirm the shock structure predicted by models and indicate that shocks occurring along jets, and presumably those present in the launch zone, only partially destroy dust grains and that the efficiency of dust reprocessing strongly depends on shock velocity. However, the high Ca gas

  20. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  1. Thrust and drag characteristics of a convergent-divergent nozzle with various exhaust jet temperatures

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Wilcox, Fred A

    1954-01-01

    An investigation was conducted in the 8-by-6 foot supersonic wind tunnel on the effect of exhaust-gas temperatures on the external and internal characteristics of a convergent-divergent nozzle having an area expansion ratio of 1.83. Data were obtained over a pressure-ratio range from 1 to 20 at free-stream Mach numbers of 1.6 and 2.0 for exhaust temperatures of 860 degrees, 1650 degrees, and 2000 degrees R. Results of this investigation indicated that generally both the internal and external performance characteristics were only slightly affected by a large change in jet temperature. The small differences in performance which did occur were predicted satisfactorily from theoretical considerations.

  2. Noise shielding by a hot subsonic jet

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Parthasarathy, S. P.

    1981-01-01

    An analysis is conducted of the shielding of the noise emitted by a high speed round jet by a hot, subsonic, semicircular jet. A plane wave front in the primary jet is resolved into elementary plane waves which undergo multiple reflections at the jet boundaries of the primary and the shielding jets. The jet boundaries are idealized to be vortex sheets. The far field sound is evaluated asymptotically by a superposition of the waves that penetrate the shielding jet. The angular directivities are plotted for several values of jet temperature and velocity to examine the effectiveness of shielding by the semicircular jet layer.

  3. Improving LHC searches for dark photons using lepton-jet substructure

    NASA Astrophysics Data System (ADS)

    Barello, G.; Chang, Spencer; Newby, Christopher A.; Ostdiek, Bryan

    2017-03-01

    Collider signals of dark photons are an exciting probe for new gauge forces and are characterized by events with boosted lepton jets. Existing techniques are efficient in searching for muonic lepton jets but due to substantial backgrounds have difficulty constraining lepton jets containing only electrons. This is unfortunate since upcoming intensity frontier experiments are sensitive to dark photon masses which only allow electron decays. Analyzing a recently proposed model of kinetic mixing, with new scalar particles decaying into dark photons, we find that existing techniques for electron jets can be substantially improved. We show that using lepton-jet-substructure variables, in association with a boosted decision tree, improves background rejection, significantly increasing the LHC's reach for dark photons in this region of parameter space.

  4. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  5. Formation and extraction of a dense plasma jet from a helicon-plasma-injected inertial electrostatic confinement device

    NASA Astrophysics Data System (ADS)

    Ulmen, Benjamin Adam

    An inertial electrostatic confinement (IEC) device has several pressure and grid-geometry dependent modes of operation for the confinement of plasma. Although the symmetric grid star-mode is the most often studied for its application to fusion, the asymmetric grid jet-mode has its own potential application for electric space propulsion. The jet-mode gets its name from the characteristic bright plasma jet emanating from the central grid. In this dissertation work, a full study was undertaken to provide an understanding on the formation and propagation of the IEC plasma jet-mode. The IEC device vacuum system and all diagnostics were custom assembled during this work. Four diagnostics were used to measure different aspects of the jet. A spherical plasma probe was used to explore the coupling of an external helicon plasma source to the IEC device. The plasma current in the jet was measured by a combination of a Faraday cup and a gridded energy analyzer (GEA). The Faraday cup also included a temperature sensor for collection of thermal power measurements used to compute the efficiency of the IEC device in coupling power into the jet. The GEA allowed for measurement of the electron energy spectra. The force provided by the plasma jet was measured using a piezoelectric force sensor. Each of these measurements provided an important window into the nature of the plasma jet. COMSOL simulations provided additional evidence needed to create a model to explain the formation of the jet. It will be shown that the jet consists of a high energy electron beam having a peak energy of approximately half of the full grid potential. It is born near the aperture of the grid as a result of the escaping core electrons. Several other attributes of the plasma jet will be presented as well as a way forward to utilizing this device and operational mode for future plasma space propulsion.

  6. Jet Noise Scaling in Dual Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  7. Martian Electron Temperatures in the Sub Solar Region.

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  8. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  9. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  10. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  11. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    NASA Technical Reports Server (NTRS)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  12. Electronic Ambient-Temperature Recorder

    NASA Technical Reports Server (NTRS)

    Russell, Larry; Barrows, William

    1995-01-01

    Electronic temperature-recording unit stores data in internal memory for later readout. Records temperatures from minus 40 degrees to plus 60 degrees C at intervals ranging from 1.875 to 15 minutes. With all four data channels operating at 1.875-minute intervals, recorder stores at least 10 days' data. For only one channel at 15-minute intervals, capacity extends to up to 342 days' data. Developed for recording temperatures of instruments and life-science experiments on satellites, space shuttle, and high-altitude aircraft. Adaptable to such terrestrial uses as recording temperatures of perishable goods during transportation and of other systems or processes over long times. Can be placed directly in environment to monitor.

  13. An Observational and Analytical Study of Marginal Ice Zone Atmospheric Jets

    DTIC Science & Technology

    2016-12-01

    layer or in the capping temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and capping inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a

  14. Mixture-Fraction Measurements with Femtosecond-Laser Electronic-Excitation Tagging

    NASA Technical Reports Server (NTRS)

    Halls, Benjamin R.; Jiang, Naibo; Gord, James R.; Danehy, Paul M.; Roy, Sukesh

    2017-01-01

    Tracer-free mixture-fraction measurements were demonstrated in a jet using femtosecond-laser electronic-excitation tagging. Measurements were conducted across a turbulent jet at several downstream locations both in a pure-nitrogen jet exiting into an air-nitrogen mixture and in a jet containing an air-nitrogen mixture exiting into pure nitrogen. The signal was calibrated with known concentrations of oxygen in nitrogen. The spatial resolution of the measurement was approx.180 microns. The measurement uncertainty ranged from 5% to 15%, depending on the mixture fraction and location within the beam, under constant temperature and pressure conditions. The measurements agree with a mixture fraction of unity within the potential core of the jet and transition to the self-similar region.

  15. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  16. The Conference on High Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Hamilton, D. J.; McCormick, J. B.; Kerwin, W. J.; Narud, J. A.

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  17. High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows

    NASA Astrophysics Data System (ADS)

    Papageorge, Michael J.; Arndt, Christoph; Fuest, Frederik; Meier, Wolfgang; Sutton, Jeffrey A.

    2014-07-01

    In this manuscript, we describe an experimental approach to simultaneously measure high-speed image sequences of the mixture fraction and temperature fields during pulsed, turbulent fuel injection into a high-temperature, co-flowing, and vitiated oxidizer stream. The quantitative mixture fraction and temperature measurements are determined from 10-kHz-rate planar Rayleigh scattering and a robust data processing methodology which is accurate from fuel injection to the onset of auto-ignition. In addition, the data processing is shown to yield accurate temperature measurements following ignition to observe the initial evolution of the "burning" temperature field. High-speed OH* chemiluminescence (CL) was used to determine the spatial location of the initial auto-ignition kernel. In order to ensure that the ignition kernel formed inside of the Rayleigh scattering laser light sheet, OH* CL was observed in two viewing planes, one near-parallel to the laser sheet and one perpendicular to the laser sheet. The high-speed laser measurements are enabled through the use of the unique high-energy pulse burst laser system which generates long-duration bursts of ultra-high pulse energies at 532 nm (>1 J) suitable for planar Rayleigh scattering imaging. A particular focus of this study was to characterize the fidelity of the measurements both in the context of the precision and accuracy, which includes facility operating and boundary conditions and measurement of signal-to-noise ratio (SNR). The mixture fraction and temperature fields deduced from the high-speed planar Rayleigh scattering measurements exhibited SNR values greater than 100 at temperatures exceeding 1,300 K. The accuracy of the measurements was determined by comparing the current mixture fraction results to that of "cold", isothermal, non-reacting jets. All profiles, when properly normalized, exhibited self-similarity and collapsed upon one another. Finally, example mixture fraction, temperature, and OH* emission

  18. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  19. Fan-shaped jets above the light bridge of a sunspot driven by reconnection

    NASA Astrophysics Data System (ADS)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc

    2016-05-01

    We report on a fan-shaped set of high-speed jets above a strongly magnetized light bridge (LB) of a sunspot observed in the Hα line. We study the origin, dynamics, and thermal properties of the jets using high-resolution imaging spectroscopy in Hα from the Swedish 1m Solar Telescope and data from the Solar Dynamics Observatory and Hinode. The Hα jets have lengths of 7-38 Mm, are impulsively accelerated to a speed of ~100 km s-1 close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are predominantly launched from one edge of the light bridge, and their footpoints appear bright in the Hα wings. Atmospheric Imaging Assembly data indicates elongated brightenings that are nearly co-spatial with the Hα jets. We interpret them as jets of transition region temperatures. The magnetic field in the light bridge has a strength of 0.8-2 kG and it is nearly horizontal. All jet properties are consistent with magnetic reconnection as the driver. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  20. Evolution of jets driven by relativistic radiation hydrodynamics as Long and Low Luminosity GRBs

    NASA Astrophysics Data System (ADS)

    Rivera-Paleo, F. J.; Guzmán, F. S.

    2018-06-01

    We present numerical simulations of jets modeled with Relativistic Radiation Hydrodynamics (RRH), that evolve across two environments: i) a stratified surrounding medium and ii) a 16TI progenitor model. We consider opacities consistent with various processes of interaction between the fluid and radiation, specifically, free-free, bound-free, bound-bound and electron scattering. We explore various initial conditions, with different radiation energy densities of the beam in hydrodynamical and radiation pressure dominated scenarios, considering only highly-relativistic jets. In order to investigate the impact of the radiation field on the evolution of the jets, we compare our results with purely hydrodynamical jets. Comparing among jets driven by RRH, we find that radiation pressure dominated jets propagate slightly faster than gas pressure dominated ones. Finally, we construct the luminosity Light Curves (LCs) associated with the two cases. The construction of LCs uses the fluxes of the radiation field which is fully coupled to the hydrodynamics equations during the evolution. The main properties of the jets propagating on the stratified surrounding medium are that the LCs show the same order of magnitude as the gamma-ray luminosity of typical Long Gamma-Ray Bursts 1050 - 1054erg/s and the difference between the radiation and gas temperatures is of nearly one order of magnitude. The properties of jets breaking out from the progenitor star model are that the LCs are of the order of magnitude of low-luminosity GRBs 1046 - 1049 erg/s, and in this scenario the difference between the gas and radiation temperature is of four orders of magnitude, which is a case far from thermal equilibrium.

  1. Trajectory and Breakup of Cryogenic Jets in Crossflow

    NASA Astrophysics Data System (ADS)

    Richards, William

    This study investigated the breakup processes of subcritical cryogenic jets injected in to subsonic crossflows of heated air. The crossflow speed, temperature, and jet velocity were varied to demonstrate the effect of thermal differences on a jet in crossflow. High speed back-lit photography and Mie scattering were used to examine the primary breakup regimes, trajectory, and breakup points. The breakup regimes show little change from jets in crossflow near thermodynamic equilibrium. Penetration of the jet increased with an increase in crossflow temperature. The breakup points in the streamwise direction followed trends previously observed for conventional jets. While the height of column fracture did not increase with momentum flux ratio as much as would be expected, its dependence matched that of the trajectory correlation. It is hypothesized that the observed differences are due to the development of a sheath of evaporated fluid around the main liquid core of the jet.

  2. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  3. Experiments and modeling of dilution jet flow fields

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1986-01-01

    Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.

  4. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less

  5. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    point suggest that the sigmoid is the progenitor of the jet. Conclusions: The enhancement in the light curves of low-temperature EIS lines in the later phase of the jet lifetime and the shape of the jet's stack plots suggests that the jet material falls back, and most likely cools down. To further support this conclusion, the observed drifts were interpreted within a scenario where reconnection progressively shifts along a magnetic structure, leading to the sequential appearance of jets of about the same size and physical characteristics. On this basis, we also propose a simple qualitative model that mimics the observations. Movies 1-3 are available in electronic form at http://www.aanda.org Warning, no authors found for 2014A&A...561A..97.

  6. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  7. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the

  8. Wide-Temperature Electronics for Thermal Control of Nanosats

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis; Gerber, Scott

    2000-01-01

    This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.

  9. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  10. Hydrodynamical Simulations of the Jet in the Symbiotic Star MWC 560. 3; Application to X-ray Jets in Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Stute, Matthias; Sahai, Raghvendra

    2007-01-01

    In Papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high-density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra, and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used, together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission, which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission-line features that correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4-6.7 keV range, which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will prove crucial for understanding jets in symbiotic stars.

  11. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. ESO-Hα 574 and Par-Lup 3-4 jets: Exploring the spectral, kinematical, and physical properties

    NASA Astrophysics Data System (ADS)

    Whelan, E. T.; Bonito, R.; Antoniucci, S.; Alcalá, J. M.; Giannini, T.; Nisini, B.; Bacciotti, F.; Podio, L.; Stelzer, B.; Comerón, F.

    2014-05-01

    In this paper a comprehensive analysis of VLT/X-Shooter observations of two jet systems, namely ESO-Hα 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13 M⊙) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of Ṁout/Ṁacc. Asymmetries in the ESO-Hα 574 flow are investigated while the Par-Lup 3-4 jet is much more symmetric. The density, temperature, and therefore origin of the gas traced by the Balmer lines are investigated from the Balmer decrements and results suggest an origin in a jet for ESO-Hα 574 while for Par-Lup 3-4 the temperature and density are consistent with an accretion flow. Ṁacc is estimated from the luminosity of various accretion tracers. For both targets, new luminosity relationships and a re-evaluation of the effect of reddening and grey extinction (due to the edge-on disks) allows for substantial improvements on previous estimates of Ṁacc. It is found that log(Ṁacc) = -9.15 ± 0.45M⊙ yr-1 and -9.30 ± 0.27M⊙ yr-1 for ESO-Hα 574 and Par-Lup 3-4 respectively. Additionally, the physical conditions in the jets (electron density, electron temperature, and ionisation) are probed using various line ratios and compared with previous determinations from iron lines. The results are combined with the luminosity of the [SII]λ6731 line to derive Ṁout through a calculation of the gas emissivity based on a 5-level atom model. As this method for deriving Ṁout comes from an exact calculation based on the jet parameters (measured directly from the spectra) rather than as was done previously from an approximate formula based on the value of the critical density at an assumed unknown temperature, values of Ṁout are far more

  13. Mach number effect on jet impingement heat transfer.

    PubMed

    Brevet, P; Dorignac, E; Vullierme, J J

    2001-05-01

    An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number.

  14. Ion and electron temperatures in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Munninghoff, D. E.

    1979-01-01

    Experimental and theoretical ion and electron temperatures in the topside ionosphere were investigated. Experimental results came from an analysis of incoherent scatter data taken at Arecibo, Puerto Rico. Consideration of the energy balance equations gave the theoretical ion and electron temperatures.

  15. Supersonic plasma jets in experiments for radiophysical testing of bodies flow

    NASA Astrophysics Data System (ADS)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Lashkov, V. A.; Mashek, I. Ch; Pashchina, A. S.; Petrovskiy, V. P.; Khoronzhuk, R. S.; Dobrovolskaya, A. S.

    2018-01-01

    The action of differently oriented magnetic fields on the parameters of bow shock created in the vicinity of aerodynamic bodies placed into the supersonic gas-plasma flows is studied. For these experiments two types of the high speed plasma jet sources are used—magneto-plasma compressor (MPC) and powerful pulse capillary type discharge. MPC allows to create the plasma jets with gas flow velocity of 10 ± 2 km/s, lifetime 30-50 μs, temperature Te ≈ 3 ± 0.5 eV, electron density about ne ˜ 1016cm-3 and temperature Te ≈ 3 ± 0.5 eV. The jet source based on powerful capillary discharge creates the flows with lifetime 1-20 ms, Mach numbers 3-8, plasma flow velocity 3-10 km/s, vibration and rotation temperatures 9000-14000 and 3800-6000 K respectively. The results of our first experiments show the possibility of using gas-plasma sources based on MPC and powerful capillary discharge for aerodynamic and radiophysical experiments. Comparatively small magnetic field B = 0.23-0.5 T, applied to the obtained bow shocks, essentially modify them. This can lead to a change in shape and an increase in the distance between the detached shock wave and the streamlined body surface if B is parallel to the jet velocity or to decrease this parameter if B is orthogonal to the oncoming flow. Probably, the first case can be useful for reducing the thermal load and aerodynamic drug of streamlined body and the second case can be used to control the radio-transparency of the plasma layer and solving the blackout problem.

  16. Probing the Conformational Landscape of Polyether Building Blocks in Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Bocklitz, Sebastian; Hewett, Daniel M.; Zwier, Timothy S.; Suhm, Martin A.

    2016-06-01

    Polyethylene oxides (Polyethylene glycoles) and their phenoxy-capped analogs represent a prominent class of important polymers that are highly used as precursor molecules in supramolecular reactions. After a detailed study on the simplest representative (1,2-dimethoxyethane) [1], we present results on oligoethylene oxides with increasing chain lengths obtained by spontaneous Raman scattering in a supersonic jet. Through variation of stagnation pressure, carrier gas, nozzle distance and temperature we gain information on the conformational landscape as well as the mutual interconversion of low energy conformers. The obtained results are compared to state-of-the-art quantum chemical calculations. Additionally, we present UV as well as IR-UV and UV-UV double resonance studies on 1-methoxy-2-phenoxyethane in a supersonic jet. These complementary techniques allow for conformationally selective electronic and vibrational spectra in a closely related conformational landscape. [1] S. Bocklitz, M. A. Suhm, Constraining the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy, Z. Phys. Chem. 2015, 229, 1625-1648.

  17. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  18. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGES

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  19. Method and apparatus for removing heat from electronic devices using synthetic jets

    DOEpatents

    Sharma, Rajdeep; Weaver, Jr., Stanton Earl; Seeley, Charles Erklin; Arik, Mehmet; Icoz, Tunc; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas

    2014-04-15

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  20. Method and apparatus for removing heat from electronic devices using synthetic jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rajdeep; Weaver, Stanton Earl; Seeley, Charles Erklin

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  1. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  2. Hard X-ray Emission From A Flare-related Jet

    NASA Astrophysics Data System (ADS)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  3. Observations of quasi-periodic phenomena associated with a large blowout solar jet

    NASA Astrophysics Data System (ADS)

    Morton, R. J.; Srivastava, A. K.; Erdélyi, R.

    2012-06-01

    Aims: A variety of periodic phenomena have been observed in conjunction with large solar jets. We aim to find further evidence for (quasi-)periodic behaviour in solar jets and determine what the periodic behaviour can tell us about the excitation mechanism and formation process of the large solar jet. Methods: Using the 304 Å (He-II), 171 Å (Fe IX), 193 Å (Fe XII/XXIV) and 131 Å (Fe VIII/XXI) filters onboard the Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA), we investigate the intensity oscillations associated with a solar jet. Results: Evidence is provided for multiple magnetic reconnection events occurring between a pre-twisted, closed field and open field lines. Components of the jet are seen in multiple SDO/AIA filters covering a wide range of temperatures, suggesting the jet can be classified as a blowout jet. Two bright, elongated features are observed to be co-spatial with the large jet, appearing at the jet's footpoints. Investigation of these features reveal they are defined by multiple plasma ejections. The ejecta display (quasi-)periodic behaviour on timescales of 50 s and have rise velocities of 40-150 km s-1 along the open field lines. Due to the suggestion that the large jet is reconnection-driven and the observed properties of the ejecta, we further propose that these ejecta events are similar to type-II spicules. The bright features also display (quasi)-periodic intensity perturbations on the timescale of 300 s. Possible explanations for the existence of the (quasi-)periodic perturbations in terms of jet dynamics and the response of the transition region are discussed. Movies are available in electronic form at http://www.aanda.org

  4. Kelvin-Helmholtz instability of stratified jets.

    NASA Astrophysics Data System (ADS)

    Hanasz, M.; Sol, H.

    1996-11-01

    We investigate the Kelvin-Helmholtz instability of stratified jets. The internal component (core) is made of a relativistic gas moving with a relativistic bulk speed. The second component (sheath or envelope) flows between the core and external gas with a nonrelativistic speed. Such a two-component jet describes a variety of possible astrophysical jet configurations like e.g. (1) a relativistic electron-positron beam penetrating a classical electron-proton disc wind or (2) a beam-cocoon structure. We perform a linear stability analysis of such a configuration in the hydrodynamic, plane-parallel, vortex-sheet approximation. The obtained solutions of the dispersion relation show very apparent differences with respect to the single-jet solutions. Due to the reflection of sound waves at the boundary between sheet and external gas, the growth rate as a function of wavenumber presents a specific oscillation pattern. Overdense sheets can slow down the growth rate and contribute to stabilize the configuration. Moreover, we obtain the result that even for relatively small sheet widths the properties of sheet start to dominate the jet dynamics. Such effects could have important astrophysical implications, for instance on the origin of the dichotomy between radio-loud and radio-quiet objects.

  5. Runaway Electrons Modeling and Nanoparticle Plasma Jet Penetration into Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Bogatu, I. N.

    2017-10-01

    A novel idea to probe runaway electrons (REs) by superfast injection of high velocity nanoparticle plasma jet (NPPJ) from a plasma accelerator needs to be sustained by both RE dynamics modeling and simulation of NPPJ penetration through increasing tokamak magnetic field. We present our recent progress in both areas. RE simulation is based on the model, including Dreicer and ``avalanche'' mechanisms of RE generation, with emphasis on high Zeff effects. The high-density hyper-velocity C60 and BN NPPJ penetration through transversal B-field is conducted with the Hybrid Electro-Magnetic code (HEM-2D) in cylindrical coordinates, with 1/R B-field dependence for both DIII-D and ITER tokamaks. Work is supported in part by US DOE SBIR Grant.

  6. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  8. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Seidl, J.; Horacek, J.; Komm, M.; Eich, T.; Panek, R.; Cavalier, J.; Devitre, A.; Peterka, M.; Vondracek, P.; Stöckel, J.; Sestak, D.; Grover, O.; Bilkova, P.; Böhm, P.; Varju, J.; Havranek, A.; Weinzettl, V.; Lovell, J.; Dimitrova, M.; Mitosinkova, K.; Dejarnac, R.; Hron, M.; The COMPASS Team; The EUROfusion MST1 Team

    2017-11-01

    A new system of probes was recently installed in the divertor of tokamak COMPASS in order to investigate the ELM energy density with high spatial and temporal resolution. The new system consists of two arrays of rooftop-shaped Langmuir probes (LPs) used to measure the floating potential or the ion saturation current density and one array of Ball-pen probes (BPPs) used to measure the plasma potential with a spatial resolution of ~3.5 mm. The combination of floating BPPs and LPs yields the electron temperature with microsecond temporal resolution. We report on the design of the new divertor probe arrays and first results of electron temperature profile measurements in ELMy H-mode and L-mode. We also present comparative measurements of the parallel heat flux using the new probe arrays and fast infrared termography (IR) data during L-mode with excellent agreement between both techniques using a heat power transmission coefficient γ  =  7. The ELM energy density {{\\varepsilon }\\parallel } was measured during a set of NBI assisted ELMy H-mode discharges. The peak values of {{\\varepsilon }\\parallel } were compared with those predicted by model and with experimental data from JET, AUG and MAST with a good agreement.

  9. MAVEN observations of electron temperatures in the dayside ionosphere at Mars

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Cravens, T.; Andersson, L.; Fowler, C. M.; Thiemann, E.; Eparvier, F. G.; Bougher, S. W.; Rahmati, A.; Reedy, N. L.; Mitchell, D. L.; Mazelle, C. X.; Mahaffy, P. R.; Jakosky, B. M.

    2016-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) have observed the ionospheric electron temperature at Mars since November 2014. The only in-situ measurements of plasma temperatures were provided by the two Viking landers in 1976 before the MAVEN mission. The ionospheric electron temperatures are particularly important for determining the neutral escape rate from the atmosphere of Mars. We have investigated the electron temperatures on the dayside ionosphere using the Langmuir Probe and Waves instrument onboard MAVEN. The temperatures are studied in two regions of (1) the crustal magnetic field and (2) the solar wind/induced (or draped) magnetic field. We also focused on how temperatures vary with solar zenith angle (SZA) and the solar extreme ultraviolet (EUV) irradiances. The electron temperatures did not vary much due to the SZA variation, but increased when the solar EUV irradiances are high. This means the ionospheric temperatures are sensitive to the solar activity. Furthermore, we investigated the correlation of electron temperatures against magnetic field configurations under the same EUV irradiances. The electron temperatures in the crustal region were lower than those in the draped region. One possible explanation is that the energy input from high altitude, which is related to the tail and solar wind electrons, might control the temperatures in the draped region. Vertical heat conductance in the draped region could also affect the electron temperatures (with a greater effect in the draped region), so that electrons cooled at low altitude tend to transport to high altitude. However, the electron heating is more local in the draped region, and the electrons would be heated efficiently. Therefore, the electron temperatures in the draped region were higher than those in the crustal region. It is implied that the rate of atmospheric escape, which is attributed to photochemical escape, depends on the topology of the magnetic fields.

  10. ON THE MAGNETIC AND ENERGY CHARACTERISTICS OF RECURRENT HOMOLOGOUS JETS FROM AN EMERGING FLUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiajia; Wang, Yuming; Liu, Rui

    In this paper, we present the detailed analysis of recurrent homologous jets originating from an emerging negative magnetic flux at the edge of an active region. The observed jets show multithermal features. Their evolution shows high consistence with the characteristic parameters of the emerging flux, suggesting that with more free magnetic energy, the eruptions tend to be more violent, frequent, and blowout-like. The average temperature, average electron number density, and axial speed are found to be similar for different jets, indicating that they should have been formed by plasmas from similar origins. Statistical analysis of the jets and their footpointmore » region conditions reveals a strong positive relationship between the footpoint region total 131 Å intensity enhancement and jets’ length/width. Stronger linearly positive relationships also exist between the total intensity enhancement/thermal energy of the footpoint regions and jets’ mass/kinetic/thermal energy, with higher cross-correlation coefficients. All the above results together confirm the direct relationship between the magnetic reconnection and the jets and validate the important role of magnetic reconnection in transporting large amounts of free magnetic energy into jets. It is also suggested that there should be more free energy released during the magnetic reconnection of blowout than of standard jet events.« less

  11. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  12. A gyrokinetic perspective on the JET-ILW pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Liu, X.

    2017-03-01

    JET has been unable to recover historical confinement levels when operating with an ITER-like wall (ILW) due largely to the inaccessibility of high pedestal temperatures. Finding a path to overcome this challenge is of utmost importance for both a prospective JET DT campaign and for future ITER operation. Gyrokinetic simulations (using the Gene code) quantitatively capture experimental transport levels for a representative experimental discharge and qualitatively recover the major experimental trends. Microtearing turbulence is a major transport mechanisms for the low-temperature pedestals characteristic of unseeded JET-ILW discharges. At higher temperatures and/or lower {ρ\\ast} , we identify electrostatic ITG transport of a type that is strongly shear-suppressed on smaller machines. Consistent with observations, this transport mechanism is strongly reduced by the presence of a low-Z impurity (e.g. carbon or nitrogen at the level of {{Z}\\text{eff}}∼ 2 ), recovering the accessibility of high pedestal temperatures. Notably, simulations based on dimensionless {ρ\\ast} scans recover historical scaling behavior except in the unique JET-ILW parameter regime where ITG turbulence becomes important. Our simulations also elucidate the observed degradation of confinement caused by gas puffing, emphasizing the important role of the density pedestal structure. This study maps out important regions of parameter space, providing insights that may point to optimal physical regimes that can enable the recovery of high pedestal temperatures on JET.

  13. Electron-temperature dependence of dissociative recombination of electrons with N2/+/.N2 dimer ions

    NASA Technical Reports Server (NTRS)

    Whitaker, M.; Biondi, M. A.; Johnsen, R.

    1981-01-01

    The variation with electron temperature of the dissociative recombination of electrons with N2(+).N2 dimer ions is investigated in light of the importance of such ions in the lower ionosphere and in laser plasmas. Dissociative recombination coefficients were determined by means of a microwave afterglow mass spectrometer technique for electron temperatures from 300-5600 K and an ion and neutral temperature of 300 K. The recombination coefficient is found to be proportional to the -0.41 power of the electron temperature in this range, similar to that observed for the CO(+).CO dimer ion and consistent with the expected energy dependence for a fast dissociative process.

  14. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  15. Core transport properties in JT-60U and JET identity plasmas

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombé, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; ITPA Transport Group; JT-60 Team; EFDA contributors, JET

    2011-07-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma shape, toroidal magnetic field ripple and dimensionless profiles as close as possible during the ITB triggering phase in terms of safety factor, normalized Larmor radius, normalized collision frequency, thermal beta, ratio of ion to electron temperatures. Similarities in the ITB triggering mechanisms and sustainment were observed when a good match was achieved of the most relevant normalized profiles except the toroidal Mach number. Similar thermal ion transport levels in the two devices have been measured in either monotonic or non-monotonic q-profiles. In contrast, differences between JET and JT-60U were observed on the electron thermal and particle confinement in reversed magnetic shear configurations. It was found that the larger shear reversal in the very centre (inside normalized radius of 0.2) of JT-60U plasmas allowed the sustainment of stronger electron density ITBs compared with JET. As a consequence of peaked density profile, the core bootstrap current density is more than five times higher in JT-60U compared with JET. Thanks to the bootstrap effect and the slightly broader neutral beam deposition, reversed magnetic shear configurations are self-sustained in JT-60U scenarios. Analyses of similarities and differences between the two devices address key questions on the validity of the usual assumptions made in ITER steady scenario modelling, e.g. a flat density profile in the core with thermal transport barrier? Such assumptions have consequences on the prediction of fusion performance, bootstrap current and on the sustainment of the scenario.

  16. Blazars: The accelerating inner jet model.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1996-05-01

    The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.

  17. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  18. Dilution Jet Behavior in the Turn Section of a Reverse Flow Combuster

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Lipshitz, A.; Greber, I.

    1982-01-01

    Measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The temperature measurements are presented in the form of consecutive normalized temperature profiles, and jet trajectories. Single jet trajectories were swept toward the inner wall of the turn, whether injection was from the inner or outer wall. This behavior is explained by the radially inward velocity component necessary to support irrotational flow through the turn. Comparison between experimental results and model calculations showed poor agreement due to the model's not including the radial velocity component. A widely spaced row of jets produced trajectories similar to single jets at similar test conditions, but as spacing ratio was reduced, penetration was reduced to the point where the dilution jet flow attached to the wall.

  19. Deep Trek High Temperature Electronics Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  20. Reconnection and Associated Flares in Global Relativistic Jets Containing Helical Magnetic Fields with PIC Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Hartmann, Dieter; Mizuno, Yosuke; Niemiec, Jacek; Dutan, Ioana; Kobzar, Oleh; Gomez, Jose; Meli, Athina; POHL, Martin

    2018-01-01

    In the study of relativistic jets one of the key open questions is their interaction with theenvironment on the microscopic level. Here, we study the initial evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI) using a larger jet radius. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the electron-proton jet simulation a recollimation-like instability occurs near the center of jet. In the electron-positron jet simulation mixed kinetic instabilities grow and the jet electrons are accelerated. The evolution of electron-ion jets will be investigated with different mass ratios. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields. We will investigate mechanisms of flares possibly due to reconnection.

  1. High-temperature electronics applications in space exploration

    NASA Astrophysics Data System (ADS)

    Jurgens, R. F.

    1982-05-01

    One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.

  2. High-temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1982-01-01

    One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.

  3. External inverse-Compton emission from jetted tidal disruption events

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan

    2016-05-01

    The recent discoveries of Sw J1644+57 and Sw J2058+05 show that tidal disruption events (TDEs) can launch relativistic jets. Super-Eddington accretion produces a strong radiation field of order Eddington luminosity. In a jetted TDE, electrons in the jet will inverse-Compton scatter the photons from the accretion disc and wind (external radiation field). Motivated by observations of thermal optical-UV spectra in Sw J2058+05 and several other TDEs, we assume the spectrum of the external radiation field intercepted by the relativistic jet to be blackbody. Hot electrons in the jet scatter this thermal radiation and produce luminosities 1045-1048 erg s- 1 in the X/γ-ray band. This model of thermal plus inverse-Compton radiation is applied to Sw J2058+05. First, we show that the blackbody component in the optical-UV spectrum most likely has its origin in the super-Eddington wind from the disc. Then, using the observed blackbody component as the external radiation field, we show that the X-ray luminosity and spectrum are consistent with the inverse-Compton emission, under the following conditions: (1) the jet Lorentz factor is Γ ≃ 5-10; (2) electrons in the jet have a power-law distribution dN_e/dγ _e ∝ γ _e^{-p} with γmin ˜ 1 and p = 2.4; (3) the wind is mildly relativistic (Lorentz factor ≳ 1.5) and has isotropic-equivalent mass-loss rate ˜ 5 M⊙ yr- 1. We describe the implications for jet composition and the radius where jet energy is converted to radiation.

  4. Non-equilibrium thermionic electron emission for metals at high temperatures

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  5. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas.

    PubMed

    Alonso, M P; Figueiredo, A C A; Borges, F O; Elizondo, J I; Galvão, R M O; Severo, J H F; Usuriaga, O C; Berni, L A; Machida, M

    2010-10-01

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfvén wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfvén wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  6. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  7. PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina

    2013-10-10

    The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adoptmore » spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.« less

  8. Cool and hot emission in a recurring active region jet

    NASA Astrophysics Data System (ADS)

    Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen

    2017-09-01

    Aims: We present a thorough investigation of the cool and hot temperature components in four recurring active region jets observed on July 10, 2015 using the Atmospheric Imaging Assembly (AIA), X-ray Telescope (XRT), and Interface Region Imaging Spectrograph (IRIS) instruments. Methods: A differential emission measure (DEM) analysis was performed on areas in the jet spire and footpoint regions by combining the IRIS spectra and the AIA observations. This procedure better constrains the low temperature DEM values by adding IRIS spectral lines. Plasma parameters, such as Doppler velocities, electron densities, nonthermal velocities and a filling factor were also derived from the IRIS spectra. Results: In the DEM analysis, significant cool emission was found in the spire and the footpoint regions. The hot emission was peaked at log T [K] = 5.6-5.9 and 6.5 respectively. The DEM curves show the presence of hot plasma (T = 3 MK) in the footpoint region. We confirmed this result by estimating the Fe XVIII emission from the AIA 94 Å channel which was formed at an effective temperature of log T [K] = 6.5. The average XRT temperatures were also found to be in agreement with log T [K] = 6.5. The emission measure (EM) was found to be three orders of magnitude higher in the AIA-IRIS DEM compared with that obtained using only AIA. The O IV (1399/1401 Å) electron densities were found to be 2.0×1010 cm-3 in the spire and 7.6 × 1010 cm-3 in the footpoint. Different threads along the spire show different plane-of-sky velocities both in the lower corona and transition region. Doppler velocities of 32 km s-1 (blueshifted) and 13 km s-1 (redshifted) were obtained in the spire and footpoint, respectively from the Si IV 1402.77 Å spectral line. Nonthermal velocities of 69 and 53 km s-1 were recorded in the spire and footpoint region, respectively. We obtained a filling factor of 0.1 in the spire at log T [K] = 5. Conclusions: The recurrent jet observations confirmed the presence of

  9. Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.

    2017-12-01

    The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.

  10. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    NASA Astrophysics Data System (ADS)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  11. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. Cooling and Laser-Induced Fluorescence of Electronically-Excited He2 in a Supersonic Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Mironov, Andrey; Houlahan, Thomas, Jr.; Eden, J. Gary; LaboratoryOptical Physics; Engineering Team

    2016-09-01

    Laser-induced fluorescence (LIF) resulting from transitions between different electronic states of helium dimers generated within a microcavity plasma jet was studied with rotational resolution. In particular, the d3Σu+ , e3Πg and f3Σu+ states, all having electronic energies above 24 eV, are populated by a microplasma in 4 bar of helium gas and rotationally cooled through supersonic expansion. Analysis of two dimensional maps (spectrograms) of dimer emission spectra as a function of distance from the nozzle orifice indicates collisional coupling during the expansion between the lowest rotational levels of the e3Πg , f3Σu+ states and high rotational levels (around N=11) of the d3Σu+ state (all of which are in the v = 0 vibrational state). In an attempt to verify the coupling, a scanning dye laser (centered near 596 nm) pumps the b3Πg -> f3Σu+ transition of the molecule several hundred micrometers downstream of the nozzle. As a result, the emission intensities of relevant rotational lines are observed to be enhanced. This research shows the potential of utilizing microcavity plasma jets as a tool to study and manipulate the collisional dynamics of highly-excited diatomic molecules.

  13. Noise suppressor for turbo fan jet engines

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1983-01-01

    A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.

  14. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot coronamore » with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.« less

  15. The Properties of Extragalactic Radio Jets

    NASA Astrophysics Data System (ADS)

    Finke, Justin

    2018-01-01

    I show that by assuming a standard Blandford-Konigl jet, it is possible to determine the speed (bulk Lorentz factor) and orientation (angle to the line of sight) of self-similar parsec-scale blazar jets by using four measured quantities: the core radio flux, the extended radio flux, the magnitude of the core shift between two frequencies, and the apparent jet opening angle. Once the bulk Lorentz factor and angle to the line of sight of a jet are known, it is possible to compute their Doppler factor, magnetic field, and intrinsic jet opening angle. I use data taken from the literature and marginalize over nuisance parameters associated with the electron distribution and equipartition, to compute these quantities, albeit with large errors. The results have implications for the resolution of the TeV BL Lac Doppler factor crisis and the production of jets from magnetically arrested disks.

  16. Aeroacoustic Characteristics of Supersonic Impinging Jets

    NASA Astrophysics Data System (ADS)

    Worden, Theodore James

    High-speed impinging jets are often generated by the propulsive systems of aerospace launch vehicles and tactical aircraft. In many instances, the presence of these impinging jets creates a hazard for flight operations personnel due to the extremely high noise levels and unsteady loads produced by fluid-surface interaction. In order to effectively combat these issues, a fundamental understanding of the flow physics and dominant acoustic behavior is essential. There are inherent challenges in performing such investigations, especially with the need to simulate the flowfield under realistic operational conditions (temperature, Mach number, etc.) and in configurations that are relevant to full-scale application. A state-of-the-art high-temperature flow facility at Florida State University has provided a unique opportunity to experimentally investigate the high-speed impinging jet flowfield at application-relevant conditions. Accordingly, this manuscript reports the findings of several experimental studies on high-temperature supersonic impinging jets in multiple configurations. The overall objective of these studies is to characterize the complex relationship between the hydrodynamic and acoustic fields. A fundamental parametric investigation has been performed to document the flowfield and acoustic characteristics of an ideally-expanded supersonic air jet impinging onto a semi-infinite flat plate at ambient and heated jet conditions. The experimental program has been designed to span a widely-applicable geometric parameter space, and as such, an extensive database of the flow and acoustic fields has been developed for impingement distances in the range 1d to 12d, impingement angles in the range 45 degrees to 90 degrees, and jet stagnation temperatures from 289K to 811K (TTR = 1.0 to 2.8). Measurements include point-wise mean and unsteady pressure on the impingement surface, time-resolved shadowgraphy of the flowfield, and fully three-dimensional near field acoustics

  17. Investigation on the energy spectrums of electrons in atmospheric pressure argon plasma jets and their dependences on the applied voltage

    NASA Astrophysics Data System (ADS)

    Chen, Xinxian; Tan, Zhenyu; Liu, Yadi; Li, Xiaotong; Pan, Jie; Wang, Xiaolong

    2017-08-01

    This work presents a systematical investigation on the spatiotemporal evolution of the energy spectrum of electrons in atmospheric pressure argon plasma jets and its dependence on the applied voltage. The investigations are carried out by means of the numerical simulation based on a particle-in-cell Monte-Carlo collision model. The characteristics of the spatiotemporal evolution of the energy spectrum of electrons (ESE) in the discharge space have been presented, and especially the mechanisms of inducing these characteristics have also been revealed. The present work shows the following conclusions. In the evolution of ESE, there is a characteristic time under each applied voltage. Before the characteristic time, the peak value of ESE decreases, the peak position shifts toward high energy, and the distribution of ESE becomes wider and wider, but the reverse is true after the characteristic time. The formation of these characteristics can be mainly attributed to the transport of electrons toward a low electric field as well as a balance between the energy gained from the electric field including the effect of space charges and the energy loss due to inelastic collisions in the process of electron transport. The characteristic time decreases with the applied voltage. In addition, the average energy of electrons at the characteristic time can be increased by enhancing the applied voltage. The results presented in this work are of importance for regulating and controlling the energy of electrons in the plasma jets applied to plasma medicine.

  18. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  19. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  20. Improving Jet Reactor Configuration for Production of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex

    2000-01-01

    The jet mixing reactor has been proposed for the industrial production of fullerene carbon nanotubes. Here we study the flowfield of this reactor using the SIMPLER algorithm. Hot peripheral jets are used to enhance heating of the central jet by mixing with the ambiance of reactor. Numerous configurations of peripheral jets with various number of jets, distance between nozzles, angles between the central jet and a peripheral jets, and twisted configuration of nozzles are considered. Unlike the previous studies of jet mixing, the optimal configuration of peripheral jets produces strong non-uniformity of the central jet in a cross-section. The geometrical shape of reactor is designed to obtain a uniform temperature of a catalyst.

  1. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  2. Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, J.Y.; James, D.L.; Parameswaran, S.

    1999-07-01

    Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less

  3. Deformations of free jets

    NASA Astrophysics Data System (ADS)

    Paruchuri, Srinivas

    This thesis studies three different problems. First we demonstrate that a flowing liquid jet can be controllably split into two separate subfilaments through the applications of a sufficiently strong tangential stress to the surface of the jet. In contrast, normal stresses can never split a liquid jet. We apply these results to observations of uncontrolled splitting of jets in electric fields. The experimental realization of controllable jet splitting would provide an entirely novel route for producing small polymeric fibers. In the second chapter we present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids, 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending. In chapter 4 we address the discrepancy between hydrodynamic theory of liquid jets, and the snap-off of narrow liquid jets observed in molecular dynamics (MD) simulations [23]. This has been previously attributed to the significant role of thermal fluctuations in nanofluidic systems. We argue that hydrodynamic description of such systems should include corrections to the Laplace pressure which result from the failure of the sharp interface assumption when the jet diameter becomes small enough. We show that this effect can in principle give rise to jet shapes similar to those observed in MD simulations, even when thermal fluctuations are completely neglected. Finally we summarize an algorithm developed to simulate droplet impact on a smooth surface.

  4. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  5. An experimental study of tone excited heated jets

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.

    1984-01-01

    The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.

  6. Drying hardwoods with impinging jets.

    Treesearch

    Howard N. Rosen

    1980-01-01

    Silver maple, yellow poplar, and black walnut lumber was dried in a prototype jet dryer over a range of temperatures from 120 degrees to 400 degrees Fahrenheit and air velocities from 1,000 to 9,000 fpm. Different drying schedules were developed for each type of wood. The quality of the jet-dried lumber was good and compared favorably with kiln-dried lumber.

  7. Temperature Dependence of Dissociative Electron Attachment to Halogenated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; Christophorou, Loucas G.

    1996-10-01

    Most of the gas mixtures currently in use for plasma processing of semiconductors involve halogenated hydrocarbons such as the strongly electronegative gases CCl4 and CFCl_3, the weakly electronegative gas CF_2Cl2 and the very weakly electronegative gases CHF3 and CF_4. Many dissociation processes are known to occur for these molecules. One of these dissociation reactions which is particularly effective for the strongly electronegative hydrocarbons is dissociative electron attachment. Even for weakly electron attaching gases, molecular dissociation via dissociative electron attachment at low energies can be an efficient dissociation process if the gas temperature is higher than ambient. Dissociative electron attachment is known to increase with increasing temperature above room temperature for many such compounds. In this paper, we report our measurements on the increases of the total electron attachment rate constant for CF_2Cl2 with increasing gas temperature from room temperature to about 600 K. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.

  8. High-temperature synthesis of silica particles by the chloride method in the regime of counter flow jet quenching

    NASA Astrophysics Data System (ADS)

    Kartaev, E. V.; Emel'kin, V. A.; Aul'chenko, S. M.

    2017-10-01

    The experimental and numerical investigations of synthesis of silica (SiO2) nanoparticles from premixed gaseous silicon tetrachloride (SiCl4) and oxygen of dry air in the high-temperature nitrogen flow of plasma-chemical reactor have been carried out. The regime of counter flow jet quenching of high-temperature heterogeneous flow has been utilized. The latter provided a rapid cooling of silica particles under nonequilibrium conditions with substantial temperature gradients. Synthesized silica particles were amorphous, with surface-average size being about 28 nm. The results of numerical calculations are found to agree qualitatively with experimental data.

  9. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  10. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  11. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  12. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  13. Spot cooling. Part 1: Human responses to cooling with air jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikov, A.K.; Halkjaer, L.; Arakelian, R.S.

    Eight standing male subjects and a thermal manikin were studied for thermal, physiological, and subjective responses to cooling with an air jet at room temperatures of 28 C, 33 C, and 38 C and a constant relative humidity of 50%. The subjects wore a standard uniform and performed light work. A vertical jet and a horizontal jet were employed The target area of the jet, i.e., the cross section of the jet where it first met the subject, had a diameter of 0.4 m and was located 0.5 m from the outlet. Experiments were performed at average temperatures at themore » jet target area of 20 C, 24 C, and 28 C. Each experiment lasted 190 minutes and was performed with three average velocities at the target area: 1 and 2 m/s and the preferred velocity selected by the subjects. The impact of the relative humidity of the room air, the jet`s turbulence intensity, and the use of a helmet on the physiological and subjective responses of the eight subjects was also studied The responses of the eight subjects were compared with the responses of a group of 29 subjects. The spot cooling improved the thermal conditions of the occupants. The average general thermal sensation for the eight subjects was linearly correlated to the average mean skin temperature and the average sweat rate. An average mean skin temperature of 33 C and an average sweat rate of 33 g{center_dot}h{sup {minus}1} m{sup {minus}2} were found to correspond to a neutral thermal sensation. The local thermal sensation at the neck and at the arm exposed to the cooling jet was found to be a function of the room air temperature and the local air velocity and temperature of the jet. The turbulence intensity of the cooling jet and the humidity of the room air had no impact on the subjects` physiological and subjective responses. Large individual differences were observed in the evaluation of the environment and in the air velocity preferred by the subjects.« less

  14. Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less

  15. Progress Toward Improving Jet Noise Predictions in Hot Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Kenzakowski, Donald C.

    2007-01-01

    An acoustic analogy methodology for improving noise predictions in hot round jets is presented. Past approaches have often neglected the impact of temperature fluctuations on the predicted sound spectral density, which could be significant for heated jets, and this has yielded noticeable acoustic under-predictions in such cases. The governing acoustic equations adopted here are a set of linearized, inhomogeneous Euler equations. These equations are combined into a single third order linear wave operator when the base flow is considered as a locally parallel mean flow. The remaining second-order fluctuations are regarded as the equivalent sources of sound and are modeled. It is shown that the hot jet effect may be introduced primarily through a fluctuating velocity/enthalpy term. Modeling this additional source requires specialized inputs from a RANS-based flowfield simulation. The information is supplied using an extension to a baseline two equation turbulence model that predicts total enthalpy variance in addition to the standard parameters. Preliminary application of this model to a series of unheated and heated subsonic jets shows significant improvement in the acoustic predictions at the 90 degree observer angle.

  16. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are

  17. On the structure of pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  18. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  1. Benchmark studies of thermal jet mixing in SFRs using a two-jet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omotowa, O. A.; Skifton, R.; Tokuhiro, A.

    To guide the modeling, simulations and design of Sodium Fast Reactors (SFRs), we explore and compare the predictive capabilities of two numerical solvers COMSOL and OpenFOAM in the thermal jet mixing of two buoyant jets typical of the outlet flow from a SFR tube bundle. This process will help optimize on-going experimental efforts at obtaining high resolution data for V and V of CFD codes as anticipated in next generation nuclear systems. Using the k-{epsilon} turbulence models of both codes as reference, their ability to simulate the turbulence behavior in similar environments was first validated for single jet experimental datamore » reported in literature. This study investigates the thermal mixing of two parallel jets having a temperature difference (hot-to-cold) {Delta}T{sub hc}= 5 deg. C, 10 deg. C and velocity ratios U{sub c}/U{sub h} = 0.5, 1. Results of the computed turbulent quantities due to convective mixing and the variations in flow field along the axial position are presented. In addition, this study also evaluates the effect of spacing ratio between jets in predicting the flow field and jet behavior in near and far fields. (authors)« less

  2. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  3. Application of Time-resolved PIV to Supersonic Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2007-01-01

    This presentation lays out the ground-breaking work at bringing high-speed (25kHz) particle image velocimetry (PIV) to bear on measurements of noise-producing turbulence in hot jets. The work is still in progress in that the tremendous amount of data obtained are still be analyzed, but the method has been validated and initial results of interest to jet noise modeling have been obtained. After a brief demonstration of the validation process used on the data, results are shown for hot jets at different temperatures and Mach numbers. Comparisons of first order statistics show the relative indifference of the turbulence to the presence of shocks and independence to jet temperature. What does come out is that when the shock-containing jets are in a screech mode the turbulence is highly elevated, showing the importance of removing screech phenomena from model-scale jets before applying findings to full-scale aircraft which typically do not contain shocks.

  4. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Kousal, J.; Shelemin, A.; Kylián, O.; Slavínská, D.; Biederman, H.

    2017-01-01

    Bio-decontamination of surfaces by means of atmospheric pressure plasma is nowadays extensively studied as it represents promising alternative to commonly used sterilization/decontamination techniques. The non-equilibrium atmospheric pressure plasmas were already reported to be highly effective in removal of a wide range of biological residual from surfaces. Nevertheless the kinetics of removal of biological contamination from surfaces is still not well understood as the majority of performed studies were based on ex-situ evaluation of etching rates, which did not allow investigating details of plasma action on biomolecules. This study therefore presents a real-time, in-situ ellipsometric characterization of removal of bovine serum albumin (BSA) from surfaces by low-temperature atmospheric plasma jet operated in argon. Non-linear and at shorter distances between treated samples and nozzle of the plasma jet also non-monotonic dependence of the removal rate on the treatment duration was observed. According to additional measurements focused on the determination of chemical changes of treated BSA as well as temperature measurements, the observed behavior is most likely connected with two opposing effects: the formation of a thin layer on the top of BSA deposit enriched in inorganic compounds, whose presence causes a gradual decrease of removal efficiency, and slight heating of BSA that facilitates its degradation and volatilization induced by chemically active radicals produced by the plasma.

  5. On the spatial stability of a liquid jet in the presence of vapor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas,more » (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.« less

  6. Experimental evaluation of fluctuating density and radiated noise from a high temperature jet

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.

    1973-01-01

    An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.

  7. Rocket measurements of electron temperature in the E region

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. K., Jr.; Smith, L. G.

    1980-01-01

    The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc.

  8. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  9. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less

  10. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  11. Progress in Development of C60 Nanoparticle Plasma Jet for Diagnostic of Runaway Electron Beam-Plasma Interaction and Disruption Mitigation Study for ITER

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.

    2013-10-01

    We produced a C60 nanoparticle plasma jet (NPPJ) with uniquely fast response-to-delivery time (~ 1 - 2 ms) and unprecedentedly high momentum (~ 0 . 6 g .km/s). The C60 NPPJ was obtained by using a solid state TiH2/C60 pulsed power cartridge producing ~180 mg of C60 molecular gas by sublimation and by electromagnetic acceleration of the C60 plasma in a coaxial gun (~35 cm length, 96 kJ energy) with the output of a high-density (>1023 m-3) hyper-velocity (>4 km/s) plasma jet. The ~ 75 mg C60/C plasma jet has the potential to rapidly and deeply deliver enough mass to significantly increase electron density (to ne ~ 2 . 4 ×1021 m-3, i.e. ~ 60 times larger than typical DIII-D pre-disruption value, ne 0 ~ 4 ×1019 m-3), and to modify the 'critical electric field' and the runaway electrons (REs) collisional drag during different phases of REs dynamics. The C60 NPPJ, as a novel injection technique, allows RE beam-plasma interaction diagnostic by quantitative spectroscopy of C ions visible/UV line intensity. The system is scalable to ~ 1 - 2 g C60/C plasma jet output and technology is adaptable to ITER acceptable materials (BN and Be) for disruption mitigation. Work supported by US DOE DE-FG02-08ER85196 grant.

  12. Computational Investigation of In-Flight Temperature in Shaped Charge Jets and Explosively Formed Penetrators

    NASA Astrophysics Data System (ADS)

    Sable, Peter; Helminiak, Nathaniel; Harstad, Eric; Gullerud, Arne; Hollenshead, Jeromy; Hertel, Eugene; Sandia National Laboratories Collaboration; Marquette University Collaboration

    2017-06-01

    With the increasing use of hydrocodes in modeling and system design, experimental benchmarking of software has never been more important. While this has been a large area of focus since the inception of computational design, comparisons with temperature data are sparse due to experimental limitations. A novel temperature measurement technique, magnetic diffusion analysis, has enabled the acquisition of in-flight temperature measurements of hyper velocity projectiles. Using this, an AC-14 bare shaped charge and an LX-14 EFP, both with copper linings, were simulated using CTH to benchmark temperature against experimental results. Particular attention was given to the slug temperature profiles after separation, and the effect of varying equation-of-state and strength models. Simulations are in agreement with experimental, attaining better than 2% error between observed shaped charge temperatures. This varied notably depending on the strength model used. Similar observations were made simulating the EFP case, with a minimum 4% deviation. Jet structures compare well with radiographic images and are consistent with ALEGRA simulations previously conducted. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Measurements of hot-electron temperature in laser-irradiated plasmas

    DOE PAGES

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; ...

    2016-10-26

    In a recently published work 1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo K α emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 10 14 W/cm 2; 2-ns pulses) the measured temperatures are consistently lower than those measuredmore » by the HXRD (by a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using K α line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (E hot), and that this makes E hot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.« less

  14. Measurements of hot-electron temperature in laser-irradiated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.

    In a recently published work 1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo K α emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 10 14 W/cm 2; 2-ns pulses) the measured temperatures are consistently lower than those measuredmore » by the HXRD (by a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using K α line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (E hot), and that this makes E hot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.« less

  15. An analysis of the effects of temperatures and circulations on the strength of the low-level jet in the Turkana Channel in East Africa

    NASA Astrophysics Data System (ADS)

    Hartman, Adam T.

    2018-05-01

    The Turkana Low-Level Jet (LLJ) was discovered in the early 1980s, yet there are still questions about the primary forcing mechanisms that drive and sustain the jet throughout the year. A few studies have addressed these questions, but most focus on numerical simulations of mechanical forcing mechanisms, such as orography, channeling flow, and monsoon background flow. No studies have shown the effects of thermal forcing from differential heating in the regions in and around the Turkana Channel. This paper uses National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in order to analyze and find relationships between temperature gradients and the strength of the Turkana LLJ. In addition to temperature, potential temperature, divergence, wind magnitude, wind fields, and vertical motion are also examined. This analysis attempts to show that thermal forcing is one of the most important factors, if not the primary factor, in the initiation and maintenance of the jet and propose that more research and model simulations should be implemented to determine the contributions from thermal forcing.

  16. Characterization of a microwave-excited atmospheric-pressure argon plasma jet using two-parallel-wires transmission line resonator

    NASA Astrophysics Data System (ADS)

    Choi, J.; Eom, I. S.; Kim, S. J.; Kwon, Y. W.; Joh, H. M.; Jeong, B. S.; Chung, T. H.

    2017-09-01

    This paper presents a method to produce a microwave-excited atmospheric-pressure plasma jet (ME-APPJ) with argon. The plasma was generated by a microwave-driven micro-plasma source that uses a two-parallel-wire transmission line resonator (TPWR) operating at around 900 MHz. The TPWR has a simple structure and is easier to fabricate than coaxial transmission line resonator (CTLR) devices. In particular, the TPWR can sustain more stable ME-APPJ than the CTLR can because the gap between the electrodes is narrower than that in the CTLR. In experiments performed with an Ar flow rate from 0.5 to 8.0 L.min-1 and an input power from 1 to 6 W, the rotational temperature was determined by comparing the measured and simulated spectra of rotational lines of the OH band and the electron excitation temperature determined by the Boltzmann plot method. The rotational temperature obtained from OH(A-X) spectra was 700 K to 800 K, whereas the apparent gas temperature of the plasma jet remains lower than ˜325 K, which is compatible with biomedical applications. The electron number density was determined using the method based on the Stark broadening of the hydrogen Hβ line, and the measured electron density ranged from 6.5 × 1014 to 7.6 × 1014 cm-3. TPWR ME-APPJ can be operated at low flows of the working gas and at low power and is very stable and effective for interactions of the plasma with cells.

  17. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  18. Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.

    2018-03-01

    Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.

  19. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  20. An inkjet vision measurement technique for high-frequency jetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation ofmore » high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.« less

  1. Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.

    2016-09-01

    The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.

  2. Mechanisms of Plasma Acceleration in Coronal Jets

    NASA Astrophysics Data System (ADS)

    Soto, N.; Reeves, K.; Savcheva, A. S.

    2016-12-01

    Jets are small explosions that occur frequently in the Sun possibly driven by the local reconfiguration of the magnetic field, or reconnection. There are two types of coronal jets: standard jets and blowout jets. The purpose of this project is to determine which mechanisms accelerate plasma in two different jets, one that occurred in January 17, 2015 at the disk of the sun and another in October 24, 2015 at the limb. Two possible acceleration mechanisms are chromospheric evaporation and magnetic acceleration. Using SDO/AIA, Hinode/XRT and IRIS data, we create height-time plots, and calculate the velocities of each wavelength for both jets. We calculate the potential magnetic field of the jet and the general region around it to gain a more detailed understanding of its structure, and determine if the jet is likely to be either a standard or blowout jet. Finally, we calculate the magnetic field strength for different heights along the jet spire, and use differential emission measures to calculate the plasma density. Once we have these two values, we calculate the Alfven speed. When analyzing our results we are looking for certain patterns in our velocities. If the plasma in a jet is accelerated by chromospheric evaporation, we expect the velocities to increase as function of temperature, which is what we observed in the October 24th jet. The magnetic models for this jet also show the Eiffel Tower shaped structure characteristic of standard jets, which tend to have plasma accelerated by this mechanism. On the other hand, if the acceleration mechanism were magnetic acceleration, we would expect the velocities to be similar regardless of temperature. For the January 17th jet, we saw that along the spire, the velocities where approximately 200 km/s in all wavelengths, but the velocities of hot plasma detected at the base were closer to the Alfven speed, which was estimated to be about 2,000 km/s. These observations suggest that the plasma in the January 17th jet is

  3. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  4. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  5. Measuring the Electron Temperature in the Corona

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  6. Operating limitations of high speed jet lubricated ball bearings

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Signer, H.; Bamberger, E. N.

    1975-01-01

    A parametric study was performed with 120-mm bore angular-contact ball bearings having a nominal contact angle of 20 degrees. The bearings had either an inner- or an outer-race land riding cage, and lubrication was by recirculating oil jets which had either a single or dual orifice. Thrust load, speed, and lubricant flow rate were varied. Test results were compared with those previously reported and obtained from bearings of the same design which were under-race lubricated but run under the same conditions. Jet lubricated ball bearings were limited to speeds less than 2,500,000 DN, and bearings having inner-race land riding cages produced lower temperatures than bearings with outer-race land riding cages. For a given lubricant flow rate dual orifice jets produced lower bearing temperatures than single orifice jets, but under-race lubrication produced lower bearing temperatures under all conditions of operation with no apparent bearing speed limitation.

  7. Development of Electronics for Low-Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric

    2001-01-01

    Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.

  8. FAST TRACK COMMUNICATION: Modelling of streamer propagation in atmospheric-pressure helium plasma jets

    NASA Astrophysics Data System (ADS)

    Naidis, G. V.

    2010-10-01

    The results of a two-dimensional numerical simulation of positive streamer propagation in atmospheric-pressure helium jets injected into ambient air are presented. It is shown that depending on the jet width and the initial radial distribution of electron number density streamer structures of two types can be formed: one with maxima of electric field and electron density at the jet axis and another with maxima of these parameters near the boundary between the jet and surrounding air. The latter structure is similar to the observed ring-shaped structures of plasma bullets.

  9. Study of the physical discharge properties of a Ar/O2 DC plasma jet

    NASA Astrophysics Data System (ADS)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.

    2018-03-01

    In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from {NO }γ( A2 Σ^{+} \\to {X}2 Πr ) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.

  10. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  11. Dilution jet mixing program, phase 3

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Myers, G.; White, C.

    1985-01-01

    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes.

  12. Flow and temperature fields following injection of a jet normal to a cross stream

    NASA Technical Reports Server (NTRS)

    Goldstein, R. J.; Ramsey, J. W.; Eriksen, V. L.

    1978-01-01

    The interaction of a jet entering into a freestream normal to the main flow direction has been studied with particular attention directed to visualization of the large-scale flow interactions and to measurement of the film-cooling performance. Large eddies are apparent downstream of the entering jet even at moderate blowing rate (defined as the ratio of the mass velocity of the jet to the mass velocity of the freestream). At higher blowing rate, there is only intermittent contact between the mass from the jet and the downstream wall. The film cooling downstream from a single normal jet yields a lower centerline effectiveness compared to an inclined jet through a greater lateral spreading. The greater spreading provides a more uniform effectiveness across the span of the downstream wall, in particular at large blowing rate.

  13. Electron temperature critical gradient and transport stiffness in DIII-D

    DOE PAGES

    Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...

    2015-07-06

    The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less

  14. Improved Stirling engine performance using jet impingement

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Britt, E. J.; Thieme, L. G.

    1982-01-01

    Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.

  15. Thermodynamics and historical relevance of a jetting thermometer made of Chinese zisha ceramic

    NASA Astrophysics Data System (ADS)

    Lee, Vincent; Attinger, Daniel

    2016-07-01

    Following a recent trend of scientific studies on artwork, we study here the thermodynamics of a thermometer made of zisha ceramic, related to the Chinese tea culture. The thermometer represents a boy who “urinates” shortly after hot water is poured onto his head. Long jetting distance is said to indicate that the water temperature is hot enough to brew tea. Here, a thermodynamic model describes the jetting phenomenon of that pee-pee boy. The study demonstrates how thermal expansion of an interior air pocket causes jetting. A thermodynamic potential is shown to define maximum jetting velocity. Seven optimization criteria to maximize jetting distance are provided, including two dimensionless numbers. Predicted jetting distances, jet durations, and temperatures agree very well with infrared and optical measurements. Specifically, the study confirms that jetting distances are sensitive enough to measure water temperature in the context of tea brewing. Optimization results show that longer jets are produced by large individuals, with low body mass index, with a boyhood of medium size inclined at an angle π/4. The study ends by considering the possibility that ceramic jetting artifacts like the pee-pee boy might have been the first thermometers known to mankind, before Galileo Galilei’s thermoscope.

  16. Thermodynamics and historical relevance of a jetting thermometer made of Chinese zisha ceramic

    PubMed Central

    Lee, Vincent; Attinger, Daniel

    2016-01-01

    Following a recent trend of scientific studies on artwork, we study here the thermodynamics of a thermometer made of zisha ceramic, related to the Chinese tea culture. The thermometer represents a boy who “urinates” shortly after hot water is poured onto his head. Long jetting distance is said to indicate that the water temperature is hot enough to brew tea. Here, a thermodynamic model describes the jetting phenomenon of that pee-pee boy. The study demonstrates how thermal expansion of an interior air pocket causes jetting. A thermodynamic potential is shown to define maximum jetting velocity. Seven optimization criteria to maximize jetting distance are provided, including two dimensionless numbers. Predicted jetting distances, jet durations, and temperatures agree very well with infrared and optical measurements. Specifically, the study confirms that jetting distances are sensitive enough to measure water temperature in the context of tea brewing. Optimization results show that longer jets are produced by large individuals, with low body mass index, with a boyhood of medium size inclined at an angle π/4. The study ends by considering the possibility that ceramic jetting artifacts like the pee-pee boy might have been the first thermometers known to mankind, before Galileo Galilei’s thermoscope. PMID:27431925

  17. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jetsmore » that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.« less

  18. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-01-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  19. Detection of radio emission from the jet in Centaurus A

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Burns, J. O.; Feigelson, E. D.

    1981-01-01

    The VLA has detected radio emission from the X-ray jet in Centaurus A, at 20 and 6 cm, whose radio morphology is similar to that of the X-ray jet. It is suggested that the same population of relativistic electrons is responsible for both radio and X-ray synchrotron emission, in which case in situ acceleration of electrons in the knots would be mandatory. The relativistic beam may alternatively heat the surrounding gas, resulting in X-ray emission. The static confinement of the knots of the jet seems to be accomplished by the presence of the ambient hot gas in the galaxy. The galaxy's nucleus has an inverted spectrum at radio frequencies, and it is noted that the jet is as bright as the nucleus at low frequencies.

  20. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  1. Resonant ion acceleration by plasma jets: Effects of jet breaking and the magnetic-field curvature.

    PubMed

    Artemyev, A V; Vasiliev, A A

    2015-05-01

    In this paper we consider resonant ion acceleration by a plasma jet originating from the magnetic reconnection region. Such jets propagate in the background magnetic field with significantly curved magnetic-field lines. Decoupling of ion and electron motions at the leading edge of the jet results in generation of strong electrostatic fields. Ions can be trapped by this field and get accelerated along the jet front. This mechanism of resonant acceleration resembles surfing acceleration of charged particles at a shock wave. To describe resonant acceleration of ions, we use adiabatic theory of resonant phenomena. We show that particle motion along the curved field lines significantly influences the acceleration rate. The maximum gain of energy is determined by the particle's escape from the system due to this motion. Applications of the proposed mechanism to charged-particle acceleration in the planetary magnetospheres and the solar corona are discussed.

  2. Dynamics of apokamp-type atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victor A.; Skakun, Victor S.; Baksht, Evgeny Kh.; Tarasenko, Victor F.

    2017-02-01

    The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek `off' and `bend'). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100-250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100-220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.

  3. Jet in jet in M87

    NASA Astrophysics Data System (ADS)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  4. Supersonic Coaxial Jet Experiment for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.

    1999-01-01

    A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.

  5. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  6. Laboratory plasma with cold electron temperature of the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Robertson, Scott

    2009-10-01

    For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.

  7. Synthetic Jet Flow Field Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome

    2004-01-01

    An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.

  8. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  9. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  10. High temperature electronic excitation and ionization rates in gases

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick

    1991-01-01

    The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.

  11. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are given on the mixing of a single row of jets with an isothermal mainstream in a straight duct, to include flow and geometric variations typical of combustion chambers in gas turbine engines. The principal conclusions reached from these experiments were: at constant momentum ratio, variations in density ratio have only a second-order effect on the profiles; a first-order approximation to the mixing of jets with a variable temperature mainstream can be obtained by superimposing the jets-in-an isothermal-crossflow and mainstream profiles; flow area convergence, especially injection-wall convergence, significantly improves the mixing; for opposed rows of jets, with the orifice centerlines in-line, the optimum ratio of orifice spacing to duct height is one half of the optimum value for single side injection at the same momentum ratio; and for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single side injection at the same momentum ratio.

  12. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are presented on the mixing of a single row of jets with an isothermal mainstream in a straight duct, with flow and geometric variations typical of combustion chambers in gas turbine engines included. It is found that at a constant momentum ratio, variations in the density ratio have only a second-order effect on the profiles. A first-order approximation to the mixing of jets with a variable temperature mainstream can, it is found, be obtained by superimposing the jets-in-an-isothermal-crossflow and mainstream profiles. Another finding is that the flow area convergence, especially injection-wall convergence, significantly improves the mixing. For opposed rows of jets with the orifice cone centerlines in-line, the optimum ratio of orifice spacing to duct height is determined to be 1/2 of the optimum value for single injection at the same momentum ratio. For opposed rows of jets with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is found to be twice the optimum value for single side injection at the same momentum ratio.

  13. Turbulent mixing noise from supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Chen, Ping

    1994-01-01

    There is now a substantial body of theoretical and experimental evidence that the dominant part of the turbulent noise of supersonic jets is generated directly by the large turbulence structures/instability waves of the jet flow. Earlier, Tam and Burton provided a description of the physical mechanism by which supersonically traveling instability waves can generate sound efficiently. They used the method of matched asymptotic expansions to construct an instability wave solution which is valid in the far field. The present work is an extension of the theory of Tam and Burton. It is argued that the instability wave spectrum of the jet may be regarded as generated by stochastic white noise excitation at the nozzle lip region. The reason why the excitation has white noise characteristics is that near the nozzle lip region the flow in the jet mixing layer has no intrinsic length and time scales. The present stochastic wave model theory of supersonic jet noise contains a single unknown multiplicative constant. Comparisons between the calculated noise directivities at selected Strouhal numbers and experimental measurements of a Mach 2 jet at different jet temperatures have been carried out. Favorable agreements are found.

  14. The noise and flow characteristics of inverted-profile coannular jets

    NASA Technical Reports Server (NTRS)

    Tanna, H. K.; Tester, B. J.; Lau, J. C.

    1979-01-01

    A basic understanding of the noise reduction mechanisms in shock-free inverted-velocity-profile coannular jets was studied. Acoustic measurements are first conducted in an anechoic facility to isolate the effects of inverted velocity and inverted temperature for coannular jets having constant total thrust, mass flow rate and exit area. To obtain physical explanations of the measured noise changes, several types of experiments are conducted. These include (1) source location experiments using the polar correlation technique, (2) mean flow surveys using a combination pressure/temperature probe, and (3) detailed mean flow and turbulence measurements using a two-point four-channel laser velocimeter. The results from these experiments are presented and discussed in detail. Finally, the measured variations of coannular jet mixing noise with fan-to-primary velocity ratio and static temperature ratio are interpreted by utilizing the results from the various experimental phases in conjunction with the existing Lockheed single jet noise prediction model.

  15. Ultra-High Bypass Ratio Jet Noise

    NASA Technical Reports Server (NTRS)

    Low, John K. C.

    1994-01-01

    The jet noise from a 1/15 scale model of a Pratt and Whitney Advanced Ducted Propulsor (ADP) was measured in the United Technology Research Center anechoic research tunnel (ART) under a range of operating conditions. Conditions were chosen to match engine operating conditions. Data were obtained at static conditions and at wind tunnel Mach numbers of 0.2, 0.27, and 0.35 to simulate inflight effects on jet noise. Due to a temperature dependence of the secondary nozzle area, the model nozzle secondary to primary area ratio varied from 7.12 at 100 percent thrust to 7.39 at 30 percent thrust. The bypass ratio varied from 10.2 to 11.8 respectively. Comparison of the data with predictions using the current Society of Automotive Engineers (SAE) Jet Noise Prediction Method showed that the current prediction method overpredicted the ADP jet noise by 6 decibels. The data suggest that a simple method of subtracting 6 decibels from the SAE Coaxial Jet Noise Prediction for the merged and secondary flow source components would result in good agreement between predicted and measured levels. The simulated jet noise flight effects with wind tunnel Mach numbers up to 0.35 produced jet noise inflight noise reductions up to 12 decibels. The reductions in jet noise levels were across the entire jet noise spectra, suggesting that the inflight effects affected all source noise components.

  16. Profiles of electron temperature and Bz along Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Petrukovich, A. A.; Nakamura, R.; Zelenyi, L. M.

    2013-06-01

    We study the electron temperature distribution and the structure of the current sheet along the magnetotail using simultaneous observations from THEMIS spacecraft. We perform a statistical study of 40 crossings of the current sheet when the three spacecraft THB, THC, and THD were distributed along the tail in the vicinity of midnight with coordinates XB \\in [-30 RE, -20 RE], XC \\in [-20 RE, -15 RE], and XD ~ -10 RE. We obtain profiles of the average electron temperature \\mlab Te\\mrab and the average magnetic field \\mlab Bz\\mrab along the tail. Electron temperature and \\mlab Bz\\mrab increase towards the Earth with almost the same rates (i.e., ratio \\mlab Te\\mrab/\\mlab Bz\\mrab ≈ 2 keV/7 nT is approximately constant along the tail). We also use statistics of 102 crossings of the current sheet from THB and THC to estimate dependence of Te and Bz distributions on geomagnetic activity. The ratio \\mlab Te \\mrab/\\mlab Bz\\mrab depends on geomagnetic activity only slightly. Additionally we demonstrate that anisotropy of the electron temperature \\mlab T∥/T⊥\\mrab ≈ 1.1 is almost constant along the tail for X \\in [-30 RE, -10 RE].

  17. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  18. The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Many tasks in fluids engineering require prediction of turbulence of jet flows. The present document documents the single-point statistics of velocity, mean and variance, of cold and hot jet flows. The jet velocities ranged from 0.5 to 1.4 times the ambient speed of sound, and temperatures ranged from unheated to static temperature ratio 2.7. Further, the report assesses the accuracies of the data, e.g., establish uncertainties for the data. This paper covers the following five tasks: (1) Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. (2) Compare PIV data with hotwire and laser Doppler velocimetry (LDV) data published in the open literature. (3) Compare different datasets acquired at the same flow conditions in multiple tests to establish uncertainties. (4) Create a consensus dataset for a range of hot jet flows, including uncertainty bands. (5) Analyze this consensus dataset for self-consistency and compare jet characteristics to those of the open literature. The final objective was fulfilled by using the potential core length and the spread rate of the half-velocity radius to collapse of the mean and turbulent velocity fields over the first 20 jet diameters.

  19. Measurement of inclusive jet cross sections in Z/gamma*(-->e+e-) + jets production in pp[over ] collisions at square root s = 1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-14

    Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in pp[over ] collisions at square root s = 1.96 TeV with the upgraded Collider Detector at Fermilab in run II, based on an integrated luminosity of 1.7 fb(-1). The measurements cover the rapidity region |y(jet)|<2.1 and the transverse momentum range p(T)(jet)>30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

  20. Jet production in high Q 2 deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Avad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, E.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. I.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, I. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, L.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-03-01

    Two-jet production in deep-inelastic electron-proton scattering has been studied for 160< Q 2<1280 GeV2, 0.01< x<0.1 and 0.04< y<0.95 with the ZEUS detector at HERA. The kinematic properties of the jets and the jet production rates are presented. The partonic scaling variables of the two-jet system and the rate of two-jet production are compared to perturbative next-to-leading order QCD calculations.

  1. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  2. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  3. Correlations between wave activity and electron temperature in the Martian upper ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David

    2017-04-01

    Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.

  4. Confined Impinging Jets in Porous Media

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Mansi, N.; Nardini, S.

    2016-09-01

    Impinging jets are adopted in drying of textiles, paper, cooling of gas turbine components, freezing of tissue in cryosurgery and manufacturing, electronic cooling. In this paper an experimental investigation is carried out on impinging jets in porous media with the wall heated from below with a uniform heat flux. The fluid is air. The experimental apparatus is made up of a fun systems, a test section, a tube, to reduce the section in a circular section. The tube is long 1.0 m and diameter of 0.012 m. The test section has a diameter of 0.10 m and it has the thickness of 10, 20 and 40 mm. In the test section the lower plate is in aluminum and is heated by an electrical resistance whereas the upper plate is in Plexiglas. The experiments are carried out employing a aluminum foam 40 PPI at three thickness as the test section. Results are obtained in a Reynolds number range from 5100 to 15300 and wall heat flux range from 510 W/m2 to 1400 W/m2. Results are given in terms of wall temperature profiles, local and average Nusselt numbers, pressure drops, friction factor and Richardson number.

  5. Effect of some nitrogen compounds thermal stability of jet A

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    The effect of known concentrations of some nitrogen containing compounds on the thermal stability of a conventional fuel, namely, Jet A was investigated. The concentration range from 0.01 to 0.1 wt% nitrogen was examined. Solutions were made containing, individually, pyrrole, indole, quinoline, pyridine, and 4 ethylpyridine at 0.01, 0.03, 0.06, and 0.1 wt% nitrogen concentrations in Jet A. The measurements were all made by using a standard ASTM test for evaluating fuel thermal oxidation behavior, namely, ASTM D3241, 'thermal oxidation stability of turbine fuels (JFTOT procedure).' Measurements were made at two temperature settings, and 'breakpoint temperatures' were determined. The results show that the pyrrole and indole solutions have breakpoint temperatures substantially lower than those of the Jet A used.

  6. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  7. Determining coronal electron temperatures from observations with UVCS/SOHO

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.

    1995-01-01

    The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.

  8. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  9. Resolving the Inner Arcsecond of the RY Tau Jet with HST

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen L.; Schneider, P. Christian; Audard, Marc; Güdel, Manuel

    2018-03-01

    Faint X-ray emission from hot plasma (T x > 106 K) has been detected extending outward a few arcseconds along the optically delineated jets of some classical T Tauri stars including RY Tau. The mechanism and location where the jets are heated to X-ray temperatures are unknown. We present high spatial resolution Hubble Space Telescope (HST) far-ultraviolet long-slit observations of RY Tau with the slit aligned along the jet. The primary objective was to search for C IV emission from warm plasma at T C IV ∼ 105 K within the inner jet (<1″) that cannot be fully resolved by X-ray telescopes. Spatially resolved C IV emission is detected in the blueshifted jet extending outward from the star to 1″ and in the redshifted jet out to 0.″5. C IV line centroid shifts give a radial velocity in the blueshifted jet of ‑136 ± 10 km s‑1 at an offset of 0.″29 (39 au) and deceleration outward is detected. The deprojected jet speed is subject to uncertainties in the jet inclination, but values ≳200 km s‑1 are likely. The mass-loss rate in the blueshifted jet is at least {\\dot{M}}jet,{blue}}=2.3× {10}-9 M ⊙ yr‑1, consistent with optical determinations. We use the HST data along with optically determined jet morphology to place meaningful constraints on candidate jet-heating models including a hot-launch model in which the jet is heated near the base to X-ray temperatures by an unspecified (but probably magnetic) process, and downstream heating from shocks or a putative jet magnetic field.

  10. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.; Narumanchi, S.; Moreno, G.

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and weremore » used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.« less

  11. A measurement of multi-jet rates in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-03-01

    Multi-jet production is observed in deep-inelastic electron proton scattering with the H1 detector at HERA. Jet rates for momentum transfers squared up to 500 GeV2 are determined using the JADE jet clustering algorithm. They are found to be in agreement with predictions from QCD based models.

  12. On the Scaling Laws and Similarity Spectra for Jet Noise in Subsonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are reviewed with regard to their applicability to deduce full-scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full- scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. New results are presented showing the dependence of overall sound power level on the jet temperature ratio at various jet Mach numbers. A generalized similarity spectrum is also proposed, which accounts for convective Mach number and angle to the jet axis.

  13. Calculating the electron temperature in the lightning channel by continuous spectrum

    NASA Astrophysics Data System (ADS)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  14. Electron-Temperature Dependence of the Recombination of NH4(+)((NH3)(sub n) Ions with Electrons

    NASA Technical Reports Server (NTRS)

    Skrzypkowski, M. P.; Johnson, R.

    1997-01-01

    The two-body recombination of NH4(+)(NH3)(sub 2,3) cluster-ions with electrons has been studied in an afterglow experiment in which the electron temperature T, was elevated by radio-frequency heating from 300 K up to 900 K. The recombination coefficients for the n = 2 and n = 3 cluster ions were found to be equal, alpha(sub 2, sup(2)) = alpha(sub 3, sup(2)) = (4.8 +/- 0.5) x 10(exp - 6)cu cm/s, and to vary with electron temperature as T(sub c, sup -0.65) rather than to be nearly temperature-independent as had been inferred from measurements in microwave-heated plasmas.

  15. Experimental verification of the thermodynamic properties for a jet-A fuel

    NASA Technical Reports Server (NTRS)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  16. Jet impingement heat transfer enhancement for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.

    1981-01-01

    A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.

  17. Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality

  18. Study of VTOL in ground-effect flow field including temperature effect

    NASA Technical Reports Server (NTRS)

    Hill, W. G.; Jenkins, R. C.; Kalemaris, S. G.; Siclari, M. J.

    1982-01-01

    Detailed pressure, temperature, and velocity data were obtained for twin-fan configurations in-ground-effect and flow models to aid in predicting pressures and upwash forces on aircraft surfaces were developed. For the basic experiments, 49.5 mm-diameter jets were used, oriented normal to a simulated round plane, with pressurized, heated air providing a jet. The experimental data consisted of: (1) the effect of jet height and temperature on the ground, model, and upwash pressures, and temperatures, (2) the effect of simulated aircraft surfaces on the isolated flow field, (3) the jet-induced forces on a three-dimensional body with various strakes, (4) the effects of non-uniform coannular jets. For the uniform circular jets, temperature was varied from room temperature (24 C) to 232 C. Jet total pressure was varied between 9,300 Pascals and 31,500 Pascals. For the coannular jets, intended to represent turbofan engines, fan temperature was maintained at room temperature while core temperature was varied from room temperature to 437 C. Results are presented.

  19. Sub- and supercritical jet disintegration

    NASA Astrophysics Data System (ADS)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  20. The association of a J-burst with a solar jet

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.

    2017-10-01

    Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts

  1. Evidence from IRIS that Sunspot Large Penumbral Jets Spin

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy R.; Sterling, Alphonse C.

    2017-01-01

    Recent observations from Hinode (SOT/FG) revealed the presence of large penumbral jets (widths = 500 km, larger than normal penumbral microjets, which have widths < 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 Å, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 Å slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. The few large penumbral jets for which we have IRIS spectra show evidence of spin. If these have mixed-polarity at their base, then they might be driven the same way as coronal jets and CMEs.

  2. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  3. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  4. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  5. The transverse momentum distribution of hadrons within jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  6. The transverse momentum distribution of hadrons within jets

    DOE PAGES

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...

    2017-11-13

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  7. The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited

    NASA Astrophysics Data System (ADS)

    Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri

    2017-05-01

    In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

  8. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less

  9. Measurements of Thermal Effects on Acoustic Screech in a Choked Circular Jet Emanating from a Sharp-Edged Orifice

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    Experiments are performed in a 24.4 mm diameter choked circular hot and cold jets issuing from a sharp-edged orifice at a fully expanded jet Mach number of 1.85. The stagnation temperature of the hot and the cold jets are 319 K and 299 K respectively. The results suggest that temperature effects on the screech amplitude and frequency are manifested for the fundamental, with a reduced amplitude and increased frequency for hot jet relative to the cold jet. Temperature effects on the second harmonic are also observed.

  10. Measurement of hydroxyl radical density generated from the atmospheric pressure bioplasma jet

    NASA Astrophysics Data System (ADS)

    Hong, Y. J.; Nam, C. J.; Song, K. B.; Cho, G. S.; Uhm, H. S.; Choi, D. I.; Choi, E. H.

    2012-03-01

    Atmospheric pressure bioplasmas are being used in a variety of bio-medical and material processing applications, surface modifications of polymers. This plasma can generate the various kinds of radicals when it contacs with the water. Especially, hydroxyl radical species have very important role in the biological and chemical decontamination of media in this situation. It is very important to investigate the hydroxyl radical density in needle-typed plasma jet since it plays a crucial role in interaction between the living body and plasma. We have generated the needle-typed plasma jet bombarding the water surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy). It is noted that the electron temperature and plasma density are measured to be about 1.7 eV and 3.4 × 1012 cm-3, respectively, under Ar gas flow ranged from 80 to 300 sccm (standard cubic centimeter per minute) in this experiment. The hydroxyl radical density has also been investigated and measured to be maximum value of 2.6 × 1015 cm-3 for the gas flow rate of 150 sccm in the needle-typed plasma jet by the ultraviolet optical absorption spectroscopy.

  11. Increased Electron-Accepting and Decreased Electron-Donating Capacities of Soil Humic Substances in Response to Increasing Temperature.

    PubMed

    Tan, Wenbing; Xi, Beidou; Wang, Guoan; Jiang, Jie; He, Xiaosong; Mao, Xuhui; Gao, Rutai; Huang, Caihong; Zhang, Hui; Li, Dan; Jia, Yufu; Yuan, Ying; Zhao, Xinyu

    2017-03-21

    The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.

  12. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  13. EHW Approach to Temperature Compensation of Electronics

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Efforts are under way to apply the concept of evolvable hardware (EHW) to compensate for variations, with temperature, in the operational characteristics of electronic circuits. To maintain the required functionality of a given circuit at a temperature above or below the nominal operating temperature for which the circuit was originally designed, a new circuit would be evolved; moreover, to obtain the required functionality over a very wide temperature range, there would be evolved a number of circuits, each of which would satisfy the performance requirements over a small part of the total temperature range. The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles, namely, "Reconfigurable Arrays of Transistors for Evolvable Hardware" (NPO-20078), Vol. 25, No. 2 (February 2001), page 36; Evolutionary Automated Synthesis of Electronic Circuits (NPO- 20535), Vol. 26, No. 7 (July 2002), page 37; "Designing Reconfigurable Antennas Through Hardware Evolution" (NPO-20666), Vol. 26, No. 7 (July 2002), page 38; "Morphing in Evolutionary Synthesis of Electronic Circuits" (NPO-20837), Vol. 26, No. 8 (August 2002), page 31; "Mixtrinsic Evolutionary Synthesis of Electronic Circuits" (NPO-20773) Vol. 26, No. 8 (August 2002), page 32; and "Synthesis of Fuzzy-Logic Circuits in Evolvable Hardware" (NPO-21095) Vol. 26, No. 11 (November 2002), page 38. To recapitulate from the cited prior articles: EHW is characterized as evolutionary in a quasi-genetic sense. The essence of EHW is to construct and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The connection and disconnection can be effected by use of field-programmable transistor arrays (FPTAs). The evolution is guided by a search

  14. Numerical investigation on cryogenic liquid jet under transcritical and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xie, Maozhao; Wei, Wu; Jia, Ming; Liu, Hongsheng

    2018-01-01

    Cryogenic fluid injection and mixing under transcritical and supercritical conditions is numerically investigated with emphasis on the difference of the mechanism and characteristics between the two injections. A new solver is developed which is capable of handling the nonideality of the equation of state and the anomalies in fluid transport properties and is incorporated into the CFD software OpenFOAM. The new solver has been validated against available experimental data and exhibits a good performance. Computational results indicates that the differences between transcritical and supercritical injections are mainly induced by the pseudo-boiling phenomenon, resulting in that the transcritical jet has a longer cold liquid core and an isothermal expansion occurs at the surface of the cold core. The thickness of the supercritical mixing layer and its increase value along the jet direction are greater than its transcritical counterpart. The high-temperature jet whose initial temperature is above the pseudo-boiling temperature has the ability of enhancing the mixing of the jet with the surrounding gas.

  15. Development and roll out of the JETS e-portfolio: a web based electronic portfolio for endoscopists

    PubMed Central

    Mehta, T; Dowler, K; McKaig, B C; Valori, R M; Dunckley, P

    2011-01-01

    The JAG Endoscopy Training System (JETS) e-portfolio was designed to provide an electronic log of endoscopic experience, improve the effectiveness of training, streamline the JAG certification process and support the quality assurance of trainers, units and regional training programmes. It was piloted in 2008 with an 82.6% uptake in trainees offered the system. The system was released in the UK in September 2009. Steady adoption across the UK demonstrates the service finds it a valuable tool. In time it will be the only vehicle through which a trainee can achieve certification through JAG to practise independently. PMID:28839580

  16. Infrared imaging results of an excited planar jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures amore » large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.« less

  17. High Temperature Electronics for Intelligent Harsh Environment Sensors

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  18. Influence of elliptical structure on impinging-jet-array heat transfer performances

    NASA Astrophysics Data System (ADS)

    Arjocu, Simona C.; Liburdy, James A.

    1997-11-01

    A three-by-three square array of submerged, elliptic, impinging jets in water was used to study the heat transfer distribution in the cooling process of a constant heat flux surface. Tow jet aspect ratios were used, 2 and 3, both with the same hydraulic diameter. The array was tested at Reynolds numbers from 300 to 1500 and impinging distances of 1 to 5 hydraulic diameters. Thermochromic liquid crystals wee used to map the local heat transfer coefficient using a transient method, while the jet temperature was kept constant. The liquid crystal images were recorded through an optical fiber coupled with a CCD camera and a frame grabber and analyzed based on an RGB-temperature calibration technique. The results are reported relative to the unit cell that is used to delimitate the central jet. The heat transfer variation is shown to depend on the impingement distance and Reynolds number. The elliptic jets exhibit axis switching, jet column instability and jet swaying. All of these mechanisms affect the enhancement of the heat transfer rate and its distribution. The results are compared in terms of average and local heat transfer coefficients, for both major and minor planes for the two jet aspect ratios.

  19. Electron temperature gradient scale at collisionless shocks.

    PubMed

    Schwartz, Steven J; Henley, Edmund; Mitchell, Jeremy; Krasnoselskikh, Vladimir

    2011-11-18

    Shock waves are ubiquitous in space and astrophysics. They transform directed flow energy into thermal energy and accelerate energetic particles. The energy repartition is a multiscale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. While large scale features of ion heating are known, the electron heating and smaller scale fields remain poorly understood. We determine for the first time the scale of the electron temperature gradient via electron distributions measured in situ by the Cluster spacecraft. Half of the electron heating coincides with a narrow layer several electron inertial lengths (c/ω(pe)) thick. Consequently, the nonlinear steepening is limited by wave dispersion. The dc electric field must also vary over these small scales, strongly influencing the efficiency of shocks as cosmic ray accelerators.

  20. Superheated liquid carbon dioxide jets: setting up and phenomena

    NASA Astrophysics Data System (ADS)

    Engelmeier, Lena; Pollak, Stefan; Peters, Franz; Weidner, Eckhard

    2018-01-01

    We present an experimental investigation on liquid, superheated carbon dioxide jets. Our main goal is to identify the setting up requirements for generating coherent jets because these raise expectations on applications in the cleaning and cutting industry. The study leads us through a number of phenomena, which are described, categorized and explained. The experiments are based on compressed (350 MPa) and cooled carbon dioxide, which expands through a cylindrical nozzle into the atmosphere. The nozzle provokes hydraulic flip by a sharp-edge inlet leading to separation and constriction. Upstream-temperature and pressure are varied and the jet's structure and phase state are monitored by a high-speed camera. We observe coherent, liquid jets far from equilibrium, which demands the solid or gaseous state. Therefore, these jets are superheated. Carbon dioxide jets, like water jets, below certain nozzle diameters are subject to fluid dynamic instabilities resulting in breakup. Above certain diameters flashing jet breakup appears, which is associated with nucleation.

  1. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  2. High Speed Jet Noise Prediction Using Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Lele, Sanjiva K.

    2002-01-01

    Current methods for predicting the noise of high speed jets are largely empirical. These empirical methods are based on the jet noise data gathered by varying primarily the jet flow speed, and jet temperature for a fixed nozzle geometry. Efforts have been made to correlate the noise data of co-annular (multi-stream) jets and for the changes associated with the forward flight within these empirical correlations. But ultimately these emipirical methods fail to provide suitable guidance in the selection of new, low-noise nozzle designs. This motivates the development of a new class of prediction methods which are based on computational simulations, in an attempt to remove the empiricism of the present day noise predictions.

  3. An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets

    NASA Technical Reports Server (NTRS)

    Lee, George

    1961-01-01

    An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.

  4. Tests for coronal electron temperature signatures in suprathermal electron populations at 1 AU

    NASA Astrophysics Data System (ADS)

    Macneil, Allan R.; Owen, Christopher J.; Wicks, Robert T.

    2017-12-01

    The development of knowledge of how the coronal origin of the solar wind affects its in situ properties is one of the keys to understanding the relationship between the Sun and the heliosphere. In this paper, we analyse ACE/SWICS and WIND/3DP data spanning > 12 years, and test properties of solar wind suprathermal electron distributions for the presence of signatures of the coronal temperature at their origin which may remain at 1 AU. In particular we re-examine a previous suggestion that these properties correlate with the oxygen charge state ratio O7+ / O6+, an established proxy for coronal electron temperature. We find only a very weak but variable correlation between measures of suprathermal electron energy content and O7+ / O6+. The weak nature of the correlation leads us to conclude, in contrast to earlier results, that an initial relationship with core electron temperature has the possibility to exist in the corona, but that in most cases no strong signatures remain in the suprathermal electron distributions at 1 AU. It cannot yet be confirmed whether this is due to the effects of coronal conditions on the establishment of this relationship or due to the altering of the electron distributions by processing during transport in the solar wind en route to 1 AU. Contrasting results for the halo and strahl population favours the latter interpretation. Confirmation of this will be possible using Solar Orbiter data (cruise and nominal mission phase) to test whether the weakness of the relationship persists over a range of heliocentric distances. If the correlation is found to strengthen when closer to the Sun, then this would indicate an initial relationship which is being degraded, perhaps by wave-particle interactions, en route to the observer.

  5. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the

  6. Radiatively driven relativistic jets in Schwarzschild space-time

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2018-06-01

    Context. Aims: We carry out a general relativistic study of radiatively driven conical fluid jets around non-rotating black holes and investigate the effects and significance of radiative acceleration, as well as radiation drag. Methods: We apply relativistic equations of motion in curved space-time around a Schwarzschild black hole for axis-symmetric one-dimensional jet in steady state, plying through the radiation field of the accretion disc. Radiative moments are computed using information of curved space-time. Slopes of physical variables at the sonic points are found using L'Hôpital's rule and employing Runge-Kutta's fourth order method to solve equations of motion. The analysis is carried out using the relativistic equation of state of the jet fluid. Results: The terminal speed of the jet depends on how much thermal energy is converted into jet momentum and how much radiation momentum is deposited onto the jet. Many classes of jet solutions with single sonic points, multiple sonic points, as well as those having radiation driven internal shocks are obtained. Variation of all flow variables along the jet-axis has been studied. Highly energetic electron-proton jets can be accelerated by intense radiation to terminal Lorentz factors γT 3. Moderate terminal speed vT 0.5 is obtained for moderately luminous discs. Lepton dominated jets may achieve γT 10. Conclusions: Thermal driving of the jet itself and radiation driving by accretion disc photons produce a wide-ranging jet solutions starting from moderately strong jets to the relativistic ones. Interplay of intensity, the nature of the radiation field, and the energetics of the jet result in a variety of jet solutions. We show that radiation field is able to induce steady shocks in jets, one of the criteria to explain high-energy power-law emission observed in spectra of some of the astrophysical objects.

  7. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  8. Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations

    NASA Astrophysics Data System (ADS)

    Shen, Y. K.; Liu, Z.; Wang, X. L.; Ma, W. K.; Chen, Z. H.; Chen, T. P.; Zhang, H. Y.

    2017-12-01

    By dissolving gallium chloride (GaCl3), indium chloride (InCl3), zinc acetate dihydrate [Zn(OAc)2·2H2O] and monoethanolamine (MEA) into a solvent of 2-methoxyethanol, the IGZO ink was synthesized. Five types of IGZO ink were prepared with different molar ratios of In:Ga:Zn, which can be used for ink-jet printing process. The thermal behaviors of IGZO ink with different formulas were investigated and the ideal annealing temperature for film formation was found to be ∼450 °C. Based on the prepared ink, amorphous IGZO thin films were directly printed on the glass substrate with a FujiFilm Dimatix ink-jet printer, followed by a thermal annealing at 450 °C for 1 h. The surface morphology, crystal structure, optical transmittance, electron mobility and carrier concentration were characterized and investigated. The ink-jet printed amorphous IGZO thin films fabricated in this work can be used as switching medium in flexible resistive random access memory devices.

  9. Jetting Through the Primordial Universe

    NASA Astrophysics Data System (ADS)

    Kunnawalkam Elayavalli, Raghav

    Collisions of heavy ion nuclei at relativistic speeds (close to the speed of light), sometimes referred to as the "little bang", can recreate conditions similar to the early universe. This high temperature and very dense form of matter, now known to consist of de-confined quarks and gluons is named the quark gluon plasma (QGP). An early signature of the QGP, both theorized and seen in experiments, was the aspect of "jet quenching" and understanding that phenomenon will be the main focus of this thesis. The concept behind quenching is that a high energetic quark or gluon jet undergoes significant energy loss due to the overall structure modifications related to its fragmentation and radiation patterns as it traverses the medium. The term jet, parameterized by a fixed lateral size or the jet radius, represents the collimated spray of particles arising from an initial parton. In this thesis, Run1 experimental data from pp and heavy ion collisions at the CERN LHC is analyzed with the CMS detector. Analysis steps involved in the measurement of the inclusive jet cross section in pp, pPb and PbPb systems are outlined in detail. The pp jet cross section is compared with next to leading order theoretical calculations supplemented with non perturbative corrections for three different jet radii highlighting better comparisons for larger radii jets. Measurement of the jet yield followed by the nuclear modification factors in proton-lead at 5.02 TeV and lead-lead collisions at 2.76 TeV are presented. Since pp data at 5.02 TeV was not available in Run1, an extrapolation method is performed to derive a reference pp spectra. A new data driven technique is introduced to estimate and correct for the fake jet contribution in PbPb for low transverse momenta jets. The nuclear modification factors studied in this thesis show jet quenching to be attributed to final state effects, have a strong correlation to the event centrality, a weak inverse correlation to the jet transverse momenta

  10. Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons

    DTIC Science & Technology

    2014-01-30

    mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the

  11. Electron temperature from x-ray continuum measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  12. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    NASA Astrophysics Data System (ADS)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  13. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M.; Electrical Engineering Department, Padova University, via Gradenigo 6-A, 35131 Padova; Boboc, A.

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements formore » a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.« less

  14. Experimental Investigation of Jet Impingement Heat Transfer Using Thermochromic Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Dempsey, Brian Paul

    1997-01-01

    Jet impingement cooling of a hypersonic airfoil leading edge is experimentally investigated using thermochromic liquid crystals (TLCS) to measure surface temperature. The experiment uses computer data acquisition with digital imaging of the TLCs to determine heat transfer coefficients during a transient experiment. The data reduction relies on analysis of a coupled transient conduction - convection heat transfer problem that characterizes the experiment. The recovery temperature of the jet is accounted for by running two experiments with different heating rates, thereby generating a second equation that is used to solve for the recovery temperature. The resulting solution requires a complicated numerical iteration that is handled by a computer. Because the computational data reduction method is complex, special attention is paid to error assessment. The error analysis considers random and systematic errors generated by the instrumentation along with errors generated by the approximate nature of the numerical methods. Results of the error analysis show that the experimentally determined heat transfer coefficients are accurate to within 15%. The error analysis also shows that the recovery temperature data may be in error by more than 50%. The results show that the recovery temperature data is only reliable when the recovery temperature of the jet is greater than 5 C, i.e. the jet velocity is in excess of 100 m/s. Parameters that were investigated include nozzle width, distance from the nozzle exit to the airfoil surface, and jet velocity. Heat transfer data is presented in graphical and tabular forms. An engineering analysis of hypersonic airfoil leading edge cooling is performed using the results from these experiments. Several suggestions for the improvement of the experimental technique are discussed.

  15. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  16. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  17. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    NASA Astrophysics Data System (ADS)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  18. Nongyrotropic electron orbits in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2016-12-01

    In order to study inner workings of magnetic reconnection, NASA has recently launched Magnetospheric MultiScale (MMS) spacecraft. It is expected to observe electron velocity distribution functions (VDFs) at high resolution in magnetotail reconnection sites in 2017. Since VDFs are outcomes of many particle orbits, it is important to understand the relation between electron orbits and VDFs. In this work, we study electron orbits and associated VDFs in the electron current layer in magnetic reconnection, by using a two-dimensional particle-in-cell (PIC) simulation. By analyzing millions of electron orbits, we discover several new orbits: (1) Figure-eight-shaped regular orbits inside the super-Alfvenic electron jet, (2) noncrossing Speiser orbits that do not cross the midplane, (3) noncrossing regular orbits on the jet flanks, and (4) nongyrotropic electrons in the downstream of the jet termination region. Properties of these orbits are organized by a theory on particle orbits (Buchner & Zelenyi 1989 JGR). The noncrossing orbits are mediated by the polarization electric field (Hall electric field E_z) near the midplane. These orbits can be understood as electrostatic extensions of the conventional theory. Properties of the super-Alfvenic electron jet are attributed to the traditional Speiser-orbit electrons. On the other hand, the noncrossing electrons are the majority in number density in the jet flanks. This raise a serious question to our present understanding of physics of collisionless magnetic reconnection, which only assumes crossing populations. We will also discuss spatial distribution of energetic electrons and observational signatures of noncrossing electrons. Reference: Zenitani & Nagai (2016), submitted to Phys. Plasmas.

  19. One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Santarius, John

    2009-11-01

    This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  20. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  1. An Experimental and CFD Study of a Supersonic Coaxial Jet

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; White, J. A.

    2001-01-01

    A supersonic coaxial jet facility is designed and experimental data are acquired suitable for the validation of CFD codes employed in the analysis of high-speed air-breathing engines. The center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow, and the results are compared to the experiment for several variations of the kappa - omega turbulence model

  2. The Stability of Radiatively Cooling Jets I. Linear Analysis

    NASA Technical Reports Server (NTRS)

    Hardee, Philip E.; Stone, James M.

    1997-01-01

    The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in

  3. A near-infrared spectroscopic survey of massive jets towards extended green objects

    NASA Astrophysics Data System (ADS)

    Caratti o Garatti, A.; Stecklum, B.; Linz, H.; Garcia Lopez, R.; Sanna, A.

    2015-01-01

    Context. Protostellar jets and outflows are the main outcome of the star formation process, and their analysis can provide us with major clues about the ejection and accretion history of young stellar objects (YSOs). Aims: We aim at deriving the main physical properties of massive jets from near-infrared (NIR) observations, comparing them to those of a large sample of jets from low-mass YSOs, and relating them to the main features of their driving sources. Methods: We present a NIR imaging (H2 and Ks) and low-resolution spectroscopic (0.95-2.50 μm) survey of 18 massive jets towards GLIMPSE extended green objects (EGOs), driven by intermediate- and high-mass YSOs, which have bolometric luminosities (Lbol) between 4 × 102 and 1.3 × 105 L⊙. Results: As in low-mass jets, H2 is the primary NIR coolant, detected in all the analysed flows, whereas the most important ionic tracer is [Fe ii], detected in half of the sampled jets. Our analysis indicates that the emission lines originate from shocks at high temperatures and densities. No fluorescent emission is detected along the flows, regardless of the source bolometric luminosity. On average, the physical parameters of these massive jets (i.e. visual extinction, temperature, column density, mass, and luminosity) have higher values than those measured in their low-mass counterparts. The morphology of the H2 flows is varied, mostly depending on the complex, dynamic, and inhomogeneous environment in which these massive jets form and propagate. All flows and jets in our sample are collimated, showing large precession angles. Additionally, the presence of both knots and jets suggests that the ejection process is continuous with burst episodes, as in low-mass YSOs. We compare the flow H2 luminosity with the source bolometric luminosity confirming the tight correlation between these two quantities. Five sources, however, display a lower LH2/Lbol efficiency, which might be related to YSO evolution. Most important, the

  4. High Resolution Spectroscopy and Dynamics: from Jet Cooled Radicals to Gas-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Sharp-Williams, E.; Roberts, M. A.; Roscioli, J. R.; Gisler, A. W.; Ziemkiewicz, M.; Nesbitt, D. J.; Dong, F.; Perkins, B. G., Jr.

    2010-06-01

    This talk will attempt to reflect recent work in our group involving two quite different but complementary applications of high resolution molecular spectroscopy for detailed study of intramolecular as well as intermolecular dynamics in small molecules. The first is based on direct infrared absorption spectroscopy in a 100 KHz slit supersonic discharge, which provides a remarkably versatile and yet highly sensitive probe for study of important chemical transients such as open shell combustion species and molecular ions under jet cooled (10-20K), sub-Doppler conditions. For this talk will focus on gas phase spectroscopic results for a series of unsaturated hydrocarbon radical species (ethynyl, vinyl, and phenyl) reputed to be critical intermediates in soot formation. Secondly, we will discuss recent applications of high resolution IR and velocity map imaging spectroscopy toward quantum state resolved collision dynamics of jet cooled molecules from gas-room temperature ionic liquid (RTIL) and gas-self assembled monolayer (SAM) interfaces. Time permitting, we will also present new results on hyperthermal scattering of jet cooled NO radical from liquid Ga, which offer a novel window into non-adiabatic energy transfer and electron-hole pair dynamics at the gas-molten metal interface.

  5. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.

  6. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    chromosphere, and erupting plasma is released outward into the solar corona.A second comparison of simulated observations based on the authors model (left panels) to actual EUV observations of jets (right panels). [Szente et al. 2017]Global InfluencesAfter demonstrating that their models could successfully lead to jet production and propagation, Szente and collaborators compared their results to actual observations of solar jets. The authors constructed simulated EUV and X-ray observations of their modeled events, and they verified that the behavior and structures in these simulated observations were very similar to real observations of coronal jet events from telescopes like SDO/AIA and Hinode.With this confirmed, the authors then used their models to determine how the jets influence the global solar corona and the solar wind. They found that the large-scale corona is significantly affected by the plasma waves from the jet, which travel across 40 in latitude and out to 24 solar radii. In spite of this, the simulated jets contributed only a few percent to the steady-state solar-wind energy outflow.These simulations represent an important step in realistic modeling of the quiet Sun. Because the models make specific predictions about temperature and density gradients within the corona, we can look forward to testing them with upcoming missions like Solar Probe Plus, which should be able to explore the Sun all the way down to ninesolar radii.CitationJ. Szente et al 2017 ApJ 834 123. doi:10.3847/1538-4357/834/2/123

  7. Measurements of the Aeroacoustic Sound Source in Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark

    2004-01-01

    We have succeeded in measuring a substantial portion of the two-point space-time velocity correlation in hot, high speed turbulent jets. This measurement, crucial in aeroacoustic theory and the prediction of jet noise, has been sought for a long time, but has not been made due to the limitations of anemometry. Particle Image Velocimetry has reached a stage of maturity where sufficient measurement density in both time and space allow the computation of space-time correlations. This paper documents these measurements along with lower-order statistics to document the adherence of the jet rig and instrumentation to conventional measures of the turbulence of jets. These measures have been made for a simple round convergent nozzle at acoustic Mach numbers of 0.5, 0.9, both cold and at a static temperature ratio of 2.7, allowing some estimation of the changes in turbulence that take place with changes in jet temperature. Since the dataset described in this paper is very extensive, attention will be focused on validation of the rig and of the measurement systems, and on some of the interesting observations made from studying the statistics, especially as they relate to jet noise. Of note is the effort to study the acoustically relevant part of the space-time correlation by addressing that part of the turbulence kinetic energy that has sonic phase speed.

  8. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, D. P.; Revet, G.; Khiar, B.

    We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less

  9. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle

    DOE PAGES

    Higginson, D. P.; Revet, G.; Khiar, B.; ...

    2017-02-24

    We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less

  10. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budny, R. V.; Team, JET

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The highermore » T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating« less

  11. Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.

  12. Axial plasma jet characterization on a microsecond x-pinch

    NASA Astrophysics Data System (ADS)

    Jaar, G. S.; Appartaim, R. K.

    2018-06-01

    The jets produced on a microsecond x-pinch (quarter period T1/4 ˜ 1 μs, dI/dt ˜ 0.35 kA/ns) have been studied through light-field schlieren imaging and optical framing photographs across 4 different materials: Al, Ti, Mo, and W. The axial velocity of the jets was measured and exhibited no dependence on atomic number (Z) of the wire material. There may be a dependence on another factor(s), namely, the current rise rate. The average axial jet velocity across all four materials was measured to be 2.9 ± 0.5 × 106 cm/s. The average jet diameter and the average radial jet expansion rate displayed inverse relationships with Z, which may be attributed to radiative cooling and inertia. Asymmetry between the anode and cathode jet behavior was observed and is thought to be caused by electron beam activity. The mean divergence angle of the jet was found to vary with wire material and correlated inversely with the thermal conductivity of the cold wire. Optical images indicated a two-layer structure in Al jets which may be caused by standing shocks and resemble phenomena observed in astrophysical jet formation and collimation. Kinks in the jets have also been observed which may be caused by m = 1 MHD instability modes or by the interaction of the jet with the electrode plasma.

  13. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szente, J.; Toth, G.; Manchester IV, W. B.

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight syntheticmore » images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.« less

  14. Formation of Bipolar Lobes by Jets

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2002-04-01

    I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

  15. Domain-adaptive finite difference methods for collapsing annular liquid jets

    NASA Astrophysics Data System (ADS)

    Ramos, J. I.

    1993-01-01

    A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption

  16. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  17. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity propertymore » of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=0) at 308 nm and A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=1) at 287 nm, O I transitions 3p{sup 5}P{yields}3s{sup 5}S{sup 0} at 777.41 nm, and 3p{sup 3}P{yields}3s{sup 3}S{sup 0} at 844.6 nm, N{sub 2}(C-B) second positive system with electronic transition C{sup 3}{Pi}{sub u}{sup {yields}}B{sup 3}{Pi}{sub g}'' in the range of 300-450 nm and N{sub 2}{sup +}(B-X) first negative system with electronic transition B{sup 2}{Sigma}{sub u}{sup +}{yields}X{sup 2}{Sigma}{sub g}{sup +}({Delta}{nu}=0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p{sup 3}P{sup 0}{yields}2s{sup 3}S at 388.8 nm, 3p{sup 1}P{sup 0}{yields} 2s{sup 1}S at 501.6 nm, 3d{sup 3}D{yields}2p{sup 3}P{sup 0} at 587.6 nm, 3d{sup 1}D{yields}2p{sup 1}P{sup 0} at 667.8 nm, 3s{sup 3}S{sup 1}{yields}2p{sup 3}P{sup 0} at 706.5 nm, 3s{sup 1}S{sup 0}{yields}2p{sup 1}P{sup 0} at 728.1 nm, and H{sub {alpha}} transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational

  18. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  19. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    NASA Technical Reports Server (NTRS)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  20. Characterization of high speed synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  1. The Study on the Physical Properties of Blazar Jets

    NASA Astrophysics Data System (ADS)

    Kang, S. J.

    2017-09-01

    Active galactic nuclei (AGNs) belong to a special class of active galaxies, and have violent active phenomena and intense physical processes in the nuclei. Blazar is a subclass of AGNs, and has a relativistic jet with a small jet viewing angle. Therefore, the boosting effect is very important, and almost all the observed radiation is dominated by the jet. The relativistic jet physics is not very clear yet, such as the jet formation, collimation, and matter content etc. The multi-waveband radiation of blazar is dominated by jet, which provides an ideal laboratory for studying the jet physics. The first chapter of this thesis introduces the recent progress of AGNs and blazars. We further introduce the jet model that commonly used in blazars in the second chapter. In the third chapter, we fit simultaneously (or quasi-simultaneously) the multi-waveband spectral energy distributions (SEDs) for a sample of low-synchrotron-peaked (LSP) blazars with the jet model and χ2 procedure, which takes into account different soft photon fields (broad line region or a molecular torus). We find that the SED fitting with an external soft photon from IR torus is systematically better than that from the broad line region (BLR) based on a χ2 test, which suggests that the γ-ray emitting region most possibly stays outside the BLR. The minimum electron Lorentz factor, γmin, is constrained from the modeling of these LSP blazars with good soft X-ray data, and in a range from 5 to 160 (with a median value of 55), which plays a key role in jet power estimation. Assuming one-to-one ratio of proton and electron, we find that the jet power for LSP blazars is systematically higher than that of Fanaroff-Riley type II (FR II) radio galaxies. A possible reason for this is that there are some positrons in the jets of these blazars. If this is the case, the jet power will be reduced. Therefore, we propose a mixed composition of e±-p in the jets of these LSP blazars. If we assume that the jet power

  2. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  3. Multipurpose setup for low-temperature conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; Trekels, M.; Gunnlaugsson, H. P.; Masenda, H.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-05-01

    We describe an experimental setup for conversion electron Mössbauer spectroscopy (CEMS) at low temperature. The setup is composed of a continuous flow cryostat (temperature range of 4.2-500 K), detector housing, three channel electron multipliers, and corresponding electronics. We demonstrate the capabilities of the setup with CEMS measurements performed on a sample consisting of a thin enriched 57Fe film, with a thickness of 20 nm, deposited on a silicon substrate. We also describe exchangeable adaptations (lid and sample holder) which extend the applicability of the setup to emission Mössbauer spectroscopy as well as measurements under an applied magnetic field.

  4. High temperature electrons exhausted from rf plasma sources along a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira

    2017-08-01

    Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.

  5. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single

  6. Thermal bending of liquid sheets and jets

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.; Paruchuri, Srinivas

    2003-11-01

    We present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending.

  7. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Judée, F.; Merbahi, N.; Wattieaux, G.; Yousfi, M.

    2016-09-01

    The aim is the comparison of different plasma parameters of single and double dielectric barrier discharge plasma jet configurations (S-DBD and D-DBD) which are potentially usable in biomedical applications. Both configurations are studied in terms of electric field distribution, electrical discharge characteristics, plasma parameters (estimated by optical emission spectroscopy analysis), and hydrodynamics of the plasma jet for electrical parameters of power supplies corresponding to an applied voltage of 10 kV, pulse duration of 1 μs, frequency of 9.69 kHz, and Ar flow of 2 l/min. We observed that the D-DBD configuration requires half the electrical power one needs to provide in the S-DBD case to generate a plasma jet with similar characteristics: excitation temperature around 4700 K, electron density around 2.5 × 1014 cm-3, gas temperature of about 320 K, a relatively high atomic oxygen concentration reaching up to 1000 ppm, the presence of reactive oxygen and nitrogen species (nitric oxide, hydroxyl radical, and atomic oxygen), and an irradiance in the UV-C range of about 20 μW cm-2. Moreover, it has been observed that D-DBD plasma jet is more sensitive to short pulse durations, probably due to the charge accumulation over the dielectric barrier around the internal electrode. This results in a significantly longer plasma length in the D-DBD configuration than in the S-DBD one up to a critical flow rate (2.25 l/min) before the occurrence of turbulence in the D-DBD case. Conversely, ionization wave velocities are significantly higher in the S-DBD setup (3.35 × 105 m/s against 1.02 × 105 m/s for D-DBD), probably due to the higher electrostatic field close to the high voltage electrode in the S-DBD plasma jet.

  8. Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi

    2018-06-01

    We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.

  9. Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.

    1974-01-01

    Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented.

  10. Effect of Secondary Jet-flow Angle on Performance of Turbine Inter-guide-vane Burner Based on Jet-vortex Flow

    NASA Astrophysics Data System (ADS)

    Zheng, Haifei; Tang, Hao; Xu, Xingya; Li, Ming

    2014-08-01

    Four different secondary airflow angles for the turbine inter-guide-vane burners with trapped vortex cavity were designed. Comparative analysis between combustion performances influenced by the variation of secondary airflow angle was carried out by using numerical simulation method. The turbulence was modeled using the Scale-Adaptive Simulation (SAS) turbulence model. Four cases with different secondary jet-flow angles (-45°, 0°, 30°, 60°) were studied. It was observed that the case with secondary jet-flows at 60° angle directed upwards (1) has good mixing effect; (2) mixing effect is the best although the flow field distributions inside both of the cavity and the main flow passage for the four models are very similar; (3) has complete combustion and symmetric temperature distribution on the exit section of guide vane (X = 70 mm), with uniform temperature distribution, less temperature gradient, and shrank local high temperature regions in the notch located on the guide vane.

  11. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C 2H 4-Fueled Jet Flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Guildenbecher, Daniel Robert; Winters, Caroline

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulentmore » flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.« less

  12. Prospects for Alpha Particle Heating in JET in the Hot Ion Regime

    NASA Astrophysics Data System (ADS)

    Cordey, J. G.; Keilhacker, M.; Watkins, M. L.

    1987-01-01

    The prospects for alpha particle heating in JET are discussed. A computational model is developed to represent adequately the neutron yield from JET plasmas heated by neutral beam injection. This neutral beam model, augmented by a simple plasma model, is then used to determine the neutron yields and fusion Q-values anticipated for different heating schemes in future operation of JET with tritium. The relative importance of beam-thermal and thermal-thermal reactions is pointed out and the dependence of the results on, for example, plasma density, temperature, energy confinement and purity is shown. Full 1½-D transport code calculations, based on models developed for ohmic, ICRF and NBI heated JET discharges, are used also to provide a power scan for JET operation in tritium in the low density, high ion temperature regime. The results are shown to be in good agreement with the estimates made using the simple plasma model and indicate that, based on present knowledge, a fusion Q-value in the plasma centre above unity should be achieved in JET.

  13. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei

    2013-11-15

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less

  14. Dichotomy of X-Ray Jets in Solar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Robe, D. M.; Moore, R. L.; Falconer, D. A.

    2012-12-01

    It has been found that there are two different types of X-ray jets observed in the Sun's polar coronal holes: standard jets and blowout jets. A proposed model of this dichotomy is that a standard jet is produced by a burst of reconnection of the ambient magnetic field with the opposite-polarity leg of the base arcade. In contrast, it appears that a blowout jet is produced when the interior of the arcade has so much pent-up free magnetic energy in the form of shear and twist in the interior field that the external reconnection unleashes the interior field to erupt open. In this project, X-ray movies of the polar coronal holes taken by Hinode were searched for X-ray jets. Co-temporal movies taken by the Solar Dynamics Observatory in 304 Å emission from He II, showing solar plasma at temperatures around 80,000 K, were examined for whether the identified blowout jets carry much more He II plasma than the identified standard jets. It was found that though some jets identified as standard from the X-ray movies could be seen in the He II 304 Å movies, the blowout jets carried much more 80,000 K plasma than did most standard jets. This finding supports the proposed model for the morphology and development of the two types of jets.

  15. The influence of the Ar/O2 ratio on the electron density and electron temperature in microwave discharges

    NASA Astrophysics Data System (ADS)

    Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.

    2017-10-01

    The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.

  16. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    NASA Astrophysics Data System (ADS)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  17. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.

    2017-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  18. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes

    2016-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  19. The disc-jet symbiosis emerges: modelling the emission of Sagittarius A* with electron thermodynamics

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Gammie, C. F.

    2017-05-01

    We calculate the radiative properties of Sagittarius A* - spectral energy distribution, variability and radio-infrared images - using the first 3D, physically motivated black hole accretion models that directly evolve the electron thermodynamics in general relativistic MHD simulations. These models reproduce the coupled disc-jet structure for the emission favoured by previous phenomenological analytic and numerical works. More specifically, we find that the low frequency radio emission is dominated by emission from a polar outflow while the emission above 100 GHz is dominated by the inner region of the accretion disc. The latter produces time variable near-infrared (NIR) and X-ray emission, with frequent flaring events (including IR flares without corresponding X-ray flares and IR flares with weak X-ray flares). The photon ring is clearly visible at 230 GHz and 2 μm, which is encouraging for future horizon-scale observations. We also show that anisotropic electron thermal conduction along magnetic field lines has a negligible effect on the radiative properties of our model. We conclude by noting limitations of our current generation of first-principles models, particularly that the outflow is closer to adiabatic than isothermal and thus underpredicts the low frequency radio emission.

  20. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia

    2018-03-01

    In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.

  1. Thermal and Nonthermal Electron-ion Bremsstrahlung Spectrum from High-Temperature Plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1994-01-01

    Electron-ion bremsstrahlung radiation from high-temperature plasmas is investigated. The first- and second-order Coulomb corrections in the nonrelativistic bremsstrahlung radiation power are obtained by the Elwert-Sommerfeld factor. In this paper, two cases of the electron distributions, the thermal and nonthermal power-law distributions, are considered. The inclusion of Coulomb corrections is necessary in deducing correctly the electron distribution function from radiation data. These results provide the correct information of electron distributions in high-temperature plasmas, such as in inertial confinement fusion plasmas and in the astrophysical hot thermal and nonthermal x-ray sources.

  2. Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Zizelman, J.

    1985-01-01

    Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.

  3. Induced velocity field of a jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1978-01-01

    An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.

  4. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  5. Non-contact temperature measurement requirements for electronic materials processing

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  6. The East Asian Jet Stream and Asian-Pacific Climate

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, the NASA GEOS and NCEP/NCAR reanalyses and GPCP rainfall data have been used to study the variability of the East Asian westerly jet stream and its impact on the Asian-Pacific climate, with a focus on interannual time scales. Results indicate that external forcings such as sea surface temperature (SST) and land surface processes also play an important role in the variability of the jet although this variability is strongly governed by internal dynamics. There is a close link between the jet and Asian-Pacific climate including the Asian winter monsoon and tropical convection. The atmospheric teleconnection pattern associated with the jet is different from the ENSO-related pattern. The influence of the jet on eastern Pacific and North American climate is also discussed.

  7. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  8. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology.

    PubMed

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-11-12

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30-250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.

  9. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology

    PubMed Central

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-01-01

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30–250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications. PMID:29137148

  10. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  11. Jet Drying of Southern Pine and Douglas-Fir: Exploratory Study

    Treesearch

    Howard N. Rosen

    1978-01-01

    Southern pine and Douglas-fir boards, containing both heart- and sapwood and 1.75 inches thick, were jet dried at temperatures from 160 to 400 F and air velocities from 3,000 to 9,000 fmp. Jet drying was more effective for southern pine than for Douglas-fir.

  12. Diagnostics of Thermal Spraying Plasma Jets

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Coudert, J. F.; Vardelle, M.; Vardelle, A.; Denoirjean, A.

    D.C. thermal plasma jets are strongly affected on the one hand by the arc root fluctuations at the anode, resulting in a type of pulsed flow and enhanced turbulence, and on the other hand by the entrainment of surrounding cold gas in the plasma jet. These phenomena and the resulting temperature distributions have been studied using a wide range of diagnostic techniques including fast cameras, laser doppler anemometry (LDA), coherent anti-Stokes Raman spectroscopy (CARS), Rayleigh scattering, emission spectroscopy, Schlieren photography, enthalpy probes and sampling probes. The information given by these techniques is evaluated and compared. The effect of the arc fluctuations on the spectroscopic measurements is emphasized and the possibility of using these fluctuations to determine informations on the arc behaviour and the axial velocity of the jet is presented. Optimization of plasma processing of solid particules requires information about their size and surface temperature, as well as number flux and velocity distributions at various locations in the flow field. The different statistical techniques of in-flight measurements are discussed together with their limitations. A method to determine the temperature and species density of the vapor cloud or comet travelling with each particule in flight is then presented. However, such statistical measurements present ambiguities in their interpretation, which can be adressed only by additional measurements to determine the velocity, diameter, and surface temperature of a single particule in flight. Moreover, information on single particules is required in order to understand the coating properties, which depend strongly on the way the particules flatten and solidify upon impact. A method to obtain data related to a single particule in flight and to follow the temperature evolution of the corresponding splat upon cooling is presented. The paper concludes with the description of the experimental techniques to follow the

  13. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    NASA Astrophysics Data System (ADS)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation

  14. Characteristics of the air supply envelop of the cooled flooded air jet

    NASA Astrophysics Data System (ADS)

    Timofeevskiy, A. L.; Sulin, A. B.; Ryabova, T. N.; Neganov, D. V.

    2017-08-01

    The characteristics of a plane-parallel non-isothermal airflow (which is fed into the room in the form of a flooded jet) were investigated,. The temperature and velocity fields were measured experimentally in the cross section of the supply air flare. The results of the theoretical calculation and numerical simulation of temperature and velocity profiles were compared with experimental data in a flat cooled supply jet.

  15. Electron temperature response to ECRH on FTU tokamak in transient conditions.

    NASA Astrophysics Data System (ADS)

    Jacchia, A.; Bruschi, A.; Cirant, S.; Granucci, G.; Sozzi, C.; de Luca, F.; Amadeo, P.; Bracco, G.; Tudisco, O.

    2001-10-01

    Steady-state electron heat transport analysis of FTU high density plasmas under Electron Cyclotron Heating (ECRH) shows "stiff" electron temperature profiles [1,2,3]. Plasma response to off-axis EC heating, in fact, exibits a lower limit to electron temperature gradient length, Lc , below which electron thermal conductivity switches to higher values. Stiffness, however, is attenuated in the plasma core of saw-tooth free discharges with flat-hollow temperature profile and during current ramp-up [3,4,5], in which cases the temperature gradient length can be brought to very low values by means of on-axis ECH. Steady and current ramp-up discharges probed by steady and modulated ECH are analyzed in terms of stiffnes. Critical gradient length dependence on local features of computed current density profile is discussed. [1] Sozzi, C. et al., Paper EXP5/13, Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000. [2] Jacchia, A. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [3] Cirant, S. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [4] Sozzi, C. et al., EPS, Madeira 2001. [5] Bracco, G. et al.,Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000.

  16. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  17. On the Scaling Laws for Jet Noise in Subsonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Kandula, Max

    2003-01-01

    The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are examined with regard to their applicability to deduce full scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full-scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. It is shown that the jet Mach number (jet exit velocity/sound speed at jet exit) is a more general and convenient parameter for noise scaling purposes than the ratio of jet exit velocity to ambient speed of sound. A similarity spectrum is also proposed, which accounts for jet Mach number, angle to the jet axis, and jet density ratio. The proposed spectrum reduces nearly to the well-known similarity spectra proposed by Tam for the large-scale and the fine-scale turbulence noise in the appropriate limit.

  18. An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets

    NASA Astrophysics Data System (ADS)

    Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong

    2018-03-01

    In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.

  19. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the

  20. General relativistic study of astrophysical jets with internal shocks

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2017-08-01

    We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.

  1. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    NASA Astrophysics Data System (ADS)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  2. Turbulence Associated With Broadband Shock Noise in Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2008-01-01

    Time-Resolved Particle Image Velocimetry (TRPIV) has been applied to a series of jet flows to measure turbulence statistics associated with broadband shock associated noise (BBSN). Data were acquired in jets of Mach numbers 1.05, 1.185, and 1.4 at different temperatures. Both convergent and ideally expanded nozzles were tested, along with a convergent nozzle modified to minimize screech. Key findings include the effect of heat on shock structure and jet decay, the increase in turbulent velocity when screech is present, and the relative lack of spectral detail associated with the enhanced turbulence.

  3. On the axisymmetric stability of heated supersonic round jets

    PubMed Central

    2016-01-01

    We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691

  4. Coronal Jets Simulated with the Global Alfvén Wave Solar Model

    NASA Astrophysics Data System (ADS)

    Szente, J.; Toth, G.; Manchester, W. B., IV; van der Holst, B.; Landi, E.; Gombosi, T. I.; DeVore, C. R.; Antiochos, S. K.

    2017-01-01

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R⊙. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  5. The bipolar jet of the symbiotic star R Aquarii: A study of its morphology using the high-resolution HST WFC3/UVIS camera

    NASA Astrophysics Data System (ADS)

    Melnikov, Stanislav; Stute, Matthias; Eislöffel, Jochen

    2018-04-01

    maps which present a mosaic combined from the large field and the PSF-subtracted inner region. Conclusions: The high signal-to-noise HST WFC3/UVIS images provide powerful tools for the study of the jet morphology and also bring detailed information about the physical jet gas conditions. The simultaneous observations of [OIII], [OI], [NII], and [SII] would allow us to measure basic parameters of the ionised gas in the R Aqr outflow such as electron density, electron temperature and hydrogen ionisation fraction, and compare them with other stellar jets.

  6. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  7. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  8. Hotspot electron temperature from x-ray continuum measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  9. Hotspot electron temperature from x-ray continuum measurements on the NIF.

    PubMed

    Jarrott, L C; Benedetti, L R; Chen, H; Izumi, N; Khan, S F; Ma, T; Nagel, S R; Landen, O L; Pak, A; Patel, P K; Schneider, M; Scott, H A

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  10. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  11. Electron attachment to C{sub 2} fluorocarbon radicals at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A., E-mail: afrl.rvborgmailbox@kirtland.af.mil

    Thermal electron attachment to the radical species C{sub 2}F{sub 3} and C{sub 2}F{sub 5} has been studied over the temperature range 300–890 K using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Both radicals exclusively undergo dissociative attachment to yield F{sup −}. The rate constant for C{sub 2}F{sub 5} shows little dependence over the temperature range, remaining ∼4 × 10{sup −9} cm{sup 3} s{sup −1}. The rate constant for C{sub 2}F{sub 3} attachment rises steeply with temperature from 3 × 10{sup −11} cm{sup 3} s{sup −1} at 300 K to 1 × 10{sup −9} cm{sup 3} s{sup −1} at 890 K.more » The behaviors of both species at high temperature are in agreement with extrapolations previously made from data below 600 K using a recently developed kinetic modeling approach. Measurements were also made on C{sub 2}F{sub 3}Br and C{sub 2}F{sub 5}Br (used in this work as precursors to the radicals) over the same temperature range, and, for C{sub 2}F{sub 5}Br as a function of electron temperature. The attachment rate constants to both species rise with temperature following Arrhenius behavior. The attachment rate constant to C{sub 2}F{sub 5}Br falls with increasing electron temperature, in agreement with the kinetic modeling. The current data fall in line with past predictions of the kinetic modeling approach, again showing the utility of this simplified approach.« less

  12. Improved two-temperature model including electron density of states effects for Au during femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming

    2012-01-01

    The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.

  13. Numerical evaluation of single central jet for turbine disk cooling

    NASA Astrophysics Data System (ADS)

    Subbaraman, M. R.; Hadid, A. H.; McConnaughey, P. K.

    The cooling arrangement of the Space Shuttle Main Engine High Pressure Oxidizer Turbopump (HPOTP) incorporates two jet rings, each of which produces 19 high-velocity coolant jets. At some operating conditions, the frequency of excitation associated with the 19 jets coincides with the natural frequency of the turbine blades, contributing to fatigue cracking of blade shanks. In this paper, an alternate turbine disk cooling arrangement, applicable to disk faces of zero hub radius, is evaluated, which consists of a single coolant jet impinging at the center of the turbine disk. Results of the CFD analysis show that replacing the jet ring with a single central coolant jet in the HPOTP leads to an acceptable thermal environment at the disk rim. Based on the predictions of flow and temperature fields for operating conditions, the single central jet cooling system was recommended for implementation into the development program of the Technology Test Bed Engine at NASA Marshall Space Flight Center.

  14. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality.

    PubMed

    Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2014-04-01

    To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of Heat on Space-Time Correlations in Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2006-01-01

    Measurements of space-time correlations of velocity, acquired in jets from acoustic Mach number 0.5 to 1.5 and static temperature ratios up to 2.7 are presented and analyzed. Previous reports of these experiments concentrated on the experimental technique and on validating the data. In the present paper the dataset is analyzed to address the question of how space-time correlations of velocity are different in cold and hot jets. The analysis shows that turbulent kinetic energy intensities, lengthscales, and timescales are impacted by the addition of heat, but by relatively small amounts. This contradicts the models and assumptions of recent aeroacoustic theory trying to predict the noise of hot jets. Once the change in jet potential core length has been factored out, most one- and two-point statistics collapse for all hot and cold jets.

  16. Gas dynamics of a supersonic radial jet. Part II

    NASA Astrophysics Data System (ADS)

    Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.

    2016-05-01

    The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.

  17. Some unresolved questions on hot-jet mixing control through artificial excitation

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Brown, W. H.

    1986-01-01

    The problem of the mixing enhancement of heated jets through acoustic excitation is addressed using a 5.08 cm diameter jet operating at Mach numbers as high as 1.12 and at temperatures reaching 670 K. An experimental investigation is carried out to determine why high-speed heated jets are not as responsive to internal excitation as low-speed heated jets. Results are also presented which are related to the flow structure in the presence of screech and under the influence of external excitation. It is shown that, if sufficiently high excitation levels are used, the heated jets, even at high levels, can be modified by artificial excitation. Nonetheless, it is concluded that, for the test facility and test conditions used in the present study, the high-Mach-number heated jets are considerably less excitable than the similarly heated low-Mach-number jets.

  18. Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea

    2010-12-01

    Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.

  19. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  20. The collective emission of electromagnetic waves from astrophysical jets - Luminosity gaps, BL Lacertae objects, and efficient energy transport

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.

    1988-01-01

    A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.

  1. First measurements of electron temperature in the D region with a symmetric double probe

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1973-01-01

    Measurement of the altitude profile of electron temperature in the ionospheric D region with the aid of a symmetric double probe flown on a Nike-Cajun payload launched on Oct. 13, 1971. The procedure for determining the electron temperature from the parameters of the double probe's current-voltage characteristic under conditions of nonnegligible ion-atom collision frequencies is described. It is shown that in its first lower ionospheric application the technique of the symmetric double probe has yielded the lowest values of electron temperature yet measured and has provided the very first direct measurement of electron temperature in the D region.

  2. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    PubMed

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  3. Cold atmospheric plasma jet in an axial DC electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lilin@gwu.edu, E-mail: keidar@gwu.edu; Keidar, Michael, E-mail: lilin@gwu.edu, E-mail: keidar@gwu.edu

    2016-08-15

    Cold atmospheric plasma (CAP) jet is currently intensively investigated as a tool for new and potentially transformative cancer treatment modality. However, there are still many unknowns about the jet behavior that requires attention. In this paper, a helium CAP jet is tested in an electrostatic field generated by a copper ring. Using Rayleigh microwave scattering method, some delays of the electron density peaks for different ring potentials are observed. Meanwhile, a similar phenomenon associated with the bullet velocity is found. Chemical species distribution along the jet is analyzed based on the jet optical emission spectra. The spectra indicate that amore » lower ring potential, i.e., lower DC background electric field, can increase the amount of excited N{sub 2}, N{sub 2}{sup +}, He, and O in the region before the ring, but can decrease the amount of excited NO and HO almost along the entire jet. Combining all the results above, we discovered that an extra DC potential mainly affects the temporal plasma jet properties. Also, it is possible to manipulate the chemical compositions of the jet using a ring with certain electric potentials.« less

  4. Jet stability and wall impingement flow field in a thermal striping experiment

    DOE PAGES

    Lomperski, S.; Obabko, A.; Merzari, E.; ...

    2017-08-10

    We present velocity and temperature field measurements for a 0.9 x 0.9 x 1.7 m glass tank in which two air jets at Re=10000 mix and impinge upon the lid at ambient temperature and pressure. Flow patterns are characterized across a 350 x 200 mm plane located 3 mm below the lid for two inlet geometries: 1) “extended”, in which inlet channels protrude above the tank base, and 2) “flush”, a flat base without protrusions. This minor geometry variation produced distinct changes in the lid flow field, appearing as three stagnant regions for the extended case and only one formore » flush. The dichotomy is attributed to system stability characteristics: jets are stable in the extended case and unstable for flush. In a separate set of nonisothermal tests, the impingement temperature field was measured for inlet temperature mismatches of 4 oC and jets near Re=10000. A 50 m-long fiber optic distributed temperature sensor positioned 2 mm below the lid measured at 1350 locations. Like the velocity fields, the temperature fields differ for the two inlet geometries: good thermal mixing for the flush case and subdued mixing for the extended case. Simulations with the spectral element code Nek5000 replicated the observed stability dichotomy, duplicating the number of stagnant regions observed in the experiment and matching their locations within ±10 mm. Simulation data suggests that flush case instability is due to interactions between jets and wall flows at the bottom of the tank. The clear flow dichotomy exhibited by this two-jet setup presents an unambiguous case to test the ability of CFD tools to predict subtle flow field changes driven by minor modifications in geometry in the context of thermal striping.« less

  5. Jet stability and wall impingement flow field in a thermal striping experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomperski, S.; Obabko, A.; Merzari, E.

    We present velocity and temperature field measurements for a 0.9 x 0.9 x 1.7 m glass tank in which two air jets at Re=10000 mix and impinge upon the lid at ambient temperature and pressure. Flow patterns are characterized across a 350 x 200 mm plane located 3 mm below the lid for two inlet geometries: 1) “extended”, in which inlet channels protrude above the tank base, and 2) “flush”, a flat base without protrusions. This minor geometry variation produced distinct changes in the lid flow field, appearing as three stagnant regions for the extended case and only one formore » flush. The dichotomy is attributed to system stability characteristics: jets are stable in the extended case and unstable for flush. In a separate set of nonisothermal tests, the impingement temperature field was measured for inlet temperature mismatches of 4 oC and jets near Re=10000. A 50 m-long fiber optic distributed temperature sensor positioned 2 mm below the lid measured at 1350 locations. Like the velocity fields, the temperature fields differ for the two inlet geometries: good thermal mixing for the flush case and subdued mixing for the extended case. Simulations with the spectral element code Nek5000 replicated the observed stability dichotomy, duplicating the number of stagnant regions observed in the experiment and matching their locations within ±10 mm. Simulation data suggests that flush case instability is due to interactions between jets and wall flows at the bottom of the tank. The clear flow dichotomy exhibited by this two-jet setup presents an unambiguous case to test the ability of CFD tools to predict subtle flow field changes driven by minor modifications in geometry in the context of thermal striping.« less

  6. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  7. Hopkins Ultraviolet Telescope determination of the Io torus electron temperature

    NASA Technical Reports Server (NTRS)

    Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.

    1994-01-01

    Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.

  8. Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.

    2007-01-01

    Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.

  9. Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.

    PubMed

    Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W

    2011-02-04

    Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.

  10. Magnetic Resonance Velocimetry analysis of an angled impinging jet

    NASA Astrophysics Data System (ADS)

    Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David

    2016-11-01

    Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.

  11. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  12. Hotspot electron temperature from x-ray continuum measurements on the NIF

    DOE PAGES

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; ...

    2016-08-24

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for themore » hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. In conclusion, this new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.« less

  13. Atomic oxygen behavior at downstream of AC excited atmospheric pressure He plasma jet

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Sekine, Makoto; Hori, Masaru

    2016-09-01

    Applications of atmospheric pressure plasma jets (APPJ) have been investigated in the plasma medical fields such as cancer therapy, blood coagulation, etc. Reactive species generated by the plasma jet interacts with the biological surface. Therefore, the issue attracts much attentions to investigate the plasma effects on targets. In our group, a spot-size AC excited He APPJ have been used for the plasma medicine. From diagnostics of the APPJ using optical emission spectroscopy, the gas temperature and the electron density was estimated to be 299 K and 3.4 ×1015 cm-3. The AC excited He APPJ which affords high density plasma at room temperature is considered to be a powerful tool for the medical applications. In this study, by using vacuum ultraviolet absorption spectroscopy, the density of atomic oxygen on a floating copper as a target irradiated by the He APPJ was measured as a function of the distance between the plasma source and the copper wire. The measured density became a maximum value around 8 ×1013 cm-3 at 12 mm distance, and then decreased over the distance. It is considered that the behavior was due to the changes in the plasma density on the copper wire and influence of ambient air.

  14. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    PubMed

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  15. Elevated Temperature Ballistic Impact Testing of PBO and Kevlar Fabrics for Application in Supersonic Jet Engine Fan Containment Systems

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts Gary D.; Revilock, Duane M., Jr.

    1997-01-01

    Ballistic impact tests were conducted on fabric made from both Poly(phenylene benzobizoxazole) (PBO) and Kevlar 29 which were selected to be similar in weave pattern, areal density, and fiber denier. The projectiles were 2.54-cm- (1-in.-) long aluminum cylinders with a diameter of 1.27 cm (0.5 in.). The fabric specimens were clamped on four sides in a 30.5-cm- (12-in.-) square frame. Tests on PBO were conducted at room temperature and at 260 C (500 F). A number of PBO specimens were aged in air at 204 and 260 C (400 and 500 F) before impact testing. Kevlar specimens were tested only at room temperature and with no aging. The PBO absorbed significantly more energy than the Kevlar at both room and elevated temperatures. However, after aging at temperatures of 204 C (400 F) and above, the PBO fabric lost almost all of its energy absorbing ability. It was concluded that PBO fabric is not a feasible candidate for fan containment system applications in supersonic jet engines where operating temperatures exceed this level.

  16. Inductive and electrostatic acceleration in relativistic jet-plasma interactions.

    PubMed

    Ng, Johnny S T; Noble, Robert J

    2006-03-24

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma-wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.

  17. Measurement of the Top Pair Production Cross Section in the Lepton + Jets Channel Using a Jet Flavor Discriminant

    DOE PAGES

    Aaltonen, T.

    2011-08-01

    We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb -1 from pp¯ collisions at √s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scalemore » with integrated luminosity. We measure a top cross section of σ tt¯ = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.« less

  18. The study of the plasma jets of lead and silver simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Gavrikov, A. V.; Smirnov, V. P.; Liziakin, G. D.; Usmanov, R. A.; Vorona, N. A.; Timirkhanov, R. A.

    2018-01-01

    One of the tasks that must be solved to develop a spent nuclear fuel (SNF) plasma separation method is a creation of plasma source of substances simulating SNF components. Plasma of the diffuse arc discharge in a magnetic field with an incandescent cathode was considered in this paper, as such source. The discharge was initiated in a model substances vapor (lead and silver). Evaporation was carried out by crucible induction heating. Current- voltage characteristics of the discharge were obtained. Spectral analysis of the plasma jets radiation and double probe characteristics measurements in the area behind the anode were carried out. The minimum potential difference between the anode and cathode reached a value of about 7 V at current of about 1 A. When the potential difference in the discharge gap was close to 30 V (4.5 A) and 10 V (5.2 A) electron temperature in the plasma jet was 5-7 eV and 1-3 eV, respectively. Plasma density in jets took the value from 1011 cm-3 to 1012 cm-3. The obtained results indicate the possibility of using this type of discharge for the SNF plasma separation method approbation.

  19. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  20. High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods

    DTIC Science & Technology

    2016-08-24

    the manifestations of the initial shear layer instabilities that originate at the nozzle exit. Crow and Champagne 1 and Moore 2 were among the first...structures ( or instability waves/wave packets) , first clearly observed by Crow and Champagne 1 and Moore 2 in axisymmetric jets, are generally...grant, is continuing under an NSF grant. Bibliography 1. Crow, S. and Champagne , F. H., “Orderly structure in jet turbulence,” Journal of Fluid

  1. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  2. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges

    DOE PAGES

    Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek; ...

    2017-01-03

    Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less

  3. Radial magnetic compression in the expelled jet of a plasma deflagration accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Mouratidis, Theodore

    2016-02-29

    A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empiricalmore » scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.« less

  4. Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; Contributors, JET

    2017-08-01

    The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 °C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 °C,respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87 % were observed with deposit thicknesses of 10 and 40 μm, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90 % . TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.

  5. PALS laser-driven radiative jets for astrophysical and ICF applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisarczyk, T.; Kasperczuk, A.; Stenz, Ch.

    2008-03-19

    High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System--PALS) using the third harmonic beam (0.438 {mu}m) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x10{sup 7} cm/s, the internal Mach number greater than 10 and themore » electron density above 10{sup 19} cm{sup -3}. The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm.« less

  6. Electron anions and the glass transition temperature.

    PubMed

    Johnson, Lewis E; Sushko, Peter V; Tomota, Yudai; Hosono, Hideo

    2016-09-06

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design.

  7. Electron anions and the glass transition temperature

    DOE PAGES

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; ...

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca 12Al 14O 32] 2+ ∙ (e –) 2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  8. Influence of low-temperature resistivity on fast electron transport in solids: scaling to fast ignition electron beam parameters

    NASA Astrophysics Data System (ADS)

    McKenna, P.; MacLellan, D. A.; Butler, N. M. H.; Dance, R. J.; Gray, R. J.; Robinson, A. P. L.; Neely, D.; Desjarlais, M. P.

    2015-06-01

    The role of low-temperature electrical resistivity in defining the transport properties of mega-Ampere currents of fast (MeV) electrons in solids is investigated using 3D hybrid particle-in-cell (PIC) simulations. By considering resistivity profiles intermediate to the ordered (lattice) and disordered forms of two example materials, lithium and silicon, it is shown that both the magnitude of the resistivity and the shape of the resistivity-temperature profile at low temperatures strongly affect the self-generated resistive magnetic fields and the onset of resistive instabilities, and thus the overall fast electron beam transport pattern. The scaling of these effects to the giga-Ampere electron currents required for the fast ignition scheme for inertial fusion is also explored.

  9. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  10. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  11. Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A

    NASA Astrophysics Data System (ADS)

    de Vries, M. N.; Wise, M. W.; Huppenkothen, D.; Nulsen, P. E. J.; Snios, B.; Hardcastle, M. J.; Birkinshaw, M.; Worrall, D. M.; Duffy, R. T.; McNamara, B. R.

    2018-06-01

    We present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 71_{-10}^{+10} nJy and 24_{-4}^{+4} nJy, and photon indices of 1.72_{-0.03}^{+0.03} and 1.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 50_{-13}^{+12} nJy and 13_{-5}^{+5} nJy, and photon indices of 1.97_{-0.10}^{+0.23} and 1.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.

  12. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  13. High temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1981-01-01

    The extension of the range of operating temperatures of electronic components and systems for planetary exploration is examined. In particular, missions which utilize balloon-borne instruments to study the Venusian and Jovian atmospheres are discussed. Semiconductor development and devices including power sources, ultrastable oscillators, transmitters, antennas, electromechanical devices, and deployment systems are addressed.

  14. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  15. DNS of a turbulent lifted DME jet flame

    DOE PAGES

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  16. Measurement of the ratio of inclusive cross sections sigma(pp going to Z+b-jet)/sigma(pp going to Z+jet) in the dilepton final states

    NASA Astrophysics Data System (ADS)

    Smith, Kenneth James

    The inclusive production of b-jets with a Z boson is an important background to searches for the Higgs boson in associated ZH → llbb¯ production at the Fermilab Tevatron collider. This thesis describes the most precise measurement to date of the ratio of inclusive cross sections sigma( pp¯ → Z +b-jet)/sigma( pp¯ → Z+jet) when a Z boson decays into two electrons or muons. The measurement uses a data sample from pp¯ collisions at the center of mass energy s = 1.96 TeV corresponding to an integrated luminosity of 4.2 fb -1 collected by the D0 detector. The measured ratio sigma( Z + b-jet)/sigma(Z+jet) is 0.0187 +/- 0.0021(stat) +/- 0.0015(syst) for jets with transverse momentum pT > 20 GeV and pseudorapidity |eta| ≤2.5. The measurement is compared with the next-to-leading order theoretical predictions from MCFM and is found to be consistent within uncertainties.

  17. Ink jet printing of silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1985-01-01

    Progress was made in the continuing development of the ink jet printing system for thick film circuits. The unit being used is a prototype ink jet printer. One of the first tasks completed was the complete documentation of this ink jet printing system as it existed. It was determined that this was an essential step in deciding what modifications were needed to the system and how these modifications would be implemented. Design modification studies were started for electronic, mechanical, and programming aspects of the ystem. The areas needeing improvement were discussed and applicable changes decided upon. Some improvments were completed. Although the general areas needing improving were identified and some changes decided upon, the exact details of how other changes can be implemented are yet been decided.

  18. Studies of the effects of curvature on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.

    1992-01-01

    An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  19. Electronic structure of the bismuth family of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Feng, Donglai

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  20. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  1. A device for controlled jet injection of large volumes of liquid.

    PubMed

    Mckeage, James W; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2016-08-01

    We present a needle-free jet injection device controllably actuated by a voice coil and capable of injecting up to 1.3 mL. This device is used to perform jet injections of ~900 μL into porcine tissue. This is the first time that delivery of such a large volume has been reported using an electronically controllable device. The controllability of this device is demonstrated with a series of ejections where the desired volume is ejected to within 1 % during an injection at a predetermined jet velocity.

  2. Electronic properties of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Richert, Brent Armand

    1989-08-01

    A semiempirical tight-binding model was developed for the electronic energy bands, the local and total densities of states, and the atomic valences in the high temperature superconductors La(1.85)Sr(0.15)CuO4, YBaCu307, Bi2Sr2CuO6, Bi2CaSr2Cu2O8, Tl2Ba2CuO6, Tl2CaBa2Cu2O8, Tl2Ca2Ba2Cu3O10, TlCa3Ba2Cu4O11, BaPb(0.75)Bi(0.25)O3, and Ba(0.6)K(0.4)BiO3. Calculations of the changes in electronic properties associated with atomic substitutions in YBa2Cu3O7, Bi2CaSr2Cu2O8, and Tl2CaBa2Cu2O8 give results in agreement with expected chemical trends and consistent with observed changes in the superconducting properties. For example, substitution of Lead for Bismuth in BiMCaSr2Cu2O8 increases the concentration of hole carriers within the CuO2 planes. Similarly, doping with Mercury or Pb in TlMCaBa2Cu2O8 also affects the carrier concentration, with Hg creating holes and Pb destroying them. Oxygen vacancies in both La(1.85)Sr(0.15)CuO(4-y) and YBa2Cu3O(7-y) act as electron donors. This is consistent with the observations that oxygen vacancies degrade the superconductivity and metallic conductivity in these materials. Lanthanum vacancies in La2-xCuO4 donate holes, giving the same electronic effect as doping with divalent metal atoms or excess oxygen initially stoichiometric La2CuO4. A specific excitonic mechanism for high temperature superconductivity is proposed which requires insulating metal oxide layers adjacent to the superconducting planes.

  3. Flight measured and calculated exhaust jet conditions for an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Hernandez, Francisco J.; Burcham, Frank W., Jr.

    1988-01-01

    The exhaust jet conditions, in terms of temperature and Mach number, were determined for a nozzle-aft end acoustic study flown on an F-15 aircraft. Jet properties for the F100 EMD engines were calculated using the engine manufacturer's specification deck. The effects of atmospheric temperature on jet Mach number, M10, were calculated. Values of turbine discharge pressure, PT6M, jet Mach number, and jet temperature were calculated as a function of aircraft Mach number, altitude, and power lever angle for the test day conditions. At a typical test point with a Mach number of 0.9, intermediate power setting, and an altitude of 20,000 ft, M10 was equal to 1.63. Flight measured and calculated values of PT6M were compared for intermediate power at altitudes of 15500, 20500, and 31000 ft. It was found that at 31000 ft, there was excellent agreement between both, but for lower altitudes the specification deck overpredicted the flight data. The calculated jet Mach numbers were believed to be accurate to within 2 percent.

  4. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  5. Effective temperature of an ultracold electron source based on near-threshold photoionization.

    PubMed

    Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.

  6. Measurements of multi-scalar mixing in a turbulent coaxial jet

    NASA Astrophysics Data System (ADS)

    Hewes, Alais; Mydlarski, Laurent

    2017-11-01

    There are relatively few studies of turbulent multi-scalar mixing, despite the occurrence of this phenomenon in common processes (e.g. chemically reacting flows, oceanic mixing). In the present work, we simultaneously measure the evolution of two passive scalars (temperature and helium concentration) and velocity in a coaxial jet. Such a flow is particularly relevant, as coaxial jets are regularly employed in applications of turbulent non-premixed combustion, which relies on multi-scalar mixing. The coaxial jet used in the current experiment is based on the work of Cai et al. (J. Fluid Mech., 2011), and consists of a vertically oriented central jet of helium and air, surrounded by an annular flow of (unheated) pure air, emanating into a slow co-flow of (pure) heated air. The simultaneous two-scalar and velocity measurements are made using a 3-wire hot-wire anemometry probe. The first two wires of this probe form an interference (or Way-Libby) probe, and measure velocity and concentration. The third wire, a hot-wire operating at a low overheat ratio, measures temperature. The 3-wire probe is used to obtain concurrent velocity, concentration, and temperature statistics to characterize the mixing process by way of single and multivariable/joint statistics. Supported by the Natural Sciences and Engineering Research Council of Canada (Grant 217184).

  7. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  8. Case Study of the California Low Level Coastal Jet Comparisons Between Observed and Model-Estimated Winds and Temperatures using WRF and COAMPS

    NASA Astrophysics Data System (ADS)

    Tomé, Ricardo; Semedo, Alvaro; Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla

    2010-05-01

    A low level coastal jet (LLCJ) is a low-troposphereic wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over sea. This feature has been identified and studied in several areas of the world, where such a land-sea temperature contrast exist: off the coast of Somalia, near Lima, Peru, off the Mediterranean coast of Spain, in the Southwest coast of Africa, or in the South China Sea coast. Nevertheless, the California LLCJ is probably the most studied coastal jet in the world, with several studies available in the literature. Coastal jets have a notorious impact on coastal areas. Climatologically they are associated with coastal upwelling processes. The major coastal fishing grounds in the world are usually in areas of upwelling, and the abundance of fish at the surface is supported by the upwelled nutrient-rich waters from deeper levels. The effect of this upwelled water to the fishing industry and to the habitat of an enormous diversity of marine life is of paramount importance, and has led to numerous studies in this field. Littoral areas are usually densely populated, and often airports are built in areas where a LLCJ may occur. Thus, aviation operations are deeply influenced by this weather feature, which has a significant impact on the takeoff and landing of airplanes. Therefore the forecasting of LLCJ features is very important for several reasons.The forecasting skills of mesoscale models, while challenging in any region, become particularly complex near coastlines, where processes associated with the coastal boundary add additional complexity: interaction of the flow with the coastal orography, sharp sea-land temperature gradients, highly baroclinic environment, complex air-sea exchanging processes, etc. The purpose of this study is to assess the forecasting skills of the limited-area models WRF (Weather Research and Forecasting) and COAMPS® (Coupled Ocean-Atmosphere Mesoscale

  9. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  10. Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.

    2008-01-01

    Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.

  11. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source.

    PubMed

    Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun

    2014-01-01

    Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.

  12. Determination of electron temperature in a penning discharge by the helium line ratio method

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1975-01-01

    The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.

  13. The LANL P14 temperature control electronics for the waveshaping filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahman, N.S.

    1993-12-17

    The Pulse Waveform Standard is designed to be operated in a laboratory environment in which the temperature is controlled and maintained at 22 C. The temperature controller of the Pulse Waveform Standard must be set to operate at 30 C. This report gives information for calibrating and maintaining the temperature control electronics. Temperature controller circuit diagrams and temperature controller circuit board layouts are included.

  14. Stopping power of an electron gas with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  15. Investigation of a Plasma Edge Cathode Under High Current Density Electron Extraction

    DTIC Science & Technology

    1991-12-05

    simu- lation using the MAGIC code confirmed the expected features of the scheme. SLTMMARY .. . . . . . . . . . .. . . . . . . . . . . 1 I...description. An electron temperature of 1 eV was mea- sured in the extraction region without extraction turned on. The plasma from the plasma gun was...jet is reduced if the time between shots is reduced to below I min. The numerical simulation with MAGIC gave confirming results. The simulated current

  16. Hydrogen enrichment for low-emission jet combustion

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1978-01-01

    Simultaneous gaseous pollutant emission indexes (g pollutant/kg fuel) for a research combustor with inlet air at 120,900 N/sq m (11.9 atm) pressure and 727 K (849 F) temperature are as low as 1.0 for NOx and CO and 0.5 for unburned HC. Emissions data are presented for hydrogen/jet fuel (JP-5) mixes and for jet fuel only for premixed equivalence ratios from lean blowout to 0.65. Minimized emissions were achieved at an equivalence ratio of 0.38 using 10-12 mass percent hydrogen in the total fuel to depress the lean blowout limit. They were not achievable with jet fuel alone because of the onset of lean blowout at an equivalence ratio too high to reduce the NOx emission sufficiently.

  17. ELLERMAN BOMBS WITH JETS: CAUSE AND EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, A.; Mathioudakis, M.; Scullion, E.

    2015-05-20

    Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1 m Solar Telescope to study EB events on the solar disk and at the limb. Both data sets show that EBs are connected to the foot points of forming chromospheric jets. The limb observations show that a bright structure in the Hα blue wing connects to the EB initially fueling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of Hα.more » In the disk data set, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes. Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5–10 km s{sup −1}, while their chromospheric counterparts range from 50 to 80 km s{sup −1}. MURaM simulations of quiet Sun reconnection show that micro-jets with properties similar to those of the observations follow the line of reconnection in the photosphere, with associated Hα brightening at the location of increased temperature.« less

  18. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  19. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  20. Ultraviolet laser spectroscopy of jet-cooled CaNC and SrNC free radicals: Observation of bent excited electronic states

    NASA Astrophysics Data System (ADS)

    Greetham, Gregory M.; Ellis, Andrew M.

    2000-11-01

    New electronic transitions of the CaNC and SrNC free radicals have been identified in the near ultraviolet. For CaNC one new system, labeled the D˜-X˜ transition, was observed in the 31 500-33 400 cm-1 region. Two new transitions were found for SrNC, the D˜-X˜ and Ẽ-X˜ systems spanning 29 100-31 000 and 32 750-34 000 cm-1, respectively. Jet-cooled laser excitation spectra yield complex vibrational structure, much of which is attributed to excitation of the bending vibration. This has been used to infer that the molecule adopts a nonlinear equilibrium geometry in the upper electronic state in all three band systems, in contrast to the linear ground electronic state. This structural change is accounted for by the increased diffuseness of the unpaired electron in the excited states, which favors deviation from linearity. All three new excited states are assigned 2A' symmetry and correlate with 2Σ+ states in the linear molecule limit. Tentative estimates for the barriers to linearity in the D˜ 2A' states of CaNC and SrNC have been determined as ˜700 and ˜1050 cm-1, respectively.