NASA Technical Reports Server (NTRS)
Stabe, R. G.
1971-01-01
A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.
On the Scaling Laws for Jet Noise in Subsonic and Supersonic Flow
NASA Technical Reports Server (NTRS)
Vu, Bruce; Kandula, Max
2003-01-01
The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are examined with regard to their applicability to deduce full scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full-scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. It is shown that the jet Mach number (jet exit velocity/sound speed at jet exit) is a more general and convenient parameter for noise scaling purposes than the ratio of jet exit velocity to ambient speed of sound. A similarity spectrum is also proposed, which accounts for jet Mach number, angle to the jet axis, and jet density ratio. The proposed spectrum reduces nearly to the well-known similarity spectra proposed by Tam for the large-scale and the fine-scale turbulence noise in the appropriate limit.
Real jet effects on dual jets in a crossflow
NASA Technical Reports Server (NTRS)
Schetz, J. A.
1984-01-01
A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.
A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Swihart, John M.
1959-01-01
A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.
Jet Exit Rig Six Component Force Balance
NASA Technical Reports Server (NTRS)
Castner, Raymond; Wolter, John; Woike, Mark; Booth, Dennis
2012-01-01
A new six axis air balance was delivered to the NASA Glenn Research Center. This air balance has an axial force capability of 800 pounds, primary airflow of 10 pounds per second, and a secondary airflow of 3 pounds per second. Its primary use was for the NASA Glenn Jet Exit Rig, a wind tunnel model used to test both low-speed, and high-speed nozzle concepts in a wind tunnel. This report outlines the installation of the balance in the Jet Exit Rig, and the results from an ASME calibration nozzle with an exit area of 8 square-inches. The results demonstrated the stability of the force balance for axial measurements and the repeatability of measurements better than 0.20 percent.
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T.; Seiner, John M.
1990-01-01
The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.
Large amplitude forcing of a high speed 2-dimensional jet
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1984-01-01
The effect of large amplitude forcing on the growth of a high speed two dimensional jet was investigated experimentally. Two forcing techniques were utilized: mass flow oscillations and a mechanical system. The mass flow oscillation tests were conducted at Strouhal numbers from 0.00052 to 0.045, and peak to peak amplitudes up to 50 percent of the mean exit velocity. The exit Mach number was varied in the range 0.15 to 0.8. The corresponding Reynolds numbers were 8,400 and 45,000. The results indicate no significant change of the jet growth rate or centerline velocity decay compared to the undisturbed free jet. The mechanical forcing system consists of two counter rotating hexagonal cylinders located parallel to the span of the nozzle. Forcing frequencies up to 1,500 Hz were tested. Both symmetric and antisymmetric forcing can be implemented. The results for antisymmetric forcing showed a significant (75 percent) increase of the jet growth rate at an exit Mach number of 0.25 and a Strouhal number of 0.019. At higher rotational speeds, the jet deflected laterally. A deflection angle of 39 deg with respect to the centerline was measured at the maximum rotational speed.
NASA Technical Reports Server (NTRS)
Hoad, D. R.; Martin, R. M.
1985-01-01
Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.
Acoustically excited heated jets. 2: In search of a better understanding
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.
1988-01-01
The second part of a three-part report on the effects of acoustic excitation on jet mixing includes the results of an experimental investigation directed at resolving the question of poor excitability of some of the heated jets. The theoretical predictions discussed in Part 1 are examined to find explanations for the observed discrepancies between the measured and the predicted results. Additional testing was performed by studying the self excitation of the shock containing hot jets and also by exciting the jet by sound radiated through source tubes located externally around the periphery of the jet. The effects of nozzle-exit boundary layer conditions on jet excitability was also investigated. It is concluded that high-speed, heated jet mixing rates and consequently also the jet excitability strongly depends on nozzle exit boundary layer conditions.
Aeroperformance and Acoustics of the Nozzle with Permeable Shell
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.; Chernyshev, S. A.; Chernyshev, S. A.
1999-01-01
Several simple experimental acoustic tests of a spraying system were conducted at the NASA Langley Research Center. These tests have shown appreciable jet noise reduction when an additional cylindrical permeable shell was employed at the nozzle exit. Based on these results, additional acoustic tests were conducted in the anechoic chamber AK-2 at the Central Aerohydrodynamics Institute (TsAGI, Moscow) in Russia. These tests examined the influence of permeable shells on the noise from a supersonic jet exhausting from a round nozzle designed for exit Mach number, M (sub e)=2.0, with conical and Screwdriver-shaped centerbodies. The results show significant acoustic benefits of permeable shell application especially for overexpanded jets by comparison with impermeable shell application. The noise reduction in the overall pressure level was obtained up to approximately 5-8%. Numerical simulations of a jet flow exhausting from a convergent-divergent nozzle designed for exit Mach number, M (sub e)=2.0, with permeable and impermeable shells were conducted at the NASA LaRC and Hampton University. Two numerical codes were used. The first is the NASA LaRC CFL3D code for accurate calculation of jet mean flow parameters on the basis of a full Navier-Stokes solver (NSE). The second is the numerical code based on Tam's method for turbulent mixing noise (TMN) calculation. Numerical and experimental results are in good qualitative agreement.
Supersonic Injection of Aerated Liquid Jet
NASA Astrophysics Data System (ADS)
Choudhari, Abhijit; Sallam, Khaled
2016-11-01
A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.
NASA Technical Reports Server (NTRS)
Barra, V.; Panunzio, S.
1976-01-01
Jet engine noise generation and noise propagation was investigated by studying supersonic nozzle flow of various nozzle configurations in an experimental test facility. The experimental facility was constructed to provide a coaxial axisymmetric jet flow of unheated air. In the test setup, an inner primary flow exhausted from a 7 in. exit diameter convergent--divergent nozzle at Mach 2, while a secondary flow had a 10 in. outside diameter and was sonic at the exit. The large dimensions of the jets permitted probes to be placed inside the jet core without significantly disturbing the flow. Static pressure fluctuations were measured for the flows. The nozzles were designed for shock free (balanced) flow at Mach 2. Data processing techniques and experimental procedures were developed in order to study induced disturbances at the edge of the supersonic flows, and the propagation of those disturbances throughout the flows. Equipment used (specifications are given) to record acoustic levels (far field noise) is described. Results and conclusions are presented and discussed. Diagrams of the jet flow fields are included along with photographs of the test stand.
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1977-01-01
Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.
Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T.; Seiner, John M.
1991-01-01
The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.
Noise Reduction with Lobed Mixers: Nozzle-Length and Free-Jet Speed Effects
NASA Technical Reports Server (NTRS)
Mengle, Vinod G.; Dalton, William N.; Bridges, James C.; Boyd, Kathy C.
1997-01-01
Acoustic test results are presented for 1/4th-scaled nozzles with internal lobed mixers used for reduction of subsonic jet noise of turbofan engines with bypass ratio above 5 and jet speeds up to 830 ft/s. One coaxial and three forced lobe mixers were tested with variations in lobe penetration, cut-outs in lobe-sidewall, lobe number and nozzle-length. Measured exit flow profiles and thrusts are used to assist the inferences from acoustic data. It is observed that lobed mixers reduce the low-frequency noise due to more uniformly mixed exit flow; but they may also increase the high-frequency noise at peak perceived noise (PNL) angle and angles upstream of it due to enhanced mixing inside the nozzle. Cut-outs and low lobe penetration reduce the annoying portion of the spectrum but lead to less uniform exit flow. Due to the dominance of internal duct noise in unscalloped, high-penetration mixers their noise is not reduced as much with increase in free-jet speed as that of coaxial or cut-out lobed mixers. The latter two mixers also show no change in PNL over the wide range of nozzle-lengths tested because most of their noise sources are outside the nozzle; whereas, the former show an increase in noise with decrease in nozzle-length.
NASA Technical Reports Server (NTRS)
Ziegler, H.; Woller, P. T.
1973-01-01
Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.
NASA Technical Reports Server (NTRS)
Cavage, William M.; Kuhlman, John M.
1993-01-01
An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.
Preliminary Measurements of the Noise Characteristics of Some Jet-Augmented-Flap Configurations
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Hubbard, Harvey H.
1959-01-01
Experimental noise studies were conducted on model configurations of some proposed jet-augmented flaps to determine their far-field noise characteristics. The tests were conducted using cold-air jets of circular and rectangular exits having equal areas, at pressure ratios corresponding to exit velocities slightly below choking. Results indicated that the addition of a flap to a nozzle may change both its noise radiation pattern and frequency spectrum. Large reductions in the noise radiated in the downward direction are realized when the flow from a long narrow rectangular nozzle as permitted to attach to and flow along a large flap surface. Deflecting or turning the jet flow by means of impingement on the under surfaces increases the noise radiated in all directions and especially in the downward direction for the jet-flap configurations tested. Turning of the flow from nozzles by means of a flap turns the noise pattern approximately an equal amount. The principle of using a jet-flap shield with flow attachment may have some application as a noise suppressor.
Effect of slotted exit orifice on performance of plasma synthetic jet actuator
NASA Astrophysics Data System (ADS)
Zong, Haohua; Kotsonis, Marios
2017-03-01
This study experimentally investigates the influence of exit orifice shape on the performance characteristics of a three-electrode plasma synthetic jet actuator. High-speed Schlieren imaging system and phase-locked two-component PIV measurements are used for flowfield characterisation in quiescent conditions. Two actuator configurations with the same exit area but different exit orifice shape (round orifice and slot orifice) are studied. Results indicate a close correspondence between the shapes of the starting vortex ring with the shapes of the respective exit orifices. For the slot orifice, the elongated starting vortex ring gradually expands during propagation, while its ends become warped. A distinct K-H instability structure is observed, inducing continuous oscillation of the high-speed jet. Compared with the jet from the round orifice, the slot jet has a higher entrainment rate of surrounding air, thus resulting in a lower propagation velocity of the jet front. The exit velocity of PSJA within one period initially shows a rapid increase, then persists at a relatively high level (100-130 m/s), and finally drops with some small-scale oscillations. The oscillation amplitude is less than 10 m/s, and the oscillation period is approximately 600 µs. Under conditions of same exit area, orifice shape has little influence on the variation of the exit velocity.
NASA Technical Reports Server (NTRS)
Kotansky, D. R.; Glaze, L. W.
1978-01-01
Flow characteristics of impinging jets emanating from rectangular exit area converging nozzles of exit area aspect ratio four, six, and eight were investigated. Azimuthal distributions of wall jet radial momentum flux in the ground plane were strongly directional and sensitive to rectangular nozzle exit area aspect ratio, jet impingement angle, and height above ground, H/D. Effects of jet exit velocity profile nonuniformities were also investigated. Data from the single nozzle rectangular jet impringement investigations were incorporated into an existing VTOL aircraft ground flow field computer program. It is suggested that this program together with the Douglas Neumann program modified for V/STOL applications may be used for the analysis and prediction of flow fields and resulting forces and moments on multijet V/STOL aircraft hovering in ground effect.
Experimental investigation of jet-induced loads on a flat plate in hover out-of-ground effect
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.; Warcup, R. W.
1979-01-01
Effects of varying jet decay rate on jet-induced loads on a flat plate located in the plane of the jet exit perpendicular to the jet axis were investigated using a small-scale laboratory facility. Jet decay rate has been varied through use of two cylindrical centerbodies having either a flat or hemispherical tip, which were submerged various distances below the flat plate jet exit plane. Increased jet decay rate, caused by the presence of a center-body or plug in the jet nozzle, led to an increased jet-induced lift loss on the flat plate. Jet-induced lift losses reached 1 percent of the jet thrust for the quickest jet decay rates for plate areas equal to 100 times the effective jet exit area. The observed lift loss versus jet decay rate trend agreed well with results of previous investigations.
Influence of coherent structures on the evolution of an axisymmetric turbulent jet
NASA Astrophysics Data System (ADS)
Breda, Massimiliano; Buxton, Oliver R. H.
2018-03-01
The role of initial conditions in affecting the evolution toward self-similarity of an axisymmetric turbulent jet is examined. The jet's near-field coherence was manipulated by non-circular exit geometries of identical open area, De2, including a square and a fractal exit, for comparison with a classical round orifice jet. Hot-wire anemometry and 2D-planar particle image velocimetry experiments were performed between the exit and a location 26De downstream, where the Reynolds stress profiles are self-similar. This study shows that a fractal geometry significantly changes the near-field structure of the jet, breaking up the large-scale coherent structures, thereby affecting the entrainment rate of the background fluid into the jet stream. It is found that many of the jet's turbulent characteristics scale with the number of eddy turnover times rather than simply the streamwise coordinate, with the entrainment rate (amongst others) found to be comparable across the different jets after approximately 3-4 eddies have been overturned. The study is concluded by investigating the jet's evolution toward a self-similar state. No differences are found for the large-scale spreading rate of the jets in the weakly self-similar region, so defined as the region for which some, but not all of the terms of the mean turbulent kinetic energy equation are self-similar. However, the dissipation rate of the turbulent kinetic energy was found to vary more gradually in x than predicted according to the classical equilibrium theories of Kolmogorov. Instead, the dissipation was found to vary in a non-equilibrium fashion for all three jets tested.
On the start up of supersonic underexpanded jets
NASA Astrophysics Data System (ADS)
Lacerda, Nehemias Lima
An impulsively started jet can be formed by a gas confined in a high pressure reservoir that escapes suddenly through an exit orifice, into a controlled atmosphere. Supersonic gas jets of this type are unsteady and differ from the steady jet that develops later by the presence of a bow shock, a jet head and a nonstationary Mach disk. The effects of the pressure ratio between the high pressure gas inside the reservoir and the lower pressure atmospheric gas, as well as the gas combination used, are studied experimentally. The gases used for the jet and the atmosphere were selected from helium, nitrogen and sulfur hexafluoride. The data acquisition consisted of: high resolution flash photography to obtain detail from the pictures; high-speed movie pictures to obtain the time development of selected features; and fast-response pressure transducers located at the reservoir end plate, the tank end plate and the jet exit. The initial development of the jet is highly time dependent. During this phase, the shape that the jet assumes varies with pressure ratio and with the choice of gas. In particular an extremely light gas exhausting into a heavy atmosphere, exhibits an uncommon shape. It develops as a bubble wrapped by the bow shock, that increases its volume with flow time and pressure ratio. As the pressure ratio increases, it becomes more tightly wrapped by the bow shock. At later times the jet assumes conventional linear growth. After the jet starts, a Mach disk is observed close to the jet exit which moves downstream as the exit pressure builds up. The monotonic increase in exit pressure is caused by the slow breaking of the diaphragm. The position of the Mach disk is furthest from the jet exit when the exit pressure is a maximum. After that it oscillates around the location predicted by the steady theory of Ashkenas and Sherman (1966) at a frequency close to one of the resonant frequencies of the reservoir. The features observed for the inner structure of the jet were verified to agree with those obtained for impulsive flow generated by a muzzle blast. The frontal part of the jet forms the jet head, whose shape changes with the flow conditions. The initial evolution of the jet head is linear but after propagating a distance of around ten exit diameters, it reaches asymptotic behavior with an evolution that is approximately proportional to square root of time. The head creates a bow shock ahead of it that propagates downstream and increases the pressure of the atmospheric gas. This bow shock was found to be less attenuated than in spherically symmetric explosions. The asymptotic behavior of the bow shock was reached after about eight exit diameters.
Reduction of background noise induced by wind tunnel jet exit vanes
NASA Technical Reports Server (NTRS)
Martin, R. M.; Brooks, T. F.; Hoad, D. R.
1985-01-01
The NASA-Langley 4 x 7 m wind tunnel develops low frequency flow pulsations at certain velocity ranges during open throat mode operation, affecting the aerodynamics of the flow and degrading the resulting model test data. Triangular vanes attached to the trailing edge of flat steel rails, mounted 10 cm from the inside of the jet exit walls, have been used to reduce this effect; attention is presently given to methods used to reduce the inherent noise generation of the vanes while retaining their pulsation reduction features.
Evidence of Standing Waves in Arc Jet Nozzle Flow
NASA Technical Reports Server (NTRS)
Driver, David M.; Hartman, Joe; Philippidis, Daniel; Noyes, Eric; Hui, Frank; Terrazas-Salinas, Imelda
2017-01-01
Waves spawned by the nozzle in the NASA Ames 60 MW Interaction Heating Facility arc jet were experimentally observed in pressure surveys at the exit of the nozzle. The waves have been seen in past CFD simulations, but were away from the region where models were tested (for the existing nozzles). However, a recent test series with a new nozzle extension (229 mm exit diameter) revealed that these waves intersect the centerline of the jet in a region where it is desirable to put test articles, and that the waves may be contributing to non-uniform recession behavior seen in Teflon (trademark) sublimation test articles tested in this new nozzle. It is reasonable to assume the ablation recession of thermal protection models will also be nonuniform due to exposure to these waves. This work shows that ablation response is sensitive to the location of test samples in the free jet relative to the location of the wave interaction, and that the issues with these waves can be avoided by choosing an optimum position for a test article in the free jet. This work describes the experimental observations along with the CFD simulations that have identified the waves emanating from the nozzle, as well as the instrumentation used to detect them. The work describes a recommended solution, derived by CFD analysis, which if implemented, should significantly reduce these flow disturbance and pressure anomalies in future nozzles.
NASA Technical Reports Server (NTRS)
Groesbeck, D. E.; Huff, R. G.; Vonglahn, U. H.
1977-01-01
Small-scale circular, noncircular, single- and multi-element nozzles with flow areas as large as 122 sq cm were tested with cold airflow at exit Mach numbers from 0.28 to 1.15. The effects of multi-element nozzle shape and element spacing on jet Mach number decay were studied in an effort to reduce the noise caused by jet impingement on externally blown flap (EBF) STOL aircraft. The jet Mach number decay data are well represented by empirical relations. Jet spreading and Mach number decay contours are presented for all configurations tested.
High-Flow Jet Exit Rig Designed and Fabricated
NASA Technical Reports Server (NTRS)
Buehrle, Robert J.; Trimarchi, Paul A.
2003-01-01
The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.
Measurements of Infrared and Acoustic Source Distributions in Jet Plumes
NASA Technical Reports Server (NTRS)
Agboola, Femi A.; Bridges, James; Saiyed, Naseem
2004-01-01
The aim of this investigation was to use the linear phased array (LPA) microphones and infrared (IR) imaging to study the effects of advanced nozzle-mixing techniques on jet noise reduction. Several full-scale engine nozzles were tested at varying power cycles with the linear phased array setup parallel to the jet axis. The array consisted of 16 sparsely distributed microphones. The phased array microphone measurements were taken at a distance of 51.0 ft (15.5 m) from the jet axis, and the results were used to obtain relative overall sound pressure levels from one nozzle design to the other. The IR imaging system was used to acquire real-time dynamic thermal patterns of the exhaust jet from the nozzles tested. The IR camera measured the IR radiation from the nozzle exit to a distance of six fan diameters (X/D(sub FAN) = 6), along the jet plume axis. The images confirmed the expected jet plume mixing intensity, and the phased array results showed the differences in sound pressure level with respect to nozzle configurations. The results show the effects of changes in configurations to the exit nozzles on both the flows mixing patterns and radiant energy dissipation patterns. By comparing the results from these two measurements, a relationship between noise reduction and core/bypass flow mixing is demonstrated.
Domain-adaptive finite difference methods for collapsing annular liquid jets
NASA Astrophysics Data System (ADS)
Ramos, J. I.
1993-01-01
A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption rate increases as the Weber number, nozzle exit angle, gas concentration at the nozzle exit, and temperature of the gases enclosed by the annular liquid jet are increased, but it decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-to-radius ratio at the nozzle exit are increased. It is also shown that the annular liquid jet's collapse rate increases as the Weber number, nozzle exit angle, temperature of the gases enclosed by the annular liquid jet, and pressure of the gases which surround the jet are increased, but decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-toradius ratio at the nozzle exit are increased. It is also shown that both the ratio of the initial pressure of the gas enclosed by the jet to the pressure of the gas surrounding the jet and the ratio of solubilities at the annular liquid jet's inner and outer interfaces play an important role on both the steady state mass absorption rate and the jet collapse. If the product of these ratios is greater or less than one, both the pressure and the mass of the gas enclosed by the annular liquid jet decrease or increase, respectively, with time. It is also shown that the numerical results obtained with the conservative, domain-adaptive method of lines technique presented in this paper are in excellent agreement with those of a domain-adaptive, iterative, non-conservative, block-bidiagonal, finite difference method which uncouples the solution of the fluid dynamics equations from that of the convergence length.
Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data
NASA Technical Reports Server (NTRS)
Brown, Clifford; Dippold, Vance
2015-01-01
The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.
Performance Characteristics of Flush and Shielded Auxiliary Exits at Mach Numbers of 1.5 to 2.0
NASA Technical Reports Server (NTRS)
Abdalla, Kaleel L.
1959-01-01
The performance characteristics of several flush and shielded auxiliary exits were investigated at Mach numbers of 1.5 to 2.0, and jet pressure ratios from jet off to 10. The results indicate that the shielded configurations produced better overall performance than the corresponding flush exits over the Mach-number and pressure-ratio ranges investigated. Furthermore, the full-length shielded exit was highest in performance of all the configurations. The flat-exit nozzle block provided considerably improved performance compared with the curved-exit nozzle block.
NASA Technical Reports Server (NTRS)
Brill, K. F.; Uccellini, L. W.; Burkhart, R. P.; Warner, T. T.; Anthes, R. A.
1985-01-01
A numerical study was performed of a severe weather event (tornado) which occurred on May 10, 1973 in the Ohio region. The situation was modeled with a primitive equation mesoscale dynamic formulation. Account was taken of precipitation, the planetary boundary layer parameters as bulk quantities, the vertical pressure gradient, and lateral boundary conditions based on radiosonde data. Two 12-hr simulations, adiabatic and nondivergent, respectively, were analyzed for relationships between upper and lower level jets. In the adiabatic formulation, a transverse circulation with a low level jet formed at the exit region of the upper level jet. The nondivergent situation led to similar, but weaker, phenomena. Both forms suggest that indirect circulation in the exit zone of an upper level jet is strongly influenced by the initial structure of the jet.
NASA Astrophysics Data System (ADS)
Jeffers, Nicholas; Stafford, Jason; Conway, Ciaran; Punch, Jeff; Walsh, Edmond
2016-02-01
Low profile impinging jets provide a means to achieve high heat transfer coefficients while occupying a small quantity of space. Consequently, they are found in many engineering applications such as electronics cooling, annealing of metals, food processing, and others. This paper investigates the influence of the stagnation zone fluid dynamics on the nozzle exit flow condition of a low profile, submerged, and confined impinging water jet. The jet was geometrically constrained to a round, 16-mm diameter, square-edged nozzle at a jet exit to target surface spacing ( H/ D) that varied between 0.25 < {{ H}{/}{ D}} < 8.75. The influence of turbulent flow regimes is the main focus of this paper; however, laminar flow data are also presented between 1350 < Re < 17{,}300. A custom measurement facility was designed and commissioned to utilise particle image velocimetry in order to quantitatively measure the fluid dynamics both before and after the jet exits its nozzle. The velocity profiles are normalised with the mean velocity across the nozzle exit, and turbulence statistics are also presented. The primary objective of this paper is to present accurate flow profiles across the nozzle exit of an impinging jet confined to a low H/ D, with a view to guide the boundary conditions chosen for numerical simulations confined to similar constraints. The results revealed in this paper suggest that the fluid dynamics in the stagnation zone strongly influences the nozzle exit velocity profile at confinement heights between 0 < {{ H}{/}{ D}} < 1. This is of particular relevance with regard to the choice of inlet boundary conditions in numerical models, and it was found that it is necessary to model a jet tube length {{ L}{/}{ D}} > 0.5—where D is the inner diameter of the jet—in order to minimise modelling uncertainty.
NASA Technical Reports Server (NTRS)
Hunczak, Henry R
1952-01-01
An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.
[Development of a novel liquid injection system].
Chen, Kai; Lv, Yong-Gui
2009-11-01
A liquid jet injector employs compressed gas or spring to produce a high-velocity stream to deliver liquid drug into human body through skin. There are many clinical jet injection products available, none of which is domestic. A new liquid jet injector is designed based on a comprehensive analysis of the current products. The injector consists of an ejector, trigger and a re-positioning mechanism. The jets characteristics of sample injector are tested, and the results show that the maximum exit pressure is above 15 MPa, a threshold value for penetrating into the skin.
Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)
2000-01-01
The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.
Jet engine nozzle exit configurations and associated systems and methods
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor)
2011-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.
Jet Engine Nozzle Exit Configurations and Associated Systems and Methods
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor)
2013-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.
Theoretical analysis of an augmentor wing for a VTOL fighter
NASA Technical Reports Server (NTRS)
Dillenius, M. F. E.; Mendenhall, M. R.
1979-01-01
A method based on potential flow theory was developed for predicting forces and moments acting on augmentor wings for prescribed ejector jet characteristics. A three dimensional nonplanar vortex lattice is laid out on the chordal planes of the augmentor wing components. Jet induced effects are included in the boundary condition from which the horseshoe vortex strengths are obtained. The jet within the diffusor is made to expand from the primary nozzles to the diffusor exit and is represented by a distribution of vorticity on the jet boundary to provide proper entrainment. The jet downstream of the diffusor exit is modeled by a vorticity distribution and blockage panels and its centerline location and spreading rate are taken from experimental data. The vortex lattice and jet models are used in an iterative manner until the predicted diffusor exit velocity matches the specified one. Some comparisons with available data show good agreement at lower power settings.
Fluorescence Imaging of Underexpanded Jets and Comparison with CFD
NASA Technical Reports Server (NTRS)
Wilkes, Jennifer A.; Glass, Christopher E.; Danehy, Paul M.; Nowak, Robert J.
2006-01-01
An experimental study of underexpanded and highly underexpanded axisymmetric nitrogen free jets seeded with 0.5% nitric oxide (NO) and issuing from a sonic orifice was conducted at NASA Langley Research Center. Reynolds numbers based on nozzle exit conditions ranged from 770 to 35,700, and nozzle exit-to-ambient jet pressure ratios ranged from 2 to 35. These flows were non-intrusively visualized with a spatial resolution of approximately 0.14 mm x 0.14 mm x 1 mm thick and a temporal resolution of 1 s using planar laser-induced fluorescence (PLIF) of NO, with the laser tuned to the strongly-fluorescing UV absorption bands of the Q1 band head near 226.256 nm. Three laminar cases were selected for comparison with computational fluid dynamics (CFD). The cases were run using GASP (General Aerodynamic Simulation Program) Version 4. Comparisons of the fundamental wavelength of the jet flow showed good agreement between CFD and experiment for all three test cases, while comparisons of Mach disk location and Mach disk diameter showed good agreement at lower jet pressure ratios, with a tendency to slightly underpredict these parameters with increasing jet pressure ratio.
Far Noise Field of Air Jets and Jet Engines
NASA Technical Reports Server (NTRS)
Callaghan, Edmund E; Coles, Willard D
1957-01-01
An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.
NASA Astrophysics Data System (ADS)
Ivanchenko, Oleksandr
The flow field generated by the interaction of a converging-diverging nozzle (exit diameter, D=26 mm M=1.5) flow and a choked flow from a minor jet (exit diameter, d=2.6 mm) in a counterflow configuration was investigated. During the tests both the main C-D nozzle and the minor jet stagnation pressures were varied as well as the region of interaction. Investigations were made in the near field, at most about 2D distance, and in the far field, where the repeated patterns of shock waves were eliminated by turbulence. Both nozzles exhausted to the atmospheric pressure conditions. The flow physics was studied using Schlieren imaging techniques, Pitot-tube, conical Mach number probe, Digital Particle Image Velocimetry (DPIV) and acoustic measurement methods. During the experiments in the far field the jets interaction was observed as the minor jet flow penetrates into the main jet flow. The resulting shock structure caused by the minor jet's presence was dependent on the stagnation pressure ratio between the two jets. The penetration length of the minor jet into the main jet was also dependent on the stagnation pressure ratio. In the far field, increasing the minor jet stagnation pressure moved the bow shock forward, towards the main jet exit. In the near field, the minor jet flow penetrates into the main jet flow, and in some cases modified the flow pattern generated by the main jet, revealing a new effect of jet flow interaction that was previously unknown. A correlation function between the flow modes and the jet stagnation pressure ratios was experimentally determined. Additionally the flow interaction between the main and minor jets was simulated numerically using FLUENT. The optimal mesh geometry was found and the k-epsilon turbulence model was defined as the best fit. The results of the experimental and computational studies were used to describe the shock attenuation effect as self-sustain oscillations in supersonic flow. The effects described here can be used in different flow fields to reduce the total pressure losses that occur due to the presence of shock waves. It will result in better designs of ramjet/scramjets combustors, fighter aircraft inlets and as well as in noise reduction of existing aircraft engines. It can also improve performance of rotating machinery; ramjet fuel injectors and aircraft control mechanisms.
Aeroacoustic features of coupled twin jets with spanwise oblique shock-cells
NASA Astrophysics Data System (ADS)
Panickar, Praveen; Srinivasan, K.; Raman, Ganesh
2004-11-01
This paper experimentally investigates the aeroacoustics of coupled twin jets of complex geometry. The study was motivated by the fact that twin jet configurations that are commonly used in aircraft propulsion systems can undergo unpredictable resonant coupling resulting in structural damage. Further, nozzles with spanwise oblique exits are increasingly being considered for their aerodynamic and acoustic advantages, as well as stealth benefits. Although several studies have examined aspects of twin jet coupling, very little data is available on the coupling of jets from nozzles of complex geometry. Our study focuses on twin convergent nozzles with an aspect ratio of 7 with spanwise oblique exits operated over the fully expanded Mach number range from 1.3 to 1.6. The inter-nozzle spacing ( s/ h) was varied from 7.4 to 13.5. However, the focus remained on the lower spacing that is more representative of aircraft applications. Several interesting results have emerged from this study: (1) Coupling of twin nozzles with a beveled exit was observed only when the beveled edges faced each other and the nozzles formed a 'V' shape in the inter-nozzle region. Specifically, if the two beveled edges were oriented away from each other to form an arrowhead ('A') shape no coupling was observed. (2) Despite the presence of spanwise antisymmetric, spanwise symmetric and spanwise oblique modes for the single nozzles, only the first two modes were evident in the coupling. (3) The symmetric coupling produced unsteady pressures in the inter-nozzle region that were up to 7.5 dB higher than the antisymmetrically coupled case. (4) Dynamic tests conducted by moving the nozzles apart while they were operating or by continuously changing the stagnation pressure at fixed inter-nozzle spacing revealed that coupling modes could co-exist at non-harmonically related frequencies. These dynamic tests reproduced the static test data. (5) The frequency of both coupling modes agrees with the higher order waveguide modes based on Tam's theory. (6) Differences in broadband shock noise between the 'V' and 'A' configurations were also documented. Our results provide an understanding of complex twin jet coupling and will serve as benchmark data for validating computational models.
Exact Solution of the Two-Dimensional Problem on an Impact Ideal-Liquid Jet
NASA Astrophysics Data System (ADS)
Belik, V. D.
2018-05-01
The two-dimensional problem on the collision of a potential ideal-liquid jet, outflowing from a reservoir through a nozzle, with an infinite plane obstacle was considered for the case where the distance between the nozzle exit section and the obstacle is finite. An exact solution of this problem has been found using methods of the complex-variable function theory. Simple analytical expressions for the complex velocity of the liquid, its flow rate, and the force of action of the jet on the obstacle have been obtained. The velocity distributions of the liquid at the nozzle exit section, in the region of spreading of the jet, and at the obstacle have been constructed for different distances between the nozzle exit section and the obstacle. Analytical expressions for the thickness of the boundary layer and the Nusselt number at the point of stagnation of the jet have been obtained. A number of distributions of the local friction coefficient and the Nusselt number of the indicated jet are presented.
Mixing of Supersonic Jets in a RBCC Strutjet Propulsion System
NASA Technical Reports Server (NTRS)
Muller, S.; Hawk, Clark W.; Bakker, P. G.; Parkinson, D.; Turner, M.
1998-01-01
The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during take-off and low speed flight. A scale model of the Strutjet device was built and tested to investigate the mixing of the streams as a function of distance from the Strut exit plane in simulated sea level take-off conditions. The Planar Laser Induced Fluorescence (PLIF) diagnostic method has been employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air. The ratio of the pressure in the turbine exhaust to that in the rocket nozzle wall at the point where the two jets meet, is the independent variable in these experiments. Tests were accomplished at values of 1.0 (the original design point), 1.5 and 2.0 for this parameter at 8 locations downstream of the rocket nozzle exit. The results illustrate the development of the mixing zone from the exit plane of the strut to a distance of about 18 equivalent rocket nozzle exit diameters downstream (18"). These images show the turbine exhaust to be confined until a short distance downstream. The expansion into the ingested air is more pronounced at a pressure ratio of 1.0 and 1.5 and shows that mixing with this air would likely begin at a distance of 2" downstream of the nozzle exit plane. Of the pressure ratios tested in this research, 2.0 is the best value for delaying the mixing at the operating conditions considered.
Dynamic loads on twin jet exhaust nozzles due to shock noise
NASA Technical Reports Server (NTRS)
Norum, T. D.; Shearin, J. G.
1986-01-01
Acoustic near field data were collected with model single and twin jet nozzles to determine if closely spaced nozzles produce higher acoustic loading than do single nozzles. The tests were spurred by structural failure of the B-1 exhaust nozzle external flaps and similar damage on the F-15. The test was performed using two 5/8 in. ID pipes machined and placed side-by-side to mimic B-1 nozzles. A microphone mounted on the internozzle fairing measured acoustic levels near the nozzle exit plane. The nozzles oscillated significantly more than did a single nozzle over a wide range of nozzle pressure ratios. Acoustic levels in the dual jets exceeded single jet noise by as much as 20 dB, making acoustic resonance a definite candidate for structural damage in the twin jet configuration.
NASA Technical Reports Server (NTRS)
Bhat, Thonse R. S.; Baty, Roy S.; Morris, Philip J.
1990-01-01
The shock structure in non-circular supersonic jets is predicted using a linear model. This model includes the effects of the finite thickness of the mixing layer and the turbulence in the jet shear layer. A numerical solution is obtained using a conformal mapping grid generation scheme with a hybrid pseudo-spectral discretization method. The uniform pressure perturbation at the jet exit is approximated by a Fourier-Mathieu series. The pressure at downstream locations is obtained from an eigenfunction expansion that is matched to the pressure perturbation at the jet exit. Results are presented for a circular jet and for an elliptic jet of aspect ratio 2.0. Comparisons are made with experimental data.
NASA Astrophysics Data System (ADS)
McClure, M. D.; Sirbaugh, J. R.
1991-02-01
The computational fluid dynamics (CFD) computer code PARC3D was used to predict the inlet reference plane (IRP) flow field for a side-mounted inlet and forebody simulator in a free jet for five different flow conditions. The calculations were performed for free-jet conditions, mass flow rates, and inlet configurations that matched the free-jet test conditions. In addition, viscous terms were included in the main flow so that the viscous free-jet shear layers emanating from the free-jet nozzle exit were modeled. A measure of the predicted accuracy was determined as a function of free-stream Mach number, angle-of-attack, and sideslip angle.
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) A RQL combustor can achieve the emissions goal of EINOX = 5 at the Supersonic Cruise operating condition for a HSCT engine.
NASA Technical Reports Server (NTRS)
Tacina, Robert R. (Technical Monitor); Rosfjord, T. J.; Padget, F. C.
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of an HSCT engine cycle. Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NO(x). The spatial profiles of NO(x) and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NO(x). Based on this study, it was also concluded that: (1) While NO(x) formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NO(x) exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) An RQL combustor can achieve the emissions goal of EINO(x) = 5 at the Supersonic Cruise operating condition for an HSCT engine.
Fundamental Mixing and Combustion Experiments for Propelled Hypersonic Flight. Chaper 7
NASA Technical Reports Server (NTRS)
Diskin, G. S.; Danehy, P. M.; Drummond, J. P.; Cutler, A. D.
2002-01-01
The first experiment is a study of a coaxial jet discharging into stagnant laboratory air, with center jet of a mixture of 5% oxygen and 95% helium by volume and coflow jet of air. The exit flow pressure of both center-jet and coflow nozzles is 1 atmosphere. The presence of oxygen in the center jet is to allow the use of an oxygen flow-tagging technique (RELIEF4) to obtain non-intrusive velocity measurements. Both jets are nominally Mach 1.8, but, because of the greater speed of sound, the center jet velocity is more than twice that of the coflow. The mixing layer which forms between the center jet and the coflow near the nozzle exit is compressible, with a calculated convective Mach number of approximately 0.7. This geometry has several advantages: The streamwise development of the flow is generally dominated by turbulent stresses (rather than pressure forces), and thus calculations are sensitive to turbulence modeling. It includes features present in supersonic combustors, including a compressible mixing layer near the nozzle exit and a light-gas/air plume downstream. Since it is a free jet, it provides easy access for both optical instrumentation and probes. Since it is axisymmetric, it requires fewer experimental measurements to fully characterize, and calculations can be performed with more modest computer resources. However, weak shock waves formed at the nozzle exit strengthen and turn normal as they approach the axis, complicating the flow. Care is thus taken in the design of the facility to provide as near as possible to 1-D flow at the exit of both center and coflow nozzles, and to minimize the strength of waves generated at the nozzle exit. Results from this experiment are compared to CFD solutions obtained by VULCAN, a previously developed code used in engine analysis. The second experiment is a study of a supersonic combustor consisting of a diverging duct with single downstream-angled wall injector. Thus, the geometry is relatively simple and large regions of subsonic recirculating flow are avoided. The nominal entrance Mach number is 2 and the enthalpy of the test gas (hot air "simulant") is nominally that of Mach 7 flight. It was believed, on the basis of calculations performed that this would produce mixing-limited flow, that is to say, one for which chemical reaction to equilibrium proceeds at a much greater rate than mixing. It later proved that this was not the case. The primary experimental technique employed is coherent anti-Stokes Raman spectroscopy, known by its acronym CARS. The species probed is molecular nitrogen and the quantity measured is temperature. Intrusive probes, such as Pitot, total temperature, hot-wire, etc., are not used due to access difficulty and high heat flux in the combustor, and because they may alter the flow. CARS has several advantages over other optical methods. It is a relatively mature and well-understood technique. Signal levels are relatively high and the signal is in the form of a coherent (laser) beam that can be collected through small windows. Incoherent (non-CARS) interferences are rejected by spatial filtering.
Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.
2000-01-01
The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.
Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.
2000-01-01
The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.
Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)
2000-01-01
The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,
NASA Technical Reports Server (NTRS)
Putnam, L. E.; Mercer, C. E.
1986-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to measure the flow field in and around the jet exhaust from a nonaxisymmetric nozzle configuration. The nozzle had a rectangular exit with a width-to-height ratio of 2.38. Pitot-pressure measurements were made at five longitudinal locations downstream of the nozzle exit. The maximum distance downstream of the exit was about 5 nozzle heights. These measurements were made at free-stream Mach numbers of 0.00, 0.60, and 1.20 with the nozzle operating at a ratio of nozzle total pressure to free-stream static pressure of 4.0. The jet exhaust was simulated with high-pressure air that had an exit total temperature essentially equal to the free-stream total temperature.
NASA Astrophysics Data System (ADS)
Daubner, Tomas; Kizhofer, Jens; Dinulescu, Mircea
2018-06-01
This article describes an experimental investigation in the near field of five parallel plane jets. The study applies 2D Particle Image Velocimetry (PIV) for ventilated and unventilated jets, where ventilated means exiting into a duct with expansion ratio 3.5 and unventilated means exiting to the free atmosphere. Results are presented for Reynolds numbers 1408, 5857 and 10510. The Reynolds number is calculated for the middle channel and is based on the height of the nozzle (channel) equivalent diameter 2h. All characteristic regions of the methodology to describe multiple interacting jets are observed by the PIV measurements - converging, merging and combined. Each of the five parallel channels has an aspect ratio of 25 defined as nozzle width (w) to height (h). The channels have a length of 185 times the channel height guaranteeing a fully developed velocity profile at the exit from the channel. Spacing between the single plane jets is 3 times the channel height. The near field of multiple mixing jets is depended on outlet nozzle geometry. Blunt geometry of the nozzle was chosen (sudden contraction).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard
We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and themore » sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.« less
Sound Radiation from a Supersonic Jet Passing Through a Partially Open Exhaust Duct
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
The radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet of 25.4 mm exit diameter flowing through a partially open rigid-walled duct with an upstream i-deflector has been studied experimentally. In the experiments, the nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane (NEP), the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 54 jet diameters above ground with the aid of acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters from the jet axis. Data on the jet acoustic field for the partially open duct were obtained and compared with those with a free jet and with a closed duct. The results suggest that for the partially open duct the overall sound pressure level (OASPL) decreases as the distance between the NEP and the duct inlet plane decreases, while the opposite trend is observed for the closed duct. It is also concluded that the observed peak frequency in the partially open duct increases above the free jet value as the angle from the duct axis is increased, and as the duct inlet plane becomes closer to the NEP.
Toward Active Control of Noise from Hot Supersonic Jets
2014-04-21
regions of the jet. A retro -reflective shadowgraph setup was used to record the images. The near-nozzle region exhibits a large number of shock-like...jet exit plane; nearly identical observations have been made in the rocket noise community [15, 29| . The only discrepancies in figure 9b are with the...noise surveys of solid-fuel rocket engines for a range of nozzle exit pressures," NASA TN D-21, August, 1959. [16] Potter, R.C. and Jones, J.H., "An
Effects of forward velocity on turbulent jet mixing noise
NASA Technical Reports Server (NTRS)
Plumblee, H. E., Jr. (Editor)
1976-01-01
Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.
Mixing noise reduction for rectangular supersonic jets by nozzle shaping and induced screech mixing
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Raman, Ganesh
1993-01-01
Two methods of mixing noise modification were studied for supersonic jets flowing from rectangular nozzles with an aspect ratio of about five and a small dimension of about 1.4 cm. The first involves nozzle geometry variation using either single (unsymmetrical) or double bevelled (symmetrical) thirty degree cutbacks of the nozzle exit. Both converging (C) and converging-diverging (C-D) versions were tested. The double bevelled C-D nozzle produced a jet mixing noise reduction of about 4 dB compared to a standard rectangular C-D nozzle. In addition all bevelled nozzles produced an upstream shift in peak mixing noise which is conducive to improved attenuation when the nozzle is used in an acoustically treated duct. A large increase in high frequency noise also occurred near the plane of the nozzle exit. Because of near normal incidence, this noise can be easily attenuated with wall treatment. The second approach uses paddles inserted on the edge of the two sides of the jet to induce screech and greatly enhance the jet mixing. Although screech and mixing noise levels are increased, the enhanced mixing moves the source locations upstream and may make an enclosed system more amenable to noise reduction using wall acoustic treatment.
Performance characteristics of an isolated coannular plug nozzle at transonic speeds
NASA Technical Reports Server (NTRS)
Mercer, C. E.; Burley, J. R., II
1985-01-01
The Langley 16-Foot Transonic Tunnel was used to evaluate the performance characteristics of a coannular plug nozzle at static conditions (Mach number of 0) and at Mach numbers from 0.65 to 1.20. Jet total pressure ratio was varied from 1.0 (jet off) to 10.0. Thirty-seven configurations generated by the combination of three geometric variables - plug angle, shroud boattail length (fixed exit radius), and shroud extension length - were tested.
Analysis of noise produced by an orderly structure of turbulent jets
NASA Technical Reports Server (NTRS)
Hardin, J. C.
1973-01-01
The orderly structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For a circular jet, this structure is molded as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density, which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. The analysis suggests that the process of formation of this regular structure may also be an important contribution of the high-frequency jet noise. These results may be helpful in the understanding of jet-noise generation and in new approaches to jet-noise suppression.
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor); Thomas, Russell H. (Inventor)
2012-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter. Projections near a support pylon and/or associated heat shield can have particular configurations, including greater flow immersion than other projections.
New approach of a traditional analysis for predicting near-exit jet liquid instabilities
NASA Astrophysics Data System (ADS)
Jaramillo, Guillermo; Collicott, Steven
2015-11-01
Traditional linear instability theory for round liquid jets requires an exit-plane velocity profile be assumed so as to derive the characteristic growth rates and wavelengths of instabilities. This requires solving an eigenvalue problem for the Rayleigh Equation. In this new approach, a hyperbolic tangent velocity profile is assumed at the exit-plane of a round jet and a comparison is made with a hyperbolic secant profile. Temporal and Spatial Stability Analysis (TSA and SSA respectively) are the employed analytical tools to compare results of predicted most-unstable wavelengths from the given analytical velocity profiles and from previous experimental work. The local relevance of the velocity profile in the near-exit region of a liquid jet and the validity of an inviscid formulation through the Rayleigh equation are discussed as well. A comparison of numerical accuracy is made between two different mathematical approaches for the hyperbolic tangent profile with and without the Ricatti transformation. Reynolds number based on the momentum thickness of the boundary layer at the exit plane non-dimensionalizes the problem and, the Re range, based on measurements by Portillo in 2011, is 185 to 600. Wavelength measurements are taken from Portillo's experiment. School of Mechanical Engineering at Universidad del Valle, supported by a grant from Fulbright and Colciencias. Ph.D. student at the School of Aeronautics and Astronautics Purdue University.
Acoustic properties of supersonic helium/air jets at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Mclaughlin, Dennis K.; Barron, W. D.; Vaddempudi, Appa R.
1992-01-01
Experiments have been performed with the objective of developing a greater understanding of the physics of hot supersonic jet noise. Cold helium/air jets are used to easily and inexpensively simulate the low densities of hot air jets. The experiments are conducted at low Reynolds numbers in order to facilitate study of the large-scale turbulent structures (instability waves) that cause most of the radiated noise. Experiments have been performed on Mach 1.5 and 2.1 jets of pure air, pure helium and 10 percent helium by mass. Helium/air jets are shown to radiate more noise than pure air jets due to the increased exit velocity. Microphone spectra are usually dominated by a single spectral component at a predictable frequency. Increasing the jet's helium concentration is shown to increase the dominant frequency. The helium concentration in the test chamber is determined by calculating the speed of sound from the measured phase difference between two microphone signals. Bleeding outside air into the test chamber controls the accumulation of helium so that the hot jet simulation remains valid. The measured variation in the peak radiated noise frequency is in good agreement with the predictions of the hot jet noise theory of Tam et al.
Mixture-Fraction Measurements with Femtosecond-Laser Electronic-Excitation Tagging
NASA Technical Reports Server (NTRS)
Halls, Benjamin R.; Jiang, Naibo; Gord, James R.; Danehy, Paul M.; Roy, Sukesh
2017-01-01
Tracer-free mixture-fraction measurements were demonstrated in a jet using femtosecond-laser electronic-excitation tagging. Measurements were conducted across a turbulent jet at several downstream locations both in a pure-nitrogen jet exiting into an air-nitrogen mixture and in a jet containing an air-nitrogen mixture exiting into pure nitrogen. The signal was calibrated with known concentrations of oxygen in nitrogen. The spatial resolution of the measurement was approx.180 microns. The measurement uncertainty ranged from 5% to 15%, depending on the mixture fraction and location within the beam, under constant temperature and pressure conditions. The measurements agree with a mixture fraction of unity within the potential core of the jet and transition to the self-similar region.
Buoyancy Effects in Turbulent Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Idicheria, Cherian; Clemens, Noel
2003-11-01
The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.
A linear shock cell model for jets of arbitrary exit geometry
NASA Technical Reports Server (NTRS)
Morris, P. J.; Bhat, T. R. S.; Chen, G.
1989-01-01
The shock cell structures of single supersonic non-ideally expanded jets with arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles are considered for the jet shear layer. The boundary element method is used to predict the shock spacing and screech tones in a vortex sheet model of a single jet. This formulation enables the calculations to be performed only on the vortex sheet. This permits the efficient and convenient study of complicated jet geometries. Results are given for circular, elliptic and rectangular jets and the results are compared with analysis and experiment. The agreement between the predictions and measurements is very good but depends on the assumptions made to predict the geometry of the fully expanded jet. A finite diffference technique is used to examine the effect of finite mixing layer thickness for a single jet. The finite thickness of the mixing layer is found to decrease the shock spacing by approximately 20 percent over the length of the jet potential core.
An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects
NASA Technical Reports Server (NTRS)
Brown, Cliff
2015-01-01
An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.
Asymptotic Spreading Rate of Initially Compressible Jets-Experiment and Analysis
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1998-01-01
Experimental results for the spreading and centerline velocity decay rates for round, compressible jets, from a convergent and a convergent-divergent nozzle, are presented. The spreading rate is determined from the variation of streamwise mass flux obtained from Pitot probe surveys. Results for the far asymptotic region show that both spreading and centerline velocity decay rates, when nondimensionalized by parameters at the nozzle exit, decrease with increasing "jet Mach number" M(sub j). Dimensional analysis with the assumption of momentum conservation, together with compressible flow calculations for the conditions at the nozzle exit, predict this Mach number dependence well. The analysis also demonstrates that an increase in the "potential core length" of the jet occurring with increasing M(sub j), a commonly observed trend, is largely accounted for simply by the variations in the density and static pressure at the nozzle exit. The effect of decreasing mixing efficiency with increasing compressibility is inferred to contribute only partially to the latter trend.
Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity
NASA Technical Reports Server (NTRS)
Ghaderi, M.; Gupta, A. K.
2003-01-01
The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.
NASA Technical Reports Server (NTRS)
Brown, W. H.; Ahuja, K. K.
1989-01-01
The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. The conclusions derived were: (1) intrusive probes can produce significant errors in the measurements of the velocity of jets if they are large in diameter and penetrate beyond the jet center; (2) rectangular jets without tabs, compared to circular jets of the same exit area, provide faster jet mixing; and (3) further mixing enhancement is possible by using mechanical tabs.
Two blowing concepts for roll and lateral control of aircraft
NASA Technical Reports Server (NTRS)
Tavella, D. A.; Wood, N. J.; Lee, C. S.; Roberts, L.
1986-01-01
Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction.
Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)
2000-01-01
Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.
Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile
NASA Technical Reports Server (NTRS)
Labus, T. L.; Symons, E. P.
1972-01-01
An experimental investigation was conducted to determine the flow characteristics of a circular free helium jet having an initially uniform velocity profile. Complete velocity profiles are presented at Reynolds numbers of 1027 and 4571 at 0, 3, 6, 10, 15, and 20 nozzle diameters (where possible) from the nozzle exit. Centerline velocity decay and potential core length were obtained over a range of Reynolds numbers from 155 to 5349 at distances up to and including 25 nozzle diameters from the nozzle exit. The angles of spread associated with the diffusion of the jet downstream of the nozzle are also given. Axial jet momentum flux and entrained mass flux, at various distances downstream of the nozzle, are presented as a function of the jet Reynolds number.
Noise produced by the large-scale transition region structure of turbulent jets
NASA Technical Reports Server (NTRS)
Hardin, J. C.
1974-01-01
The 'orderly' structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For the case of a circular jet, this structure is modeled as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. These results suggest a new approach to noise suppression which has been substantiated experimentally.
Identification of Instability Modes of Transition in Underexpanded Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.
2008-01-01
A series of experiments into the behavior of underexpanded jet flows has been conducted at NASA Langley Research Center. Two nozzles supplied with high-pressure gas were used to generate axisymmetric underexpanded jets exhausting into a low-pressure chamber. These nozzles had exit Mach numbers of 1 and 2.6, though this paper will present cases involving only the supersonic nozzle. Reynolds numbers based on nozzle exit conditions ranged from about 300 to 22,000, and nozzle exit-to-ambient jet pressure ratios ranged from about 1 to 25. For the majority of cases, the jet fluid was a mixture of 99.5% nitrogen seeded with 0.5% nitric oxide (NO). Planar laser-induced fluorescence (PLIF) of NO is used to visualize the flow, visualizing planar slices of the flow rather than path integrated measurements. In addition to revealing the size and location of flow structures, PLIF images were also used to identify unsteady jet behavior in order to quantify the conditions governing the transition to turbulent flow. Flow structures that contribute to the growth of flow instabilities have been identified, and relationships between Reynolds number and transition location are presented. By highlighting deviations from mean flow properties, PLIF images are shown to aide in the identification and characterization of flow instabilities and the resulting process of transition to turbulence.
Formation of vortex pairs with hinged rigid flaps at the nozzle exit
NASA Astrophysics Data System (ADS)
Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant
2013-11-01
Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.
Study of open jet wind tunnel cones
NASA Technical Reports Server (NTRS)
Weick, Fred E
1927-01-01
Tests have been made by the National Advisory Committee for Aeronautics on the air flow in an open jet wind tunnel with various sizes, shapes, and spacings of cones, and the flow studied by means of velocity and direction surveys in conjunction with flow pictures. It was found that for all combinations of cones tested the flow is essentially the same, consisting of an inner core of decreasing diameter having uniform velocity and direction, and a boundary layer of more or less turbulent air increasing in thickness with length of jet. The energy ratio of the tunnel was obtained for the different combinations of cones, and the spilling around the exit cone causing undesirable air currents in the experiment chamber was noted. An empirical formula is given for the design of cones having no appreciable spilling.
High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup
NASA Astrophysics Data System (ADS)
Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert
2014-04-01
A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was always achievable. Thus, the reliable and robust realization of tunable high-speed monodisperse micro-droplet trains is demonstrated. Some implication for applications is discussed.
NASA Technical Reports Server (NTRS)
Mason, M. L.; Putnam, L. E.
1979-01-01
The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.
Analysis of screeching in a cold flow jet experiment
NASA Technical Reports Server (NTRS)
Wang, M. E.; Slone, R. M., Jr.; Robertson, J. E.; Keefe, L.
1975-01-01
The screech phenomenon observed in a one-sixtieth scale model space shuttle test of the solid rocket booster exhaust flow noise has been investigated. A critical review is given of the cold flow test data representative of Space Shuttle launch configurations to define those parameters which contribute to screech generation. An acoustic feedback mechanism is found to be responsible for the generation of screech. A simple equation which permits prediction of screech frequency in terms of basic testing parameters such as the jet exhaust Mach number and the separating distance from nozzle exit to the surface of model launch pad is presented and is found in good agreement with the test data. Finally, techniques are recommended to eliminate or reduce the screech.
Aerodynamic characteristics of a small-scale straight and swept-back wing with knee-blown jet flaps
NASA Technical Reports Server (NTRS)
Morehouse, G. G.; Eckert, W. T.; Boles, R. A.
1977-01-01
Two sting-mounted, 50.8 cm (20 in.) span, knee-blown, jet-flap models were tested in a large (2.1- by 2.5-m (7- by 10-ft) subsonic wind tunnel. A straight- and swept-wing model were tested with fixed flap deflection with various combinations of full-span leading-edge slats. The swept-wing model was also tested with wing tip extensions. Data were taken at angles-of-attack between 0 deg and 40 deg, at dynamic pressures between 143.6 N/sq m (3 lb/sq ft) and 239.4 N/sq m (5 lb/sq ft), and at Reynolds numbers (based on wing chord) ranging from 100,000 to 132,000. Jet flap momentum blowing coefficients up to 10 were used. Lift, drag, and pitching-moment coefficients, and exit flow profiles for the flap blowing are presented in graphical form without analysis.
Flow and acoustic properties of low Reynolds number supersonic underexpanded jets
NASA Technical Reports Server (NTRS)
Hu, T. F.; Mclaughlin, D. K.
1981-01-01
Flow and acoustic measurements are made of cold model jets exhausting from a choked nozzle at pressure conditions corresponding to those of Mach 1.4 and 2.1 jets to investigate noise production properties of underexpanded supersonic jets. Mean flow measurements are made using pitot and static pressure probes, with flow fluctuation measurements made with a hot-wire probe and acoustic measurements made with a transversing microphone. Two convergent nozzles with exit diameters of 7.0 and 7.9 mm are used with an exciter consisting of a 0.8 mm tungsten electrode positioned 2 mm from the exit. Shock structure is observed as having a significant effect on the development of the flow field, while large-scale instabilities have higher growth rates in the shock containing underexpanded jets. The role of the asymmetric n = + or - 1 sinusoidal instability is clarified, and results suggest that the broadband shock associated noise of conventional high Reynolds number jets is not related to large-scale jet instability.
Expandable mixing section gravel and cobble eductor
Miller, Arthur L.; Krawza, Kenneth I.
1997-01-01
In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.
NASA Technical Reports Server (NTRS)
Hauser, Joseph R.; Zysman, Steven H.; Barber, Thomas J.
2001-01-01
NASA Glenn Research Center supported a three year effort to develop the technology for reducing jet noise from low-bypass ratio engines. This effort concentrated on both analytical and experimental approaches using various mixer designs. CFD and MGB predictions are compared with LDV and noise data, respectively. While former predictions matched well with data, experiment shows a need for improving the latter predictions. Data also show that mixing noise can be sensitive to engine hardware upstream of the mixing exit plane.
NASA Technical Reports Server (NTRS)
Schreck, Stefan
1993-01-01
This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.
Transitional Gas Jet Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)
2000-01-01
Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.
Free-jet testing at Mach 3.44 in GASL's aero/thermo test facility
NASA Technical Reports Server (NTRS)
Cresci, D.; Koontz, S.; Tsai, C. Y.
1993-01-01
A supersonic blow-down tunnel has been used to conduct tests of a hydrogen burning ramjet engine at simulated Mach 3.44 conditions. A pebble-bed type storage heater, a free standing test cabin, and a 48 foot diameter vacuum sphere are used to simulate the flight conditions at nearly matched enthalpy and dynamic pressure. A two dimensional nozzle with a nominal 13.26 inch square exit provides a free-jet test environment. The facility used for these tests is described as are the results of a flow calibration performed on the M = 3.44 nozzle. Some facility/model interactions are discussed as are the eventual hardware modifications and operational procedures required to alleviate the interactions. Some engine test results are discussed briefly to document the success of the test program.
Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.
1998-01-01
A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.
Investigation of the flow-field of two parallel round jets impinging normal to a flat surface
NASA Astrophysics Data System (ADS)
Myers, Leighton M.
The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2, was designed and fabricated with a 50% increase in nozzle exit diameter. The primary design improvement is the ability to quickly and easily exchange the nozzles of the model. This allowed experiments to be performed with rapid-prototyped nozzles that feature more realistic geometry to that of tactical military aircraft engines. One such nozzle, which was designed and demonstrated by previous researchers to reduce jet noise in a free-jet, was incorporated into the model. The nozzle, featuring deflected seals, was installed in the Generation 2 model and its effect on suckdown was evaluated.
Jet Nozzle Having Centerbody for Enhanced Exit Area Mixing
NASA Technical Reports Server (NTRS)
Seiner, John M. (Inventor); Gilinsky, Mikhail M. (Inventor)
1999-01-01
A nozzle arrangement includes a nozzle and a centerbody. The longitudinal axis of the centerbody is coaxially aligned with the nozzle. The centerbody has a free end portion shaped to create vortices in exhaust exiting the exit area. The vortices enhance mixing action in the exhaust and reduce exhaust noise while augmenting thrust.
Kucinschi, Bogdan R; Scherer, Ronald C; DeWitt, Kenneth J; Ng, Terry T M
2006-06-01
Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5x symmetric static scale model of the human larynx (divergence angle of 10 deg, minimal diameter of 0.04 cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.
Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.
2007-01-01
Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.
Elliptic nozzle aspect ratio effect on controlled jet propagation
NASA Astrophysics Data System (ADS)
Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan
2017-04-01
The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.
NASA Astrophysics Data System (ADS)
González, H.; Vazquez, P. A.; García, F. J.; Guerrero, J.
2018-04-01
A rigorous and complete formulation of the linear evolution of harmonically stimulated capillary jets should include infinitely many spatial modes to account for arbitrary exit conditions [J. Guerrero et al., J. Fluid Mech. 702, 354 (2012), 10.1017/jfm.2012.182]. However, it is not rare to find works in which only the downstream capillary dominant mode, the sole unstable one, is retained, with amplitude determined by the jet deformation at the exit. This procedure constitutes an oversimplification, unable to handle a flow rate perturbation without jet deformation at the exit (the most usual conditions). In spite of its decaying behavior, the other capillary mode (subdominant) must be included in what can be called a "minimal linear formulation." Deformation and mean axial velocity amplitudes at the jet exit are the two relevant parameters to simultaneously find the amplitudes of both capillary modes. Only once these amplitudes are found, the calculation of the breakup length may be eventually simplified by disregarding the subdominant mode. Simple recipes are provided for predicting the breakup length, which are checked against our own numerical simulations. The agreement is better than in previous attempts in the literature. Besides, the limits of validity of the linear formulation are explored in terms of the exit velocity amplitude, the wave number, the Weber number, and the Ohnesorge number. Including the subdominant mode extends the range of amplitudes for which the linear model gives accurate predictions, the criterion for keeping this mode being that the breakup time must be shorter than a given formula. It has been generally assumed that the shortest intact length happens for the stimulation frequency with the highest growth rate. However, we show that this correlation is not strict because the amplitude of the dominant mode has a role in the breakup process and it depends on the stimulation frequency.
An Experimental Investigation of the Flow Structure of Supersonic Impinging Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bridges, James; Wernet, Mark
2002-01-01
An experimental investigation into the jet structure associated with sound production by a supersonic impinging jet is presented. Large plate impinging tones are investigated for a nozzle pressure ratio (NPR) of 4 and nozzle-to-plate spacings between 1 and 5 nozzle exit diameters, where NPR is equal to the ratio of the stagnation pressure to the pressure at the nozzle lip. Results from phase-locked shadowgraph and phase-averaged digital particle image velocimetry (DPIV) studies indicate that, during the oscillation cycle, the Mach disk oscillates axially, a well defined recirculation zone is created in the subsonic impingement region and moves toward the plate, and the compression and expansion regions in the outer supersonic flow move downstream, Sound appears to be generated in the wall jet at approximately 2.6R from the jet axis, where R is the nozzle exit radius. The oscillatory motion in the wall jet is the result of the periodic fluid motion in the near wall region.
1975-10-01
sophisticated wet-cooled systems having scrubbers and their associated water treatment facilities . The United States Navy has recognized these Hush... venturi meter air inlet to measure the pumped air flow and the exhaust enclosure is provided with suitable ports for the flow to exit. The test program...constantan thermo- couple and venturi flow meters were used to measure the aerodynamic/thermo- dynamic information required from the tests (pressure
Impact of reduced near-field entrainment of overpressured volcanic jets on plume development
Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.
2012-01-01
Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.
Supersonic Jet Exhaust Noise at High Subsonic Flight Speed
NASA Technical Reports Server (NTRS)
Norum, Thomas D.; Garber, Donald P.; Golub, Robert A.; Santa Maria, Odilyn L.; Orme, John S.
2004-01-01
An empirical model to predict the effects of flight on the noise from a supersonic transport is developed. This model is based on an analysis of the exhaust jet noise from high subsonic flights of the F-15 ACTIVE Aircraft. Acoustic comparisons previously attainable only in a wind tunnel were accomplished through the control of both flight operations and exhaust nozzle exit diameter. Independent parametric variations of both flight and exhaust jet Mach numbers at given supersonic nozzle pressure ratios enabled excellent correlations to be made for both jet broadband shock noise and jet mixing noise at flight speeds up to Mach 0.8. Shock noise correlated with flight speed and emission angle through a Doppler factor exponent of about 2.6. Mixing noise at all downstream angles was found to correlate well with a jet relative velocity exponent of about 7.3, with deviations from this behavior only at supersonic eddy convection speeds and at very high flight Mach numbers. The acoustic database from the flight test is also provided.
NASA Technical Reports Server (NTRS)
Covell, P. F.
1982-01-01
A wind tunnel investigation of the interference effects of axisymmetric nozzle air plumes, a solid plume, and normal air jet plumes on the afterbody pressure distributions and base pressures of a cylindrical afterbody model was conducted at Mach numbers from 1.65 to 2.50. The axisymmetric nozzles, which varied in exit lip Mach number from 1.7 to 2.7, and the normal air jet nozzle were tested at jet pressure ratios from 1 (jet off) to 615. The tests were conducted at an angle of attack of 0 deg and a Reynolds number per meter of 6.56 million. The results of the investigation show that the solid plume induces greater interference effects than those induced by the axisymmetric nozzle plumes at the selected underexpanded design conditions. A thrust coefficient parameter based on nozzle lip conditons was found to correlate the afterbody disturbance distance and the base pressure between the different axisymmetric nozzles. The normal air jet plume and the solid plume induce afterbody disturbance distances similar to those induced by the axisymmetric air plumes when base pressure is held constant.
Jet Flap Stator Blade Test in the High Reaction Turbine Blade Cascade Tunnel
1970-03-21
A researcher examines the setup of a jet flap blade in the High Reaction Turbine Blade Cascade Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers were seeking ways to increase turbine blade loading on aircraft engines in an effort to reduce the overall size and weight of engines. The ability of each blade to handle higher loads meant that fewer stages and fewer blades were required. This study analyzed the performance of a turbine blade using a jet flap and high loading. A jet of air was injected into the main stream from the pressure surface near the trailing edge. The jet formed an aerodynamic flap which deflected the flow and changed the circulation around the blade and thus increased the blade loading. The air jet also reduced boundary layer thickness. The jet-flap blade design was appealing because the cooling air may also be used for the jet. The performance was studied in a two-dimensional cascade including six blades. The researcher is checking the jet flat cascade with an exit survey probe. The probe measured the differential pressure that was proportional to the flow angle. The blades were tested over a range of velocity ratios and three jet flow conditions. Increased jet flow improved the turning and decreased both the weight flow and the blade loading. However, high blade loadings were obtained at all jet flow conditions.
Effect of impinging plate geometry on the self-excitation of subsonic impinging jets
NASA Astrophysics Data System (ADS)
Vinoth, B. R.; Rathakrishnan, E.
2011-11-01
In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.
Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2017-01-01
A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.
Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2017-01-01
A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.
NASA Astrophysics Data System (ADS)
Griffin, Kyle S.
Time extended EOF (TE-EOF) analysis is employed to examine the synoptic-scale evolution of the two leading modes of north Pacific jet stream variability, namely its zonal extension/retraction (TE-EOF 1) and the north/south shift of its exit region (TE-EOF 2). Composite analyses are constructed preceding and following peaks in the principal component associated with each of the two TE-EOFs, providing insight into the preferred evolutions of the north Pacific jet. Jet extension events are associated with an anomalous Gulf of Alaska cyclone, while jet retractions are associated with an anomalous ridge over the Aleutians. Similar but shifted upper level patterns are noted with the corresponding poleward/equatorward shifted jet phases, with the poleward (equatorward) shift of the jet exit region associated with anomalous low-level warmth (cold) over western North America. Such composites also suggest connections between certain phases of these leading modes of jet variability and deep convection in the tropics, a connection that has been challenging to physically diagnose in previous studies. The isentropic pressure depth measures the mass contained within an isentropic layer in a given grid column, enabling the tracking of mass exhausted by deep convection. The gradient of isentropic pressure depth is directly associated with the vertical geostrophic wind shear in that layer and thus provides a means to track the influence of convective mass flux on the evolution of the jet stream. A case study focused on the extreme North American warm episode of March 2012 demonstrates how positive pressure depth anomalies from a strong MJO event impact the jet stream over eastern Asia and drive a portion of the mid-latitude response that leads to the flow amplification and subsequent downstream warmth. This study demonstrates one way by which isentropic pressure depth can diagnose the impacts of tropical deep convection on the mid-latitude circulation. Using TE-EOFs, composites of isentropic pressure depth are constructed, to examine the evolution of pressure depth anomalies preceding each phase of the two leading modes of jet variability. In jet extension events, a large negative pressure depth anomaly in the 315-330 K isentropic layer and a positive pressure depth anomaly in the 340-355 K isentropic layer align north and south of the climatological jet exit region, respectively. A similar but opposite configuration is found in jet retraction events. During poleward shifted jet events, the configuration of pressure depth anomalies is comparable to that observed in jet extension events, but shifted poleward. Positive pressure depth anomalies in each set of events predominantly originate from either the Maritime Continent or East Asia and track along the climatological jet before impacting the exit region of the jet stream. Negative pressure depth anomalies have similar upstream origins before moving through the jet in a similar manner. These composite evolutions provide insight into the synoptic-scale evolutions that precede the preferred modes of jet variability, highlighting the influence of both mid-latitude weather systems and mass flux from tropical deep convection on North Pacific jet variability.
Source Identification and Location Techniques
NASA Technical Reports Server (NTRS)
Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert
2001-01-01
Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.
Computational simulation of laboratory-scale volcanic jets
NASA Astrophysics Data System (ADS)
Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.
2017-12-01
Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.
An experimental study of planar heterogeneous supersonic confined jets
NASA Astrophysics Data System (ADS)
Tanis, Frederick J., Jr.
1994-12-01
The effects of varying the exit pressure of a supersonic helium jet exhausting coaxially with two parallel supersonic air streams into a constant area duct were investigated. The method used to evaluate the mass entrainment rate was to measure helium molar concentration profiles and mass flux across the duct using a binary gas probe then calculate the mass entrainment into the helium jet. In order to conduct this study a novel binary gas probe was developed which allowed helium concentration and mass flux data to be obtained during continuous traverses across the supersonic flowfield. High exit pressure ratio (EPR) led to improved overall mixing compared to the baseline case with an EPR near unity. The high EPR caused low mass entrainment along the jet shear layers due to high convective Mach numbers and velocity ratios, but the high EPR caused oblique shocks to form which reflected off the duct walls and intersected with the helium jet several times causing significant mass entrainment due to numerous shock-shear layer interactions (SSLI's). A correlation between the vorticity generated during a SSLI and the mass entrainment into the jet was developed.
Breakup phenomena of a coaxial jet in the non-dilute region using real-time X-ray radiography
NASA Astrophysics Data System (ADS)
Cheung, F. B.; Kuo, K. K.; Woodward, R. D.; Garner, K. N.
1990-07-01
An innovative approach to the investigation of liquid jet breakup processes in the near-injector region has been developed to overcome the experimental difficulties associated with optically opaque, dense sprays. Real-time X-ray radiography (RTR) has been employed to observe the inner structure and breakup phenomena of coaxial jets. In the atomizing regime, droplets much smaller than the exit diameter are formed beginning essentially at the injector exit. Through the use of RTR, the instantaneous contour of the liquid core was visualized. Experimental results consist of controlled-exposure digital video images of the liquid jet breakup process. Time-averaged video images have also been recorded for comparison. A digital image processing system is used to analyze the recorded images by creating radiance level distributions of the jet. A rudimentary method for deducing intact-liquid-core length has been suggested. The technique of real-time X-ray radiography has been shown to be a viable approach to the study of the breakup processes of high-speed liquid jets.
Computation of Three-Dimensional Compressible Flow From a Rectangular Nozzle with Delta Tabs
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Steffen, C. J., Jr.; Zaman, K. B. M. Q.
1999-01-01
A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozz1e exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same rate configuration, which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics is examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.
Radial magnetic compression in the expelled jet of a plasma deflagration accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Mouratidis, Theodore
2016-02-29
A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empiricalmore » scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.« less
Deformation of a liquid surface induced by an air jet
NASA Astrophysics Data System (ADS)
He, Andong; Belmonte, Andrew
2008-11-01
An experimental and theoretical study is performed to characterize the depression of a liquid surface due to an air jet exiting a nozzle from above. The Reynolds number of the jet is confined to a moderate range(˜100). In order to obtain more stable surface profiles, we use a viscous fluid (silicone oil) instead of water. Based on the data acquired from experiments, we find how the depth and diameter of the cavity are dependent on the radius and height of the nozzle, and the exit velocity of the jet. Theoretical explanations are provided both in the two dimensional (2-D) and three dimensional (3-D) cases. In the 2-D case, a free surface equation and the asymptotic expansion of its solution are obtained by employing a conformal mapping method. In the 3-D case where this technique fails, we propose a different model using an exact axisymmetric solution to Euler's equation.
Langley Mach 4 scramjet test facility
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.
1985-01-01
An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.
Pulsed Turbulent Diffusion Flames in a Coflow
NASA Astrophysics Data System (ADS)
Usowicz, James E.; Hermanson, James C.; Johari, Hamid
2000-11-01
Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.
Undulated Nozzle for Enhanced Exit Area Mixing
NASA Technical Reports Server (NTRS)
Seiner, John M. (Inventor); Gilinsky, Mikhail M. (Inventor)
2000-01-01
A nozzle having an undulating surface for enhancing the mixing of a primary flow with a secondary flow or ambient air, without requiring an ejector. The nozzle includes a nozzle structure and design for introducing counter-rotating vorticity into the primary flow either through (i) internal surface corrugations where an axisymmetric line through each corrugation is coincident with an axisymmetric line through the center of the flow passageway or (ii) through one or more sets of alternating convexities and cavities in the internal surface of the nozzle where an axisymmetric line through each convexity and cavity is coincident with an axisymmetric line through the center of the flow passageway, and where the convexities contract from the entrance end towards the exit end. Exit area mixing is also enhanced by one or more chevrons attached to the exit edge of the nozzle. The nozzle is ideally suited for application as a jet engine nozzle. When used as a jet engine nozzle, noise suppression with simultaneous thrust augmentation/minimal thrust loss is achieved.
Near Field Pressure Fluctuations in the Exit Plane of a Choked Axisymmetric Nozzle
NASA Technical Reports Server (NTRS)
Ponton, Michael K.; Seiner, John M.; Brown, Martha C.
1997-01-01
Nearfield pressure data are presented for an unheated jet issuing from an underexpanded sonic nozzle for two exit lip thicknesses of 0.200 and 0.625 nozzle diameters. Fluctuating measurements were obtained on the nozzle exit surface as well as in the acoustic nearfield. Narrowband spectra are presented for numerous operating conditions expressed in terms of the fully expanded Mach number based on nozzle pressure ratio.
An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets
NASA Technical Reports Server (NTRS)
Lee, George
1961-01-01
An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.
Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow
Orosa, John
2014-03-11
An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.
Multiple Mode Actuation of a Turbulent Jet
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2001-01-01
The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.
An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dennis, Robert Foster
1993-01-01
An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.
Novel Laser-Based Technique for Measurements of Primary Atomization Characteristics of Liquid Jets
2012-08-22
worth noting that round supercavitating nozzles were used that had sharp edged inlets and exits, with length-to-diameter ratios smaller than 3. This...noting that round supercavitating nozzles were used that had sharp edged inlets and exits, with length-to-diameter ratios smaller than 3. This...breakup. It is worth noting that round supercavitating nozzles were used that had sharp edged inlets and exits, with length-to-diameter ratios
NASA Technical Reports Server (NTRS)
Kandula, Max; Vu, Bruce
2003-01-01
The Launch Systems Testbed (LST) represents the evolution of vibroacoustics research and development work performed at NASA John F. Kennedy Space Center (KSC) over the last 15 years. The LST is located at the Launch Equipment Test Facility (LETF) in the KSC industrial complex. The LETF is operated by Sierra Lobo, Inc., as a member of University-Affiliated Technology Development Contract (USTDC) to KSC Spaceport and Engineering and Technology Directorate (YA), with ASRC Aerospace Corporation as a the prime contractor. Trajectory Simulation Mechanism (TSM) is a major component of the LST, developed specifically to simulate nonstationary acoustic loads on launch pad structures, vehicles, and payloads. TSM enhances the capabilities within LST for simulating launch environments of future vehicles. The scaled launch environments will be used to predict the full-scale launch environment via an appropriate scaling procedure. Air Force Research Laboratory (AFRL) has tasked NASA KSC to perform a basic technology test program in support of developing a low-cost clean pad (incorporating passive mitigation techniques) for future launch vehicles. The overall goal of the program is to develop innovative launch exhaust management systems, which effectively reduce launch acoustic environment with innovative duct designs, while eliminating traditional sound suppression water systems. Passive techniques, such as nontraditional duct geometries, resonators, and diffusers, etc., will be investigated. The overall goals are to advance innovative concepts for a clean pad while developing ideas to reduce transmitted sound via investigation and modeling of jet exhaust acoustic and flow field characteristics. The series of tests outlined in this report represent baseline tests and are geared towards defining the acoustic load environment on the TSM pad for open and closed duct configurations. This report summarizes the cold jet acoustic testing for Mach 2.5 supersonic nitrogen jet issuing from a nozzle with 1-inch exit diameter. Acoustic data, including spectral sound power and Overall Sound Pressure Level (OASPL), are obtained both for a free jet and with the jet flowing through a rigid-walled duct with a J-deflector. The relative performance of closed duct and open duct is evaluated. The results show that the closed duct is superior to the partially open duct, and results in about 3-decibel (dB) noise reduction (near the duct axis) relative to the free jet. The location of the nozzle exit plane (NEP) relative to the duct inlet plane (DIP) has a significant effect on the acoustic field. The results suggest that the location of NEP at 10 inches above the DIP results in reduced acoustic loads relative to 5 inches above the duct inlet and 1 inch into the duct inlet.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.
1982-01-01
Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Truman, C. R.
1981-01-01
Correlations for heat transfer coefficients for jets of circular offices and impinging on a surface parallel to the jet orifice plate are presented. The air, following impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer (impingement) surface. The downstream jets are subjected to a crossflow originating from the upstream jets. Impingement surface heat transfer coefficients resolved to one streamwise jet orifice spacing, averaged across the channel span, are correlated with the associated individual spanwise orifice row jet and crossflow velocities, and with the geometric parameters.
Swirl effect on flow structure and mixing in a turbulent jet
NASA Astrophysics Data System (ADS)
Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.
2018-03-01
The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.
Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1937-01-01
The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.
Comparative Studies of the Supersonic Jet Noise Generated by Rectangular and Axisymmetric Nozzles
DOT National Transportation Integrated Search
1973-06-01
The main purpose of this study is to develop experimental scaling laws useful for predicting the overall sound power of supersonic jets operating under a range of high stagnation temperatures and pressures and under various exit Mach numbers. A shock...
Particle clustering within a two-phase turbulent pipe jet
NASA Astrophysics Data System (ADS)
Lau, Timothy; Nathan, Graham
2016-11-01
A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 <= ReD <= 40000 , while the exit Stokes number was in the range 0 . 3 <= SkD <= 22 . 4 . The particle mass loading was fixed at ϕ = 0 . 4 , resulting in a flow that was in the two-way coupling regime. Instantaneous particle distributions within a two-dimensional sheet was measured using planar nephelometry while particle clusters were identified and subsequently characterised using an in-house developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 <= SkD <= 5 . 6 , with the degree of clustering increasing as SkD is decreased. The clusters, which typically appeared as filament-like structures with high aspect ratio oriented at oblique angles to the flow, were measured right from the exit plane, suggesting that they were generated inside the pipe. The authors acknowledge the financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.
1993-01-01
Water tunnel tests were conducted on a NASP-type configuration to evaluate different pneumatic Forebody Vortex Control (FVC) methods. Flow visualization and yawing moment measurements were performed at angles of attack from 0 deg to 30 deg. The pneumatic techniques tested included jet and slot blowing. In general, blowing can be used efficiently to manipulate the forebody vortices at angles of attack greater than 20 deg. These vortices are naturally symmetric up to alpha = 25 deg and asymmetric between 25 deg and 30 deg angle of attack. Results indicate that tangential aft jet blowing is the most promising method for this configuration. Aft jet blowing produces a yawing moment towards the blowing side and the trends with blowing rate are well behaved. The size of the nozzle is not the dominant factor in the blowing process; the change in the blowing 'momentum,' i.e., the product of the mass flow rate and the velocity of the jet, appears to be the important parameter in the water tunnel (incompressible and unchoked flow at the nozzle exit). Forward jet blowing is very unpredictable and sensitive to mass flow rate changes. Slot blowing (with the exception of very low blowing rates) acts as a flow 'separator'; it promotes early separation on the blow side, producing a yawing moment toward the non-blowing side for the C(sub mu) range investigated.
Development of a Pulsed Combustion Actuator For High-Speed Flow Control
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.
2005-01-01
This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.
Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.
2008-01-01
An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.
Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, J.Y.; James, D.L.; Parameswaran, S.
1999-07-01
Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less
Application of the scalar and vector potentials to the aerodynamics of jets
NASA Technical Reports Server (NTRS)
Russell, H. L.; Skifstad, J. G.
1973-01-01
The applicability of a method based on the Stokes potentials (vector and scalar potentials) to computations associated with the aerodynamics of jets was examined. The aerodynamic field near the nozzle could be represented and that the influence of a nonuniform velocity profile at the nozzle exit plane could be determined. Also computations were made for an axisymmetric jet exhausting into a quiescient atmosphere. The velocity at the axis of the jet, and the location of the half-velocity points along the jet yield accurate aerodynamic field computations. Inconsistencies among the different theoretical characterizations of jet flowfields are shown.
A three-dimensional study of the glottal jet
NASA Astrophysics Data System (ADS)
Krebs, F.; Silva, F.; Sciamarella, D.; Artana, G.
2012-05-01
This work builds upon the efforts to characterize the three-dimensional features of the glottal jet during vocal fold vibration. The study uses a Stereoscopic Particle Image Velocimetry setup on a self-oscillating physical model of the vocal folds with a uniform vocal tract. Time averages are documented and analyzed within the framework given by observations reported for jets exiting elongated nozzles. Phase averages are locked to the audio signal and used to obtain a volumetric reconstruction of the jet. From this reconstruction, the intra-cycle dynamics of the jet axis switching is disclosed.
Compressible flow in fluidic oscillators
NASA Astrophysics Data System (ADS)
Graff, Emilio; Hirsch, Damian; Gharib, Mory
2013-11-01
We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.
Unsteady Ejector Performance: An Experimental Investigation Using a Resonance Tube Driver
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
2002-01-01
A statistically designed experiment to characterize thrust augmentation for unsteady ejectors has been conducted at the NASA Glenn Research Center. The variable parameters included ejector diameter, length, and nose radius. The pulsed jet driving the ejectors was produced by a shrouded resonance (or Hartmann-Sprenger) tube. In contrast to steady ejectors, an optimum ejector diameter was found, which coincided with the diameter of the vortex ring created at the pulsed jet exit. Measurements of ejector exit velocity using a hot-wire permitted evaluation of the mass augmentation ratio, which was found to correlate to thrust augmentation following a formula derived for steady ejectors.
Free compressible jet investigation
NASA Astrophysics Data System (ADS)
De Gregorio, Fabrizio
2014-03-01
The nozzle pressure ratio (NPR) effect on a supersonic turbulent jet was investigated. A dedicated convergent/divergent nozzle together with a flow feeding system was designed and manufactured. A nozzle Mach exit of M j = 1.5 was selected in order to obtain a convective Mach number of M c = 0.6. The flow was investigated for over-expanded, correctly expanded and under-expanded jet conditions. Mach number, total temperature and flow velocity measurements were carried out in order to characterise the jet behaviour. The inlet conditions of the jet flow were monitored in order to calculate the nozzle exit speed of sound and evaluate the mean Mach number distribution starting from the flow velocity data. A detailed analysis of the Mach results obtained by a static Pitot probe and by a particle image velocimetry measurement system was carried out. The mean flow velocity was investigated, and the axial Mach decay and the spreading rate were associated with the flow structures and with the compressibility effects. Aerodynamics of the different jet conditions was evaluated, and the shock cells structures were detected and discussed correlating the jet structure to the flow fluctuation and local turbulence. The longitudinal and radial distribution of the total temperature was investigated, and the temperature profiles were analysed and discussed. The total temperature behaviour was correlated to the turbulent phenomena and to the NPR jet conditions. Self-similarity condition was encountered and discussed for the over-expanded jet. Compressibility effects on the local turbulence, on the turbulent kinetic energy and on the Reynolds tensor were discussed.
Noise from a Supersonic Round Jet Discharging Into a Duct
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Fagan, A. F.
2014-01-01
In an effort to understand an 'unwanted noise' problem occasionally encountered in ground test facilities, the interaction of a jet flow with a duct is studied in a model scale experiment. While the interaction of subsonic jets was studied earlier, that of supersonic jets is considered in this paper. The effect of the presence of a cylindrical duct in the path of the jet is studied through sound pressure level spectral measurements as well as schlieren flow visualization. When the jet involves screech tones the placement of the duct is found to make only minor effects on the tones themselves as well as on the high frequency noise. However, there is increased energy at low frequencies. The increase in low frequency noise becomes clearer when screech is eliminated from the jet by two small tabs placed at the nozzle exit. It is shown that spectral peaks and increased sound pressure levels occur at frequencies corresponding to the axial acoustic resonance modes of the duct. These peaks persist into the supersonic regime, however, their amplitudes diminish relative to increasing spectral amplitudes at other frequencies with increasing jet Mach number. A wire-mesh screen attached to the end of the duct effectively suppresses such unwanted noise at subsonic as well as supersonic conditions.
Investigation of supersonic jets shock-wave structure
NASA Astrophysics Data System (ADS)
Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.
2017-10-01
The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.
Axial jet mixing of ethanol in cylindrical containers during weightlessness
NASA Technical Reports Server (NTRS)
Aydelott, J. C.
1979-01-01
An experimental program was conducted to examine the liquid flow patterns that result from the axial jet mixing of ethanol in 10-centimeter-diameter cylindrical tanks in weightlessness. A convex hemispherically ended tank and two Centaur liquid-hydrogen-tank models were used for the study. Four distinct liquid flow patterns were observed to be a function of the tank geometry, the liquid-jet velocity, the volume of liquid in the tank, and the location of the tube from which the liquid jet exited.
Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine
NASA Technical Reports Server (NTRS)
Walton, James T.; Burcham, Frank W., Jr.
1986-01-01
An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
Axial-Force Reduction by Interference Between Jet and Neighboring Afterbody
NASA Technical Reports Server (NTRS)
Pitts, William C.; Wiggins, Lyle E.
1960-01-01
Experimental results are presented for an exploratory investigation of the effectiveness of interference between jet and afterbody in reducing the axial force on an afterbody with a neighboring jet. In addition to the interference axial force., measurements are presented of the interference normal force and the center of pressure of the interference normal force. The free-stream Mach number was 2.94, the jet-exit Mach number was 2.71, and the Reynolds number was 0.25 x 10, based on body diameter. The variables investigated include static-pressure ratio of the jet (up to 9), nacelle position relative to afterbody, angle of attack (-5 deg to 10 deg), and afterbody shape. Two families of afterbody shapes were tested. One family consisted of tangent-ogive bodies of revolution with varying length and base areas. The other family was formed by taking a planar slice off a circular cylinder with varying angle between the plane and cylinder. The trends with these variables are shown for conditions near maximum jet-afterbody interference. The interference axial forces are large and favorable. For several configurations the total afterbody axial force is reduced to zero by the interference.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1995-01-01
Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.
Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.
Analysis of Tangential Slot Blowing on F/A-18 Isolated Forebody
NASA Technical Reports Server (NTRS)
Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.
1995-01-01
The generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and underblowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind-tunnel and subscale wind-tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flowfield about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.
Turbine exhaust diffuser with a gas jet producing a coanda effect flow control
Orosa, John; Montgomery, Matthew
2014-02-11
An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.
Some aspects of the aeroacoustics of high-speed jets
NASA Technical Reports Server (NTRS)
Lighthill, James
1993-01-01
Some of the background to contemporary jet aeroacoustics is addressed. Then scaling laws for noise generation by low-Mach-number airflows and by turbulence convected at 'not so low' Mach number is reviewed. These laws take into account the influence of Doppler effects associated with the convection of aeroacoustic sources. Next, a uniformly valid Doppler-effect approximation exhibits the transition, with increasing Mach number of convection, from compact-source radiation at low Mach numbers to a statistical assemblage of conical shock waves radiated by eddies convected at supersonic speed. In jets, for example, supersonic eddy convection is typically found for jet exit speeds exceeding twice the atmospheric speed of sound. The Lecture continues by describing a new dynamical theory of the nonlinear propagation of such statistically random assemblages of conical shock waves. It is shown, both by a general theoretical analysis and by an illustrative computational study, how their propagation is dominated by a characteristic 'bunching' process. That process associated with a tendency for shock waves that have already formed unions with other shock waves to acquire an increased proneness to form further unions - acts so as to enhance the high-frequency part of the spectrum of noise emission from jets at these high exit speeds.
NASA Astrophysics Data System (ADS)
Fujita, Shigetaka; Harima, Takashi
2016-03-01
The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.
Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators
NASA Technical Reports Server (NTRS)
Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.
2006-01-01
The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are similar in both small GDTL and larger NASA jets. However, the actuation authority seems to fall short in the larger jet at higher Mach numbers, resulting in decreased amplitude response compared to the small jet, which is attributed at this point to the lack of sufficient number of actuators. The preliminary results seem also to suggest that amplitude of actuation tones is similar in both the small and larger jets.
Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation
NASA Astrophysics Data System (ADS)
Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya
2016-04-01
We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].
NASA Technical Reports Server (NTRS)
Love, Eugene S
1956-01-01
An aerodynamic investigation of a slender pointed parabolic body of revolution was conducted at Mach number of 1.92 with and without the effects of an annular supersonic jet exhausting from the base. Measurements with the jet inoperative were made of lift, drag, pitching moment, base pressures, and radial and axial pressures. With the jet in operation, pressure measurements were made over the rear of the body with the primary variables being angle of attack, ratio of jet velocity to stream velocity, and ratio of pressure at jet exit to stream pressure.
Numerical analysis of exhaust jet secondary combustion in hypersonic flow field
NASA Astrophysics Data System (ADS)
Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han
2018-05-01
The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.
NASA Technical Reports Server (NTRS)
Love, Eugene S; Lee, Louise P
1958-01-01
Calculations have been made of the initial portion of the boundary of axisymmetric free jets exhausting at large pressure ratios from a conically divergent nozzle having a jet exit Mach number of 2.5 and a semidivergence angle of 15 degrees. The results of the calculations indicate the size and shape of the jet to be expected at large pressure ratios, the effects of ratio of specific heats, and the large initial inclinations of the boundary that are likely to be encountered by hypersonic vehicles at high altitude.
NASA Astrophysics Data System (ADS)
Hespel, Camille; Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles
2012-07-01
The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals.
Fluid Dynamics of Jets with Applications to V/STOL.
1982-01-01
Velocity coefficient Rr Local Reynolds number v Cinematic viscosity R Particle’s Reynolds number C1,C2 Non dimensional coordinates U0 Jet exit... realisme de la solution tant sur le plan fonctionnel que technologique, le recollement 6tant spontan# et stable et l’architecture extr~mement rustique. Les
CFD Analyses and Jet-Noise Predictions of Chevron Nozzles with Vortex Stabilization
NASA Technical Reports Server (NTRS)
Dippold, Vance
2008-01-01
The wind computational fluid dynamics code was used to perform a series of analyses on a single-flow plug nozzle with chevrons. Air was injected from tubes tangent to the nozzle outer surface at three different points along the chevron at the nozzle exit: near the chevron notch, at the chevron mid-point, and near the chevron tip. Three injection pressures were used for each injection tube location--10, 30, and 50 psig-giving injection mass flow rates of 0.1, 0.2, and 0.3 percent of the nozzle mass flow. The results showed subtle changes in the jet plume s turbulence and vorticity structure in the region immediately downstream of the nozzle exit. Distinctive patterns in the plume structure emerged from each injection location, and these became more pronounced as the injection pressure was increased. However, no significant changes in centerline velocity decay or turbulent kinetic energy were observed in the jet plume as a result of flow injection. Furthermore, computational acoustics calculations performed with the JeNo code showed no real reduction in jet noise relative to the baseline chevron nozzle.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Chen, Ruey-Hung
2007-08-01
Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.
NASA Technical Reports Server (NTRS)
Kennedy, Thomas L.
1956-01-01
A flight investigation was conducted to determine the effect of jet exhaust on the drag, trim characteristics, and afterbody pressures on a 0.125-scale rocket model of the McDonnell F-101A airplance. Power-off data were obtained over a Mach number range of 1.04 to 1.9 and power-on data were obtained at a Mach number of about 1.5. The data indicated that with power-on the change in external drag coefficient was within the data accuracy and there was a decrease in trim angle of attack of 1.27 degrees with a corresponding decrease of 0.07 in lift coefficient. Correspondingly, pressure coefficients on the side and bottom of the fuselage indicated a positive increment near the jet exit. As the distance downstream of the jet exit increased, the increment on the bottom of the fuselage increased, whereas the increments on the side decreased to a negative peak.
2014-02-01
nozzle exit to discharge more liquid and aerating gas , plume momentum flux increases with liquid flow rate (at the same GLR) in the region...for testing. Water and nitrogen were used as the injectant and aerating gas , respectively. It was demonstrated that the liquid -weighted plume...diameter D2 = throat diameter EPL = equivalent path length GLR = aerating gas -to- liquid mass ratio I = intensity of the transmitted light I0
Phased-Array Study of Dual-Flow Jet Noise: Effect of Nozzles and Mixers
NASA Technical Reports Server (NTRS)
Soo Lee, Sang; Bridges, James
2006-01-01
A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.
NASA Astrophysics Data System (ADS)
Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem
2011-11-01
Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
Prediction of Drag Reduction in Supersonic and Hypersonic Flows with Counterflow Jets
NASA Technical Reports Server (NTRS)
Daso, Endwell O.; Beaulieu, Warren; Hager, James O.; Turner, James E. (Technical Monitor)
2002-01-01
Computational fluid dynamics solutions of the flowfield of a truncated cone-cylinder with and without counterflow jets have been obtained for the short penetration mode (SPM) and long penetration mode (LPM) of the freestream-counterflow jet interaction flowfield. For the case without the counterflow jet, the comparison of the normalized surface pressures showed very good agreement with experimental data. For the case with the SPM jet, the predicted surface pressures did not compare as well with the experimental data upstream of the expansion corner, while aft of the expansion corner, the comparison of the solution and the data is seen to give much better agreement. The difference in the prediction and the data could be due to the transient character of the jet penetration modes, possible effects of the plasma physics that are not accounted for here, or even the less likely effect of flow turbulence, etc. For the LPM jet computations, one-dimensional isentropic relations were used to derived the jet exit conditions in order to obtain the LPM solutions. The solution for the jet exit Mach number of 3 shows a jet penetration several times longer than that of the SPM, and therefore much weaker bow shock, with an attendant reduction in wave drag. The LPM jet is, in essence, seen to be a "pencil" of fluid, with much higher dynamic pressure, embedded in the oncoming supersonic or hypersonic freestream. The methodology for determining the conditions for the LPM jet could enable a practical approach for the design and application of counterflow LPM jets for the reduction of wave drag and heat flux, thus significantly enhancing the aerodynamic characteristics and aerothermal performance of supersonic and hypersonic vehicles. The solutions show that the qualitative flow structure is very well captured. The obtained results, therefore, suggest that counterflowing jets are viable candidate technology concepts that can be employed to give significant reductions in wave drag, heat flux, and other attendant aerodynamic benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.
The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze themore » effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (< ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups. The two parameters that best describe the maximum solids volume fraction that can be suspended in a double-shell tank were found to be 1) the Froude number (Fr) based on nozzle velocity (U0) and tank contents level (H) and 2) the dimensionless particle size (dp/D0). The dependence on the Reynolds number (Re) does not appear to be statistically significant.« less
Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions
NASA Technical Reports Server (NTRS)
Wing, David J.; Giuliano, Victor J.
1997-01-01
A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.
Effect of Initial Condition on Subsonic Jet Noise from Two Rectangular Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2012-01-01
Differences in jet noise data from two small 8:1 aspect ratio nozzles are investigated experimentally. The interiors of the two nozzles are identical but one has a thin-lip at the exit while the has a perpendicular face at the exit (thick-lip). It is found that the thin-lip nozzle is substantially noisier throughout the subsonic Mach number range. As much as 5dB difference in OASPL is noticed around Mj =0.96. Hot-wire measurements are carried out for the characteristics of the exit boundary layer and, overall, the noise difference can be ascribed to differences in the boundary layer state. The boundary layer of the quieter (thick-lip) nozzle goes through transition around M(sub j) =0.25 and at higher M(sub j) it remains "nominally turbulent". In comparison, the boundary layer of the thin-lip nozzle is found to remain "nominally laminar". at high subsonic conditions. The nominally laminar state involves significantly larger turbulence intensities commensurate with the higher radiated noise.
2016-08-24
the manifestations of the initial shear layer instabilities that originate at the nozzle exit. Crow and Champagne 1 and Moore 2 were among the first...structures ( or instability waves/wave packets) , first clearly observed by Crow and Champagne 1 and Moore 2 in axisymmetric jets, are generally...grant, is continuing under an NSF grant. Bibliography 1. Crow, S. and Champagne , F. H., “Orderly structure in jet turbulence,” Journal of Fluid
Effect of Various Parameters on Evolution of 2D Free Jets and their Associated Entrainment Rates
NASA Astrophysics Data System (ADS)
Amin, Mazyar; Dabiri, Dana; Navaz, Homayun
2006-11-01
Refrigerated vertical display cases are extensively used in supermarkets and grocery stores. Cold air is supplied vertically across the open face of the display case from the top, creating a cold air curtain acting as a barrier to separate the cold air within the case from the warm ambient air. Typically, 70-80% of the load on these vertical display cases is due to cooling of infiltrated warm ambient air. Our goal is to understand parameters affecting warm air infiltration into the case so as to minimize the cooling load. Towards this end, steady state behavior of 2D vertical air jets at Reynolds numbers 2,000 to 10,000 with low and high turbulence intensities (0% &10%) at the nozzle exit are experimentally and computationally investigated both within a quiescent ambient and next to an open cavity. Four different velocity profile shapes (top-hat, parabola, skewed parabola and linear) at the jet exit are also studied to determine profile effects on the evolution of and entrainment into the jet. Results will be presented to show the effect of these parameters on the total entrainment into the jet, as well as the variation of entrainment across the jet at different downstream locations. The results of this work can help better understand how to design air curtains as a buffer to minimize infiltration into open refrigerated vertical display cases.
Fluorescence Imaging Study of Impinging Underexpanded Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.
2008-01-01
An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.
The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2013-01-01
An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.
Intensity, Scale, and Spectra of Turbulence in Mixing Region of Free Subsonic Jet
NASA Technical Reports Server (NTRS)
Laurence, James C
1956-01-01
Report presents the results of the measurements of intensity of turbulence, the longitudinal and lateral correlation coefficients, and the spectra of turbulence in a 3.5-inch-diameter free jet measured with hot-wire anemometers at exit Mach numbers from 0.2 to 0.7 and Reynolds numbers from 192,000 to 725,000.
Investigation of coaxial jet noise and inlet choking using an F-111A airplane
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1973-01-01
Measurements of engine noise generated by an F-111A airplane positioned on a thrustmeasuring platform were made at angles of 0 deg to 160 deg from the aircraft heading. Sound power levels, power spectra, and directivity patterns are presented for jet exit velocities between 260 feet per second and 2400 feet per second. The test results indicate that the total acoustic power was proportional to the eighth power of the core jet velocity for core exhaust velocities greater than 300 meters per second (985 feet per second) and that little or no mixing of the core and fan streams occurred. The maximum sideline noise was most accurately predicted by using the average jet velocity for velocities above 300 meters per second (985 feet per second). The acoustic power spectrum was essentially the same for the single jet flow of afterburner operation and the coaxial flow of the nonafterburning condition. By varying the inlet geometry and cowl position, reductions in the sound pressure level of the blade passing frequency on the order of 15 decibels to 25 decibels were observed for inlet Mach numbers of 0.8 to 0.9.
An Experimental Study of the Near Field Region of a Free Jet with Passive Mixing Tabs
NASA Technical Reports Server (NTRS)
Bohl, D. G.; Foss, J. F.
1997-01-01
An experimental study was performed to determine the flow characteristics of a tabbed free jet. Results were acquired in the near field (nominally 2 tab widths upstream to 2 tab widths downstream of the exit plane) of a tabbed jet. Upstream pressure results showed static pressure distributions in both the x-and y-directions along the top surface of the tunnel. Hot-wire measurements showed rapid expansion of the core fluid into the ambient region. Two counter rotating regions of streamwise vorticity were shown on each side of the primary tab. An enhancement of the tabbed jet concept was proposed and tested. Specifically, two tabs, half the scale of the primary tab, were added to the primary tab to provide attachment surfaces for the normally occurring ejection of fluid. The secondary tabs caused a slight increase in the streamwise vorticity created from the upstream static pressure gradient while significantly increasing the re-oriented boundary layer vorticity. The combined pumping effect of the two counter rotating regions of vorticity caused a significant increase in the transport of the jet core fluid into the surrounding region.
Experimental investigation on frequency characteristics of plasma synthetic jets
NASA Astrophysics Data System (ADS)
Zong, Haohua; Kotsonis, Marios
2017-11-01
The performance of a two-electrode plasma synthetic jet actuator (PSJA) is investigated for a wide range of dimensionless actuation frequencies ( f*) using high-speed phase-locked particle imaging velocimetry measurements. The jet-induced velocity fields in the axisymmetric plane are measured during both transient and steady working stages of the PSJA. When f* increases, the jet duration time (Tjet) is reduced, while the peak suction velocity (Us) increases consistently. Three integral parameters including the total expelled gas mass, impulse, and issued mechanical energy also decline considerably with increasing frequency, which is shown to relate to both the reduced cavity density and the decreasing jet duration. Theoretical analysis reveals that the mean cavity density decreases monotonically with the square root of the discharge frequency. The decreasing rate is inversely proportional to a thermal cut-off frequency ( fc, 210 Hz for the current study), which scales with the convective heat transfer coefficient between the actuator cavity walls and the cavity gas, as well as the area of the cavity internal surface. In the time-averaged velocity fields, the jet centreline velocity (U¯ c) exhibits a local maximum in the axial coordinate. The nondimensional maximum centreline velocity reduces with increasing frequency of operation. The jet spreading rate of the plasma synthetic jets (PSJs) decreases from 0.14 to 0.09 with increasing frequency. During the transient working stage of a PSJ, the exit velocity trace elapses 20 successive actuation cycles to stabilize. In contrast to the exit velocity, approximately 130 cycles are needed for the mean cavity density/temperature to reach steady values.
On Unified Mode in Grid Mounted Round Jets
NASA Astrophysics Data System (ADS)
Parimalanathan, Senthil Kumar; T, Sundararajan; v, Raghavan
2015-11-01
The turbulence evolution in a free round jet is strongly affected by its initial conditions. Since the transition to turbulence is moderated by instability modes, the initial conditions seem to play a major role in altering the dynamics of these modes. In the present investigation, grids of different configurations are placed at the jet nozzle exit and the flow field characterization is carried out using a bi-component hot-wire anemometer. The instability modes has been obtained by analyzing the velocity spectral data. Free jets are characterized by the presence of two instability modes, viz., the preferred mode and the shear mode. The preferred mode corresponds to the most amplified oscillations along the jet centerline, while the shear modes are due to the dynamic evolution of vortical structures in the jet shear layer. The presence of grid clearly alters the jet structure, and plays a major role in altering the shear layer mode in particular. In fact, it is observed that close to the nozzle exit, the presence of grids deviate the streamlines inwards around the edge due to the momentum difference between the jet central core and the boundary layer region near the wall. This result in a single unified mode, where there is no distinct preferred or shear mode. This phenomena is more dominant in case of the grids having higher blockage ratio with small grid opening. In the present study, investigation of the physics behind the evolution of unified mode and how the grids affect the overall turbulent flow field evolution has been reported. Experimental Fluid Mechanics.
Experimental and Theoretical Studies of Axisymmetric Free Jets
NASA Technical Reports Server (NTRS)
Love, Eugene S.; Grigsby, Carl E.; Lee, Louise P.; Woodling, Mildred J.
1959-01-01
Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free stream Mach number, jet static pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined, A few experimental observations are included.
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.
2017-01-01
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.
Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.
1987-12-01
pressure between two Mach 3 flows approachs absolute zero , Pb=.04 psia for Pop= 100 psia. However, viscous effects increase the base pressure. Korst theory...this problem. Acetylene was chosen as the primary fuel because of its relatively low spontaneous ignition temperature, 581 degrees Farenheit , and high...with the corresponding test section. The exit dimension could be adjusted with a screw mechanism from zero to 2.625 inches. A bracket to hold a .250
Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Breisacher, Kevin
2014-01-01
An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.
Characterization of Ventilatory Modes in Dragonfly Nymph
NASA Astrophysics Data System (ADS)
Roh, Chris; Saxton-Fox, Theresa; Gharib, Morteza
2013-11-01
A dragonfly nymph's highly modified hindgut has multiple ventilatory modes: hyperventilation (i.e. jet propulsion), gulping ventilation (extended expiratory phase) and normal ventilation. Each mode involves dynamic manipulation of the exit diameter and pressure. To study the different fluid dynamics associated with the three modes, Anisopteran larvae of the family Aeshnidae were tethered onto a rod for flow visualization. The result showed distinct flow structures. The hyperventilation showed a highly turbulent and powerful jet that occurred at high frequency. The gulping ventilation produced a single vortex at a moderate frequency. The normal ventilation showed two distinct vortices, a low-Reynolds number vortex, followed by a high-Reynolds number vortex. Furthermore, a correlation of the formation of the vortices with the movement of the sternum showed that the dragonfly is actively controlling the timing and the speed of the vortices to have them at equal distance from the jet exit at the onset of inspiration. This behavior prevents inspiration of the oxygen deficient expirated water, resulting in the maximization of the oxygen intake. Supported by NSF GRFP.
Development of ultrasonic electrostatic microjets for distributed propulsion and microflight
NASA Astrophysics Data System (ADS)
Amirparviz, Babak
This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.
NASA Technical Reports Server (NTRS)
Srivastava, Rakesh
2004-01-01
A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.
Perspectives On Dilution Jet Mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.
1990-01-01
NASA recently completed program of measurements and modeling of mixing of transverse jets with ducted crossflow, motivated by need to design or tailor temperature pattern at combustor exit in gas turbine engines. Objectives of program to identify dominant physical mechanisms governing mixing, extend empirical models to provide near-term predictive capability, and compare numerical code calculations with data to guide future analysis improvement efforts.
A two-dimensional, iterative solution for the jet flap
NASA Technical Reports Server (NTRS)
Herold, A. C.
1973-01-01
A solution is presented for the jet-flapped wing in two dimensions. The main flow is assumed to be inviscid and incompressible. The flow inside the jet is considered irrotational and the upper and lower boundaries between the jet and free stream are assumed to behave as vortex sheets which allow no mixing. The solution is found to be in satisfactory agreement with two dimensional experimental results and other theoretical work for intermediate values of momentum coefficient, but the regions of agreement vary with jet exit angle. At small values of momentum coefficient, the trajectory for the jet, as computed by this method, has more penetration than that of other available data, while at high values of moment coefficient this solution results in less penetration of the jet into the main flow.
Primary atomization of liquid jets issuing from rocket engine coaxial injectors
NASA Astrophysics Data System (ADS)
Woodward, Roger D.
1993-01-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.
Experimental Investigation of a Morphing Nacelle Ducted Fan
NASA Technical Reports Server (NTRS)
Kondor, Shayne A.; Moore, Mark
2005-01-01
The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in static thrust was obtained when the inlet and exit CC devices were operated in unison, but only over a limited range of CC jet momentum. Operating the nacelle inlet and exit CC devices together proved very effective in reducing peak ground plane static pressure, while maintaining static thrust. The Morphing Nacelle concept proved effective at enhancing off-design performance of the model; however, additional investigation is necessary to generalize the results.
Effect of Microjet Injection on Supersonic Jet Noise
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Podboy, G. G.
2010-01-01
The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.
Oblique impact of dense granular sheets
NASA Astrophysics Data System (ADS)
Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.
2013-11-01
Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.
Vortex ring formation at the open end of a shock tube: A particle image velocimetry study
NASA Astrophysics Data System (ADS)
Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L.
2004-04-01
The vortex ring generated subsequent to the diffraction of a shock wave from the open end of a shock tube is studied using particle image velocimetry. We examine the early evolution of the compressible vortex ring for three-exit shock Mach numbers, 1.1, 1.2, and 1.3. For the three cases studied, the ring formation is complete at about tUb/D=2, where t is time, Ub is fluid velocity behind shock as it exits the tube and D is tube diameter. Unlike in the case of piston generated incompressible vortex rings where the piston velocity variation with time is usually trapezoidal, in the shock-generated vortex ring case the exit fluid velocity doubles from its initial value Ub before it slowly decays to zero. At the end of the ring formation, its translation speed is observed to be about 0.7 Ub. During initial formation and propagation, a jet-like flow exists behind the vortex ring. The vortex ring detachment from the tailing jet, commonly referred to as pinch-off, is briefly discussed.
NASA Technical Reports Server (NTRS)
Carson, G. T., Jr.; Midden, R. E.
1976-01-01
Tests of a full scale hypersonic research engine (HRE) were conducted in the hypersonic tunnel facility at Mach numbers of 5, 6, and 7. Since the HRE would cause a rather high blockage (48.83 percent of the nozzle area), subscale tests were conducted in various available small wind tunnels prior to the full scale tests to study the effects of model blockage on tunnel starting. The results of the Mach 4 subscale tests which utilized a model system at 0.0952 scale which simulated the HRE in the test section of the tunnel are presented. A satisfactory tunnel starting could not be achieved by varying the free jet length or diffuser size nor by inserting the model into the test stream after tunnel starting. However, the installation of a shroud around the HRE model allowed the tunnel to start with the model preset in the tunnel at a tunnel stagnation pressure to atmospheric exit pressure ratio of 13.4. The simulation of the discharge of instrumentation cooling water and the addition of test hardware at the aft end of the HRE model did not have a significant effect on the tunnel starting.
The effect of non-zero radial velocity on the impulse and circulation of starting jets
NASA Astrophysics Data System (ADS)
Krieg, Michael; Mohseni, Kamran
2011-11-01
Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).
NASA Astrophysics Data System (ADS)
Viswanath, Kamal; Johnson, Ryan; Kailasanath, Kailas; Malla, Bhupatindra; Gutmark, Ephraim
2017-11-01
The noise from high performance jet engines of both civilian and military aircraft is an area of active concern. Asymmetric exhaust nozzle configurations, in particular rectangular, potentially offer a passive way of modulating the farfield noise and are likely to become more important in the future. High aspect ratio nozzles offer the further benefit of easier airframe integration. In this study we validate the far field noise for ideally and over expanded supersonic jets issuing from a high aspect ratio rectangular nozzle geometry. Validation of the acoustic data is performed against experimentally recorded sound pressure level (SPL) spectra for a host of observer locations around the asymmetric nozzle. Data is presented for a slightly heated jet case for both nozzle pressure ratios. The contrast in the noise profile from low aspect ratio rectangular and circular nozzle jets are highlighted, especially the variation in the azimuthal direction that shows ``quiet'' and ``loud'' planes in the farfield in the peak noise direction. This variation is analyzed in the context of the effect of mixing at the sharp corners, the sense of the vortex pairs setup in the exit plane, and the evolution of the high aspect ratio exit cross-section as it propagates downstream including possible axis-switching. Supported by Office of Naval Research (ONR) through the Computational Physics Task Area under the NRL 6.1 Base Program.
NASA Technical Reports Server (NTRS)
Hayden, R. E.
1984-01-01
The acoustically significant features of the NASA 4X7m wind tunnel and the Dutch-German DNW low speed tunnel are compared to illustrate the reasons for large differences in background noise in the open jet test sections of the two tunnels. Also introduced is the concept of reducing test section noise levels through fan and turning vane source reductions which can be brought about by reducing the nozzle cross sectional area, and thus the circuit mass flow for a particular exit velocity. The costs and benefits of treating sources, paths, and changing nozzle geometry are reviewed.
NASA Technical Reports Server (NTRS)
Viehweger, G.
1977-01-01
Systematic basic studies on the close and distant effects of cross blown single and twin lifting jets were performed with the aid of a principle model. The different effects are described in detail. The number of the experimental parameters is reduced to the most essential ones: (1) the angle of attack, (2) the flight and the jet velocities as well as the jet diameter, (3) the distance between the twin jets, (4) the location of the wing relative to the jets and the fuselage, and (5) the ground distance. The results of systematic pressure distribution measurements on the fuselage surface are studied, especially in the close vicinity of the jet exits. From these results, functions on the influence of the parameters are deduced.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.
1986-01-01
A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.
Electric-field driven jetting from dielectric liquids
NASA Astrophysics Data System (ADS)
Jayasinghe, S. N.; Edirisinghe, M. J.
2004-11-01
Three dielectric (electrical conductivity ˜10-13Sm-1) Newtonian liquids with viscosity in the range 1-100 mPa s were passed through a needle at a controlled flow rate under the influence of an electric field. At an electric field strength of 1.5kV/mm, the liquid exiting the needle instantaneously transformed from dripping droplets to an elliptically pendent droplet from the apex of which a fine jet evolved. Thus, a jet can be obtained on demand, and in this letter we define this phenomenon and explain a basis for it.
A Parametric Study of Jet Interactions with Rarefied Flow
NASA Technical Reports Server (NTRS)
Glass, C. E.
2004-01-01
Three-dimensional computational techniques, in particular the uncoupled CFD-DSMC of the present study, are available to be applied to problems such as jet interactions with variable density regions ranging from a continuum jet to a rarefied free stream. When the value of the jet to free stream momentum flux ratio approximately greater than 2000 for a sharp leading edge flat plate forward separation vortices induced by the jet interaction are present near the surface. Also as the free stream number density n (infinity) decreases, the extent and magnitude of normalized pressure increases and moves upstream of the nozzle exit. Thus for the flat plate model the effect of decreasing n (infinity) is to change the sign of the moment caused by the jet interaction on the flat plate surface.
Effects of core turbulence on jet excitability
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.
1989-01-01
The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.
Free jet micromixer to study fast chemical reactions by small angle X-ray scattering.
Marmiroli, Benedetta; Grenci, Gianluca; Cacho-Nerin, Fernando; Sartori, Barbara; Ferrari, Enrico; Laggner, Peter; Businaro, Luca; Amenitsch, Heinz
2009-07-21
We present the design, fabrication process, and the first test results of a high aspect ratio micromixer combined with a free jet for under 100 micros time resolved studies of chemical reactions. The whole system has been optimized for synchrotron small angle X-ray scattering (SAXS) experiments. These studies are of particular interest to understand the early stages of chemical reactions, such as the kinetics of nanoparticle formation. The mixer is based on hydrodynamic focusing and works in the laminar regime. The use of a free jet overcomes the fouling of the channels and simultaneously circumvents background scattering from the walls. The geometrical parameters of the device have been optimized using finite element simulations, resulting in smallest features with radius <1 microm, and a channel depth of 60 microm, thus leading to an aspect ratio >60. To achieve the desired dimensions deep X-ray lithography (DXRL) has been employed. The device has been tested. First the focusing effect has been visualized using fluorescein. Then the evolution and stability of the jet, which exits the mixer nozzle at 13 m s(-1), have been characterized. Finally SAXS measurements have been conducted of the formation of calcium carbonate from calcium chloride and sodium carbonate. The fastest measurement is 75 micros after the beginning of the mixing of the reagents. The nanostructural evolution of chemical reactions is clearly discernible.
Exploratory tests of two strut fuel injectors for supersonic combustion
NASA Technical Reports Server (NTRS)
Anderson, G. Y.; Gooderum, P. B.
1974-01-01
Results of supersonic mixing and combustion tests performed with two simple strut injector configurations, one with parallel injectors and one with perpendicular injectors, are presented and analyzed. Good agreement is obtained between static pressure measured on the duct wall downstream of the strut injectors and distributions obtained from one-dimensional calculations. Measured duct heat load agrees with results of the one-dimensional calculations for moderate amounts of reaction, but is underestimated when large separated regions occur near the injection location. For the parallel injection strut, good agreement is obtained between the shape of the injected fuel distribution inferred from gas sample measurements at the duct exit and the distribution calculated with a multiple-jet mixing theory. The overall fraction of injected fuel reacted in the multiple-jet calculation closely matches the amount of fuel reaction necessary to match static pressure with the one-dimensional calculation. Gas sample measurements with the perpendicular injection strut also give results consistent with the amount of fuel reaction in the one-dimensional calculation.
The Development of Point Doppler Velocimeter Data Acquisition and Processing Software
NASA Technical Reports Server (NTRS)
Cavone, Angelo A.
2008-01-01
In order to develop efficient and quiet aircraft and validate Computational Fluid Dynamic predications, aerodynamic researchers require flow parameter measurements to characterize flow fields about wind tunnel models and jet flows. A one-component Point Doppler Velocimeter (pDv), a non-intrusive, laser-based instrument, was constructed using a design/develop/test/validate/deploy approach. A primary component of the instrument is software required for system control/management and data collection/reduction. This software along with evaluation algorithms, advanced pDv from a laboratory curiosity to a production level instrument. Simultaneous pDv and pitot probe velocity measurements obtained at the centerline of a flow exiting a two-inch jet, matched within 0.4%. Flow turbulence spectra obtained with pDv and a hot-wire detected the primary and secondary harmonics with equal dynamic range produced by the fan driving the flow. Novel,hardware and software methods were developed, tested and incorporated into the system to eliminate and/or minimize error sources and improve system reliability.
Analysis of jet-airfoil interaction noise sources by using a microphone array technique
NASA Astrophysics Data System (ADS)
Fleury, Vincent; Davy, Renaud
2016-03-01
The paper is concerned with the characterization of jet noise sources and jet-airfoil interaction sources by using microphone array data. The measurements were carried-out in the anechoic open test section wind tunnel of Onera, Cepra19. The microphone array technique relies on the convected, Lighthill's and Ffowcs-Williams and Hawkings' acoustic analogy equation. The cross-spectrum of the source term of the analogy equation is sought. It is defined as the optimal solution to a minimal error equation using the measured microphone cross-spectra as reference. This inverse problem is ill-posed yet. A penalty term based on a localization operator is therefore added to improve the recovery of jet noise sources. The analysis of isolated jet noise data in subsonic regime shows the contribution of the conventional mixing noise source in the low frequency range, as expected, and of uniformly distributed, uncorrelated noise sources in the jet flow at higher frequencies. In underexpanded supersonic regime, a shock-associated noise source is clearly identified, too. An additional source is detected in the vicinity of the nozzle exit both in supersonic and subsonic regimes. In the presence of the airfoil, the distribution of the noise sources is deeply modified. In particular, a strong noise source is localized on the flap. For high Strouhal numbers, higher than about 2 (based on the jet mixing velocity and diameter), a significant contribution from the shear-layer near the flap is observed, too. Indications of acoustic reflections on the airfoil are also discerned.
NASA Astrophysics Data System (ADS)
Kumar, Vaibhav; Ng, Ivan; Sheard, Gregory J.; Brocher, Eric; Hourigan, Kerry; Fouras, Andreas
2011-08-01
This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.
NASA Astrophysics Data System (ADS)
Shashikant, Patel, Devendra Kumar; Kumar, Jayesh; Kumar, Vishwajeet
2018-04-01
The conjugate heat transfer due to oblique impingement of two-dimensional, steady state, incompressible, turbulent slot jet on a uniformly heated flat plate has been studied in the present work. The standard high Reynolds number two-equation k - ɛ eddy viscosity model has been used for numerical simulation. The Reynolds number based on the hydraulic diameter of nozzle exit and turbulent intensity maintained at 9, 900 and 2% respectively. The angle of inclination 30°, 45°, 60° and, 75° degrees are considered for the numerical study. A uniform temperature higher than the jet exit temperature is provided to the bottom surface of the plate. The flow field have been studied using the contour plots of pressure and velocity in the fluid domain. The influence of inclination on the distribution of the local Nusselt number over the surface of impingement have been presented. It is found that the angle of impingement influences the flow field and heat transfer characteristics more in the downhill direction of the stagnation zone compared to the uphill direction.
An experimental study of multiple jet mixing
NASA Technical Reports Server (NTRS)
Krothapalli, D.; Baganoff, D.; Karamcheti, K.
1979-01-01
Measurements of an incompressible jet issuing from an array of rectangular lobes, equally spaced with their small dimensions in a line, both as a free jet, and as a confined jet, are carried out in three parts: (1) on a single rectangular free jet, (2) on the same jet in a multiple free jet configuration, and (3) on the same jet in a multiple jet configuration with confining surfaces (two parallel plates are symmetrically placed perpendicular to the long dimension of each lobe covering the entire flow field under consideration). In the case of a single rectangular free jet, the flow field of the jet is characterized by the presence of three distinct regions in the axial mean velocity decay and are referred to as: potential core region, two dimensional type region, and axisymmetric type region. In the case of a multiple free jet, the flow field for downstream distance X greater than 60D (D = width of a lobe) resembles that of a jet exiting from a two dimensional nozzle with its short dimension being the long dimension of the lobe.
Characteristics of strongly-forced turbulent jets and non-premixed jet flames
NASA Astrophysics Data System (ADS)
Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.
2006-10-01
Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.
NASA Astrophysics Data System (ADS)
St-Pierre, Benoit
In order to produce more efficient jet engines, manufacturers add compressor stages to their new engines and their manufacturing departments must increase their productivity while reducing their costs of operation. The addition of these compressor stages causes an increase in the pressures and temperatures for those components. To address this issue, the engineering departments use highly thermal resistant alloys for their manufacturing, mostly nickel alloys. However, these alloys are very difficult to machine by conventional manufacturing processes. Thus, in order to efficiently machine these alloys, grinding processes, like Continuous Dress Creep Feed (CDCF), are always the best choices. However, the productivity of these processes is mainly limited by the burning marks that may appear on the machined surfaces if too aggressive cutting parameters are selected. A simple solution to this issue consists in improving the design of the existing coherent coolant nozzle so that they can produce an even more coherent coolant jet. Therefore, this research project proposes a method which makes it possible to predict the jet coherency of a given nozzle while also giving the possibility to optimize its design in order to improve its jet coherency and all that while using a commercial CFD software, i.e. FLUENT 6.3. Thus, the proposed method is based on the evolution of the velocity profile provided by FLUENT for a given Webster type nozzle and on the experimental measurement of jet coherency of this one in order to establish a semi-empirical model that links these two results. So, for a given nozzle it is possible to precisely predict the physical opening of the coolant jet that this one will produce by using the opening of the velocity profile provided by FLUENT and the semiempirical model developed in this research. The use of FLUENT fonctions also made it possible to simulate the fluid flow inside the coolant nozzle and to identify the cavitation zones within it in order to decrease its importance by modifying the inside profile geometry. This new design of coolant nozzle is more able to produce a coherent jet as compared to the Webster type design. Moreover, this was verified using the semi-empirical model developed in this research and then validated through experimental tests. Finally, cutting tests were performed to compare Webster type nozzle against the newly proposed coolant nozzle design. The results obtained show that the new concept of coolant nozzle gives an improvement in wheel life of more than 15% while slightly decreasing the power required for a cut and that's while preserving a similar surface finish. Finally, a comparative study between FLUENT and Bernoulli equations for the prediction of the mean velocity at the nozzle exit is carried out. This comparison shows that neglecting the effect of turbulence and cavitations on the coolant flow greatly influences the mean velocity at the nozzle exit.
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
High-Speed Jet Noise Reduction NASA Perspective
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Handy, J. (Technical Monitor)
2001-01-01
History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Pratikash P.; Hecht, Ethan S.
In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less
Ignition and flame characteristics of cryogenic hydrogen releases
Panda, Pratikash P.; Hecht, Ethan S.
2017-01-01
In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less
A study of the round jet/plane wall flow field
NASA Technical Reports Server (NTRS)
Foss, J. F.; Kleis, S. J.
1971-01-01
Impingement angles, between the axisymmetric jet axis and the plane wall, from zero to 15 degrees have been examined for nozzle heights of 0.75, 1.0, 1.5 and 2.0 diameters and for: (1) a fully developed pipe flow, and (2) a relatively uniform exit velocity condition. Velocity measurements have been used to define isotach contours and to determine mass, momentum and energy flux values for the near field (within five diameters) of the jet. Surface pressure measurements have been used to define surface pressure forces and jet centerline trajectories. The geometric and flow conditions examined and the interpretation of the results have been motivated by the externally blown flap STOL aircraft application.
Prediction of recirculation zones in isothermal coaxial jet flows relevant to combustors
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1987-01-01
The characteristics of the recirculation zones in confined coaxial turbulent jets are investigated numerically employing the kappa - epsilon turbulence model. The geometrical arrangement corresponds to the experimental study of Owen (AIAA J. 1976) and the investigation is undertaken to provide information for isothermal flow relevant to combustor flows. For the first time, the shape, size, and location of the recirculation zones for the above experimental configuration are correctly predicted. The processes leading to the observed results are explained. Detailed comparisons of the prediction with measurements are made. It is shown that the recirculation zones are very sensitive to the central jet exit configuration and the velocity ratio of the jets.
Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko; ...
2017-03-12
Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less
Distortion of liquid film discharging from twin-fluid atomizer
NASA Astrophysics Data System (ADS)
Mehring, C.; Sirignano, W. A.
2001-11-01
The nonlinear distortion and disintegration of a thin liquid film exiting from a two-dimensional twin-fluid atomizer is analyzed numerically. Pulsed gas jets impacting on both sides of the discharging liquid film at the atomizer exit generate dilational and/or sinuous deformations of the film. Both liquid phase and gas phase are inviscid and incompressible. For the liquid phase the so-called long-wavelength approximation is employed yielding a system of unsteady one-dimensional equations for the planar film. Solution of Laplace's equation for the velocity potential yields the gas-phase velocity field on both sides of the liquid stream. Coupling between both phases is described through kinematic and dynamic boundary conditions at the phase interfaces, and includes the solution of the unsteady Bernoulli equation to determine the gas-phase pressure along the interfaces. Both gas- and liquid-phase equations are solved simultaneously. Solution of Laplace's equation for the gas streams is obtained by means of a boundary-element method. Numerical solutions for the liquid phase use the Lax-Wendroff method with Richtmyer splitting. Sheet distortion resulting from the stagnation pressure of the impacting gas jets and subsequent disturbance amplification due to Kelvin-Helmholtz effects are studied for various combinations of gas-pulse timing, gas-jet impact angles, gas-to-liquid-density ratio, liquid-phase Weber number and gas-jet-to-liquid-jet-momentum ratio. Dilational and sinuous oscillations of the liquid are examined and film pinch-off is predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko
Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less
Design of a variable area diffuser for a 15-inch Mach 6 open-jet tunnel
NASA Technical Reports Server (NTRS)
Loney, Norman W.
1994-01-01
The Langley 15-inch Mach 6 High Temperature Tunnel was recently converted from a Mach 10 Hypersonic Flow Apparatus. This conversion was effected to improve the capability of testing in Mach 6 air at relatively high reservoir temperatures not previously possible at Langley. Elevated temperatures allow the matching of the Mach numbers, Reynolds numbers, and ratio of wall-to-adiabatic-wall temperatures (TW/Taw) between this and the Langley 20-inch Mach 6 CF4 Tunnel. This ratio is also matched for Langley's 31-inch Mach 10 Tunnel and is an important parameter useful in the simulation of slender bodies such as National Aerospace Plane (NASP) configurations currently being studied. Having established the nozzle's operating characteristics, the decision was made to install another test section to provide model injection capability. This test section is an open-jet type, with an injection system capable of injecting a model from retracted position to nozzle centerline between 0.5 and 2 seconds. Preliminary calibrations with the new test section resulted in Tunnel blockage. This blockage phenomenon was eliminated when the conical center body in the diffuser was replaced. The issue then, is to provide a new and more efficient variable area diffuser configuration with the capability to withstand testing of larger models without sending the Tunnel into an unstart condition. Use of the 1-dimensional steady flow equation with due regard to friction and heat transfer was employed to estimate the required area ratios (exit area / throat area) in a variable area diffuser. Correlations between diffuser exit Mach number and area ratios, relative to the stagnation pressure ratios and diffuser inlet Mach number were derived. From these correlations, one can set upper and lower operating pressures and temperatures for a given diffuser throat area. In addition, they will provide appropriate input conditions for the full 3-dimensional computational fluid dynamics (CFD) code for further simulation studies.
Basic experimental study of the coupling between flow instabilities and incident sound
NASA Astrophysics Data System (ADS)
Ahuja, K. K.
1984-03-01
Whether a solid trailing edge is required to produce efficient coupling between sound and instability waves in a shear layer was investigated. The differences found in the literature on the theoretical notions about receptivity, and a need to resolve them by way of well-planned experiments are discussed. Instability waves in the shear layer of a subsonic jet, excited by a point sound source located external to the jet, were first visualized using an ensemble averaging technique. Various means were adopted to shield the sound reaching the nozzle lip. It was found that the low frequency sound couples more efficiently at distances downstream of the nozzle. To substantiate the findings further, a supersonic screeching jet was tested such that it passed through a small opening in a baffle placed parallel to the exit plane. The measured feedback or screech frequencies and also the excited flow disturbances changed drastically on traversing the baffle axially thus providing a strong indication that a trailing edge is not necessary for efficient coupling between sound and flow.
Basic experimental study of the coupling between flow instabilities and incident sound
NASA Technical Reports Server (NTRS)
Ahuja, K. K.
1984-01-01
Whether a solid trailing edge is required to produce efficient coupling between sound and instability waves in a shear layer was investigated. The differences found in the literature on the theoretical notions about receptivity, and a need to resolve them by way of well-planned experiments are discussed. Instability waves in the shear layer of a subsonic jet, excited by a point sound source located external to the jet, were first visualized using an ensemble averaging technique. Various means were adopted to shield the sound reaching the nozzle lip. It was found that the low frequency sound couples more efficiently at distances downstream of the nozzle. To substantiate the findings further, a supersonic screeching jet was tested such that it passed through a small opening in a baffle placed parallel to the exit plane. The measured feedback or screech frequencies and also the excited flow disturbances changed drastically on traversing the baffle axially thus providing a strong indication that a trailing edge is not necessary for efficient coupling between sound and flow.
Fluid-flow of a row of jets in crossflow - A numerical study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Benson, T. J.
1992-01-01
A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.
Magnetic Resonance Velocimetry analysis of an angled impinging jet
NASA Astrophysics Data System (ADS)
Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David
2016-11-01
Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.
Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Li-Hao; Wang, Jin-Jun; Li, Tian
2018-06-01
An experimental study was conducted on the evolution of low-aspect-ratio (AR) rectangular synthetic jets using time-resolved two-dimensional particle image velocimetry and stereoscopic particle image velocimetry. Five orifice ARs ranging from 1 to 5 were found to have an obvious effect on the axis switching of vortex rings and the near-field flow physics at a uniform Reynolds number of 166 and non-dimensional stroke length of 4.5. Compared with conventional continuous jets, rectangular synthetic jets displayed more times of axis switching and the first axis-switching location was closer to the jet exit. Two types of different streamwise vortices, SV-I and SV-II, were detected in the near field as the characteristic products of axis switching. Influenced by the axis switching and streamwise vortices, significant entrainment and mixing enhancement was demonstrated for low-AR rectangular synthetic jets.
The influence of cavitation in the breakup of liquid free jets
NASA Astrophysics Data System (ADS)
Bode, Juergen
1991-03-01
The interaction between a diesel injection nozzle flow and the atomizing jet was investigated over a wide range of Reynolds numbers. If the pressure gradient towards the centerline of the injection nozzle, generated by the curved streamlines, becomes too large, cavitation occurs at the inlet corner. The cavitation region grows in length and boundary surface with increasing Reynolds number. The instability of the reentry flow causes unsteady fluctuations of the cavitation which influences the breakup of the liquid jet, whereby liquid films are generated which take off from the jet. Cavitation amplifies the mechanism of the atomization, based on the interaction between the jet and surrounding gas. The influence of the cavitation on the atomization is restricted to the region directly behind the nozzle exit. The injection pressure and the temperature of the gas hardly affect the atomization. The jet angle depends mainly on the density of the surrounding gas.
Continuous-wave laser generated jets for needle free applications
Visser, Claas Willem; Schlautmann, Stefan
2016-01-01
We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel which focuses and ejects the liquid jet through the exit. The bubble growth and the jet velocity were measured as a function of the devices geometry (channel diameter D and chamber width A). The fastest jets were those for relatively large chamber size with respect to the channel diameter. Elongated and focused jets up to 29 m/s for a channel diameter of 250 μm and chamber size of 700 μm were obtained. The proposed CW laser-based device is potentially a compact option for a practical and commercially feasible needle-free injector. PMID:26858816
NASA Astrophysics Data System (ADS)
Irie, T.; Yasunobu, T.; Kashimura, H.; Setoguchi, T.
2003-05-01
When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation. The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.
Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Morris, P. J.
1997-01-01
Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.
Acoustically excited heated jets. 1: Internal excitation
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.
1988-01-01
The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.
NASA Astrophysics Data System (ADS)
Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin
2018-05-01
Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Astrophysics Data System (ADS)
Magnotti, Gaetano
Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
NASA Astrophysics Data System (ADS)
Zhang, J.; Xu, M.; Pollard, A.; Mi, J.
2013-05-01
This study investigates by experiment the dependence of the inertial-range exponent m of the streamwise velocity spectrum on the external intermittency factor γ (≡ the fraction of time the flow is fully turbulent) and the mean shear S in a turbulent square jet. Velocity measurements were made using hot-wire anemometry in the jet at 15 < x/De < 40, where De denotes the exit equivalent diameter, and for an exit Reynolds number of Re = 50 000. The Taylor microscale Reynolds number Rλ varies from about 70 to 450 in the present study. The TERA (turbulent energy recognition algorithm) method proposed by Falco and Gendrich [in Near-Wall Turbulence: 1988 Zoran Zariç Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere Publishing Corp., Washington, DC, 1990), pp. 911-931] is discussed and applied to estimate the intermittency factor from velocity signals. It is shown that m depends strongly on γ but negligibly on S. More specifically, m varies with γ following m=mt+(lnγ-0.0173)1/2, where mt denotes the spectral exponent found in fully turbulent regions.
Characteristics of Five Ejector Configurations at Free-Stream Mach Numbers from 0 to 2.0
NASA Technical Reports Server (NTRS)
Klann, John L.; Huff, Ronald G.
1959-01-01
Thrust, air-handling, and base-pressure characteristics of five ejector configurations were investigated in the Lewis 8-by 6-foot wind tunnel at free-stream Mach numbers from 0 to 2.0 over ranges of primary-jet pressure ratio up to 24 and corrected secondary weight-flow ratio up to 13 percent. The ejector-shroud geometries varied from convergent to divergent. Base pressure ratio and ejector performance were interrelated by means of an exit-momentum parameter. Correlations, to at least a first approximation, with base pressure ratio, of both internal-ejector-flow separation and external-flow separation over the model boattail were shown. Furthermore, it was shown that magnitudes and exact trends in base pressure ratio depended largely, and in a complicated fashion, on ejector geometry and amount of secondary flow. External-stream effects on ejector jet thrust were determined for a typical schedule of jet-engine pressure ratios. With the exception of the ejector having the largest (1.81) shroud-exit-to primary-diameter ratio, there were no stream effects at Mach numbers from 1.5 to 2.0 and variations from quiescent-air thrust data were less than 2.5 percent at the subsonic speed investigated.
Transient and translating gas jet modeling for pressure gain combustion applications
NASA Astrophysics Data System (ADS)
Wijeyakulasuriya, Sameera Devsritha
Major mechanisms governing the mixing process of a gas injected into a long confined chamber is analyzed when there's a relative motion between the two. Such applications arise in a wave rotor combustor (WRCVC) where the moving combustion chambers receive gas from stationary injectors for fueling and ignition. Counter rotating vortices govern the mixing process in such problems, which moves across the channel enhancing mixing. The actions of vortices were seen to localize the injected gas in the vicinity of the injector end wall which can prove advantages during fueling to make a rich mixture near the ignition source and during hot gas injection for ignition to minimize the drop of temperature. The vortex structures can alter the exit conditions of the injector due to its strong near field interactions. The confinement is also important in which it suppresses the development and motion of such vortices and hence affect mixing. The thesis discusses several important features in a WRCVC. Namely, the effect of a combustion channel being opened to the preceding exit port prior to its opening to the gas injectors, on mixing of injected gas with channel gases. This prior opening was seen to deposit vorticity on the channel wall which gets convected along them. This convecting vorticity resulted in enhanced jet penetration. The effect of combustible mixture non-uniformity on ignition success of a WRCVC was also analyzed using 2D and 1D computations. The predictions are validated against measured data from a WRCVC test rig. Ignition locations and combustion pressures were successfully predicted. Limited 3D computations of the hot gas jet mixing with the channel gases were carried out and measure temperature data from the WRCVC test rig was used to verify the axial penetration predictions of the jet. A methodology is proposed to quantify the level of mixing and ignition success by comparing the amount of injected gas inside the channel which is above a certain threshold temperature and mass fraction limits, to the total amount of injected mass trapped inside it at that particular time. Conclusions were made on the level of mixing and the 'ignitability' of the mixture by looking at the time variation of these defined quantities.
Response of multi-panel assembly to noise from a jet in forward motion
NASA Technical Reports Server (NTRS)
Bayliss, A.; Maestrello, L.; Mcgreevy, J. L.; Fenno, C. C., Jr.
1995-01-01
A model of the interaction of the noise from a spreading subsonic jet with a 4 panel assembly is studied numerically in two dimensions. The effect of forward motion of the jet is accounted for by considering a uniform flow field superimposed on a mean jet exit profile. The jet is initially excited by a pulse-like source inserted into the flow field. The pulse triggers instabilities associated with the inviscid instability of the jet shear layer. These instabilities generate sound which in turn serves to excite the panels. We compare the sound from the jet, the responses of the panels and the resulting acoustic radiation for the static jet and the jet in forward motion. The far field acoustic radiation, the panel response and sound radiated from the panels are all computed and compared to computations of a static jet. The results demonstrate that for a jet in forward motion there is a reduction in sound in downstream directions and an increase in sound in upstream directions in agreement with experiments. Furthermore, the panel response and radiation for a jet in forward motion exhibits a downstream attenuation as compared with the static case.
Laboratory plasma physics experiments using merging supersonic plasma jets
Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...
2015-04-01
We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less
Laboratory plasma physics experiments using merging supersonic plasma jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S. C.; Moser, A. L.; Merritt, E. C.
We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less
A study of flow past an airfoil with a jet issuing from its lower surface
NASA Technical Reports Server (NTRS)
Krothapalli, A.; Leopold, D.
1984-01-01
The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.
Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.
2008-01-01
Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.
Catalytic combustion for the automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Anderson, D. N.; Tacina, R. R.; Mroz, T. S.
1977-01-01
Fuel injectors to provide a premixed prevaporized fuel-air mixture are studied. An evaluation of commercial catalysts was performed as part of a program leading to the demonstration of a low emissions combustor for an automotive gas turbine engine. At an inlet temperature of 800 K, a pressure of 500,000 Pa and a velocity of 20 m/s a multiple-jet injector produced less than + or - 10 percent variation in Jet-A fuel-air ratio and 100 percent varporization with less than 0.5 percent pressure drop. Fifteen catalytic reactors were tested with propane fuel at an inlet temperature of 800 K, a pressure of 300,000 Pa and inlet velocities of 10 to 25 m/s. Seven of the reactors had less than 2 percent pressure drop while meeting emissions goals of 13.6 gCO/kg fuel and 1.64 gHC/kg fuel at the velocities and exit temperatures required for operation in an automotive gas turbine engine. NO sub x emissions at all conditions were less than 0.5 ppm. All tests were performed with steady state conditions.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.
2009-01-01
This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.
Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.
1999-01-01
The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.
Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)
2000-01-01
The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.
Low Frequency Noise Contamination in Fan Model Testing
NASA Technical Reports Server (NTRS)
Brown, Clifford A.; Schifer, Nicholas A.
2008-01-01
Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.
Experimental investigation of a jet inclined to a subsonic crossflow
NASA Technical Reports Server (NTRS)
Aoyagi, K.; Snyder, P. K.
1981-01-01
Experimental investigations have been conducted to determine the surface-pressure distribution on a flat plate and a body of revolution with a jet issuing at a large angle to the free stream and to obtain a better understanding of the entrainment mechanism close to the jet exit by quantitative mean velocity surveys. Pressure data were obtained with a flat plate model at several nozzle injection angles using a single round nozzle. For the body of revolution model, data were obtained with a round jet exhausting perpendicular to the crossflow and with two round jets spaced two to six nozzle diameters apart. Mean velocity measurements were obtained with laser velocimeter surveys near the base of a round jet exhausting normal to a flat plate. For the flat plate model, the pressure field shifts downstream and the entrainment effect decreases with decreasing nozzle injection angle. For the body of revolution model with two jets, the jet-induced effect of the rear jet on the surface-pressure distribution was less than the front jet. The flow regions close to the jet are defined by the laser surveys, but further mean velocity surveys are required to understand the entrainment mechanism.
2013-11-01
freestream conditions ( 0 =300 K). .........22 Table 7. Results from nozzle parameter study, variation with jet gas total temperature (AR=1, M=2.5...end. Two additional supersonic nozzles of AR=2 and AR=8 (figures 3e and 3f) were also investigated, also with a throat diameter of 2.54 mm. The...walls, due to the different flow properties from the gas expansion there. Therefore, the plenum and nozzle exit walls were modeled with an advanced
Simultaneous computation of jet turbulence and noise
NASA Technical Reports Server (NTRS)
Berman, C. H.; Ramos, J. I.
1989-01-01
The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.
Velocity Distribution in the Boundary Layer of a Submerged Plate
NASA Technical Reports Server (NTRS)
Hansen, M
1930-01-01
This report deals with the measurement of the velocity distribution of the air in the velocity of a plate placed parallel to the air flow. The measurements took place in a small wind tunnel where the diameter of the entrance cone is 30 cm and the length of the free jet between the entrance and exit cones is about 2.5 m. The measurements were made in the free jet where the static pressure was constant, which was essential for the method of measurement used.
Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements
NASA Astrophysics Data System (ADS)
Hagen, D. E.; Whitefield, P. D.; Lobo, P.
2015-12-01
International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.
IR signature study of aircraft engine for variation in nozzle exit area
NASA Astrophysics Data System (ADS)
Baranwal, Nidhi; Mahulikar, Shripad P.
2016-01-01
In general, jet engines operate with choked nozzle during take-off, climb and cruise, whereas unchoking occurs while landing and taxiing (when engine is not running at full power). Appropriate thrust in an aircraft in all stages of the flight, i.e., take-off, climb, cruise, descent and landing is achieved through variation in the nozzle exit area. This paper describes the effect on thrust and IR radiance of a turbojet engine due to variation in the exit area of a just choked converging nozzle (Me = 1). The variations in the nozzle exit area result in either choking or unchoking of a just choked converging nozzle. Results for the change in nozzle exit area are analyzed in terms of thrust, mass flow rate and specific fuel consumption. The solid angle subtended (Ω) by the exhaust system is estimated analytically, for the variation in nozzle exit area (Ane), as it affects the visibility of the hot engine parts from the rear aspect. For constant design point thrust, IR radiance is studied from the boresight (ϕ = 0°, directly from the rear side) for various percentage changes in nozzle exit area (%ΔAne), in the 1.9-2.9 μm and 3-5 μm bands.
Prediction of Acoustic Environments from Horizontal Rocket Firings
NASA Technical Reports Server (NTRS)
Giacomoni, Clothilde
2014-01-01
In recent years, advances in research and engineering have led to more powerful launch vehicles which can reach areas of space not yet explored. These more powerful vehicles yield acoustic environments potentially destructive to the vehicle or surrounding structures. Therefore, it has become increasingly important to be able to predict the acoustic environments created by these vehicles in order to avoid structural and/or competent failure. The current industry standard technique for predicting launch-induced acoustic environments was developed by Eldred in the early 1970's and is published in NASA SP-80721. Recent work2 has shown Eldred's technique to be inaccurate for current state-of-the-art launch vehicles. Due to the high cost of full-scale and even sub-scale rocket experiments, very little rocket noise data is available. Furthermore, much of the work thought to be applicable to rocket noise has been done with heated jets. Tam3,4 has done an extensive amount of research on jets of different nozzle exit shape, diameter, velocity, and temperature. Though the values of these parameters, especially exit velocity and temperature, are often very low compared to these values in rockets, a lot can be learned about rocket noise from jet noise literature. The turbulent nature of jet and rocket exhausts is quite similar. Both exhausts contain turbulent structures of varying scale-termed the fine and large scale turbulence by Tam. The finescale turbulence is due to small eddies from the jet plume interacting with the ambient atmosphere. According to Tam et al., the noise radiated by this envelope of small-scale turbulence is statistically isotropic. Hence, one would expect the noise from the small scale turbulence of the jet to be nearly omni-directional. The coherent nature of the large-scale turbulence results in interference of the noise radiated from different spatial locations within the jet. This interference-whether it is constructive or destructive-results in highly directional noise radiation. Tam3 has proposed a model to predict the acoustic environment due to jets and while it works extremely well for jets, it was found to be inappropriate for rockets8. A model to predict the acoustic environment due to a launch vehicle in the far-field which incorporates concepts from both Eldred and Tam was created. This was done using five sets of horizontally fired rocket data, obtained between 2008 and 2012. Three of these rockets use solid propellant and two use liquid propellant. Through scaling analysis, it is shown that liquid and solid rocket motors exhibit similar spectra at similar amplitudes. This model is accurate for these five data sets within 5 dB of the measured data for receiver angles of 30deg to 160deg (with respect to the downstream exhaust centerline). The model uses the following vehicle parameters: nozzle exit diameter and velocity, radial distance from source to receiver, receiver angle, mass flow rate, and acoustic efficiency.
Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed
2012-10-02
Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.
Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests weremore » conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.« less
Measurement of atmospheric pressure microplasma jet with Langmuir probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kunning G., E-mail: gabe.xu@uah.edu; Doyle, Steven J.
2016-09-15
A radio frequency argon microplasma jet at atmospheric-pressure is characterized using Langmuir probes. While optical methods are the typical diagnostic for these small scale plasmas, the simplicity and low cost of Langmuir probes makes them an attractive option. The plasma density and electron temperature are measured using existing high-pressure Langmuir probe theories developed for flames and arcs. The density and temperature vary from 1 × 10{sup 16} to 1 × 10{sup 19} m{sup −3} and 2.3 to 4.4 eV, respectively, depending on the operating condition. The density decreases while the electron temperature increases with axial distance from the jet exit. Themore » applicability of the probe theories as well as the effect of collisionality and jet mixing is discussed.« less
NASA Astrophysics Data System (ADS)
Duan, Qingwei; Zhong, Ruliang; Han, Xiang'e.; Ren, Kuan Fang
2017-07-01
Rainbow refractometry is largely used in optical metrology of particles thanks to its advantages of being non-intrusive, precise and fast. Many authors have contributed to its development and the application in the characterization of liquid jets/droplets. The researches reported in the literature are mainly for the spherical droplets or the liquid jets which can be considered as a cylinder of constant section. However, the section of a real liquid jet, even in the simplest configuration, varies with distance from the exit. The influence of the spatial curvature of the jets must, therefore, be taken into account. In this paper, we report experimental measurements of the shifts of the rainbow positions in the horizontal and vertical directions of a liquid jet and the theoretical investigation with the vectorial complex ray model. It is shown that the shifts of rainbow positions are very sensitive to the spatial curvature of the jets. This work is hoped to provide a new approach to characterizing the structure and the instability of liquid jets.
An experimental investigation of gas jets in confined swirling air flow
NASA Technical Reports Server (NTRS)
Mongia, H.; Ahmed, S. A.; Mongia, H. C.
1984-01-01
The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.
Controlling the development of coherent structures in high speed jets and the resultant near field
NASA Astrophysics Data System (ADS)
Speth, Rachelle
This work uses Large-Eddy Simulations to examine the effect of actuator parameters and jet exit properties on the evolution of coherent structures and their impact on the near-acoustic field without and with control. For the controlled cases, Localized Arc Filament Plasma Actuators (LAFPAs) are considered, and modeled with a simple heating approach that successfully reproduces the main observations and trends of experiments. A parametric study is first conducted, using the flapping mode (m = +/-1), to investigate the sensitivity of the results to various actuator parameters including: actuator model temperature, actuator duty cycle, and excitation frequency. It is shown by considering a Mach 1.3 jet at Reynolds number of 1 x 106 that the response of the jet is relatively insensitive to actuator model temperature within the limits of the experimentally measured temperature values. Furthermore, duty cycles in the range of 20%--90% were observed to be effective in reproducing the characteristic coherent structures of the flapping mode. Next, jet flow parameters were explored to determine the control authority under different operating conditions. To begin, the effect of the laminar nozzle exit boundary layer thickness was examined by varying its value from essentially uniform flow to 25% of the diameter. In the absence of control, the distance between the nozzle lip and the initial appearance of breakdown is proportional to the boundary-layer thickness, which is consistent with theory and previous results obtained by other researchers at Mach 0.9. The second flow parameter studied was the effect of Reynolds number on a Mach 1.3 jet controlled by the flapping mode at an excitation Strouhal number of 0.3. The higher Reynolds number (Re=1,100,000) jet exhibited reduced control authority compared to the Re=100,000 jet. Like the effect of increasing the nozzle exit boundary layer thickness, increasing the Reynolds number cause a reduction in spreading on the flapping plane and an increase on the non-flapping plane. Therefore, these thicker layers and higher Reynolds number jets may require actuators with a higher energy input (i.e. higher duty cycle, higher actuator temperature, more actuators) to ensure the excitation of the flow instability. The final parameter studied is the effect of Mach number on the development and decay of large scale structures for no-control and control cases for Mach 0.9 and Mach 1.3 jets. For this exercise, the axisymmetric mode (m=0) was considered at excitation frequencies of St=0.05, 0.15, and 0.25, with emphasis on the evolution of coherent structures and their effects on the resultant near field pressure map. Without control, the two jets have similar shear layer growth until the end of the potential core length of the subsonic case, at which point the subsonic jet spreads at a higher rate. For the controlled cases, relatively larger streamwise hairpin vortices have been noted for the subsonic cases than the supersonic cases resulting in stronger entrainment of the ambient fluid. This increased entrainment in the subsonic cases causes a reduction in the normalized convective velocity resulting in similar normalized values to that of the supersonic cases. As the excitation frequency is increased, more hairpin vortices are present and the normalized convective velocity is reduced for both subsonic and supersonic cases. (Abstract shortened by ProQuest.).
The noise and flow characteristics of inverted-profile coannular jets
NASA Technical Reports Server (NTRS)
Tanna, H. K.; Tester, B. J.; Lau, J. C.
1979-01-01
A basic understanding of the noise reduction mechanisms in shock-free inverted-velocity-profile coannular jets was studied. Acoustic measurements are first conducted in an anechoic facility to isolate the effects of inverted velocity and inverted temperature for coannular jets having constant total thrust, mass flow rate and exit area. To obtain physical explanations of the measured noise changes, several types of experiments are conducted. These include (1) source location experiments using the polar correlation technique, (2) mean flow surveys using a combination pressure/temperature probe, and (3) detailed mean flow and turbulence measurements using a two-point four-channel laser velocimeter. The results from these experiments are presented and discussed in detail. Finally, the measured variations of coannular jet mixing noise with fan-to-primary velocity ratio and static temperature ratio are interpreted by utilizing the results from the various experimental phases in conjunction with the existing Lockheed single jet noise prediction model.
The effects of profiles on supersonic jet noise
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Bhat, T. R. S.
1994-01-01
The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.
Investigating the Feedback Path in a Jet-Surface Resonant Interaction
NASA Technical Reports Server (NTRS)
Zaman, Khairul; Fagan, Amy; Bridges, James; Brown, Cliff
2015-01-01
A resonant interaction between an 8:1 aspect ratio rectangular jet and flat-plates, placed parallel to the jet, is addressed in this study. For certain relative locations of the plates, the resonance takes place with accompanying audible tones. Even when the tone is not audible the sound pressure level spectra is often marked by conspicuous peaks. The frequencies of the spectral peaks, as functions of the streamwise length of the plate and its relative location to the jet as well as the jet Mach number, are explored in an effort of understand the flow mechanism. It is demonstrated that the tones are not due to a simple feedback between the plates trailing edge and the nozzle exit; the leading edge also comes into play in determining the frequency. An acoustic feedback path, involving diffraction from the leading edge, appears to explain the frequencies of some of the spectral peaks.
Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow
NASA Technical Reports Server (NTRS)
Simon, F. F.; Ciancone, M. L.
1985-01-01
A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.
Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow
NASA Technical Reports Server (NTRS)
Simon, Frederick F.; Ciancone, Michael L.
1987-01-01
A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.
Optimization of a Fully-Pulsed Jet in a Fluid of Similar Density
NASA Astrophysics Data System (ADS)
Krueger, Paul S.; Gharib, Morteza
1998-11-01
In a previous work, Gharib et al.(Morteza Gharib, Edmond Rambod, Karim Shariff, "A Universal Time Scale for Vortex Ring Formation," JFM, vol. 360, pp. 121-140, 1998) have studied vortex rings generated through impulsively started jets using a piston/cylinder arrangement. This work showed that the vortex ring that formed at the leading edge of the jet reached a maximum strength for a piston stroke to diameter ratio (L/D) of approximately 4 for a wide range of piston motions and jet exit boundaries. This result suggests interesting consequences for a fully-pulsed jet, which is simply a series of impulsively started jets strung together. Specifically, the thrust of the present investigation is to study how the physical behavior of a fully-pulsed jet varies as both L/D and the pulsing frequency of the jet (rate at which pulses are ejected) are varied. To this end, a piston/cylinder arrangement with a stepper motor is used to generate a fully-pulsed jet with different L/D and pulsing frequency (f) combinations. The thrust produced by these various jets is measured directly and used as a gauge of the effectiveness of the pulsed jet. Combinations of L/D and f leading to optimization of the pulsed jet will be presented.
Investigating the Feedback Path in a Jet-Surface Resonant Interaction
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Fagan, A. F.; Bridges, J. E.; Brown, C. A.
2015-01-01
A resonant interaction between an 8:1 aspect ratio rectangular jet and flat-plates, placed parallel to the jet, is studied experimentally. For certain locations of the plate relative to the jet, the resonance takes place with a loud accompanying tone. The sound pressure level spectra are often marked by multiple peaks. The frequencies of the spectral peaks are studied as a function of the streamwise length of the plate, its relative location to the jet as well as the jet Mach number. It is demonstrated that the tones are not due to a simple feedback between the plate's trailing edge and the nozzle's exit; the leading edge of the plate also comes into play in the frequency selection. With parametric variation, it is found that there is an order in the most energetic spectral peaks; their frequencies cluster in distinct bands. The 'fundamental', i.e., the lowest frequency band is explained by an acoustic feedback involving diffraction at the plate's leading edge.
Schlenk, Mathias; Hofmann, Eddie; Seibt, Susanne; Rosenfeldt, Sabine; Schrack, Lukas; Drechsler, Markus; Rothkirch, Andre; Ohm, Wiebke; Breu, Josef; Gekle, Stephan; Förster, Stephan
2018-04-24
Liquid microjets play a key role in fiber spinning, inkjet printing, and coating processes. In all of these applications, the liquid jets carry dispersed particles whose spatial and orientational distributions within the jet critically influence the properties of the fabricated structures. Despite its importance, there is currently no knowledge about the orientational distribution of particles within microjets and droplets. Here, we demonstrate a microfluidic device that allows to determine the local particle distribution and orientation by X-ray scattering. Using this methodology, we discovered unexpected changes in the particle orientation upon exiting the nozzle to form a free jet, and upon jet break-up into droplets, causing an unusual biaxial particle orientation. We show how flow and aspect ratio determine the flow orientation of anisotropic particles. Furthermore, we demonstrate that the observed phenomena are a general characteristic of anisotropic particles. Our findings greatly enhance our understanding of particle orientation in free jets and droplets and provide a rationale for controlling particle alignment in liquid jet-based fabrication methodologies.
Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike
2008-11-01
The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.
An Experimental/Modeling Study of Jet Attachment during Counterflow Thrust Vectoring
NASA Technical Reports Server (NTRS)
Strykowski, Paul J.
1997-01-01
Recent studies have shown the applicability of vectoring rectangular jets using asymmetrically applied counterflow in the presence of a short collar. This novel concept has applications in the aerospace industry where counterflow can be used to vector the thrust of a jet's exhaust, shortening take-off and landing distances and enhancing in-flight maneuverability of the aircraft. Counterflow thrust vectoring, 'CFTV' is desirable due to its fast time response, low thrust loss, and absence of moving parts. However, implementation of a CFTV system is only possible if bistable jet attachment can be prevented. This can be achieved by properly designing the geometry of the collar. An analytical model is developed herein to predict the conditions under which a two-dimensional jet will attach to an offset curved wall. Results from this model are then compared with experiment; for various jet exit Mach numbers, collar offset distances, and radii of curvature. Their excellent correlation permits use of the model as a tool for designing a CFTV system.
High-Speed Schlieren Movies of Decelerators at Supersonic Speeds
NASA Technical Reports Server (NTRS)
1960-01-01
Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps.
Space shuttle orbiter reaction control system jet interaction study
NASA Technical Reports Server (NTRS)
Rausch, J. R.
1975-01-01
The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.
The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow
NASA Astrophysics Data System (ADS)
Tatar, V.; Yildizay, H.; Aras, H.
2015-05-01
One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.
Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones
NASA Astrophysics Data System (ADS)
Li, X. D.; Gao, J. H.
2005-08-01
In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.
Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Taghavi, Ray
1996-01-01
This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.
The Role of Jet Adjustment Processes in Subtropical Dust Storms
NASA Astrophysics Data System (ADS)
Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie
2017-11-01
Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.
Experimental Investigation of the Behavior of Sub-Grid Scale Motions in Turbulent Shear Flow
NASA Technical Reports Server (NTRS)
Cantwell, Brian
1992-01-01
Experiments have been carried out on a vertical jet of helium issuing into a co-flow of air at a fixed exit velocity ratio of 2.0. At all the experimental conditions studied, the flow exhibits a strong self excited periodicity. The natural frequency behavior of the jet, the underlying fine-scale flow structure, and the transition to turbulence have been studied over a wide range of flow conditions. The experiments were conducted in a variable pressure facility which made it possible to vary the Reynolds number and Richardson number independently. A stroboscopic schlieren system was used for flow visualization and single-component Laser Doppler Anemometry was used to measure the axial component of velocity. The flow exhibits several interesting features. The presence of co-flow eliminates the random meandering typical of buoyant plumes in a quiescent environment and the periodicity of the helium jet under high Richardson number conditions is striking. Under these conditions transition to turbulence consists of a rapid but highly structured and repeatable breakdown and intermingling of jet and freestream fluid. At Ri = 1.6 the three-dimensional structure of the flow is seen to repeat from cycle to cycle. The point of transition moves closer to the jet exit as either the Reynolds number or the Richardson number increases. The wavelength of the longitudinal instability increases with Richardson number. At low Richardson numbers, the natural frequency scales on an inertial time scale. At high Richardson number the natural frequency scales on a buoyancy time scale. The transition from one flow regime to another occurs over a narrow range of Richardson numbers from 0.7 to 1. A buoyancy Strouhal number is used to correlate the high Richardson number frequency behavior.
Low Dimensional Study of a Supersonic Multi-Stream Jet Flow
NASA Astrophysics Data System (ADS)
Tenney, Andrew; Berry, Matthew; Aycock-Rizzo, Halley; Glauser, Mark; Lewalle, Jacques
2017-11-01
In this study, the near field of a two stream supersonic jet flow is examined using low dimensional tools. The flow issues from a multi-stream nozzle as described in A near-field investigation of a supersonic, multi-stream jet: locating turbulence mechanisms through velocity and density measurements by Magstadt et al., with the bulk flow Mach number, M1, being 1.6, and the second stream Mach number, M2, reaching the sonic condition. The flow field is visualized using Particle Image Velocimetry (PIV), with frames captured at a rate of 4Hz. Time-resolved pressure measurements are made just aft of the nozzle exit, as well as in the far-field, 86.6 nozzle hydraulic diameters away from the exit plane. The methodologies used in the analysis of this flow include Proper Orthogonal Decomposition (POD), and the continuous wavelet transform. The results from this ``no deck'' case are then compared to those found in the study conducted by Berry et al. From this comparison, we draw conclusions about the effects of the presence of an aft deck on the low dimensional flow description, and near field spectral content. Supported by AFOSR Grant FA9550-15-1-0435, and AFRL, through an SBIR Grant with Spectral Energies, LLC.
NASA Technical Reports Server (NTRS)
Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.
2011-01-01
Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e <1) and underexpanded exhaust plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical importance of testing and modeling plume-surface interactions for descent and ascent of spacecraft and launch vehicles.
Behavior of a wave-driven buoyant surface jet on a coral reef
Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.
2017-01-01
A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.
Behavior of a wave-driven buoyant surface jet on a coral reef
NASA Astrophysics Data System (ADS)
Herdman, Liv M. M.; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.
2017-05-01
A wave-driven surface-buoyant jet exiting a coral reef was studied in order to quantify the amount of water reentrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and alongshore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of alongshore velocity to jet velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.
Evaluation of stochastic particle dispersion modeling in turbulent round jets
Sun, Guangyuan; Hewson, John C.; Lignell, David O.
2016-11-02
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less
Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry
NASA Astrophysics Data System (ADS)
Kannaiyan, Kumaran; Sadr, Reza
2013-11-01
Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Su, C. C.
1985-01-01
Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.
Supersonic liquid jets: Their generation and shock wave characteristics
NASA Astrophysics Data System (ADS)
Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.
The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.
NASA Technical Reports Server (NTRS)
Rausch, J. R.
1977-01-01
The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.
NASA Technical Reports Server (NTRS)
Atencio, A., Jr.; Mckie, J.
1982-01-01
A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.
Exhaust gas emissions of a vortex breakdown stabilized combustor
NASA Technical Reports Server (NTRS)
Yetter, R. A.; Gouldin, F. C.
1976-01-01
Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Thurman, Douglas R.
2011-01-01
Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.
Interaction between plasma synthetic jet and subsonic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Zong, Haohua; Kotsonis, Marios
2017-04-01
This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flow in the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed.
Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas
2012-10-02
The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.
The Dynamics of Shock Dispersion and Interactions in Supersonic Freestreams with Counterflowing Jets
NASA Technical Reports Server (NTRS)
Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Ota, Dale K.; Blankson, Isaiah M.; Auslender, Aaron H.
2007-01-01
An active flow control concept using counterflowing jets to significantly modify the external flowfields and strongly weaken or disperse the shock-waves of supersonic and hypersonic vehicles to reduce the aerothermal loads and wave drag was investigated. Experiments were conducted in a trisonic blow-down wind-tunnel, complemented by pre-test computational fluid dynamics (CFD) analysis of a 2.6% scale model of Apollo capsule, with and without counterflowing jets, in Mach 3.48 and 4.0 freestreams, to assess the potential aerothermal and aerodynamic benefits of this concept. The model was instrumented with heat flux gauges, thermocouples and pressure taps, and employed five counterflowing jet nozzles (three sonic and other two supersonic with design Mach numbers of 2.44 and 2.94) and nozzle exit diameters ranging from 0.25 to 0.5 inch. Schlieren data show that at low jet flow rates of 0.05 and 0.1lb(sub m)/sec, the interactions result in a long penetration mode (LPM) jet, while the short penetration mode (SPM) jet is observed at flow rates greater than 0.1 lb(sub m)/sec., consistent with the pre-test CFD predictions. For the LPM, the jet appears to be nearly fully-expanded, resulting in a very unsteady and oscillatory flow structure in which the bow shock becomes highly dispersed such that it is no longer discernable. Higher speed camera Schlieren data reveal the shock to be dispersed into striations of compression waves, which suddenly coalesce to a weaker bow shock with a larger standoff distance as the flow rate reached a critical value. The pronounced shock dispersion could significantly impact the aerodynamic performance (L/D) and heat flux reduction of spacecraft in atmospheric entry and re-entry, and could also attenuate the entropy layer in hypersonic blunt body flows. For heat transfer, the results show significant reduction in heat flux, even giving negative heat flux for some of the SPM interactions, indicating that the flow wetting the model is cooling, instead of heating the model, which could significantly impact the requirements and design of thermal protection system. These findings strongly suggest that the application of counterflowing jets as active flow control could have strong impact on supersonic and hypersonic vehicle design and performance.
The Aeroacoustics of Supersonic Coaxial Jets
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
1994-01-01
Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.
Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.
2003-01-01
A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.
Dispersion of turbojet engine exhaust in flight
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1973-01-01
The dispersion of the exhaust of turbojet engines into the atmosphere is estimated by using a model developed for the mixing of a round jet with a parallel flow. The analysis is appropriate for determining the spread and dilution of the jet exhaust from the engine exit until it is entrained in the aircraft trailing vortices. Chemical reactions are not expected to be important and are not included in the flow model. Calculations of the dispersion of the exhaust plumes of three aircraft turbojet engines with and without afterburning at typical flight conditions are presented. Calculated average concentrations for the exhaust plume from a single engine jet fighter are shown to be in good agreement with measurements made in the aircraft wake during flight.
NASA Technical Reports Server (NTRS)
Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.
2005-01-01
An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.
A Method for Estimating Noise from Full-Scale Distributed Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Kinzie, Kevin W.; Schein, David B.
2004-01-01
A method to estimate the full-scale noise suppression from a scale model distributed exhaust nozzle (DEN) is presented. For a conventional scale model exhaust nozzle, Strouhal number scaling using a scale factor related to the nozzle exit area is typically applied that shifts model scale frequency in proportion to the geometric scale factor. However, model scale DEN designs have two inherent length scales. One is associated with the mini-nozzles, whose size do not change in going from model scale to full scale. The other is associated with the overall nozzle exit area which is much smaller than full size. Consequently, lower frequency energy that is generated by the coalesced jet plume should scale to lower frequency, but higher frequency energy generated by individual mini-jets does not shift frequency. In addition, jet-jet acoustic shielding by the array of mini-nozzles is a significant noise reduction effect that may change with DEN model size. A technique has been developed to scale laboratory model spectral data based on the premise that high and low frequency content must be treated differently during the scaling process. The model-scale distributed exhaust spectra are divided into low and high frequency regions that are then adjusted to full scale separately based on different physics-based scaling laws. The regions are then recombined to create an estimate of the full-scale acoustic spectra. These spectra can then be converted to perceived noise levels (PNL). The paper presents the details of this methodology and provides an example of the estimated noise suppression by a distributed exhaust nozzle compared to a round conic nozzle.
NASA Astrophysics Data System (ADS)
Baab, S.; Förster, F. J.; Lamanna, G.; Weigand, B.
2016-11-01
The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The technique's capability to quantify the nonisothermal, turbulent mixing zone of small-scale jets is demonstrated for the first time. Consistent radially resolved speed of sound profiles are presented for different axial positions and varying injection temperatures. Furthermore, an adiabatic mixing model based on nonideal thermodynamic properties is presented to extract mixture composition and temperature from the experimental speed of sound data. High fuel mass fractions of up to 94 % are found for the centerline at an axial distance of 55 diameters from the nozzle followed by a rapid decay in axial direction. This is attributed to a supercritical fuel state at the nozzle exit resulting in the injection of a high-density fluid. The obtained concentration data are complemented by existing measurements and collapsed in a similarity law. It allows for mixture prediction of underexpanded jets with supercritical reservoir condition provided that nonideal thermodynamic behavior is considered for the nozzle flow. Specifically, it is shown that the fuel concentration in the farfield zone is very sensitive to the thermodynamic state at the nozzle exit. Here, a transition from supercritical fluid to subcritical vapor state results in strongly varying fuel concentrations, which implies high impact on the mixture formation and, consequently, on the combustion characteristics.
An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Idicheria, Cherian; Clemens, Noel
2000-11-01
The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.
Refraction and Shielding of Noise in Non-Axisymmetric Jets
NASA Technical Reports Server (NTRS)
Khavaran, Abbas
1996-01-01
This paper examines the shielding effect of the mean flow and refraction of sound in non-axisymmetric jets. A general three-dimensional ray-acoustic approach is applied. The methodology is independent of the exit geometry and may account for jet spreading and transverse as well as streamwise flow gradients. We assume that noise is dominated by small-scale turbulence. The source correlation terms, as described by the acoustic analogy approach, are simplified and a model is proposed that relates the source strength to 7/2 power of turbulence kinetic energy. Local characteristics of the source such as its strength, time- or length-scale, convection velocity and characteristic frequency are inferred from the mean flow considerations. Compressible Navier Stokes equations are solved with a k-e turbulence model. Numerical predictions are presented for a Mach 1.5, aspect ratio 2:1 elliptic jet. The predicted sound pressure level directivity demonstrates favorable agreement with reported data, indicating a relative quiet zone on the side of the major axis of the elliptic jet.
Mach number effect on jet impingement heat transfer.
Brevet, P; Dorignac, E; Vullierme, J J
2001-05-01
An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number.
NASA Astrophysics Data System (ADS)
Naderipour, S.; Yousefi, T.; Ashjaee, M.; Naylor, D.
2016-08-01
An experimental study using Mach-Zehnder interferometer has been carried out to investigate the heat transfer from an isothermal horizontal circular cylinder, which is exposed to an air slot jet at different angles of jet impingement. A square edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the side of the cylinder at angles Θ = 0°, 30°, 60° and 90°. The Reynolds number varied from 240 to 1900 while the Grashof number and slot- to cylinder-spacing is kept constant at Gr = 22,300 and H/w = 7 respectively. The Richardson number varied from 0.006 to 0.4. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. The local Nusselt number around the cylinder has been calculated using the infinite fringe interferograms at 10° intervals. Average Nusselt number shows that heat transfer is decreased when the angle of jet impingement is increased .
Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise
NASA Technical Reports Server (NTRS)
Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.
1999-01-01
The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.
Mixing Characteristics of Elliptical Jet Control with Crosswire
NASA Astrophysics Data System (ADS)
Manigandan, S.; Vijayaraja, K.
2018-02-01
The aerodynamic mixing efficiency of elliptical sonic jet flow with the effect of crosswire is studied computationally and experimentally at different range of nozzle pressure ratio with different orientation along the minor axis of the exit. The cross wire of different orientation is found to reduce the strength of the shock wave formation. Due to the presence of crosswire the pitot pressure oscillation is reduced fast, which weakens the shock cell structure. When the cross wire is placed at center position we see high mixing along the major axis. Similarly, when the cross wire is placed at ¼ and ¾ position we see high mixing promotion along minor axis. It also proves, as the position of the cross wire decreased along minor axis there will be increase in the mixing ratio. In addition to that we also found that, jet spread is high in major axis compared to minor axis due to bifurcation of jet along upstream
Mixing Process in Ejector Nozzles Studied at Lewis' Aero-Acoustic Propulsion Laboratory
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center has been studying mixing processes in ejector nozzles for its High Speed Research (HSR) Program. This work is directed at finding ways to minimize the noise of a future supersonic airliner. Much of the noise such an airplane would generate would come from the nozzle, where a hot, high-speed jet exits the engine. Several different nozzle configurations were used to produce nozzle systems with different acoustical and aerodynamic characteristics. The acoustical properties were measured by an array of microphones in an anechoic chamber, and the aerodynamics were measured by traditional pressure and temperature instruments as well as by Laser Doppler Velocimetry (LDV), a technique for visualizing the airflow pattern without disturbing it. These measurements were put together and compared for different configurations to examine the relationships between mixing and noise generation. The mixer-ejector nozzle with the installed flow-visualization windows (foreground), the optical equipment and the supporting structure for the Laser Doppler Velocimetry flow visualization (midfield), and the sound-absorbing wedges used to create an anechoic environment for acoustic testing (background) is shown. The High Speed Research Program is a NASA-funded effort, in cooperation with the U.S. aerospace industry, to develop enabling technologies for a future supersonic airliner. One of the technological barriers being addressed is noise generated during near-airport operation. The mixer-ejector nozzle concept is being examined as a way to reduce jet noise while maintaining thrust. Ambient air is mixed with the high-velocity engine exhaust to reduce the jet velocity and hence the noise generated by the jet. The model was designed and built by Pratt & Whitney under NASA contract. The test, completed in June 1995, was conducted in Lewis' Aero-Acoustic Propulsion Laboratory.
Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air
NASA Technical Reports Server (NTRS)
Satti, Rajani P.; Agrawal, Ajay K.
2005-01-01
A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
NASA Technical Reports Server (NTRS)
Clifton, Chandler W.; Cutler, Andrew D.
2007-01-01
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.
Supersonic Coaxial Jets: Noise Predictions and Measurements
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Papamoschou, Dimitri; Hixon, Ray
1998-01-01
The noise from perfectly expanded coaxial jets was measured in an anechoic chamber for different operating conditions with the same total thrust, mass flow, and exit area. The shape of the measured noise spectrum at different angles to the jet axis was found to agree with spectral shapes for single, axisymmetric jets. Based on these spectra, the sound was characterized as being generated by large turbulent structures or fine-scale turbulence. Modeling the large scale structures as instability waves, a stability analysis was conducted for the coaxial jets to identify the growing and decaying instability waves in each shear layer and predict their noise radiation pattern outside the jet. When compared to measured directivity, the analysis identified the region downstream of the outer potential core, where the two shear layers were merging, as the source of the peak radiated noise where instability waves, with their origin in the inner shear layer, reach their maximum amplitude. Numerical computations were also performed using a linearized Euler equation solver. Those results were compared to both the results from the instability wave analysis and to measured data.
Data Quality Assurance for Supersonic Jet Noise Measurements
NASA Technical Reports Server (NTRS)
Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.
2010-01-01
The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.
Subsonic Jet Noise from Non-Axisymmetric and Tabbed Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Tam, Christopher K. W.
1999-01-01
Subsonic jet noise from non-axisymmetric and tabbed nozzles are investigated experimentally and theoretically. It is shown that the noise spectra of these jets are in good agreement with the similarity spectra found empirically earlier by Tam, Golebiowski and Seiner through a detailed analysis of supersonic jet noise data. Further, the radiated noise fields of the jets under study, including elliptic and large aspect ratio rectangular jets, are found to be quite axisymmetric and are practically the same as that of a circular jet with the same exit area. These experimental results strongly suggest that nozzle geometry modification into elliptic or rectangular shapes is not an effective method for jet noise suppression. A lobed nozzle, on the other hand, is found to significantly impact the noise field. Noise from large scale turbulent structures, radiating principally in the downstream direction, is effectively suppressed. Tabs also impact the noise field, primarily by shifting the spectral peak to a higher frequency. A jetlets model is developed to provide a basic understanding of the noise from tabbed jets. The model predicts that the noise spectrum from a jet with N tabs (N > 2) can be obtained from that of the original jet (no tab) by a simple frequency shift. The shifted frequency is obtained by multiplying the original frequency by N(sup 1/2). This result is in fairly good agreement with experimental data.
Subsonic Jet Noise from Non-Axisymmetric and Tabbed Nozzles
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Zaman, K. B. M. Q.
1999-01-01
Subsonic jet noise from non-axisymmetric and tabbed nozzles are investigated experimentally and theoretically. It is shown that the noise spectra of these jets are in good agreement with the similarity spectra found empirically earlier by Tam, Golebiowski and Seiner through a detailed analysis of supersonic jet noise data. Further, the radiated noise fields of the jets under study, including elliptic and large aspect ratio rectangular jets, are found to be quite axisymmetric and are practically the same as that of a circular jet with the same exit area. These experimental results strongly suggest that nozzle geometry modification into elliptic or rectangular shapes is not an effective method for jet noise suppression. A lobed nozzle, on the other hand, is found to significantly impact the noise field. Noise from large scale turbulent structures, radiating principally in the downstream direction, is effectively suppressed. Tabs also impact the noise field, primarily by shifting the spectral peak to a higher frequency. A jetlets model is developed to provide a basic understanding of the noise from tabbed jets. The model predicts that the noise spectrum from a jet with N tabs (N greater than or equal to 2) can be obtained from that of the original jet (no tab) by a simple frequency shift. The shifted frequency is obtained by multiplying the original frequency by N(exp 1/2). This result is in fairly good agreement with experimental data.
Aerothermodynamic Analysis of a Coanda/Refraction Jet Engine Test Facility
1988-12-01
characterS pet Iret. Temmeature frge Opealional 50 to t04V (t0 to 40*C) Storage - 20 to 140*P -30 to SVC). Power source The Mirrcintrr trenes In ewer from...approximately 322 K (I 18 F) [Ref. 8]. The analytical temperature of 325 K (122 F) compared quite favorably with the 322 K approximation. An exit...8.4735-32 6.1675-32 4.075S-02 2.5050-02, 1.0385-02 8.2675-03 0.731E-04 6.3130E-34 Iv- 10 1.729 E0C 1.0CCS- Si 6.6200-02 1.8590-02- 2.327E-02 1.1245-02
High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview
NASA Technical Reports Server (NTRS)
Zuniga, Fanny A.; Smith, Brian E.
1999-01-01
The NASA High-Speed Research program developed the High-Lift Engine Aeroacoustics Technology (HEAT) program to demonstrate satisfactory interaction between the jet noise suppressor and high-lift system of a High-Speed Civil Transport (HSCT) configuration at takeoff, climb, approach and landing conditions. One scheme for reducing jet exhaust noise generated by an HSCT is the use of a mixer-ejector system which would entrain large quantities of ambient air into the nozzle exhaust flow through secondary inlets in order to cool and slow the jet exhaust before it exits the nozzle. The effectiveness of such a noise suppression device must be evaluated in the presence of an HSCT wing high-lift system before definitive assessments can be made concerning its acoustic performance. In addition, these noise suppressors must provide the required acoustic attenuation while not degrading the thrust efficiency of the propulsion system or the aerodynamic performance of the high-lift devices on the wing. Therefore, the main objective of the HEAT program is to demonstrate these technologies and understand their interactions on a large-scale HSCT model. The HEAT program is a collaborative effort between NASA-Ames, Boeing Commercial Airplane Group, Douglas Aircraft Corp., Lockheed-Georgia, General Electric and NASA - Lewis. The suppressor nozzles used in the tests were Generation 1 2-D mixer-ejector nozzles made by General Electric. The model used was a 13.5%-scale semi-span model of a Boeing Reference H configuration.
PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control
NASA Technical Reports Server (NTRS)
Deere, Karen A.
1998-01-01
An experimental and computational study was conducted on an exhaust nozzle with fluidic injection for yaw thrust-vector control. The nozzle concept was tested experimentally in the NASA Langley Jet Exit Test Facility (JETF) at nozzle pressure ratios up to 4 and secondary fluidic injection flow rates up to 15 percent of the primary flow rate. Although many injection-port geometries and two nozzle planforms (symmetric and asymmetric) were tested experimentally, this paper focuses on the computational results of the more successful asymmetric planform with a slot injection port. This nozzle concept was simulated with the Navier-Stokes flow solver, PAB3D, invoking the Shih, Zhu, and Lumley algebraic Reynolds stress turbulence model (ASM) at nozzle pressure ratios (NPRs) of 2,3, and 4 with secondary to primary injection flow rates (w(sub s)/w(sub p)) of 0, 2, 7 and 10 percent.
The investigation of time dependent flame structure by ionization probes
NASA Technical Reports Server (NTRS)
Ventura, J. M. P.; Suzuki, T.; Yule, A. J.; Ralph, S.; Chigier, N. A.
1980-01-01
Ionization probes were used to measure mean ionization current and frequency spectra, auto-correlations and cross-correlations in jet flames with variation in the initial Reynolds numbers and equivalence ratios. Special attention was paid to the transitional region between the burner exit plane and the plane of onset of turbulence.
Development of an Actuator for Flow Control Utilizing Detonation
NASA Technical Reports Server (NTRS)
Lonneman, Patrick J.; Cutler, Andrew D.
2004-01-01
Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.
NASA Astrophysics Data System (ADS)
Lakshminarasimhan, Krishna
2005-11-01
Strong pulsations of the fuel flow rate have previously been shown to dramatically alter the flame length and luminosity of nonpremixed jet flames. The mechanisms responsible for such changes are explored experimentally in nonreacting and reacting strongly pulsed jets by using cinematographic PIV and acetone PLIF. The large amplitude forcing was obtained by pulsing the flow using a solenoid valve at the organ-pipe resonance frequency of the fuel delivery tube. The velocity fluctuations in the flow produced by the resonant pulsing of the jet can reach to about 8 times that of the mean flow. The jet characteristics were studied for Reynolds numbers based on mean flow velocity ranging between 800 and 2400. The PIV shows that with strong pulsations the jet exhibits significant reverse flow into the fuel delivery tube and an increase in turbulence in the near-field region. The acetone PLIF imaging was performed inside and outside the fuel tube in order to study the effects of pulsations on the mixing. These measurements showed significant in-tube partial premixing due to the reverse flow near the nozzle exit as well as enhanced mixing due to coherent vortical structures and increased turbulence.
LAPD Studies on Kelvin-Helmholtz turbulence and Transport
NASA Astrophysics Data System (ADS)
Perez, Jean; Horton, Wendel; Carter, Troy; Gekelman, Walter; Bengtson, Roger; Gentle, Kenneth
2004-11-01
New results on the partial transport barrier and turbulence produced by a strong E×B jet of plasma shear flow are reported. By controlled biasing of the cathode-anode structure of the 20 m long, 1 m diameter Large Plasma Device at UCLA, a strongly localized shear flow is driven in the steady state. The fluctuations are shown to be well described by 2D electrostatic potential simulations of the Kelvin-Helmholtz instability in preprint IFSR-1002. Now, we exam the transport of particles and report the particle flux data for transport across the plasma jet. The mean ion saturation current shows that there is a steep density gradient on the core side of the jet with the foot of the density gradient near the shear layer . We consider the motion of test particles launched from the core side of the layer and calculate the probablity distribution of the first exit times. The density gradient of driven drift waves is also discussed. Experimentally, we propose to use optical tagging and laser induced fluorescence to follow particle trajectories across the shear layer in LAPD. Work supported by DOE grant DE-FG02-04ER54742. Experimental work was performed at the UCLA Basic Plasma Science Facility which is funded by NSF and DOE.
DBD Actuated Flow Control of Wall-Jet and Cross-Flow Interaction for Film Cooling Applications
NASA Astrophysics Data System (ADS)
Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva
2014-11-01
In this work, we use surface DBD actuators to control the interaction between a wall jet and mainstream flow in film cooling applications. The intention of the study is to improve the contact of the jet with the wall and enhance the convective heat transfer coefficient downstream of the jet exit. A 2D wall jet (10 mm height) is injected into the mainstream flow at an angle of 30°. With an injected jet velocity (Ui) of 5 m/s, two blowing ratios M (=ρi Ui / ρ∞U∞) of 1.0 and 0.5 are studied corresponding to the mainstream flow velocity (U∞) of 5 m/s and 10 m/s respectively. Different configurations of the DBD actuator are studied, positioned both inside the jet and on the downstream side. PIV measurements are conducted to investigate the flow field of the interaction between the jet and cross flow. Streamwise velocity profiles at different downstream locations are compared to analyze the efficacy of the plasma actuator in improving the contact between the injected jet stream and the wall surface. Reynolds shear stress measurements are also conducted to study the mixing regions in the plasma-jet-mainstream flow interaction. Work was partially funded by the French government program ``Investissements d'avenir'' (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).
Transient gas jets into liquids
NASA Astrophysics Data System (ADS)
Lin, Jane Ming-Chin
An experimental investigation of the development of high velocity, impulsively initiated gas jets into liquid was conducted in an effort to understand some of the physical processes that occur for a jet of very light fluid into a dense ambient atmosphere. Four gases, refrigerants 12 and 22, nitrogen, and helium were injected into water at nozzle exit Mach numbers from 1.0 to 2.2.The study showed that a gas jet into water develops in at least three stages: startup, transition, and global steady state. The startup is characterized by bubble growth; the growth rate is well predicted by classical bubble-growth theory. Jet transition is marked by axially directed flow, which penetrates through the startup bubble and which forms a cylindrical protrusion along the axis of symmetry. A combination of strong recirculating flow and liquid entrainment causes the startup bubble to deflate and to lift off and move downstream. In the steady state, instantaneous photographs show small-scale fluctuations of the jet boundary, but time-averaged photographs show the expected conical spreading of the steady jet; the measured spreading angles range from 18-25 degrees.However, the most significant finding of this study is that under some conditions, the gas jet into liquid never reaches the global steady state. Instead, the jet boundary exhibits chugging: large nonlinear oscillations which lead to irregular collapses of the gas column followed by explosive outward bursts of gas. The unsteadiness observed is much more violent than the familiar fluctuations typical of constant-density jets. The length scale of the motion is generally on the order of several jet diameters; the time scale is on the order of the period for bubble collapse.It was found that the amplitude and frequency of chugging are strongly dependent on the ratio of the liquid density to the gas density, the jet Mach number, and the operating pressure ratio. The conditions under which unsteadiness occurs were determined experimentally. In particular, a quantitative measure of jet susceptibility to unsteadiness has been established. Steady jets can be achieved in two ways: by being discharged from deLaval nozzles (increasing the exit Mach number) or by being overpressured.The unsteady behavior is modeled as the collapse of a bubble in liquid; comparisons of collapse times show good agreement. A mechanism for the unsteadiness is discussed. It is proposed that the chugging is the response of the jet boundary to a pressure difference between the jet and surrounding liquid, which arises as the result of the rapid expansion of a light fluid into a dense ambient atmosphere. The flow is shown to be similar to the discharge of a gas from a nozzle into a channel of larger cross section. An upper limit to the pressure difference is determined based on estimates of the minimum base pressure for such channel flows; a lower limit is established for the collapse time. All experimental values are within the bounds. The derived values indicate that the pressure differences between the jet and liquid may be more than 90 percent of the ambient pressure.
NASA Technical Reports Server (NTRS)
Moore, J. T.; Squires, M. F.
1982-01-01
Preliminary results are shown relating the ageostrophic wind field, through the terms of a semigeostrophic wind equation (assuming adiabatic conditions and the geostrophic momentum approximation) to both air parcel trajectories and their vertical motion fields computed from the parcels' displacement on isentropic surfaces, with respect to pressure. The analysis of results considers both upper-level (324 K) ageostrophic fields and low-level (304 K) fields. Preliminary results tend to support Uccellini and Johnson's (1979) hypothesis concerning upper-level-jet/low-level-jet (ULJ/LLJ) coupling in the exit region of the ULJ. Future plans are described briefly for research intended to clarify the mechanism behind ULJ streak propagation, LLJ development and their relationship to the initiation of severe convection.
Numerical Simulation of Noise from Supersonic Jets Passing Through a Rigid Duct
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The generation, propagation and radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet flowing through an enclosed rigid-walled duct with an upstream J-deflector have been numerically simulated with the aid of OVERFLOW Navier-Stokes CFD code. A one-equation turbulence model is considered. While the near-field sound sources are computed by the CFD code, the far-field sound is evaluated by Kirchhoff surface integral formulation. Predictions of the farfield directivity of the OASPL (Overall Sound Pressure Level) agree satisfactorily with the experimental data previously reported by the author. Calculations also suggest that there is significant entrainment of air into the duct, with the mass flow rate of entrained air being about three times the jet exit mass flow rate.
Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Raman, G.
1997-01-01
Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.
NASA Astrophysics Data System (ADS)
Vernekar, Anandu D.; Kirtman, Ben P.; Fennessy, Michael J.
2003-01-01
The National Centers for Environmental Prediction (NCEP) Eta Model (80 km, 38L) is used to simulate the tropical South American summer (January-March) climate for 1983, 1985, 1987, 1989, and 1991 using lateral boundary conditions from the NCEP-National Center for Atmospheric Research (NCAR) reanalysis. Simulations of the lower tropospheric circulation and precipitation are analyzed to study the variability on diurnal, intraseasonal, and interannual timescales. The results are compared with observations and previous studies.The Eta Model produces better regional circulation details, such as low-level jets (LLJs), than does the reanalysis because of its higher resolution, more realistic topography and coastal geometry, and because of its ability to realistically simulate the effects of mesoscale circulation on the time-mean flow. The model detects not only the LLJ east of the Andes Mountains and the LLJ west of northern Cordillera Occidental, which have been reported in previous studies, but it also detects three distinct LLJs just north of the equator embedded in the strong northeasterly trade winds over Colombia, Venezuela, and Guiana. All the LLJs show strong diurnal variability with a nocturnal maximum. The LLJ east of the Andes Mountains brings warm moist air from the Amazon basin to the Gran Chaco region where the jet exits. The moisture convergence in the jet exit region creates favorable conditions for precipitation. Hence, the precipitation over the region also shows strong diurnal variability with a nocturnal maximum. The LLJs just north of the equator bring moisture from the tropical Atlantic Ocean, the western Caribbean Sea, and the Gulf of Panama to their exit regions over the northern Amazon basin and west coasts of Colombia and Ecuador. The precipitation over these regions also has diurnal variability with a nocturnal maximum. The diurnal variability of precipitation over most of the Tropics has an afternoon rainfall maximum except for regions influenced by LLJs, which have a nocturnal rainfall maximum. The intraseasonal variability of the LLJs is episodic with an approximate period of 20 days. The interannual variability of the LLJs is dominated by the ENSO cycle. The LLJ east of the Andes Mountains is stronger in the warm phase of ENSO than in the cold phase. However, the model has some difficulty simulating the observed relationship between the strength of LLJ and precipitation, but the model succeeds in the case of LLJs just north of the equator. For example, these LLJs are weaker in the warm phase of ENSO than in the cold phase. Hence, during the warm (cold) phase of ENSO, dry (wet) conditions normally occur over the northern part of the Amazon basin, which is the exit region of these LLJs.
Arc Jet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Nitrogen
NASA Technical Reports Server (NTRS)
Fletcher, Douglas; Wercinski, Paul F. (Technical Monitor)
1998-01-01
An laser-spectroscopic investigation of the thermocheMical state of arcjet flows is currently being conducted in the Aerodynamic Heating Facility (AHF) Circlet at NASA Ames Research Center. Downstream of the nozzle exit, but upstream of the test article, Laser-Induced Fluorescence (LIF) of atomic nitrogen is used to assess the nonequilibriuM distribution of flow enthalpy in the free stream. The two-photon LIF technique provides simultaneous measurements of free stream velocity, translational temperature, and nitrogen number density on the flow centerline. Along with information from facility instrumentation, these measurements allow a determination of the free stream total enthalpy, and its apportionment in to thermal, kinetic, and chemical mode contributions. Experimental results are presented and discussed for two different niti-ogen/argon test gas flow runs during which the current is varied while the pressure remains constant .
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1984-01-01
An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.
Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.
2013-01-01
The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.
NASA Technical Reports Server (NTRS)
Hanseth, E. J.
1981-01-01
A high temperature solar receiver was fabricated and tested in excess of 1370 C on an 11-meter-diameter test bed concentrator at the Jet Propulsion Laboratory Parabolic Dish Test Site, Edwards, California. The 60-kilowatt thermal receiver design utilizes state-of-the-art silicon carbide honeycomb matrix panels to receive and transfer the solar energy and mullite elements for thermal buffer storage. Solar tests were conducted with indicated air exit temperatures ranging from 885 C (1625 F) to 1427 C (2600 F), mass flow rates of 75 to 105 g/sec (0.16 to 0.23 lbm/sec), and pressures up to 265 kPa absolute (38.4 psia). Estimates of efficiency are 59.7% at 1120 C (2048 F) to 80.6% at 885 C (1625 F) when aperture spillage losses are considered separately. Results are presented which demonstrate the feasibility of this innovative receiver concept for point-focusing parabolic dish applications over a wide temperature range.
The effect of exhaust plume/afterbody interaction on installed Scramjet performance
NASA Technical Reports Server (NTRS)
Edwards, Thomas Alan
1988-01-01
Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has been shown to alter dramatically the vehicle pitching moment.
Application of DPIV to Enhanced Mixing Heated Nozzle Flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Bridges, James
2002-01-01
Digital Particle Imaging Velocimetry (DPIV) is a planar velocity measurement technique that continues to be applied to new and challenging engineering research facilities while significantly reducing facility test time. DPIV was used in the GRC Nozzle Acoustic Test Rig (NATR) to characterize the high temperature (560 C), high speed (is greater than 500 m/s) flow field properties of mixing enhanced jet engine nozzles. The instantaneous velocity maps obtained using DPIV were used to determine mean velocity, rms velocity and two-point correlation statistics to verify the true turbulence characteristics of the flow. These measurements will ultimately be used to properly validate aeroacoustic model predictions by verifying CFD input to these models. These turbulence measurements have previously not been possible in hot supersonic jets. Mapping the nozzle velocity field using point based techniques requires over 60 hours of test time, compared to less than 45 minutes using DPIV, yielding a significant reduction in testing time. A dual camera DPIV configuration was used to maximize the field of view and further minimize the testing time required to map the nozzle flow. The DPIV system field of view covered 127 by 267 mm. Data were acquired at 19 axial stations providing coverage of the flow from the nozzle exit to 2.37 in downstream. At each measurement station, 400 image frame pairs were acquired from each camera. The DPIV measurements of the mixing enhanced nozzle designs illustrate the changes in the flow field resulting in the reduced noise signature.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Majjigi, R. K.
1985-01-01
The influence of selected geometric and aerodynamic flow variables of an unsuppressed coannular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor were experimentally determined. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale model nozzles. Also, aerodynamic measurements of four selected plumes were made with a laser velocimeter. The presence of the 180 deg shield produced different mixing characteristics on the shield side compared to the unshield side because of the reduced mixing with ambient air on the shielded side. This resulted in a stretching of the jet, yielding a higher peak mean velocity up to a length of 10 equivalent diameters from the nozzle exit. The 180 deg shield in community orientation around the suppressed coannular plug nozzle yielded acoustic benefit at all observer angles for a simulated takeoff. While the effect of shield-to-outer stream velocity ratio was small at angles up to 120 deg, beyond this angle significant acoustic benefit was realized with a shield-to-outer stream velocity ratio of 0.64.
NASA Astrophysics Data System (ADS)
Biswas, Sayan; Qiao, Li
2017-03-01
A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.
Supersonic impinging jet noise reduction using a hybrid control technique
NASA Astrophysics Data System (ADS)
Wiley, Alex; Kumar, Rajan
2015-07-01
Control of the highly resonant flowfield associated with supersonic impinging jet has been experimentally investigated. Measurements were made in the supersonic impinging jet facility at the Florida State University for a Mach 1.5 ideally expanded jet. Measurements included unsteady pressures on a surface plate near the nozzle exit, acoustics in the nearfield and beneath the impingement plane, and velocity field using particle image velocimetry. Both passive control using porous surface and active control with high momentum microjet injection are effective in reducing nearfield noise and flow unsteadiness over a range of geometrical parameters; however, the type of noise reduction achieved by the two techniques is different. The passive control reduces broadband noise whereas microjet injection attenuates high amplitude impinging tones. The hybrid control, a combination of two control methods, reduces both broadband and high amplitude impinging tones and surprisingly its effectiveness is more that the additive effect of the two control techniques. The flow field measurements show that with hybrid control the impinging jet is stabilized and the turbulence quantities such as streamwise turbulence intensity, transverse turbulence intensity and turbulent shear stress are significantly reduced.
Viscid/inviscid interaction analysis of thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilacqua, P. M.; Dejoode, A. D.
1979-01-01
A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.
The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows
NASA Technical Reports Server (NTRS)
Smith, Matthew J.; Miller, Steven A. E.
2013-01-01
Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.
1984-09-01
Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigmamore » STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.« less
Analysis of Particle Image Velocimetry (PIV) Data for Application to Subsonic Jet Noise Studies
NASA Technical Reports Server (NTRS)
Blackshire, James L.
1997-01-01
Global velocimetry measurements were taken using Particle Image Velocimetry (PIV) in the subsonic flow exiting a 1 inch circular nozzle in an attempt to better understand the turbulence characteristics of its shear layer region. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Custom data analysis and data validation algorithms were developed and applied to a data ensemble consisting of over 750 PIV 70 mm photographs taken in the 0.85 mach flow facility. Results are presented detailing spatial characteristics of the flow including ensemble mean and standard deviation, turbulence intensities and Reynold's stress levels, and 2-point spatial correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graceffa, R.; Burghammer, M.; Davies, R. J.
Using stroboscopic techniques, diffraction patterns of ballistic paraffin wax microdrops have been observed. The microdrops, generated by a high-temperature ink-jet system, travel through the 1 {mu}m synchrotron radiation beam with a speed of about 1.4 m/s. Diffraction patterns were recorded in flight by a charge couple device with a microchannel plate image intensifier stage, which was activated with the microdrop generation frequency of 1000 Hz during 2 {mu}s. The data show liquid microdrops with a constant temperature up to 8 mm from the ink-jet system capillary exit. The general technique could be adapted for studying fast structural processes, such asmore » protein conformational changes in aqueous microdrops.« less
Experimental and Computational Investigation of a Translating-Throat Single-Expansion-Ramp Nozzle
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Asbury, Scott C.
1999-01-01
An experimental and computational study was conducted on a high-speed, single-expansion-ramp nozzle (SERN) concept designed for efficient off-design performance. The translating-throat SERN concept adjusts the axial location of the throat to provide a variable expansion ratio and allow a more optimum jet exhaust expansion at various flight conditions in an effort to maximize nozzle performance. Three design points (throat locations) were investigated to simulate the operation of this concept at subsonic-transonic, low supersonic, and high supersonic flight conditions. The experimental study was conducted in the jet exit test facility at the Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios (NPR's) up to 13 for six nozzles with design nozzle pressure ratios near 9, 42, and 102. Two expansion-ramp surfaces, one concave and one convex, were tested for each design point. Paint-oil flow and focusing schlieren flow visualization techniques were utilized to acquire additional flow data at selected NPR'S. The Navier-Stokes code, PAB3D, was used with a two-equation k-e turbulence model for the computational study. Nozzle performance characteristics were predicted at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number nozzle and at 10, 13, and 102 for the concave ramp, high Mach number nozzle.
Tapping the Brake for Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Thompson, Kyle; Korzun, Ashley
2016-01-01
A matrix of simulations of hypersonic flow over blunt entry vehicles with steady and pulsing retropropulsion jets is presented. Retropropulsion in the supersonic domain is primarily designed to reduce vehicle velocity directly with thrust. Retropropulsion in the hypersonic domain may enable significant pressure recovery through unsteady, oblique shocks while providing a buffer of reactant gases with relatively low total temperature. Improved pressure recovery, a function of Mach number squared and oblique shock angle, could potentially serve to increase aerodynamic drag in this domain. Pulsing jets are studied to include an additional degree of freedom to search for resonances in an already unsteady flow domain with an objective to maximize the time-averaged drag coefficient. In this paradigm, small jets with minimal footprints of the nozzle exit on the vehicle forebody may be capable of delivering the requisite perturbations to the flow. Simulations are executed assuming inviscid, symmetric flow of a perfect gas to enable a rapid assessment of the parameter space (nozzle geometry, plenum conditions, jet pulse frequency). The pulsed-jet configuration produces moderately larger drag than the constant jet configuration but smaller drag than the jet-off case in this preliminary examination of a single design point. The fundamentals of a new algorithm for this challenging application with time dependent, interacting discontinuities using the feature detection capabilities of Walsh functions are introduced.
Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel
NASA Technical Reports Server (NTRS)
Palumbo, G.
1990-01-01
An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).
NASA Astrophysics Data System (ADS)
Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.
2018-05-01
Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.
Rapid evolution of a jet streak circulation in a pre-convective environment
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.; Petersen, R. A.
1986-01-01
An analysis of the April 10, 1979 Red River Valley severe weather outbreak, using a three-hourly rawinsonde network, indicates that the preconvection environment is influenced by upper-level and lower-level tropospheric jet streaks (ULJs and LLJs) that act to destabilize the atmosphere, and contribute to low-level heat and moisture transports and convergence that act to initiate the storm system. Transformation of an indirect circulation noted within the exit region of the ULJ at 1200 and 1500 GMT is observed within a six-hour period. Dramatic changes are found in the jet streak circulations over a short period of time as the system deviates from that approximated by the geostrophic momentum approximation, and these deviations suggest that adjustments asssociated with ULJs in this case could not be resolved using a simplified two-dimensional approach.
Aeroacoustic Data for a High Reynolds Number Axisymmetric Subsonic Jet
NASA Technical Reports Server (NTRS)
Ponton, Michael K.; Ukeiley, Lawrence S.; Lee, Sang W.
1999-01-01
The near field fluctuating pressure and aerodynamic mean flow characteristics of a cold subsonic jet issuing from a contoured convergent nozzle are presented. The data are presented for nozzle exit Mach numbers of 0.30, 0.60, and 0.85 at a constant jet stagnation temperature of 104 F. The fluctuating pressure measurements were acquired via linear and semi-circular microphone arrays and the presented results include plots of narrowband spectra, contour maps, streamwise/azimuthal spatial correlations for zero time delay, and cross-spectra of the azimuthal correlations. A pitot probe was used to characterize the mean flow velocity by assuming the subsonic flow to be pressure-balanced with the ambient field into which it exhausts. Presented are mean flow profiles and the momentum thickness of the free shear layer as a function of streamwise position.
Quasi 1-D Analysis of a Circular, Compressible, Turbulent Jet Laden with Water Droplets. Appendix C
NASA Technical Reports Server (NTRS)
2001-01-01
Recent experimental studies indicate that presence of small amount of liquid droplets reduces the Overall Sound Pressure Level (OASPL) of a jet. Present study is aimed at numerically investigating the effect of liquid particles on the overall flow quantities of a heated, compressible round jet. The jet is assumed perfectly expanded. A quasi-1D model was developed for this purpose which uses area-averaged quantities that satisfy integral conservation equations. Special attention is given to represent the early development region since it is acoustically important. Approximate velocity and temperature profiles were assumed in this region to evaluate entrainment rate. Experimental correlations were used to obtain spreading rate of shear layer. The base flow thus obtained is then laden with water droplets at the exit of the nozzle. Mass, momentum and energy coupling between the two phases is represented using empirical relations. Droplet size and mass loading are varied to observe their effect on flow variables.
Fluorescence Imaging Study of Transition in Underexpanded Free Jets
NASA Technical Reports Server (NTRS)
Wilkes, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.
2005-01-01
Planar laser-induced fluorescence (PLIF) is demonstrated to be a valuable tool for studying the onset of transition to turbulence. For this study, we have used PLIF of nitric oxide (NO) to image underexpanded axisymmetric free jets issuing into a low-pressure chamber through a smooth converging nozzle with a sonic orifice. Flows were studied over a range of Reynolds numbers and nozzle-exit-to-ambient pressure ratios with the aim of empirically determining criteria governing the onset of turbulence. We have developed an image processing technique, involving calculation of the standard deviation of the intensity in PLIF images, in order to aid in the identification of turbulence. We have used the resulting images to identify laminar, transitional and turbulent flow regimes. Jet scaling parameters were used to define a rescaled Reynolds number that incorporates the influence of a varying pressure ratio. An empirical correlation was found between transition length and this rescaled Reynolds number for highly underexpanded jets.
NASA Astrophysics Data System (ADS)
Zheng, Haifei; Tang, Hao; Xu, Xingya; Li, Ming
2014-08-01
Four different secondary airflow angles for the turbine inter-guide-vane burners with trapped vortex cavity were designed. Comparative analysis between combustion performances influenced by the variation of secondary airflow angle was carried out by using numerical simulation method. The turbulence was modeled using the Scale-Adaptive Simulation (SAS) turbulence model. Four cases with different secondary jet-flow angles (-45°, 0°, 30°, 60°) were studied. It was observed that the case with secondary jet-flows at 60° angle directed upwards (1) has good mixing effect; (2) mixing effect is the best although the flow field distributions inside both of the cavity and the main flow passage for the four models are very similar; (3) has complete combustion and symmetric temperature distribution on the exit section of guide vane (X = 70 mm), with uniform temperature distribution, less temperature gradient, and shrank local high temperature regions in the notch located on the guide vane.
Full-Field Measurements of Self-Excited Oscillations in Momentum-Dominated Helium Jets
NASA Technical Reports Server (NTRS)
Yildirim, B. S.; Agrawal, A. K.
2005-01-01
Flow structure of momentum-dominated helium jets discharged vertically into ambient air was investigated using a high-speed rainbow schlieren deflectometry (RSD) apparatus operated at up to 2000 Hz. The operating parameters, i.e., Reynolds number and Richardson number were varied independently to examine the self-excited, flow oscillatory behavior over a range of experimental conditions. Measurements revealed highly periodic oscillations in the laminar region at a unique frequency as well as high regularity in the flow transition and initial turbulent regions. The buoyancy was shown to affect the oscillation frequency and the distance from the jet exit to the flow transition plane. Instantaneous helium concentration contours across the field of view revealed changes in the jet flow structure and the evolution of the vortical structures during an oscillation cycle. A cross-correlation technique was applied to track the vortices and to find their convection velocity. Time-traces of helium concentration at different axial locations provided detailed information about the oscillating flow.
Characterization of an inductively coupled plasma source with convergent nozzle
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2015-11-01
The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Enderlin, Carl W.
Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less
Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Czech, Michael J.; Thomas, Russell H.; Elkoby, Ronen
2010-01-01
An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4dB at high polar angles and increasing it by 2 to 3dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed relative to the jet nozzle from downstream to several diameters upstream of the wing trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequencies sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air through the shelf of the pylon which was effective in reducing low frequency noise and moving jet noise sources closer to the nozzle exit. In general, shielding effectiveness varied as a function of cycle condition with the cutback condition producing higher shielding compared to sideline power. The configuration with a more strongly immersed chevron and a pylon oriented opposite to the microphones produced the largest reduction in jet noise. In addition to the jet noise source, the shielding of a broadband point noise source was documented with up to 20 dB of noise reduction at directivity angles directly under the shielding surface.
Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen
2012-01-01
An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air through the shelf of the pylon which was effective in reducing low frequency noise and moving jet noise sources closer to the nozzle exit. In general, shielding effectiveness varied as a function of cycle condition with the cutback condition producing higher shielding compared to sideline power. The configuration with a more strongly immersed chevron and a pylon oriented opposite to the microphones produced the largest reduction in jet noise. In addition to the jet noise source, the shielding of a broadband point noise source was documented with up to 20 dB of noise reduction at directivity angles directly under the shielding surface.
A universal time scale for vortex ring formation
NASA Astrophysics Data System (ADS)
Gharib, Morteza; Rambod, Edmond; Shariff, Karim
1998-04-01
The formation of vortex rings generated through impulsively started jets is studied experimentally. Utilizing a piston/cylinder arrangement in a water tank, the velocity and vorticity fields of vortex rings are obtained using digital particle image velocimetry (DPIV) for a wide range of piston stroke to diameter (L/D) ratios. The results indicate that the flow field generated by large L/D consists of a leading vortex ring followed by a trailing jet. The vorticity field of the leading vortex ring formed is disconnected from that of the trailing jet. On the other hand, flow fields generated by small stroke ratios show only a single vortex ring. The transition between these two distinct states is observed to occur at a stroke ratio of approximately 4, which, in this paper, is referred to as the ‘formation number’. In all cases, the maximum circulation that a vortex ring can attain during its formation is reached at this non-dimensional time or formation number. The universality of this number was tested by generating vortex rings with different jet exit diameters and boundaries, as well as with various non-impulsive piston velocities. It is shown that the ‘formation number’ lies in the range of 3.6 4.5 for a broad range of flow conditions. An explanation is provided for the existence of the formation number based on the Kelvin Benjamin variational principle for steady axis-touching vortex rings. It is shown that based on the measured impulse, circulation and energy of the observed vortex rings, the Kelvin Benjamin principle correctly predicts the range of observed formation numbers.
The dusty silhouette jet HH 1019 in the Carina Nebula
NASA Astrophysics Data System (ADS)
Reiter, Megan; Kiminki, Megan M.; Smith, Nathan; Bally, John
2017-06-01
We report the discovery in Hubble Space Telescope (HST) images of the new Herbig-Haro jet, HH 1019, located near the Tr 14 cluster in the Carina Nebula. Like other HH jets in the region, this bipolar collimated flow emerges from the head of a dark dust pillar. However, HH 1019 is unique because - unlike all other HH jets known to date - it is identified by a linear chain of dark, dusty knots that are seen primarily in silhouette against the background screen of the H II region. Proper motions confirm that these dark condensations move along the jet axis at high speed. [S II] emission traces a highly collimated jet that is spatially coincident with these dust knots. The high extinction in the body of the jet suggests that this outflow has lifted a large amount of dust directly from the disc, although it is possible that it has entrained dust from its surrounding protostellar envelope before exiting the dust pillar. If dust in HH 1019 originates from the circumstellar disc, this provides further evidence for a jet launched from a range of radii in the disc, including those outside the dust sublimation radius. HH 1019 may be the prototype for a new subclass of dusty HH objects seen primarily in extinction against the background screen of a bright H II region. Such jets may be common, but difficult to observe because they require the special condition of a very bright background in order to be seen in silhouette.
Reductions in Multi-Component Jet Noise by Water Injection
NASA Technical Reports Server (NTRS)
Norum, Thomas D.
2004-01-01
An experimental investigation was performed in the NASA Langley Low Speed Aeroacoustics Wind Tunnel to determine the extent of jet exhaust noise reduction that can be obtained using water injection in a hot jet environment. The effects of water parameters such as mass flow rate, injection location, and spray patterns on suppression of dominant noise sources in both subsonic and supersonic jets were determined, and extrapolations to full-scale engine noise reduction were made. Water jets and sprays were injected in to the shear layers of cold and hot circular jets operating at both subsonic and supersonic exhaust conditions. Use of convergent-divergent and convergent nozzles (2.7in. D) allowed for simulations of all major jet noise sources. The experimental results show that water injection clearly disrupts shock noise sources within the jet plume, with large reductions in radiated shock noise. There are smaller reductions in jet mixing noise, resulting in only a small decrease in effective perceived noise level when projections are made to full scale. The fact that the measured noise reduction in the direction upstream of the nozzle was consistently larger than in the noisier downstream direction contributed to keeping effective perceived noise reductions small. Variations in the operation of the water injection system clearly show that injection at the nozzle exit rather than further downstream is required for the largest noise reduction. Noise reduction increased with water pressure as well as with its mass flow, although the type of injector had little effect.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Characterization of Three-Stream Jet Flow Fields
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Wernet, Mark P.
2016-01-01
Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.
Combustion efficiency of a premixed continuous flow combustor
NASA Technical Reports Server (NTRS)
Anand, M. S.; Gouldin, F. C.
1985-01-01
Exhaust gas temperature, velocity, and composition measurements at various radial locations at the combustor exit are presented for a swirling-flow continuous combustor of a confined concentric jet configuration operating on premixed propane or methane and air. The main objective of the study is to determine the effect of fuel substitution and of changes in outer flow swirl conditions on the combustor performance. It is found that there is no difference in observed properties for propane and methane firing; the use of either of the fuels results in nearly the same exit temperature and velocity profiles and the same efficiency for a given operating condition. A mechanism for combustion is proposed which explains qualitatively the changes in efficiency and pollutant emissions observed with changing swirl.
Engineering Development Tests Airdrop Controlled Exit System (ACES)
1980-09-01
AIRDROP CONTROLLED EXIT SYSTEM ( ACES ) RECOVERY PARACHUTES TELEMETERING DATA 20. D5TFAC c• Cat •u•u am revers e• ift n•ceesafy ad Ide•lityf by block...rTECHNICAL REPORT , NATICK /TR-82 /017 f C’n Engineering Development Tests Airdropý Controlled Exit System ( ACES ) COPY CLV40ble to DTIC doe’ io C...and,50.,,,10) s. TYPE OF REPORT A PERIOn COVEnEo Test Report ENCINEERTNG DEVELOPMENT TESTS Oct 79 - Apr 80 AIRDROP CONTROLLED EXIT SYSTEM ( ACES ) 6
Experimental study of near-field entrainment of moderately overpressured jets
Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.
2011-01-01
Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.
Oscillation of the velvet worm slime jet by passive hydrodynamic instability
Concha, Andrés; Mellado, Paula; Morera-Brenes, Bernal; Sampaio Costa, Cristiano; Mahadevan, L; Monge-Nájera, Julián
2015-01-01
The rapid squirt of a proteinaceous slime jet endows velvet worms (Onychophora) with a unique mechanism for defence from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date, neither qualitative nor quantitative descriptions have been provided for this unique adaptation. Here we investigate the fast oscillatory motion of the oral papillae and the exiting liquid jet that oscillates with frequencies f~30–60 Hz. Using anatomical images, high-speed videography, theoretical analysis and a physical simulacrum, we show that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. Our results demonstrate how passive strategies can be cleverly harnessed by organisms, while suggesting future oscillating microfluidic devices, as well as novel ways for micro and nanofibre production using bioinspired strategies. PMID:25780995
Shock wave calibration of under-expanded natural gas fuel jets
NASA Astrophysics Data System (ADS)
White, T. R.; Milton, B. E.
2008-10-01
Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.
Visualization of supersonic diesel fuel jets using a shadowgraph technique
NASA Astrophysics Data System (ADS)
Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.
2001-04-01
High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.
Impact of Fluidic Chevrons on Supersonic Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Norum, Thomas
2007-01-01
The impact of fluidic chevrons on broadband shock noise and mixing noise for single stream and coannular jets was investigated. Air was injected into the core flow of a bypass ratio 5 nozzle system using a core fluidic chevron nozzle. For the single stream experiments, the fan stream was operated at the wind tunnel conditions and the core stream was operated at supersonic speeds. For the dual stream experiments, the fan stream was operated at supersonic speeds and the core stream was varied between subsonic and supersonic conditions. For the single stream jet at nozzle pressure ratio (NPR) below 2.0, increasing the injection pressure of the fluidic chevron increased high frequency noise at observation angles upstream of the nozzle exit and decreased mixing noise near the peak jet noise angle. When the NPR increased to a point where broadband shock noise dominated the acoustic spectra at upstream observation angles, the fluidic chevrons significantly decreased this noise. For dual stream jets, the fluidic chevrons reduced broadband shock noise levels when the fan NPR was below 2.3, but had little or no impact on shock noise with further increases in fan pressure. For all fan stream conditions investigated, the fluidic chevron became more effective at reducing mixing noise near the peak jet noise angle as the core pressure increased.
NASA Astrophysics Data System (ADS)
Müller, Jens; Lückoff, Finn; Oberleithner, Kilian
2017-11-01
The precessing vortex core (PVC) is a dominant coherent structure which occurs in swirling jets such as in swirl-stabilised gas turbine combustors. It stems from a global hydrodynamic instability caused by an internal feedback mechanism within the jet core. In this work, open-loop forcing is applied to a generic non-reacting swirling jet to investigate its receptivity to external actuation regarding lock-in behaviour of the PVC for different streamwise positions and Reynolds numbers. The forcing is periodically exerted by zero net mass flux synthetic jets which are introduced radially through slits inside the duct walls upstream of the swirling jet's exit plane. Time-resolved pressure measurements are conducted to identify the PVC frequency and stereo PIV combined with proper orthogonal decomposition in the duct and free field is used to extract the mean flow and the PVC mode. The data is used in a global linear stability framework to gain the adjoint of the PVC which reveals the regions of highest receptivity to periodic forcing based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity results and the validity and applicability of the adjoint model for the prediction of optimal forcing positions is discussed.
Experimental and Analytical Determination of the Geometric Far Field for Round Jets
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James E.; Brown, Clifford E.; Khavaran, Abbas
2005-01-01
An investigation was conducted at the NASA Glenn Research Center using a set of three round jets operating under unheated subsonic conditions to address the question: "How close is too close?" Although sound sources are distributed at various distances throughout a jet plume downstream of the nozzle exit, at great distances from the nozzle the sound will appear to emanate from a point and the inverse-square law can be properly applied. Examination of normalized sound spectra at different distances from a jet, from experiments and from computational tools, established the required minimum distance for valid far-field measurements of the sound from subsonic round jets. Experimental data were acquired in the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center. The WIND computer program solved the Reynolds-Averaged Navier-Stokes equations for aerodynamic computations; the MGBK jet-noise prediction computer code was used to predict the sound pressure levels. Results from both the experiments and the analytical exercises indicated that while the shortest measurement arc (with radius approximately 8 nozzle diameters) was already in the geometric far field for high-frequency sound (Strouhal number >5), low-frequency sound (Strouhal number <0.2) reached the geometric far field at a measurement radius of at least 50 nozzle diameters because of its extended source distribution.
Thermal Management Using Pulsating Jet Cooling Technology
NASA Astrophysics Data System (ADS)
Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.
2014-07-01
The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.
Python Scripts for Automation of Current-Voltage Testing of Semiconductor Devices (FY17)
2017-01-01
ARL-TR-7923 ● JAN 2017 US Army Research Laboratory Python Scripts for Automation of Current- Voltage Testing of Semiconductor...manual device-testing procedures is reduced or eliminated through automation. This technical report includes scripts written in Python , version 2.7, used ...nothing. 3.1.9 Exit Program The script exits the entire program. Line 505, sys.exit(), uses the sys package that comes with Python to exit system
Laser Diagnostics for Reacting Flows
2007-01-30
image the exit region of an underexpanded jet. Background IRPLIF involves the excitation of molecular vibrational modes via infrared laser radiation (an...excitation wavelength of 2.0 pm is used for this work), followed by imaging of the subsequent vibrational fluorescence (fluorescence is collected...with an IR-active vibrational mode, such as CO2, are naturally present in sufficient abundance. Even in situations where they need to be added, small
Dip-Coating Fabrication of Solar Cells
NASA Technical Reports Server (NTRS)
Koepke, B.; Suave, D.
1982-01-01
Inexpensive silicon solar cells made by simple dip technique. Cooling shoes direct flow of helium on graphite-coated ceramic substrate to solidify film of liquid silicon on graphite surface as substrate is withdrawn from molten silicon. After heaters control cooling of film and substrate to prevent cracking. Gas jets exit at points about 10 mm from substrate surfaces and 6 to 10 mm above melt surface.
Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures
NASA Astrophysics Data System (ADS)
Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian
2015-11-01
Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.
Identification of temporal and spatial signatures of broadband shock-associated noise
NASA Astrophysics Data System (ADS)
Pérez Arroyo, C.; Daviller, G.; Puigt, G.; Airiau, C.; Moreau, S.
2018-02-01
Broadband shock-associated noise (BBSAN) is a particular high-frequency noise that is generated in imperfectly expanded jets. BBSAN results from the interaction of turbulent structures and the series of expansion and compression waves which appears downstream of the convergent nozzle exit of moderately under-expanded jets. This paper focuses on the impact of the pressure waves generated by BBSAN from a large eddy simulation of a non-screeching supersonic round jet in the near-field. The flow is under-expanded and is characterized by a high Reynolds number Re_j = 1.25× 10^6 and a transonic Mach number M_j=1.15 . It is shown that BBSAN propagates upstream outside the jet and enters the supersonic region leaving a characteristic pattern in the physical plane. This pattern, also called signature, travels upstream through the shock-cell system with a group velocity between the acoustic speed Uc-a_∞ and the sound speed a_∞ in the frequency-wavenumber domain (U_c is the convective jet velocity). To investigate these characteristic patterns, the pressure signals in the jet and the near-field are decomposed into waves traveling downstream (p^+ ) and waves traveling upstream (p^- ). A novel study based on a wavelet technique is finally applied on such signals in order to extract the BBSAN signatures generated by the most energetic events of the supersonic jet.
A prediction method for broadband shock associated noise from supersonic rectangualr jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Reddy, N. N.
1993-01-01
Braodband shock associated noise is an important aircraft noise component of the proposed high-speed civil transport (HSCT) at take-offs and landings. For noise certification purpose one would, therefore, like to be able to predict as accurately as possible the intensity, directivity and spectral content of this noise component. The purpose of this work is to develop a semi-empirical prediction method for the broadband shock associated noise from supersonic rectangular jets. The complexity and quality of the noise prediction method are to be similar to those for circular jets. In this paper only the broadband shock associated noise of jets issued from rectangular nozzles with straight side walls is considered. Since many current aircraft propulsion systems have nozzle aspect ratios (at nozzle exit) in the range of 1 to 4, the present study has been confined to nozzles with aspect ratio less than 6. In developing the prediction method the essential physics of the problem are taken into consideration. Since the braodband shock associated noise generation mechanism is the same whether the jet is circular or round the present prediction method in a number of ways is quite similar to that for axisymmetric jets. Comparisons between predictions and measurements for jets with aspect ratio up to 6 will be reported. Efforts will be concentrated on the fly-over plane. However, side line angles and other directions will also be included.
NASA Astrophysics Data System (ADS)
Loebner, Keith; Wang, Benjamin; Cappelli, Mark
2014-10-01
The formation and propagation of high velocity plasma jets in a pulsed, coaxial, deflagration-type discharge is examined experimentally. A sensitive, miniaturized, immersed probe array is used to map out magnetic flux density and associated radial current density as a function of time and axial position. This array is also used to probe the magnetic field gradient across the exit of the accelerator and in the jet formation region. Sensitive interferometry via a continuous-wave helium-neon laser source is used to probe the structure of the plasma jet over multiple chords and axial locations. A two dimensional plasma density gradient profile at an instant in time during jet formation is compiled via Shack-Hartmann wavefront sensor analysis. The qualitative characteristics of rarefaction and/or shock wave formation as a function of chamber back-pressure is examined via fast-framing ICCD imaging. These measurements are compared to existing resistive MHD simulations of the coaxial deflagration accelerator and the ensuing rarefaction jet that is expelled from the electrode assembly. The physical mechanisms governing the behavior of the discharge and the formation of these high energy density plasma jets are proposed and validated against both theoretical models and numerically simulated behavior. This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
Jet Spreading Increase by Passive Control and Associated Performance Penalty
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1999-01-01
This paper reviews the effects of 'screech', 'asymmetric nozzle shaping', 'tabs' and 'overexpansion' on the spreading of free jets. Corresponding thrust penalty for the tabs and overexpanded condition are also evaluated. The asymmetric shapes include rectangular ones with varying aspect ratio. Tabs investigated are triangular shaped 'delta-tabs' placed at the exit of a convergent circular nozzle. The effect of overexpansion is examined with circular convergent-divergent (C-D) nozzles. Tabs and overexpansion are found to yield the largest increase in jet spreading. Each, however, involves a performance penalty, i.e., a loss in thrust coefficient. Variation of the size of four delta-tabs show that there exists an optimum size for which the gain in jet spreading is the maximum per unit loss in thrust coefficient. With the C-D nozzles, the minimum in thrust coefficient is expected near the beginning of the overexpanded regime based on idealized flow calculations. The maximum increase in jet spreading, however, is found to occur at higher pressure ratios well into the overexpanded regime. The optimum benefit with the overexpanded flow, in terms of gain in spreading for unit penalty, is found to be comparable to the optimum tab case.
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Extended field observations of cirrus clouds using a ground-based cloud observing system
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Exhaust Simulation Testing of a Hypersonic Airbreathing Model at Transonic Speeds
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Witte, David W.; Andrews, Earl H., Jr.
2004-01-01
An experimental study was performed to examine jet-effects for an airframe-integrated, scramjet-rocket combined-cycle vehicle configuration at transonic test conditions. This investigation was performed by testing an existing exhaust simulation wind tunnel model, known as Model 5B, in the NASA Langley 16-Ft. Transonic Tunnel. Tests were conducted at freestream Mach numbers from 0.7 to 1.2, at angles of attack from 2 to +14 degrees, and at up to seven nozzle static pressure ratio values for a set of horizontal-tail and body-flap deflections. The model aftbody, horizontal tails, and body flaps were extensively pressure instrumented to provide an understanding of jet-effects and control-surface/plume interactions, as well as for the development of analytical methodologies and calibration of computational fluid dynamic codes to predict this type of flow phenomenon. At all transonic test conditions examined, the exhaust flow at the exit of the internal nozzle was over-expanded, generating an exhaust plume that turned toward the aftbody. Pressure contour plots for the aftbody of Model 5B are presented for freestream transonic Mach numbers of 0.70, 0.95, and 1.20. These pressure data, along with shadowgraph images, indicated the impingement of an internal plume shock and at least one reflected shock onto the aftbody for all transonic conditions tested. These results also provided evidence of the highly three-dimensional nature of the aftbody exhaust flowfield. Parametric testing showed that angle-of-attack, static nozzle pressure ratio, and freestream Mach number all affected the exhaust-plume size, exhaust-flowfield shock structure, and the aftbody-pressure distribution, with Mach number having the largest effect. Integration of the aftbody pressure data showed large variations in the pitching moment throughout the transonic regime.
Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan
McKee, Kathleen; Fee, David; Yokoo, Akihiko; ...
2017-03-30
The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less
Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Kathleen; Fee, David; Yokoo, Akihiko
The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less
Unsteady Ejector Performance: an Experimental Investigation Using a Pulsejet Driver
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack; Dougherty, Kevin T.
2002-01-01
An experimental investigation is described in which thrust augmentation and mass entrainment were measured for a variety of simple cylindrical ejectors driven by a gasoline-fueled pulsejet. The ejectors were of varying length, diameter, and inlet radius. Measurements were also taken to determine the effect on performance of the distance between pulsejet exit and ejector inlet. Limited tests were also conducted to determine the effect of driver cross-sectional shape. Optimal values were found for all three ejector parameters with respect to thrust augmentation. This was not the case with mass entrainment, which increased monotonically with ejector diameter. Thus, it was found that thrust augmentation is not necessarily directly related to mass entrainment, as is often supposed for ejectors. Peak thrust augmentation values of 1.8 were obtained. Peak mass entrainment values of 30 times the driver mass flow were also observed. Details of the experimental setup and results are presented. Preliminary analysis of the results indicates that the enhanced performance obtained with an unsteady jet (primary source) over comparably sized ejectors driven with steady jets is due primarily to the structure of the starting vortex-type flow associated with the former.
NASA Astrophysics Data System (ADS)
Li, Camille; Michel, Clio; Seland Graff, Lise; Bethke, Ingo; Zappa, Giuseppe; Bracegirdle, Thomas J.; Fischer, Erich; Harvey, Ben J.; Iversen, Trond; King, Martin P.; Krishnan, Harinarayan; Lierhammer, Ludwig; Mitchell, Daniel; Scinocca, John; Shiogama, Hideo; Stone, Dáithí A.; Wettstein, Justin J.
2018-04-01
This study investigates the global response of the midlatitude atmospheric circulation to 1.5 and 2.0 °C of warming using the HAPPI (Half a degree Additional warming, Prognosis and Projected Impacts) ensemble, with a focus on the winter season. Characterising and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks, and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, in western Europe, and on the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2 °C warmer world, with exceptionally dry decades becoming 5 times more likely.
Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V
1943-01-01
This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.
Separating Turbofan Engine Noise Sources Using Auto and Cross Spectra from Four Microphones
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2008-01-01
The study of core noise from turbofan engines has become more important as noise from other sources such as the fan and jet were reduced. A multiple-microphone and acoustic-source modeling method to separate correlated and uncorrelated sources is discussed. The auto- and cross spectra in the frequency range below 1000 Hz are fitted with a noise propagation model based on a source couplet consisting of a single incoherent monopole source with a single coherent monopole source or a source triplet consisting of a single incoherent monopole source with two coherent monopole point sources. Examples are presented using data from a Pratt& Whitney PW4098 turbofan engine. The method separates the low-frequency jet noise from the core noise at the nozzle exit. It is shown that at low power settings, the core noise is a major contributor to the noise. Even at higher power settings, it can be more important than jet noise. However, at low frequencies, uncorrelated broadband noise and jet noise become the important factors as the engine power setting is increased.
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.
1985-01-01
Surface and upper-level characteristics of selected meteorological fields are summarized. Two major types of sea level development are described and applied to the cases at hand, with a few storm systems showing characteristics of both types. Aspects such as rapid sea level deepening, coastal frontogenesis, cold air damming, low level jet formation, the development of an S-shaped isotherm pattern, diffluence downwind of a negatively tilted upper level trough axis, upper level confluence and an increase of geopotential heights at the base of the upper level trough characterized the pre-cyclogenetic and cyclogenetic periods of many of the storm systems. Large variability was also observed, especially with regard to the spatial dimensions of the surface and upper level systems, as well as variations in trough/ridge amplification and the evolution of upper level jet streak systems. The influence of transverse circulations associated with a confluent jet streak entrance region and the diffluent exit region of a jet streak/trough system on the production of snowfall is also discussed.
Fine-scale features in the far-field of a turbulent jet
NASA Astrophysics Data System (ADS)
Buxton, Oliver; Ganapathisubramani, Bharathram
2008-11-01
The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.
Jet Noise Reduction by Microjets - A Parametric Study
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2010-01-01
The effect of injecting tiny secondary jets (microjets ) on the radiated noise from a subsonic primary jet is studied experimentally. The microjets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear noise reduction is observed that improves with increasing jet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that turbulent mixing noise reduction, as monitored by OASPL at a shallow angle, correlates with the ratio of jet to primary jet driving pressures normalized by the ratio of corresponding diameters (p d /pjD). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. It is apparent that this amplitude crossover is at least partly due to shock-associated noise from the underexpanded jets themselves. Such crossover is not seen with water injection since the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of noise reduction on p d /pjD remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters.
The effect of nozzle inlet shape, lip thickness, and exit shape and size on subsonic jet noise
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Gutierrez, O. A.; Dorsch, R. G.
1973-01-01
Far field noise data were taken for convergent nozzles of various shapes and sizes at subsonic velocities exceeding 400 feet per second. For a circular nozzle, the nozzle inlet shape and lip thickness had no effect on the noise level, directivity, or spectra when compared at the same nozzle exit diameter and peak exhaust velocity. A sharp edged orifice was one exception to this statement. Coannular nozzles can produce additional high frequency noise. Blunt ended centerbodies, where there is significant base drag, also generate significant additional noise. The total noise power generation was essentially the same for circular, slot, and plug nozzles of good aerodynamic shape. The noise radiation patterns were essentially the same for these nozzle shapes except near the nozzle exhaust axis.
Cross spectra between temperature and pressure in a constant area duct downstream of a combustor
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.
1983-01-01
The feasibility of measuring pressure temperature cross spectra and coherence and temperature-temperature cross spectra and coherence at spatially separated points along with pressure and temperature auto-spectra in a combustion rig was investigated. The measurements were made near the inlet and exit of a 6.44 m long duct attached to a J-47 combustor. The fuel used was Jet A. The cross spectra and coherence measurements show the pressure and temperature fluctuations correlate best at low frequencies. At the inlet the phenomena controlling the phase relationship between pressure and temperature could not be identified. However, at the duct exit the phase angle of the pressure is related to the phase angle of the temperature by the convected flow time delay.
Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model
NASA Technical Reports Server (NTRS)
Boyd, Kathleen C.; Wolter, John D.
2004-01-01
This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.
A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.
2005-01-01
A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.
NASA Astrophysics Data System (ADS)
Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro
2015-09-01
Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
NASA Technical Reports Server (NTRS)
Han, J. C.; Teng, S.
2000-01-01
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.
NASA Astrophysics Data System (ADS)
Marudhappan, Raja; Chandrasekhar, Udayagiri; Hemachandra Reddy, Koni
2017-10-01
The design of plain orifice simplex atomizer for use in the annular combustion system of 1100 kW turbo shaft engine is optimized. The discrete flow field of jet fuel inside the swirl chamber of the atomizer and up to 1.0 mm downstream of the atomizer exit are simulated using commercial Computational Fluid Dynamics (CFD) software. The Euler-Euler multiphase model is used to solve two sets of momentum equations for liquid and gaseous phases and the volume fraction of each phase is tracked throughout the computational domain. The atomizer design is optimized after performing several 2D axis symmetric analyses with swirl and the optimized inlet port design parameters are used for 3D simulation. The Volume Of Fluid (VOF) multiphase model is used in the simulation. The orifice exit diameter is 0.6 mm. The atomizer is fabricated with the optimized geometric parameters. The performance of the atomizer is tested in the laboratory. The experimental observations are compared with the results obtained from 2D and 3D CFD simulations. The simulated velocity components, pressure field, streamlines and air core dynamics along the atomizer axis are compared to previous research works and found satisfactory. The work has led to a novel approach in the design of pressure swirl atomizer.
Mixing enhancement in a scramjet combustor using fuel jet injection swirl
NASA Astrophysics Data System (ADS)
Flesberg, Sonja M.
The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two swirling jets would produce increased mixing and to study how the distance between the two fuel injector exits would affect mixing. Three swirl patterns were investigated: 1) the first swirl pattern as viewed by an observer looking downstream had the right fuel annular jet swirling counter clockwise and the left fuel annular jet swirling clockwise, 2) the second swirl pattern as viewed by an observer looking downstream had the right fuel jet swirling clockwise and the left fuel jet swirling counter clockwise, 3) the third swirl pattern as viewed by an observer looking downstream had both the right and left fuel jet swirling in the same clockwise direction. Each one of the swirl patterns were simulated with the distances between the center points of the fuel jets modelled 3, 4, and 5 times the fuel injector radius. The swirl pattern that produced the greatest increase in burning efficiency differed according to the fuel injector spacing. The maximum increase in burning efficiency compared to the corresponding non-swirling two jet baseline case was 24.6% and was produced by the first swirl pattern with the distance between the center points of the fuel jets being 5 times the fuel injector radius. The burning efficiency for the single jet non-swirling baseline case and the first swirl pattern with the distance between the center points of the fuel jets being 5 times the fuel injector radius was 0.70 and 0.90 respectively indicating a 29% increase due to dual fuel injection swirl.
Sauter mean diameter statistics of the starch dispersion atomized with hydraulic nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naz, Muhammad Yasin, E-mail: yasin603@yahoo.com; Ariwahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my; Sulaiman, Shaharin Anwar, E-mail: shaharin@petronas.com.my
In the reported research work, the microscopic droplet velocity at different axial and radial locations downstream to the nozzle exit was studied by using a non-intrusive Laser Doppler Anemometry (LDA) techniques. These velocity measurements made in the viscous fluid spray sterams were used to predict the different breakup regimes in the flow. It was noticed that the droplet velocity decreased sharply downstream to the nozzle exit, whereas steady decrease in velocity was seen along the radial directions. For shorter injection time periods, the velocity downstream to the nozzle was not following the general breakup model. However, along the radial directionmore » it exactly followed the discussed model. Along the spray centerline, the velocity was decreasing sharply even at far points from the nozzle exit. It was difficult to identify the core region, transition region and fully developed spray region in the flow. It revealed that the jet breakup was not completed yet and further disintegration was taking place along the spray centerline for shorter injection periods below 250 ms.« less
Numerical investigation of mixing characterstics of chevron nozzle by passive controls method
NASA Astrophysics Data System (ADS)
Devipriya, J.; Kanimozhi, Dr.
2017-05-01
This paper deals with the Reduction of noise in the aircraft exhaust is done by installing Chevrons with particular parameters in the Nozzle section. Numerical investigations have been carried out on chevron Nozzles to evaluate the importance of Chevron parameters by adding number of Chevrons and the mixing characteristics of jet. After assessing the Chevron parameters we vary the Chevron shapes at the exit by installing the triangular wedge in order to regulate maximum noise reduction along with a negligible thrust loss. Finally the results is compared with free jet Nozzle with Chevron and Chevron with wedge has been analysed using CFX CFD software and the results of potential core decay of these Nozzles has been measured from the analysis.
An experimental investigation of jet plume simulation with solid circular cylinders
NASA Technical Reports Server (NTRS)
Reubush, D. E.
1974-01-01
An investigation has been conducted in the Langley 16-foot transonic tunnel to determine the effectiveness of utilizing solid circular cylinders to simulate the jet exhaust plume for a series of four isolated circular arc afterbodies with little or no flow separation. This investigation was conducted at Mach numbers from 0.40 to 1.30 at 0 deg angle of attack. Plume simulators with simulator diameter to nozzle exit diameter ratios of 0.82, 0.88, 0.98, and 1.00 were investigated with one of the four configurations while the 0.82 and 1.00 simulators were investigated with the other three. Reynolds number based on maximum model diameter varied from approximately 1.50 to 2.14 million.
Er:YAG laser pulse for small-dose splashback-free microjet transdermal drug delivery.
Park, Mi-ae; Jang, Hun-jae; Sirotkin, Fedir V; Yoh, Jack J
2012-09-15
The microjet injector system accelerates drugs and delivers them without a needle, which is shown to overcome the weaknesses of existing jet injectors. A significant increase in the delivered dose of drugs is reported with multiple pulses of laser beam at lower laser energy than was previously used in a Nd:YAG system. The new injection scheme uses the beam wavelength best absorbable by water at a longer pulse mode for elongated microjet penetration into a skin target. A 2.9 μm Er:YAG laser at 250 μs pulse duration is used for fluorescent staining of guinea pig skin and for injection controllability study. Hydrodynamic theory confirms the nozzle exit jet velocity obtained by the present microjet system.
Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.; Emami, Saied
2001-01-01
Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.
Active Chevrons for Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Depuru-Mohan, N. K.; Doty, M. J.
2017-01-01
Jet noise is often a dominant component of aircraft noise, particularly at takeoff. To meet the stringent noise regulations, the aircraft industry is in a pressing need of advanced noise reduction concepts. In the present study, the potential of piezoelectrically-activated chevrons for jet noise reduction was experimentally investigated. The perturbations near the nozzle exit caused by piezoelectrically-activated chevrons could be used to modify the growth rate of the mixing layer and thereby potentially reduce jet noise. These perturbations are believed to increase the production of small-scale disturbances at the expense of large-scale turbulent structures. These large-scale turbulent structures are responsible for the dominant portion of the jet mixing noise, particularly low-frequency noise. Therefore, by exciting the static chevron geometry through piezoelectric actuators, an additional acoustic benefit could possibly be achieved. To aid in the initial implementation of this concept, several flat-faced faceted nozzles (four, six, and eight facets) were investigated. Among the faceted nozzles, it was found that the eight-faceted nozzle behaves very similarly to the round nozzle. Furthermore, among the faceted nozzles with static chevrons, the four-faceted nozzle with static chevrons was found to be most effective in terms of jet noise reduction. The piezoelectrically-activated chevrons reduced jet noise up to 2 dB compared to the same nozzle geometry without excitation. This benefit was observed over a wide range of excitation frequencies by applying very low voltages to the piezoelectric actuators.
Holmium: YAG laser-induced liquid jet knife: possible novel method for dissection.
Nakagawa, Atsuhiro; Hirano, Takayuki; Komatsu, Makoto; Sato, Mariko; Uenohara, Hiroshi; Ohyama, Hideki; Kusaka, Yasuko; Shirane, Reizo; Takayama, Kazuyoshi; Yoshimoto, Takashi
2002-01-01
Making surgical incisions in vessel-rich organs without causing bleeding is difficult. Thus, it is necessary to develop new devices for this purpose, especially for surgery involving small vessels as in neurosurgery, where damage against even small cerebral vessels result in severe neurological deficits. A laser-induced liquid jet was generated by irradiating pulsed Holmium Yttrium-Aluminum-Garnet (Ho: YAG) laser (beams of 350 microseconds pulse width) within a copper tube (internal diameter, 1 mm) with pure water (150 ml /hour). Ho: YAG laser beams were irradiated through an optical fiber (core diameter, 0.4 mm). The influence of the input of laser energy, structure of the nozzle, and the stand-off distance between the optical fiber tip and nozzle exit on the jet velocity was measured by a high-speed video camera to evaluate controllability of jet. The effect on artificial organs made of 10 and 30%(w/v) gelatin, each of which represent features of soft tissue and blood vessels. Jet velocity increased in proportion to gain in laser energy input, and maximum penetration depth into 10%(w/v) gelatin was 35 mm by single exposure at 350 mJ/pulse without impairing a vessel model. Shapes of nozzle also modified jet velocity with optimal nozzle/tube area ratio of 0.25. The laser-induced liquid jet has excellent potential as a new tool for removing soft tissue without damaging vital structures. Copyright 2002 Wiley-Liss, Inc.
Experiments on free and impinging supersonic microjets
NASA Astrophysics Data System (ADS)
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
Flow field topology of submerged jets with fractal generated turbulence
NASA Astrophysics Data System (ADS)
Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso
2015-11-01
Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.
Organized motions in a jet in crossflow
NASA Astrophysics Data System (ADS)
Rivero, A.; Ferré, J. A.; Giralt, Francesc
2001-10-01
An experimental study to identify the structures present in a jet in crossflow has been carried out at a jet-to-crossflow velocity ratio U/Ucf = 3.8 and Reynolds number Re = UcfD/v = 6600. The hot-wire velocity data measured with a rake of eight X-wires at x/D = 5 and 15 and flow visualizations using planar laser-induced fluorescence (PLIF) confirm that the well-established pair of counter-rotating vortices is a feature of the mean field and that the upright, tornado-like or Fric's vortices that are shed to the leeward side of the jet are connected to the jet flow at the core. The counter-rotating vortex pair is strongly modulated by a coherent velocity field that, in fact, is as important as the mean velocity field. Three different structures folded vortex rings, horseshoe vortices and handle-type structures contribute to this coherent field. The new handle-like structures identified in the current study link the boundary layer vorticity with the counter-rotating vortex pair through the upright tornado-like vortices. They are responsible for the modulation and meandering of the counter-rotating vortex pair observed both in video recordings of visualizations and in the instantaneous velocity field. These results corroborate that the genesis of the dominant counter-rotating vortex pair strongly depends on the high pressure gradients that develop in the region near the jet exit, both inside and outside the nozzle.
Mode selection in swirling jet experiments: a linear stability analysis
NASA Astrophysics Data System (ADS)
Gallaire, François; Chomaz, Jean-Marc
2003-11-01
The primary goal of the study is to identify the selection mechanism responsible for the appearance of a double-helix structure in the pre-breakdown stage of so-called screened swirling jets for which the circulation vanishes away from the jet. The family of basic flows under consideration combines the azimuthal velocity profiles of Carton & McWilliams (1989) and the axial velocity profiles of Monkewitz (1988). This model satisfactorily represents the nozzle exit velocity distributions measured in the swirling jet experiment of Billant et al. (1998). Temporal and absolute/convective instability properties are directly retrieved from numerical simulations of the linear impulse response for different swirl parameter settings. A large range of negative helical modes, winding with the basic flow, are destabilized as swirl is increased, and their characteristics for large azimuthal wavenumbers are shown to agree with the asymptotic analysis of Leibovich & Stewartson (1983). However, the temporal study fails to yield a clear selection principle. The absolute/convective instability regions are mapped out in the plane of the external axial flow and swirl parameters. The absolutely unstable domain is enhanced by rotation and it remains open for arbitrarily large swirl. The swirling jet with zero external axial flow is found to first become absolutely unstable to a mode of azimuthal wavenumber m {=} {-}2, winding with the jet. It is suggested that this selection mechanism accounts for the experimental observation of a double-helix structure.
NASA Technical Reports Server (NTRS)
Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith
2017-01-01
This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.
2017-01-01
This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption of illuminated exit signs. 431.204 Section 431.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Procedures § 431.204 Uniform test method for the measurement of energy consumption of illuminated exit signs...
Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller
NASA Technical Reports Server (NTRS)
Schumann, L. F.; Clark, D. A.; Wood, J. R.
1986-01-01
A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.
Prediction of sound radiation from different practical jet engine inlets
NASA Technical Reports Server (NTRS)
Zinn, B. T.; Meyer, W. L.
1982-01-01
The computer codes necessary for this study were developed and checked against exact solutions generated by the point source method using the NASA Lewis QCSEE inlet geometry. These computer codes were used to predict the acoustic properties of the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT15D-1 Ground Test Nacelle, and three finite hyperbolic inlets of 50, 70 and 90 degrees. Thirty-five computer runs were done for the NASA Langley Bellmouth. For each of these computer runs, the reflection coefficient at the duct exit plane was calculated as was the far field radiation pattern. These results are presented in both graphical and tabular form with many of the results cross plotted so that trends in the results verses cut-off ratio (wave number) and tangential mode number may be easily identified.
Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings
NASA Astrophysics Data System (ADS)
Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.
2011-01-01
In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.
Supernova 1987A Interpreted through the SLIP Pulsar Model
NASA Astrophysics Data System (ADS)
Middleditch, John
2010-01-01
The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced by a rotating, magnetized body at many light cylinder radii, as would be the case for a neutron star born within any star of >1.5 solar masses, will drive pulsations close to the axis of rotation. Such highly collimated pulsations (<= 1 in 10,000), and the similarly collimated jets of particles which it drove, including 1e-6 solar masses with velocities of up to 0.95 c, were responsible for the features of its very early light curve (days 3 - 20), the "Mystery Spot," observed slightly later (days 30 - 50 and >), and later, in less collimated form, the bipolarity of SN 1987A itself. The pulsations and jet interacted with circumstellar material (CM), to produce features observed in the very early light curve which correspond to: 1) the entry of the pulsed beam into the CM; 2) the entry of the 0.95 c particles into the CM; 3) the exit of the pulsed beam from the CM (with contributions in the B and I bands -- the same as later inferred/observed for its 2.14 ms pulsations); and 4) the exit of the fastest particles from the CM. Because of the energy requirements of the jet in these early stages, the spindown required of its pulsar could exceed 1e-5 Hz/s at a rotation rate of 500 Hz. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.
Annear, Matthew J; Gornik, Kara R; Venturi, Francesca L; Hauptman, Joe G; Bartoe, Joshua T; Petersen-Jones, Simon M
2013-09-01
The increasing importance of canine retinal dystrophy models means accurate vision testing is needed. This study was performed to evaluate a four-choice vision testing technique for any difference in outcome measures with repeated evaluations of the same dogs. Four 11-month-old RPE65-deficient dogs. Vision was evaluated using a previously described four-choice vision testing device. Four evaluations were performed at 2-week intervals. Vision was assessed at six different white light intensities (bright through dim), and each eye was evaluated separately. The ability to select the one of the four exit tunnels that was open at the far end was assessed ('choice of exit') and recorded as correct or incorrect first tunnel choice. 'Time to exit' the device was also recorded. Both outcomes were analyzed for significance using anova. We hypothesized that performance would improve with repeated testing (more correct choices and more rapid time to exit). 'Choice of exit' did not vary significantly between each evaluation (P = 0.12), in contrast 'time to exit' increased significantly (P = 0.012), and showed greater variability in dim light conditions. We found no evidence to support the hypothesis that either measure of outcome worsened with repeated testing; in fact, the 'time to exit' outcome worsened rather than improved. The 'choice of exit' gave consistent results between trials. These outcome data indicate the importance of including a choice-based assessment of vision in addition to measurement of device transit time. © 2012 American College of Veterinary Ophthalmologists.
PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.; Frate, Franco C.
2011-01-01
Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.
Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames
NASA Technical Reports Server (NTRS)
Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.
1999-01-01
The spatial distributions and morphological properties of the soot aerosol are examined experimentally in a series of 0-g laminar gas-jet nonpremixed flames. The methodology deploys round jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Full-field laser-light extinction is utilized to determine transient soot spatial distributions within the flames. Thermophoretic sampling is employed in conjunction with transmission electron microscopy to define soot microstructure within the soot-emitting 0-g flames. The microgravity tests indicate that the 0-g flames attain a quasi-steady state roughly 0.7 s after ignition, and sustain their annular structure even beyond their luminous flame tip. The measured peak soot volume fractions show a complex dependence on burner exit conditions, and decrease in a nonlinear fashion with decreasing characteristic flow residence times. Fuel preheat by approximately 140 K appears to accelerate the formation of soot near the flame axis via enhanced fuel pyrolysis rates. The increased soot presence caused by the elevated fuel injection temperatures triggers higher flame radiative losses, which may account for the premature suppression of soot growth observed along the annular region of preheated-fuel flames. Electron micrographs of soot aggregates collected in 0-g reveal the presence of soot precursor particles near the symmetry axis at midflame height, The observations also verify that soot primary particle sizes are nearly uniform among aggregates present at the same flame location, but vary considerably with radius at a fixed distance from the burner. The maximum primary size in 0-g is found to be by 40% larger than in 1-g, under the same burner exit conditions. Estimates of the number concentration of primary particles and surface area of soot particulate phase per unit volume of the combustion gases are also made for selected in-flame locations.
Laboratory studies of volcanic jets
NASA Astrophysics Data System (ADS)
Kieffer, Susan Werner; Sturtevant, Bradford
1984-09-01
The study of the fluid dynamics of violent volcanic eruptions by laboratory experiment is described, and the important fluid-dynamic processes that can be examined in laboratory models are discussed in detail. In preliminary experiments, pure gases are erupted from small reservoirs. The gases used are Freon 12 and Freon 22, two gases of high molecular weight and high density that are good analogs of heavy and particulate-laden volcanic gases; nitrogen, a moderate molecular weight, moderate density gas for which the thermodynamic properties are well known; and helium, a low molecular weight, lowdensity gas that is used as a basis for comparison with the behavior of the heavier gases and as an analog of steam, the gas that dominates many volcanic eruptions. Transient jets erupt from the reservoir into the laboratory upon rupture of a thin diaphragm at the exit of a convergent nozzle. The gas accelerates from rest in the reservoir to high velocity in the jet. Reservoir pressures and geometries are such that the fluid velocity in the jets is initially supersonic and later decays to subsonic. The measured reservoir pressure decreases as the fluid expands through repetitively reflecting rarefaction waves, but for the conditions of these experiments, a simple steady-discharge model is sufficient to explain the pressure decay and to predict the duration of the flow. Density variations in the flow field have been visualized with schlieren and shadowgraph photography. The observed structure of the jet is correlated with the measured pressure history. The starting vortex generated when the diaphragm ruptures becomes the head of the jet. Though the exit velocity is sonic, the flow head in the helium jet decelerates to about one-third of sonic velocity in the first few nozzle diameters, the nitrogen head decelerates to about three-fourths of sonic velocity, while Freon maintains nearly sonic velocity. The impulsive acceleration of reservoir fluid into the surrounding atmosphere produces a compression wave. The strength of this wave depends primarily on the sound speed of the fluid in the reservoir but also, secondarily with opposite effect, on the density: helium produces a relatively strong atmospheric shock while the Freons do not produce any optically observable wave front. Well-formed N waves are detected with a microphone far from the reservoir. Barrel shocks, Mach disks, and other familiar features of steady underexpanded supersonic jets form inside the jet almost immediately after passage of the flow head. These features are maintained until the pressure in the reservoir decays to sonic conditions. At low pressures the jets are relatively structureless. Gas-particle jets from volcanic eruptions may behave as pseudogases if particle concentrations and mass and momentum exchange between the components are sufficiently small. The sound speed of volcanic pseudogases can be as large as 1000 m s-1 or as small as a few tens of meters per second depending on the mass loading and initial temperature. Fluids of high sound speed produce stronger atmospheric shock waves than do those of low sound speed. Therefore eruption of a hot gas lightly laden with particulates should produce a stronger shock than eruption of a cooler or heavily laden fluid. An empirical expression suggests that the initial velocity of the head of supersonic volcanic jets is controlled by the sound speed and the ratio of the density of the erupting fluid to that of the atmosphere. The duration of gas or pseudogas eruptions is controlled by the sound speed of the fluid and the ratio of reservoir volume to vent area.
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Development of Jet Noise Power Spectral Laws
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2011-01-01
High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single streams, efforts are underway to generate a data bank and algorithm applicable to dual-stream jets. Shock-associated noise in high-powered jets such as military aircraft can benefit from these predictions.
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics associated with the blowing phenomenon from porous walls is measured and characterized. The measurements indicate that the flow exiting a porous wall exhibits a lumpy velocity profile caused by the coalescence effects of smaller jets emerging from the surface. The velocity variations are spatially stable and prevail even at low flow rates. The intensity of this pseudoturbulence is found to be directly proportional to the filter rating of the porous wall and to increase linearly with the mean velocity. Beyond a critical mean velocity, the pseudoturbulence intensity shows a leveling trend with increase in the mean velocity. This critical velocity varies inversely as the filter rating and represents the onset of fully developed jetting action in the flow field. Based on the data, a more appropriate length scale for the flow field is proposed and a correlation is developed that can be used to predict the onset of fully developed jets in the flow emerging from a porous wall.
Olive Oil Tracer Particle Size Analysis for Optical Flow Investigations in a Gas Medium
NASA Astrophysics Data System (ADS)
Harris, Shaun; Smith, Barton
2014-11-01
Seed tracer particles must be large enough to scatter sufficient light while being sufficiently small to follow the flow. These requirements motivate a desire for control over the particle size. For gas measurements, it is common to use atomized oil droplets as tracer particles. A Laskin nozzle is a device for generating oil droplets in air by directing high-pressure air through small holes under an oil surface. The droplet diameter frequency distribution can be varied by altering the hole diameter, the number of holes, or the inlet pressure. We will present a systematic study of the effect of these three parameters on the resultant particle distribution as it leaves the Laskin nozzle. The study was repeated for cases where the particles moved through a typical jet facility before their size was measured. While the jet facility resulted in an elimination of larger particles, the average particle diameter could be varied by a factor of two at both the seeder exit and downstream of the jet facility.
NASA Technical Reports Server (NTRS)
Lanfranco, M. J.; Sparks, V. W.; Kavanaugh, A. T.
1973-01-01
An experimental investigation was conducted in a 9- by 7-foot supersonic wind tunnel to determine the effect of plume-induced flow separation and aspiration effects due to operation of both the orbiter and the solid rocket motors on a 0.019-scale model of the launch configuration of the space shuttle vehicle. Longitudinal and lateral-directional stability data were obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes exiting from the engines were simulated by a cold gas jet supplied by an auxiliary 200 atmosphere air supply system, and by solid body plume simulators. Comparisons of the aerodynamic effects produced by these two simulation procedures are presented. The data indicate that the parameters most significantly affected by the jet plumes are the pitching moment, the elevon control effectiveness, the axial force, and the orbiter wing loads.
Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization
NASA Astrophysics Data System (ADS)
Adhikari, Sam
2007-11-01
Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.
Shape memory alloy actuation for a variable area fan nozzle
NASA Astrophysics Data System (ADS)
Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.
2001-06-01
The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.
Experimental Investigation of Reynolds Number Effects on Test Quality in a Hypersonic Expansion Tube
NASA Astrophysics Data System (ADS)
Rossmann, Tobias; Devin, Alyssa; Shi, Wen; Verhoog, Charles
2017-11-01
Reynolds number effects on test time and the temporal and spatial flow quality in a hypersonic expansion tube are explored using high-speed pressure, infrared optical, and Schlieren imaging measurements. Boundary layer models for shock tube flows are fairly well established to assist in the determination of test time and flow dimensions at typical high enthalpy test conditions. However, the application of these models needs to be more fully explored due to the unsteady expansion of turbulent boundary layers and contact regions separating dissimilar gasses present in expansion tube flows. Additionally, expansion tubes rely on the development of a steady jet with a large enough core-flow region at the exit of the acceleration tube to create a constant velocity region inside of the test section. High-speed measurements of pressure and Mach number at several locations within the expansion tube allow for the determination of an experimental x-t diagram. The comparison of the experimentally determined x-t diagram to theoretical highlights the Reynolds number dependent effects on expansion tube. Additionally, spatially resolved measurements of the Reynolds number dependent, steady core-flow in the expansion tube viewing section are shown. NSF MRI CBET #1531475, Lafayette College, McCutcheon Foundation.
The Effect of Impingement on Transitional Behavior in Underexpanded Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.
2009-01-01
An investigation into the development of flow unsteadiness in impinging axisymmetric underexpanded jets has been conducted at NASA Langley Research Center. The study has examined the effect of an impingement target placed at various distances and angles on transitional behavior of such jets. Two nozzles, with exit Mach numbers of 1.0 and 2.6, were used in this investigation. Planar laser-induced fluorescence of nitric oxide (NO PLIF) has been used to identify flow unsteadiness and to image transitional and turbulent flow features. Measurements of the location of the onset of various degrees of unsteady flow behavior have been made using these PLIF images. Both qualitative and quantitative comparisons are presented to demonstrate the observed effects of impingement and flow parameters on the process of the transition to turbulence. The presence of the impingement target was found to significantly shorten the distance to transition to turbulence by up to a factor of approximately three, with closer targets resulting in slightly shorter distance to transition and turbulence. The location at which the flow first exhibits unsteadiness was found to have a strong dependence on the presence and location of key flow structures. This paper presents quantitative results on transition criteria for free and impinging jets.
The Hydrodynamics of Needle-Free Intradermal Jet Injection
NASA Astrophysics Data System (ADS)
Simmons, Jonathan; Marston, Jeremy; Fisher, Paul; Broderick, Kate
2017-11-01
Needle-free methods of drug delivery circumvent the drawbacks associated with the use of hypodermic needles such as needle-stick injuries, needle-phobia, cross contamination and disposal. Furthermore, pioneering DNA-based vaccines that aim to treat cancer and fight infectious diseases, such as HIV, Ebola and Zika, require precise deposition into the skin to target the immune response producing cells found only in the epidermis and dermis. Intradermal (ID) delivery can be achieved using a needle and the Mantoux technique but this requires a highly skilled technician and so extensive use of DNA vaccines calls for an alternative method of delivery. One option is jet injection which has been employed in mass vaccination programs for intramuscular or subcutaneous delivery and is used by some diabetic patients to inject insulin. In this talk I will present results from our ongoing ex-vivo experimental study into ID jet injection. Ultra-high-speed imaging is used to visualize the process of the jet exiting the nozzle and striking excised skin. A skin bleb grows as liquid is deposited within the skin. I will discuss how the control parameters, such as the rheological profile of the liquid and the stand-off distance, influence the volume of liquid successfully delivered intradermally.
On plane submerged laminar jets
NASA Astrophysics Data System (ADS)
Coenen, Wilfried; Sanchez, Antonio L.
2016-11-01
We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α <129o in a limited range of Reynolds numbers 0 <=Re <=Rec (α) (e.g. Rec = 1 . 43 for α = π / 2). It is reasoned that an alternative solution, driven by a fraction of the momentum flux of the feed stream, may also exist for all values of Re and α, including a near-centerline Bickley jet, a surrounding Taylor potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.
Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.
2009-01-01
Despite widespread interest in combining lab-on-a-chip technologies with mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact for the stable cone-jet electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of a small Taylor cone at the channel exit ensures sub-nL post-column dead volumes. Cone-jet mode electrospray was demonstrated for up to 90% aqueous solutions and for extended durations. Comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, but stable cone-jet mode electrosprays could be established over a far broader range of flow rates (from 50-1000 nL/min) and applied potentials using the microchip emitters. This attribute of the microchip emitter should simplify electrospray optimization and make the stable electrospray more resistant to external perturbations. PMID:18419138
Acoustic Measurements of Rectangular Nozzles with Bevel
NASA Technical Reports Server (NTRS)
Bridges, James E.
2012-01-01
A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.
NASA Astrophysics Data System (ADS)
Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.
2015-08-01
The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.
NASA Astrophysics Data System (ADS)
Borg, A.; Bolinder, J.; Fuchs, L.
The main purpose of this work is to develop a method for simultaneous measurement of velocity and passive scalar concentration by means of digital particle image velocimetry and planar laser-induced fluorescence. Details of the implementation of the method are given, and the technique is applied to measurements of concentration and velocity in the centre-plane of a liquid jet with a Reynolds number of 6,000. The measurements are compared with large eddy simulations. Mean velocities and concentrations, fluctuating velocities and concentrations, and correlation between fluctuating velocities and concentrations are analysed for the first six diameters downstream of the jet exit. The general agreement between measured and simulated results was found to be good, in particular for mean quantities. Mean profiles are also found to be in good agreement with other experimental work on jets reported in the literature. The ``whole-plane'' measurement method was found to be very useful for detailed comparisons of turbulent statistics with simulated data. The inadequacy of models for turbulent mass transport based on the standard gradient diffusion concept is demonstrated through the experimental data.
Upper-surface-blowing flow-turning performance
NASA Technical Reports Server (NTRS)
Sleeman, W. C., Jr.; Phelps, A. E., III
1976-01-01
Jet exhaust flow-turning characteristics were determined for systematic variations in upper-surface blowing exhaust nozzles and trailing-edge flap configuration variables from experimental wind-off (static) flow studies. For conditions with parallel flow exhausting from the nozzle, jet height (as indicated by nozzle exit height) and flap radius were found to be the most important parameters relating to flow turning. Nonparallel flow from the nozzle, as obtained from an internal roof angle and/or side spread angle, had a large favorable effect on flow turning. Comparisons made between static turning results and wind tunnel aerodynamic studies of identical configurations indicated that static flow-turning results can be indicative of wind-on powered lift performance for both good and poor nozzle-flap combinations but, for marginal designs, can lead to overly optimistic assessment of powered lift potential.
Study of aircraft crashworthiness for fire protection
NASA Technical Reports Server (NTRS)
Cominsky, A.
1981-01-01
Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.
NASA Technical Reports Server (NTRS)
Scallion, William I.
1991-01-01
The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.
NASA Technical Reports Server (NTRS)
Dippold, Vance F. III; Friedlander, David
2017-01-01
Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of turbulent kinetic energy in the vicinity of the nozzle exit. When viewed with the understanding that jet noise is directly related to turbulent kinetic energy, these IVP nozzle simulations show the potential to reduce noise to observers located below the nozzle. However, these RANS simulations also show that some modifications may be needed to prevent the small region of separated flow-induced turbulent kinetic energy from the inner stream nozzle splitter at Sideline conditions.
A Study of Wall Jets and Tangentially Blown Wings
1981-07-01
Blowing coefficient C Chapman’constant CFF Far field constant CL Lift coefficient SCp Pressure coefficient D Reduced exit height E Normalized stagnation...that the wave interactiop zone there is (6(4/ 3 ). 74 C3471A/jos Oil % Rockwell International Science Cenier SC5055.21FR TABLE 4 - PARAMETRIC SUIMMY OF...34Analysis of Embedded Shock Waves Calculated by Relaxation Methods," Proc. Computational Fluid Dynamics Conference, Palm Springs, Calif., July 19-20, 1973, pp
Modeling and Prediction of the Noise from Non-Axisymmetric Jets
NASA Technical Reports Server (NTRS)
Leib, Stewart J.
2014-01-01
The new source model was combined with the original sound propagation model developed for rectangular jets to produce a new version of the rectangular jet noise prediction code. This code was validated using a set of rectangular nozzles whose geometries were specified by NASA. Nozzles of aspect ratios two, four and eight were studied at jet exit Mach numbers of 0.5, 0.7 and 0.9, for a total of nine cases. Reynolds-averaged Navier-Stokes solutions for these jets were provided to the contactor for use as input to the code. Quantitative comparisons of the predicted azimuthal and polar directivity of the acoustic spectrum were made with experimental data provided by NASA. The results of these comparisons, along with a documentation of the propagation and source models, were reported in a journal article publication (Ref. 4). The complete set of computer codes and computational modules that make up the prediction scheme, along with a user's guide describing their use and example test cases, was provided to NASA as a deliverable of this task. The use of conformal mapping, along with simplified modeling of the mean flow field, for noise propagation modeling was explored for other nozzle geometries, to support the task milestone of developing methods which are applicable to other geometries and flow conditions of interest to NASA. A model to represent twin round jets using this approach was formulated and implemented. A general approach to solving the equations governing sound propagation in a locally parallel nonaxisymmetric jet was developed and implemented, in aid of the tasks and milestones charged with selecting more exact numerical methods for modeling sound propagation, and developing methods that have application to other nozzle geometries. The method is based on expansion of both the mean-flowdependent coefficients in the governing equation and the Green's function in series of orthogonal functions. The method was coded and tested on two analytically prescribed mean flows which were meant to represent noise reduction concepts being considered by NASA. Testing (Ref. 5) showed that the method was feasible for the types of mean flows of interest in jet noise applications. Subsequently, this method was further developed to allow use of mean flow profiles obtained from a Reynolds-averaged Navier-Stokes (RANS) solution of the flow. Preliminary testing of the generalized code was among the last tasks completed under this contract. The stringent noise-reduction goals of NASA's Fundamental Aeronautics Program suggest that, in addition to potentially complex exhaust nozzle geometries, next generation aircraft will also involve tighter integration of the engine with the airframe. Therefore, noise generated and propagated by jet flows in the vicinity of solid surfaces is expected to be quite significant, and reduced-order noise prediction tools will be needed that can deal with such geometries. One important source of noise is that generated by the interaction of a turbulent jet with the edge of a solid surface (edge noise). Such noise is generated, for example, by the passing of the engine exhaust over a shielding surface, such as a wing. Work under this task supported an effort to develop a RANS-based prediction code for edge noise based on an extension of the classical Rapid Distortion Theory (RDT) to transversely sheared base flows (Refs. 6 and 7). The RDT-based theoretical analysis was applied to the generic problem of a turbulent jet interacting with the trailing edge of a flat plate. A code was written to evaluate the formula derived for the spectrum of the noise produced by this interaction and results were compared with data taken at NASA Glenn for a variety of jet/plate configurations and flow conditions (Ref. 8). A longer-term goal of this task was to work toward the development of a high-fidelity model of sound propagation in spatially developing non-axisymmetric jets using direct numerical methods for solving the relevant equations. Working with NASA Glenn Acoustics Branch personnel, numerical methods and boundary conditions appropriate for use in a high-resolution calculation of the full equations governing sound propagation in a steady base flow were identified. Computer codes were then written (by NASA) and tested (by OAI) for an increasingly complex set of flow conditions to validate the methods. The NASA-supplied codes were ported to the High-End Computing resources of the NASA Advanced Supercomputing facility for testing and validation against analytical (where possible) and independent numerical solutions. The cases which were completed during the course of this contract were solutions of the two-dimensional linearized Euler equations with no mean flow, a uniform mean flow and a nonuniform mean flow representative of a parallel flow jet.
Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.
2004-01-01
Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.
Turbulent swirling jets with excitation
NASA Technical Reports Server (NTRS)
Taghavi, Rahmat; Farokhi, Saeed
1988-01-01
An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.
Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Koklu, Mehti
2016-01-01
Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.
Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct
NASA Technical Reports Server (NTRS)
Holdeman, James D. (Technical Monitor); Oechsle, Victor L.
2003-01-01
Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.
Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements
NASA Technical Reports Server (NTRS)
Tedder, Sarah Augusta Umberger
2010-01-01
Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.
2016-01-01
This paper presents results from tests in a flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include combustion efficiency from gaseous emission measurements, 2D planar laser-based imaging as well as basic flow visualization of the flame. Four inlet test conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics Project and Environmentally Responsible Aviation Program. One inlet condition was a pilot-only test point. The other three inlet conditions incorporated fuel staging via a split between the pilot and main circuits of either 10%/90% or 20%/80%. For each engine power condition, three fuel mixes were used: 100% JP-8; 100% alternative; and a blend of the two, containing 75% alternative. Results for the inlet cases that have fuel split between pilot and main, indicate that fuel from the pilot appears to be evaporated by the time it reaches the dome exit. Main circuit liquid evaporates within a downstream distance equal to annulus height, no matter the fuel. Some fuel fluorescence images for a 10%/90% fuel staging case show a distinct difference between JP-8 and bio-derived fuel. OH PLIF results indicate that OH forms in a region more centrally-located for the JP-8 case downstream of the pilot, in its central recirculation region (CRZ). For the bio-derived Hydrotreated Renewable Jet (HRJ) fuel, however, we do not see much OH in the CRZ. The OH image structure near the dome exit is similar for the two fuels, but farther downstream the OH in the CRZ is much more apparent for the JP-8 than for the alternate fuel. For all conditions, there was no discernable difference between fuel types in combustion efficiency or emissions.
Convair XF-102 Model in the 8- by 6-Foot Supersonic Wind Tunnel
1953-08-21
A .10-scale model of Convair’s XF-102 in the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory for jet exit studies. The XF-102 was a prototype of the F-102 Delta Dagger. The F-102 served as an interceptor against long range bombers from the Soviet Union. The aircraft was powered by a Pratt and Whitney J57 turbojet. The first prototype crashed two weeks after is first flight on October 24, 1953, just months after this photograph. Engineers then incorporated the fixed-wing design to reduce drag at supersonic speeds. The production model F-102 became the first delta-wing supersonic aircraft in operation. The 8- by 6-Foot Supersonic Wind Tunnel is used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0.
NASA Astrophysics Data System (ADS)
Gladden, H. J.; Proctor, M. P.
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Proctor, M. P.
1985-01-01
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
Computational Investigation of Fluidic Counterflow Thrust Vectoring
NASA Technical Reports Server (NTRS)
Hunter, Craig A.; Deere, Karen A.
1999-01-01
A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.
The Sharav Cyclone: Observations and some theoretical considerations
NASA Astrophysics Data System (ADS)
Alpert, P.; Ziv, B.
1989-12-01
A special study of the Sharav Cyclones indicates that they are the result of large-scale weak baroclinicity, enhanced by vigorous boundary-layer baroclinicity between the North African coast and the Mediterranean. It is illustrated how the jet stream plays a major role in the vertical circulation in producing a complex cyclonic circulation dominated by at least three mechanisms: large-scale interior baroclinicity, boundary-layer baroclinicity, and jet stream related circulations. The main characteristics of the Sharav Cyclone (also called the Saharan Depression or Khamsin Depression) in the Mediterranean are reviewed. Unlike the cold winter cyclone, the Sharav Cyclone is a spring cyclone. Its tracks lie mainly along the North African coast and turn to the north near the southeastern Mediterranean. Its warm front is active and is sometimes associated with extremely high surface temperatures. Its cold front is shallow. The Sharav Cyclone moves eastward relatively fast, typically faster than 10 m s-1, and with a small speed variability. In general, there is an upper level trough to the west of the surface low and the surface horizontal scale is of the order of 500-1000 km. Finally, it is frequently associated with heavy dust/sand storms and low visibilities. Some of these features are illustrated in a case study of the April 28-30, 1986, cyclone. Vertical cross sections indicate a deep circulation associated with the exit region of an upper level jet. In addition to presenting evidence that the Sharav Cyclone is a deep tropospheric circulation, it is shown that the transverse indirect circulation at the exit region of the jet is a major component of its circulation. The classic two-level baroclinic model (Phillips, 1954) is applied. The effects of the major diabatic heating due to the sensible heat flux above the North African desert and the large north to south temperature gradients are incorporated through the thermal wind of the basic state. The model predicts the fast eastward motion, the relatively smaller horizontal scale and the fast growth rate. Furthermore, the model predicts an annual maximum growth rate in April and a secondary peak in October, which agrees with the frequency of occurrences of the Sharav Cyclones.
Axial vane-type swirler performance characteristics. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sander, G. F.
1983-01-01
The performance of an axial vane-type swirler was investigated to aid in computer modeling of gas turbine combustor flowfields and in evaluation of turbulence models for swirling confined jet flow. The swirler studied is annular with a hub-to-swirler diameter ratio of 0.25 and ten adjustable vanes of pitch-to-chord ratio 0.68. Measurements of time-mean axial, radial, and tangential velocities were made at the swirler exit plane using a five-hole pitot probe technique with computer data reduction. Nondimensionalized velocities from both radial and azimuthal traverses are tabulated and plotted for a range of swirl vane angles phi from 0 to 70 degrees. A study was done of idealized exit-plane velocity profiles relating the swirl numbers S and S' to the ratio of maximum swirl and axial velocities for each idealized case, and comparing the idealized swirl numbers with ones calculated from measured profiles.
Exit Exams, High-Stakes Testing, and Students with Disabilities: A Persistent Challenge
ERIC Educational Resources Information Center
Yell, Mitchell L.; Katsiyannis, Antonis; Collins, James C.; Losinski, Mickey
2012-01-01
The demands for accountability in education have led to an increase in high-stakes testing practices in public schools. Accountability can be seen at the high school level in the use of exit examinations (hereafter "exit exams") that students must pass to receive a diploma and graduate from high school. One of the most challenging issues…
Numerical Experiments of Counterflowiing Jet Effects on Supersonic Slender-Body Configurations
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Mullane, Michael; Cheng, Gary C.; Chang, Chau-Lyan
2015-01-01
Previous studies have demonstrated that the use of counterflowing jets can greatly reduce the drag and heat loads on blunt-body geometries, especially when the long penetration mode jet condition can be established. Previously, the authors had done some preliminary numerical studies to determine the ability to establish long penetration mode jets on a typical Mach 1.6 slender configuration, and study its impact on the boom signature. The results indicated that a jet with a longer penetration length was required to achieve any impact on the boom signature of a typical Mach 1.6 slender configuration. This paper focuses on an in-depth parametric study, done using the space-time conservation element solution element Navier-Stokes flow solver, for investigating the effect of various counterflowing jet conditions/configurations on two supersonic slender-body models (cone-cylinder and quartic body of revolution). The study is aimed at gaining a better understanding of the relationship between the shock penetration length and reduction of drag and boom signature for these two supersonic slender-body configurations. Different jet flow rates, Mach numbers, nozzle jet exit diameters and jet-to-base diameter ratios were examined. The results show the characteristics of a short-to-long-to-short penetration-mode pattern with the increase of jet mass flow rates, observed across various counterflowing jet nozzle configurations. Though the optimal shock penetration length for potential boom-signature mitigation is tied to the long penetration mode, it often results in a very unsteady flow and leads to large oscillations of surface pressure and drag. Furthermore, depending on the geometry of the slender body, longer jet penetration did not always result in maximum drag reduction. For the quartic geometry, the maximum drag reduction corresponds well to the longest shock penetration length, while this was not the case for the cone-cylinder-as the geometry was already optimized for drag. Numerical results and assessments obtained from this parametric study along with the recommendation for future implementation of counterflowing jets as a means for drag and noise reduction are detailed in this paper.
Numerical Study Comparing RANS and LES Approaches on a Circulation Control Airfoil
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Nishino, Takafumi
2011-01-01
A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.
Spray Formation from a Charged Liquid Jet of a Dielectric Fluid
NASA Astrophysics Data System (ADS)
Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team
2017-11-01
Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.
The Effects of Acoustic Treatment on Pressure Disturbances From a Supersonic Jet in a Circular Duct
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
1996-01-01
The pressure disturbances generated by an instability wave in the shear layer of a supersonic jet are studied for an axisymmetric jet inside a lined circular duct. For the supersonic jet, locally linear stability analysis with duct wall boundary conditions is used to calculate the eigenvalues and the eigenfunctions at each axial location. These values are used to determine the growth rates and phase velocities of the instability waves and the near field pressure disturbance patterns. The study is confined to the dominant Kelvin-Helmholtz instability mode and to the region just downstream of the nozzle exit where the shear layer is growing but is still small in size compared to the radius of the duct. Numerical results are used to study the effects of changes in the outer flow, growth in the shear layer thickness, wall distance, and wall impedance, and the effects of these changes on non-axisymmetric modes. The primary results indicate that the effects of the duct wall on stability characteristics diminish as the outer flow increases and as the jet azimuthal mode number increases. Also, wall reflections are reduced when using a finite impedance boundary condition at the wall; but in addition, reflections are reduced and growth rates diminished by keeping the imaginary part of the impedance negative when using the negative exponential for the harmonic dependence.
NASA Astrophysics Data System (ADS)
Jiang, C.; Carter, C.
2014-12-01
Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.
1977-04-01
Conductivity ...... . .i 6 Relief Map of Conductivity ......... i9 7a conductivity versus Axial Position with Radial Position a a Parater...concentrations ii. pressure iii. temperature iv. velocity v. snie, number and velocity distribuions of the liquid particlas (if any are to be considered) I vi...Number = 1 vi. J• velocity = 8644 fps; Edge velocity = 10 fps vii. Jet temperature = 21160 K; Edge temperature = 278*K Also, at the exit piane, the
The Schladitz Fuel Injector: An Initial Performance Evaluation without Burning.
1982-03-01
same heating rate in the absence of the exit nozzle. Stated alternatively , the presence of the downstream nozzle reduced the required heat addition...rate by about one-third for formation of a spray having 50% or more mist content. It was further noted that this heating rate reduction was essentially...plot for Jet-A fuel suggests that the creation of a fine mist by the SFI in the absence of any downstream nozzle is accompanied by the formation of a
NASA Technical Reports Server (NTRS)
Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)
2013-01-01
A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.
Properties of Laser Ablation Products of Delrin with CO2 Laser
2004-07-01
was then measured with the fast detector. Optical observation in air shows that a jet of luminous gas exits the hole to the rear side of the 16 probe...g) Ab la te Pressure (mbar) Diagramm 12 Ablated mass per pulse at a pulse energy of 280 J vs. pressure 34 independent of the metal...m itt ed P ul se (µ s) Incident Laser Pulse Energy (J) Diagramm 32 Pulse duration shortening effect with incident pulse energy in tr
Credit PSR. This interior view shows the vacuum tumble dryer. ...
Credit PSR. This interior view shows the vacuum tumble dryer. The tumble dryer is lined with a water jacket to maintain temperature during the drying of ammonium perchlorate ("AP"); water enters and exits the dryer jacket through the pipe fittings along the horizontal center line of the dryer. The wall at the right is constructed to blow out in the event of an explosion - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Building, Edwards Air Force Base, Boron, Kern County, CA
Controlled overspray spray nozzle
NASA Technical Reports Server (NTRS)
Prasthofer, W. P. (Inventor)
1981-01-01
A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.
ETR WASTE GAS EXITED THE ETR COMPLEX FROM THE NORTH ...
ETR WASTE GAS EXITED THE ETR COMPLEX FROM THE NORTH SIDE THROUGH A TUNNEL AND THEN TO A FILTER PIT. TUNNEL EXIT IS UNDER CONSTRUCTION WHILE CONTROL BUILDING IS BEING FORMED BEYOND. CAMERA FACING WEST. INL NEGATIVE NO. 56-1238. Jack L. Anderson, Photographer, 4/17/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ERIC Educational Resources Information Center
Holme, Jennifer Jellison
2013-01-01
Background: Over the past several decades, a significant number of states have either adopted or increased high school exit examination requirements. Although these policies are intended to generate improvement in schools, little is known about how high schools are responding to exit testing pressures. Purpose: This study examined how five…
NASA Astrophysics Data System (ADS)
Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai
2015-12-01
In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.
Study of interfaces in an Axisymmetric Supersonic Jet using Background Oriented Schlieren (BOS)
NASA Astrophysics Data System (ADS)
Echeverría, Carlos; Porta, David; Aguayo, Alejandro; Cardoso, Hiroki; Stern, Catalina
2014-11-01
We have used several techniques to study a small axisymmetric supersonic jet: Rayleigh scattering, Schlieren Toepler and PIV. Each technique gives different kind of information. In this paper, a BOS set-up is used to study the structure of the shock pattern. A shadowgraph of a dot matrix is obtained with and without a flow. The displacement field of the dots is related to changes in the index of refraction, which can be related, through the Gladstone-Dale equation, to changes in density. Previous results with this technique were not conclusive because of the relative size of the dots compared to the diameter of the nozzle. Measurements have been taken for three different exit speeds. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.
Impact of a standardized test package on exit examination scores and NCLEX-RN outcomes.
Homard, Catherine M
2013-03-01
The purpose of this ex post facto correlational study was to compare exit examination scores and NCLEX-RN(®) pass rates of baccalaureate nursing students who differed in level of participation in a standardized test package. Three cohort groups emerged as a standardized test package was introduced: (a) students who did not participate in a standardized test package; (b) students with two semesters of a standardized test package; and (c) students with four semesters of a standardized test package. Benner's novice-to-expert theory framed the study in the belief that students best acquire knowledge and skills through practice and reflection. Students participating in four semesters of a standardized test package demonstrated higher exit examination scores and NCLEX-RN pass rates compared with students who did not participate in this package. This study's results could inform nurse educators about strategies to facilitate nursing student success on exit examinations and the NCLEX-RN. Copyright 2013, SLACK Incorporated.
Test equipment data package for the KC-135 fiber pulling apparatus
NASA Technical Reports Server (NTRS)
Kosten, Sue; Smith, Guy A.; Workman, Gary; Tucker, Dennis
1991-01-01
The Fiber Pulling Apparatus (FPA) is a device designed to produce continuous glass fibers from simulated lunar soil, and to determine the effects of reduced gravity, specifically 1/6 g on fiber formation and resultant properties. Briefly, pre-melt simulated lunar soil will be placed in a pint crucible and heated to 1200 C or higher, up to a maximum temperature of 1400 C. At a given temperature, a quartz fiber will be immersed into the melt and then pulled through a chill block and wound onto a cylindrical bobbin using a servo motor control. A high resolution video camera will record the fiber as it is being pulled. This assembly wil be enclosed in Plexiglas. Before fiber pulling commences, the apparatus will be backfilled with dry nitrogen. A separate data acquisition system will support this apparatus. This system will contain a personal computer, video recorder, and monitor. Temperature, acceleration, winding speed, and video images will be controlled and recorded using the data acquisition system. Thus, the FPA will consist of two hardware packages, the fiber production assembly and the data acquisition rack. The primary objective of this test is to determine the effects of 1/6 g on the formation of continuous glass fiber made from simulated lunar soil. Baseline studies using the FPA on the ground will provide a reference for the 1/6 g studies. Of particular interest will be the effect of 1/6 g on the free fluid zone where the fiber exits the crucible. In the fiber spinning parlance this zone is known as the upper jet region, where the boundary slope is greater than one tenth. The properties of the resulting glass fiber will depend on the jet shape as well as distributions of velocity, temperature and tension within the jet. It is unknown at this time how 1/6 g will effect these parameters.
Effects of Fuel Preheat on Soot Formation in Microgravity Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
Konsur, Bogdan; Megaridis, Constantine M.; Griffin, DeVon W.
1997-01-01
Nonbuoyant flames offer themselves as an attractive and promising platform to gain a better understanding of soot mechanisms. The effects of buoyancy can be eliminated temporarily in drop towers which sustain brief intervals of reduced gravity-typically lower than 10(exp -3)g- extending up to several seconds at a time. Microgravity facilities have been employed to show that nonbuoyant flames are longer, wider and sootier than their normal-gravity counterparts. Sunderland et al. recently verified the existence of smoke point in laminar nonbuoyant flames. As reported, microgravity flames operating above their smoke point displayed a blunt tip and much broader soot-containing regimes in comparison to their buoyant counterparts. Mortazavi et al. established that residence times in microgravity laminar jet diffusion flames with Re=0(100) tend to be proportional to burner diameter and inversely proportional to burner exit velocity. This offers the capability to alter residence times in nonbuoyant laminar jet diffusion flames when varying the burner exit diameters and velocities. Megaridis et al. presented a quantitative definition of the soot-field structure within laminar microgravity jet diffusion flames which operated well above their smoke point. The experimental methodology involved a full-field laser-light extinction technique and jet diffusion flames of nitrogen-diluted (50% vol.) acetylene fuel burning in quiescent air at atmospheric pressure. The work was conducted at the 2.2s drop tower of the NASA Lewis Research Center (NASA-LeRC). Parallel work on 1-g flames was also presented in (6) to facilitate comparisons on the effect of gravity on the soot fields. As reported, the soot spatial distributions in 0-g flames did not change in a detectable manner after 1s within a typical 2.2s experiment. During that period, the soot field was shown to sustain a pronounced annular structure throughout the luminous nonbuoyant-flame zone. The maximum soot volume fraction measured at 0-g was nearly a factor of two higher than that at 1-g, thus confirming the enhanced sooting tendency of nonbuoyant flames. Greenberg and Ku presented a similar study and reported trends that matched those of for the 50% (vol.) nitrogen-diluted acetylene fuel. Furthermore, they examined pure acetylene flames and reported similar trends with respect to the influence of gravity on maximum soot volume fractions and flame cross-section-averaged soot loadings. Both studies clearly demonstrated the improved spatial resolution of microgravity flames compared to their normal-gravity counterparts. The current study evaluates the influence of moderate fuel preheat on soot formation within 0-g laminar gas jet diffusion flames. While fuel temperature variations have little influence on residence times in 1-g, they have a much more significant effect in 0-g. The primary objective of this program is to quantify this effect and its consequences on sooting by comparing soot volume fraction distributions under preheated and unpreheated-fuel conditions. Furthermore, the current work aims at expanding the limited soot database available for nonbuoyant flames. Soot fields in such flames can be used to perform additional tests of recently developed soot sub-models which have the potential to become powerful predicting tools in combustion design.
Refraction of Sound Emitted Near Solid Boundaries from a Sheared Jet
NASA Technical Reports Server (NTRS)
Dill, Loren H.; Oyedrian, Ayo A.; Krejsa, Eugene A.
1998-01-01
A mathematical model is developed to describe the sound emitted from an arbitrary point within a turbulent flow near solid boundaries. A unidirectional, transversely sheared mean flow is assumed, and the cross-section of the cold jet is of arbitrary shape. The analysis begins with Lilley's formulation of aerodynamic noise and, depending upon the specific model of turbulence used, leads via Fourier analysis to an expression for the spectral density of the intensity of the far-field sound emitted from a unit volume of turbulence. The expressions require solution of a reduced Green's function of Lilley's equation as well as certain moving axis velocity correlations of the turbulence. Integration over the entire flow field is required in order to predict the sound emitted by the complete flow. Calculations are presented for sound emitted from a plugflow jet exiting a semi-infinite flat duct. Polar plots of the far-field directivity show the dependence upon frequency and source position within the duct. Certain model problems are suggested to investigate the effect of duct termination, duct geometry, and mean flow shear upon the far-field sound.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
The Prediction of Scattered Broadband Shock-Associated Noise
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2015-01-01
A mathematical model is developed for the prediction of scattered broadband shock-associated noise. Model arguments are dependent on the vector Green's function of the linearized Euler equations, steady Reynolds-averaged Navier-Stokes solutions, and the two-point cross-correlation of the equivalent source. The equivalent source is dependent on steady Reynolds-averaged Navier-Stokes solutions of the jet flow, that capture the nozzle geometry and airframe surface. Contours of the time-averaged streamwise velocity component and turbulent kinetic energy are examined with varying airframe position relative to the nozzle exit. Propagation effects are incorporated by approximating the vector Green's function of the linearized Euler equations. This approximation involves the use of ray theory and an assumption that broadband shock-associated noise is relatively unaffected by the refraction of the jet shear layer. A non-dimensional parameter is proposed that quantifies the changes of the broadband shock-associated noise source with varying jet operating condition and airframe position. Scattered broadband shock-associated noise possesses a second set of broadband lobes that are due to the effect of scattering. Presented predictions demonstrate relatively good agreement compared to a wide variety of measurements.
Experimental investigation of turbulent wall jet
NASA Astrophysics Data System (ADS)
Andre, Matthieu A.; Bardet, Philippe M.
2011-11-01
Water jet flowing on a flat plate surrounded by quiescent air constitutes a standard case for the study of the interaction between turbulence and the liquid-air interface. This is of particular interest in the understanding of heat and mass transfers across interfaces. The structure of the surface has a great influence on the rate of the transfers which is critical for chemical processes like separation or absorption; pool-type nuclear reactor; climate modeling etc. This study focuses on high Froude (8 to 12) and Weber (3300 to 7400) numbers at which the surface exhibits small wavelength and large amplitude deformations, such as ligaments, surface break up with air entrainment and droplets projection. The experiment features a high velocity (up to 7.5 m/s) water wall jet (19.05mm thick at the nozzle exit) flowing on a flat plate (Re =105 to 1 . 5 .105). High speed movies and PLIF visualization show the evolution of the surface from smooth to 2D structures, then 3D disturbances as the turbulence arising from the wall interacts with the surface.
NASA Astrophysics Data System (ADS)
Handlos, Zachary J.
Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific jet extends eastward and is associated with an upper tropospheric cyclonic (anticyclonic) anomaly in its left (right) exit region. A downstream ridge is present over northwest Canada, and within the strong EAWM environment, a wavier flow over North America is observed relative to the neutral EAWM environment. Preliminary investigation of the two weak EAWM season superpositions reveals a Kona Low type feature post-superposition. This is associated with anomalous convection reminiscent of an atmospheric river southwest of Mexico.
Formation of X-ray emitting stationary shocks in magnetized protostellar jets
NASA Astrophysics Data System (ADS)
Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.
2016-12-01
Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org
Mixing properties of coaxial jets with large velocity ratios and large inverse density ratios
NASA Astrophysics Data System (ADS)
Alexander Schumaker, S.; Driscoll, James F.
2012-05-01
An experimental study was conducted to better understand the mixing properties of coaxial jets as several parameters were systematically varied, including the velocity ratio, density ratio, and the Reynolds number. Diameters of the inner and outer jet were also varied. Coaxial jets are commonly used to mix fluids due to the simplicity of their geometry and the rapid mixing that they provide. A measure of the overall mixing efficiency is the stoichiometric mixing length (Ls), which is the distance along the jet centerline where the two fluids have mixed to some desired concentration, which was selected to be the stoichiometric concentration for H2/O2 and CH4/O2 in this case. For 56 cases, the profiles of mean mixture fraction, rms mixture fraction fluctuations (unmixedness), and Ls were measured using acetone planar laser induced fluorescence diagnostics. Results were compared to three mixing models. The entrainment model of Villermaux and Rehab showed good agreement with the data, indicating that the proper non-dimensional scaling parameter is the momentum flux ratio M. The work extends the existing database of coaxial jet scalar mixing properties because it considers the specific regime of large values of both the velocity ratio and the inverse density ratio, which is the regime in which rocket injectors operate. Also the work focuses on the mixing up to Ls where previous work focused on the mixing up to the end of the inner core. The Reynolds numbers achieved for a number of cases were considerably larger than previous gas mixing studies, which insures that the jet exit boundary conditions are fully turbulent.
NASA Astrophysics Data System (ADS)
Xue, Xinzhi; Katz, Joseph
2017-11-01
Very little experimental data exits on the flow structure in the near field of a crude oil jet fragmenting in water because of inability to probe dense droplet cloud. Refractive index-matching is applied to overcome this challenge by using silicone oil and sugar water as a surrogate liquid pair. Their density ratio, viscosity ratio, and interfacial tension are closely matched with those of crude oil and seawater. Simultaneous PLIF and PIV measurements are conducted by fluorescently tagging the oil and seeding both phases with particles. With increasing jet Reynolds and Weber numbers, the oil plume breakup occurs closer to the nozzle, the spreading angle of the jet increases, and the droplet sizes decrease. The varying spread rate is attributed to differences in droplet size distributions. The location of primary oil breakup is consistent with the region of high strain rate fluctuations. What one may perceive as oil droplets in opaque fluids actually consists of multi-layers containing water droplets, which sometimes encapsulate smaller oil droplets, creating a ``Russian Doll'' like phenomenon. This system forms as ligaments of oil and water wrap around each other during entrainment. Results include profiles of mean velocity and turbulence parameters along with energy spectra. Gulf of Mexico Research Inititave.
The dynamics of cyclone clustering in re-analysis and a high-resolution climate model
NASA Astrophysics Data System (ADS)
Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len
2017-04-01
Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.
Cavity-actuated supersonic mixing and combustion control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.H.; Schadow, K.C.
1994-11-01
Compressible shear layers in supersonic jets are quite stable and spread very slowly compared with incompressible shear layers. In this paper, a novel use of a cavity-actuated forcing technique is demonstrated for increasing the spreading rate of compressible shear layers. Periodic modulations were applied to Mach 2.0 reacting and nonreacting jets using the cavities that were attached at the exit of a circular supersonic nozzle. The effect of cavity-actuated forcing was studied as a function of the cavity geometry, in particular, the length and the depth of the cavity. When the cavities were tuned to certain frequencies, large-scale highly coherentmore » structures were produced in the shear layers substantially increasing the growth rate. The cavity excitation was successfully applied to both cold and hot supersonic jets. When applied to cold Mach 2.0 air jets. the cavity-actuated forcing increased the spreading rate of the initial shear layers with the convective Mach number (M[sub C]) of 0.85 by a factor of three. For high-temperature Mach 2.0 jets with M[sub C] of 1.4, a 50% increase in the spreading rate was observed with the forcing. Finally, the cavity-actuated forcing was applied to reacting supersonic jets with ethylene-oxygen afterburning. For this case, the forcing caused a 20%--30% reduction in the afterburning flame length and modified the afterburning intensity significantly. The direction of the modification depended on the characteristics of the afterburning flames. The intensity was reduced with forcing for unstable flames with weak afterburning while it was increased for stable flames with strong afterburning.« less
Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight
NASA Technical Reports Server (NTRS)
Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.
2009-01-01
This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible role of facility effects will thus be documented. Although the comparisons that can be accomplished within the limited resources of this task are not comprehensive, they provide a broad enough sampling to enable NASA to make an informed decision on how much further effort should be expended on such comparisons. The improved finalized model is incorporated into the FOOTPR code. MTC has also supported the adaptation of this code for incorporation in NASA s Aircraft Noise Prediction Program (ANOPP).
High-fidelity large eddy simulation for supersonic jet noise prediction
NASA Astrophysics Data System (ADS)
Aikens, Kurt M.
The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the wall model treatment are then utilized to simulate military-style nozzles with and without beveling of the nozzle exit plane. Experiments of beveled converging-diverging nozzles have found reduced noise levels for some observer locations. Predicting the noise for these geometries provides a good initial test of the overall methodology for a more complex nozzle. The jet flowfield and acoustic data are analyzed and compared to similar experiments and excellent agreement is found. Potential areas of improvement are discussed for future research.
NASA Astrophysics Data System (ADS)
Bandaru, Ramarao Venkat
2000-10-01
Flow structure plays an important role in the mixing and chemical reaction processes in turbulent jet diffusion flames, which in turn influence the formation of pollutants. Fundamental studies on pollutant formation have mainly focussed on vertical, straight jet, turbulent flames. However, in many practical combustion systems such as boilers and furnaces, flames of various configurations are used. In the present study, along with vertical straight jet flames, pollutant emissions characteristics of crossflow flames and precessing jet flames are studied. In vertical, straight jet flames, in-flame temperature and NO concentration measurements were made to ascertain the influence of flame radiation on NO x emissions observed in earlier studies. Radiation affects flame temperatures and this is seen in the measured temperature fields in, undiluted and diluted, methane and ethylene flames. Measured NO distribution fields in undiluted methane and ethylene flames inversely correlated with the temperature, and thereby explaining the observed relationship between flame radiation and NO x emissions. Flames in most practical combustion devices have complex mixing characteristics. One such configuration is the crossflow flame, where the flame is subjected to a crossflow stream. The presence of twin counter-rotating vortices in the flames leading to increased entrainment rates and shorter residence times (i.e. shorter flame lengths). The variation of NOx emissions characteristics of crossflow flames from those of straight jet flames depends on the sooting propensity of the fuel used. Additionally, the nearfield region of the flame (i.e., region near the burner exit) has a strong influence on the CO and unburned hydrocarbon emissions, and on the NO2-to-NO x ratios. Another flame configuration used in the present study is the precessing jet flame. In the practical implementation of this unique flame configuration, the fuel jet precesses about the burner axis due to natural fluid mechanical instability occurring inside the burner at a sudden expansion. Studies have shown that these flames emit up to 70% less NOx than straight jet flames. In precessing jet flames, the turbulent mixing scales are several times larger than those of straight jet flames.
Modeling and assessment of civil aircraft evacuation based on finer-grid
NASA Astrophysics Data System (ADS)
Fang, Zhi-Ming; Lv, Wei; Jiang, Li-Xue; Xu, Qing-Feng; Song, Wei-Guo
2016-04-01
Studying civil aircraft emergency evacuation process by using computer model is an effective way. In this study, the evacuation of Airbus A380 is simulated using a Finer-Grid Civil Aircraft Evacuation (FGCAE) model. In this model, the effect of seat area and others on escape process and pedestrian's "hesitation" before leaving exits are considered, and an optimized rule of exit choice is defined. Simulations reproduce typical characteristics of aircraft evacuation, such as the movement synchronization between adjacent pedestrians, route choice and so on, and indicate that evacuation efficiency will be determined by pedestrian's "preference" and "hesitation". Based on the model, an assessment procedure of aircraft evacuation safety is presented. The assessment and comparison with the actual evacuation test demonstrate that the available exit setting of "one exit from each exit pair" used by practical demonstration test is not the worst scenario. The half exits of one end of the cabin are all unavailable is the worst one, that should be paid more attention to, and even be adopted in the certification test. The model and method presented in this study could be useful for assessing, validating and improving the evacuation performance of aircraft.
Pratt and Whitney J57 with a Greatex Nozzle in the Altitude Wind Tunnel
1957-02-21
A Pratt and Whitney J57 engine is tested with a Greatex No.1 nozzle in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. At the time the aircraft industry was preparing to introduce jet airliners to the nation’s airways. The noise produced by the large jet engines, however, posed a considerable problem for communities near airports. The NACA had formed a Special Subcommittee on Aircraft Noise to coordinate research on the issue. Preliminary tests showed that the source of the loudest noise was not the engine itself, but the mixing of the engine’s exhaust with the surrounding air in the atmosphere. The pressures resulting from this turbulence produced sound waves. Lewis researchers undertook a variety of noise-reduction studies involving engine design, throttling procedures, and noise suppressors. One of their first efforts focused on new types of nozzles to mix the exhaust with the surrounding air. The nozzles had a variety of shapes designed to slow down exhaust velocity before it combined with the air and thus decrease the noise. From January to May 1957 a Pratt and Whitney J57 engine was equipped with various shaped nozzles, as seen in this photograph, and run in simulated flight conditions in the Altitude Wind Tunnel. A number of nozzle configurations, including several multi-exit “organ pipe” designs, were created. It was found that the various nozzle types did reduce the noise levels, but they also reduced the aircraft’s thrust.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
NASA Astrophysics Data System (ADS)
Feng, Hua; Olsen, Michael G.; Hill, James C.; Fox, Rodney O.
2007-06-01
Simultaneous velocity and concentration fields in a confined liquid-phase rectangular jet with a Reynolds number based on the hydraulic diameter of 50,000 (or 10,000 based on the velocity difference between streams and the jet exit dimension) and a Schmidt number of 1,250 were obtained by means of a combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system. Data were collected at the jet exit and six further downstream locations. The velocity and concentration field data were analyzed for flow statistics such as turbulent fluxes, turbulent viscosity and diffusivity, and turbulent Schmidt number ( Sc T ). The streamwise turbulent flux was found to be larger than the transverse turbulent flux, and the mean concentration gradient was not aligned with the turbulent flux vector. The average Sc T was found to vary both in streamwise and in cross stream directions and had a mean value around 0.8, a value consistent with the literature. Spatial correlation fields of turbulent fluxes and concentration were then determined. The R u'ϕ' correlation was elliptical in shape with a major axis tilted downward with respect to the streamwise axis, whereas the R v'ϕ' correlation was an ellipse with a major axis aligned with the cross-stream direction. Negative regions of R u'ϕ' were observed in the outer streams, and these negatively correlated regions decayed with downstream distance and finally disappeared altogether. The R ϕ'ϕ' correlation field was found to be an ellipse with the major axis inclined at about 45° with respect to the streamwise direction. Linear stochastic estimation was used to interpret spatial correlation data and to determine conditional flow structures. It is believed that a vortex street formed near the splitter plate is responsible for the negatively correlated region observed in the R u'ϕ' spatial correlations of turbulent fluxes. A positive concentration fluctuation event was observed to correspond to a finger of nearly uniform concentration fluid reaching out into the outer stream, whereas a negative event corresponds to a pocket of nearly uniform fluid being entrained from the outer stream into the center jet region. Large-scale vortical structures were observed in the conditional velocity fields with an elliptical shape and a streamwise major axis. The growth of the structure size increased linearly initially but then grew more slowly as the flow transitioned toward channel flow.
Human Cough as a Two-Stage Jet and Its Role in Particle Transport
Li, Yuguo
2017-01-01
The human cough is a significant vector in the transmission of respiratory diseases in indoor environments. The cough flow is characterized as a two-stage jet; specifically, the starting jet (when the cough starts and flow is released) and interrupted jet (after the source supply is terminated). During the starting-jet stage, the flow rate is a function of time; three temporal profiles of the exit velocity (pulsation, sinusoidal and real-cough) were investigated in this study, and our results showed that the cough flow’s maximum penetration distance was in the range of a 50.6–85.5 opening diameter (D) under our experimental conditions. The real-cough and sinusoidal cases exhibited greater penetration ability than the pulsation cases under the same characteristic Reynolds number (Rec) and normalized cough expired volume (Q/AD, with Q as the cough expired volume and A as the opening area). However, the effects of Rec and Q/AD on the maximum penetration distances proved to be more significant; larger values of Rec and Q/AD reflected cough flows with greater penetration distances. A protocol was developed to scale the particle experiments between the prototype in air, and the model in water. The water tank experiments revealed that although medium and large particles deposit readily, their maximum spread distance is similar to that of small particles. Moreover, the leading vortex plays an important role in enhancing particle transport. PMID:28046084
Adolescents Exiting Homelessness Over Two Years: The Risk Amplification and Abatement Model
Milburn, Norweeta G.; Rice, Eric; Rotheram-Borus, Mary Jane; Mallett, Shelley; Rosenthal, Doreen; Batterham, Phillip; May, Susanne J.; Witkin, Andrea; Duan, Naihua
2014-01-01
The Risk Amplification and Abatement Model (RAAM), demonstrates that negative contact with socializing agents amplify risk, while positive contact abates risk for homeless adolescents. To test this model, the likelihood of exiting homelessness and returning to familial housing at 2 years and stably exiting over time are examined with longitudinal data collected from 183 newly homeless adolescents followed over 2 years in Los Angeles, CA. In support of RAAM, unadjusted odds of exiting at 2 years and stably exiting over2 years revealed that engagement with pro-social peers, maternal social support, and continued school attendance all promoted exiting behaviors. Simultaneously, exposure to family violence and reliance on shelter services discouraged stably exiting behaviors. Implications for family-based interventions are proposed. PMID:25067896
Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.
Hu, Jichao; Chang, Juntao; Bao, Wen
2014-01-01
A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.
Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust
2014-01-01
A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes. PMID:24578655
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Technical Reports Server (NTRS)
Magnotti, Gaetano; Cutler, Andrew D.
2012-01-01
A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
Computational Aeroacoustics: An Overview
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
2003-01-01
An overview of recent advances in computational aeroacoustics (CAA) is presented. CAA algorithms must not be dispersive and dissipative. It should propagate waves supported by the Euler equations with the correct group velocities. Computation domains are inevitably finite in size. To avoid the reflection of acoustic and other outgoing waves at the boundaries of the computation domain, it is required that special boundary conditions be imposed at the boundary region. These boundary conditions either absorb all the outgoing waves without reflection or allow the waves to exit smoothly. High-order schemes, invariably, supports spurious short waves. These spurious waves tend to pollute the numerical solution. They must be selectively damped or filtered out. All these issues and relevant computation methods are briefly reviewed. Jet screech tones are known to have caused structural fatigue in military combat aircrafts. Numerical simulation of the jet screech phenomenon is presented as an example of a successful application of CAA.
Features of the laminar-turbulent transition in supersonic axisymmetric microjets
NASA Astrophysics Data System (ADS)
Maslov, A. A.; Aniskin, V. M.; Mironov, S. G.
2016-10-01
In this paper, a supersonic core length of microjets is studied in terms of laminar-turbulent transition in the microjet mixing layer. Previously, it was discovered that this transition has a determining influence on the supersonic core length. A possibility of simulation of microjet flows is estimated through the use of Reynolds number computed by the nozzle diameter and the nozzle exit gas parameters. These experimental data were obtained using Pitot tube when the jets escaping from the nozzle of 0.6 mm into the low-pressure space. This experiment made it possible to achieve a large jet pressure ratio when the Reynolds number values were low which specify the microjets' behavior. The supersonic core length, phase of the laminar-turbulent transition and flow characteristics in the space are obtained. Such an approach provides simulation of the characteristics of microjets and macrojets, and also explains preliminary proposition and some data obtained for microjets.
NASA Technical Reports Server (NTRS)
Taylor, John G.
1990-01-01
An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.
Data reduction formulas for the 16-foot transonic tunnel: NASA Langley Research Center, revision 2
NASA Technical Reports Server (NTRS)
Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.
1992-01-01
The equations used by the 16-Foot Transonic Wind Tunnel in the data reduction programs are presented in nine modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: (1) tunnel parameters; (2) jet exhaust measurements; (3) skin friction drag; (4) balance loads and model attitudes calculations; (5) internal drag (or exit-flow distribution); (6) pressure coefficients and integrated forces; (7) thrust removal options; (8) turboprop options; and (9) inlet distortion.
Process for Operating a Dual-Mode Combustor
NASA Technical Reports Server (NTRS)
Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)
2017-01-01
A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.
ERIC Educational Resources Information Center
Jia, Yujie
2013-01-01
This study employed Bachman and Palmer's (2010) Assessment Use Argument framework to investigate to what extent the use of a second language oral test as an exit test in a Hong Kong university can be justified. It also aimed to help test developers of this oral test identify the most critical areas in the current test design that might need…
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Trefny, Charles J.; Pack, William D.
1995-01-01
The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.
On factors influencing arc filament plasma actuator performance in control of high speed jets
NASA Astrophysics Data System (ADS)
Hahn, Casey; Kearney-Fischer, Martin; Samimy, Mo
2011-12-01
Localized arc filament plasma actuators (LAFPAs) have been developed and used at The Gas Dynamics and Turbulence Laboratory for the purpose of controlling high-speed and high Reynolds number jets. The ability of LAFPAs for use in both subsonic and supersonic jets has been explored, and experiments to date have shown that these actuators have significant potential for mixing enhancement and noise control applications. While it has been established that the actuators manipulate instabilities of the jet, the exact nature of how the actuation couples to the flow is still unclear. All of the results previously reported have been based on a nozzle extension that has an azimuthal groove of 1 mm width and 0.5 mm depth along the inner surface approximately 1 mm upstream of nozzle extension exit. The ring groove was initially added to shield the plasma arcs from the high-momentum flow. However, the effect of the ring groove on the actuation mechanism is not known. To explore this effect, a new nozzle extension is designed, which relocates the actuators to the nozzle extension face and eliminates the ring groove. Schlieren images, particle image velocimetry and acoustic results of a Mach 0.9 jet of Reynolds number ~6.1 × 105 show similar trends and magnitudes with and without a ring groove. Thus, it is concluded that the ring groove does not play a primary role in the LAFPAs' control mechanism. Furthermore, the effect of the duty cycle of the actuator input pulse on the LAFPAs' control authority is investigated. The results show that the minimum duty cycle that provides complete plasma formation has the largest control over the jet.
Experimental Investigation of Jet Impingement Heat Transfer Using Thermochromic Liquid Crystals
NASA Technical Reports Server (NTRS)
Dempsey, Brian Paul
1997-01-01
Jet impingement cooling of a hypersonic airfoil leading edge is experimentally investigated using thermochromic liquid crystals (TLCS) to measure surface temperature. The experiment uses computer data acquisition with digital imaging of the TLCs to determine heat transfer coefficients during a transient experiment. The data reduction relies on analysis of a coupled transient conduction - convection heat transfer problem that characterizes the experiment. The recovery temperature of the jet is accounted for by running two experiments with different heating rates, thereby generating a second equation that is used to solve for the recovery temperature. The resulting solution requires a complicated numerical iteration that is handled by a computer. Because the computational data reduction method is complex, special attention is paid to error assessment. The error analysis considers random and systematic errors generated by the instrumentation along with errors generated by the approximate nature of the numerical methods. Results of the error analysis show that the experimentally determined heat transfer coefficients are accurate to within 15%. The error analysis also shows that the recovery temperature data may be in error by more than 50%. The results show that the recovery temperature data is only reliable when the recovery temperature of the jet is greater than 5 C, i.e. the jet velocity is in excess of 100 m/s. Parameters that were investigated include nozzle width, distance from the nozzle exit to the airfoil surface, and jet velocity. Heat transfer data is presented in graphical and tabular forms. An engineering analysis of hypersonic airfoil leading edge cooling is performed using the results from these experiments. Several suggestions for the improvement of the experimental technique are discussed.