Sample records for jet fuel hydrocarbons

  1. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  2. The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.

    PubMed

    Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T

    2011-11-01

    Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.

  3. Infrared spectroscopy for the determination of hydrocarbon types in jet fuels

    NASA Technical Reports Server (NTRS)

    Buchar, C. S.

    1981-01-01

    The concentration of hydrocarbon types in conventional jet fuels and synfuels can be measured using a computerized infrared spectrophotometer. The computerized spectrophotometer is calibrated using a fuel of known aromatic and olefinic content. Once calibration is completed, other fuels can be rapidly analyzed using an analytical program built into the computer. The concentration of saturates can be calculated as 100 percent minus the sum of the aromatic and olefinic concentrations. The analysis of a number of jet fuels produced an average standard deviation of 1.76 percent for aromatic types and one of 3.99 percent for olefinic types. Other substances such as oils and organic mixtures can be analyzed for their hydrocarbon content.

  4. Dermal exposure to jet fuel suppresses delayed-type hypersensitivity: a critical role for aromatic hydrocarbons.

    PubMed

    Ramos, Gerardo; Limon-Flores, Alberto Yairh; Ullrich, Stephen E

    2007-12-01

    Dermal exposure to military (JP-8) and/or commercial (Jet-A) jet fuel suppresses cell-mediated immune reactions. Immune regulatory cytokines and biological modifiers, including platelet activating factor (PAF), prostaglandin E(2), and interleukin-10, have been implicated in the pathway of events leading to immune suppression. It is estimated that approximately 260 different hydrocarbons are found in jet fuel, and the exact identity of the active immunotoxic agent(s) is unknown. The recent availability of synthetic jet fuel (S-8), which is refined from natural gas, and is devoid of aromatic hydrocarbons, made it feasible to design experiments to address this problem. Here we tested the hypothesis that the aromatic hydrocarbons present in jet fuel are responsible for immune suppression. We report that applying S-8 to the skin of mice does not upregulate the expression of epidermal cyclooxygenase-2 (COX-2) nor does it induce immune suppression. Adding back a cocktail of seven of the most prevalent aromatic hydrocarbons found in jet fuel (benzene, toluene, ethylbenzene, xylene, 1,2,4-trimethlybenzene, cyclohexylbenzene, and dimethylnaphthalene) to S-8 upregulated epidermal COX-2 expression and suppressed a delayed-type hypersensitivity (DTH) reaction. Injecting PAF receptor antagonists, or a selective cycloozygenase-2 inhibitor into mice treated with S-8 supplemented with the aromatic cocktail, blocked suppression of DTH, similar to data previously reported using JP-8. These findings identify the aromatic hydrocarbons found in jet fuel as the agents responsible for suppressing DTH, in part by the upregulation of COX-2, and the production of immune regulatory factors and cytokines.

  5. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  6. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  7. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    PubMed

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  8. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Thirty-two jet and diesel fuel samples of varying chemical composition and physical properties were prepared from oil shale and coal syncrudes. Hydrocarbon types in these samples were determined by a fluorescent indicator adsorption analysis, and the results from three laboratories are presented and compared. Two methods of rapid high performance liquid chromatography were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  9. Inhibition of jet fuel aliphatic hydrocarbon induced toxicity in human epidermal keratinocytes.

    PubMed

    Inman, A O; Monteiro-Riviere, N A; Riviere, J E

    2008-05-01

    Jet propellant (JP)-8, the primary jet fuel used by the U.S. military, consists of hydrocarbon-rich kerosene base commercial jet fuel (Jet-A) plus additives DC1-4A, Stadis 450 and diethylene glycol monomethyl ether. Human epidermal keratinocytes (HEK) were exposed to JP-8, aliphatic hydrocarbon (HC) fuel S-8 and aliphatic HC pentadecane (penta), tetradecane (tetra), tridecane (tri) and undecane (un) for 5 min. Additional studies were conducted with signal transduction pathway blockers parthenolide (P; 3.0 microm), isohelenin (I; 3.0 microm), SB 203580 (SB; 13.3 microm), substance P (SP; 3.0 microm) and recombinant human IL-10 (rHIL-10; 10 ng ml(-1)). In the absence of inhibitors, JP-8 and to a lesser extent un and S-8, had the greatest toxic effect on cell viability and inflammation suggesting, as least in vitro, that synthetic S-8 fuel is less irritating than the currently used JP-8. Each inhibitor significantly (P < 0.05) decreased HEK viability. DMSO, the vehicle for P, I and SB, had a minimal effect on viability. Overall, IL-8 production was suppressed at least 30% after treatment with each inhibitor. Normalizing data relative to control indicate which inhibitors suppress HC-mediated IL-8 to control levels. P was the most effective inhibitor of IL-8 release; IL-8 was significantly decreased after exposure to un, tri, tetra and penta but significantly increased after JP-8 exposure compared with controls. Inhibitors were not effective in suppressing IL-8 release in JP-8 exposures to control levels. This study shows that inhibiting NF-kappa B, which appears to play a role in cytokine production in HC-exposed HEK in vitro, may reduce the inflammatory effect of HC in vivo. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.

    PubMed

    Tracey, Rebecca; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Skinner, Michael K

    2013-04-01

    Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Hydrocarbons (Jet Fuel JP-8) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations

    PubMed Central

    Tracey, Rebecca; Manikkam, Mohan; Guerrero-Bosagna, Carlos; Skinner, Michael K.

    2012-01-01

    Environmental compounds have been shown to promote epigenetic transgenerational inheritance of disease. The current study was designed to determine if a hydrocarbon mixture involving jet fuel (JP-8) promotes epigenetic transgenerational inheritance of disease. Gestating F0 generation female rats were transiently exposed during the fetal gonadal development period. The direct exposure F1 generation had an increased incidence of kidney abnormalities in both females and males, prostate and pubertal abnormalities in males, and primordial follicle loss and polycystic ovarian disease in females. The first transgenerational generation is the F3 generation, and the jet fuel lineage had an increased incidence of primordial follicle loss and polycystic ovarian disease in females, and obesity in both females and males. Analysis of the jet fuel lineage F3 generation sperm epigenome identified 33 differential DNA methylation regions, termed epimutations. Observations demonstrate hydrocarbons can promote epigenetic transgenerational inheritance of disease and sperm epimutations, potential biomarkers for ancestral exposures. PMID:23453003

  12. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  13. Jet aircraft hydrocarbon fuels technology

    NASA Technical Reports Server (NTRS)

    Longwell, J. P. (Editor)

    1978-01-01

    A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A. The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining, distribution, and aircraft operating costs; combustor liner temperature and emissions studies; and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems.

  14. Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei.

    PubMed

    Tomko, Timothy A; Dunlop, Mary J

    2015-01-01

    Recent metabolic engineering efforts have generated microorganisms that can produce biofuels, including bio-jet fuels, however these fuels are often toxic to cells, limiting production yields. There are natural examples of microorganisms that have evolved mechanisms for tolerating hydrocarbon-rich environments, such as those that thrive near natural oil seeps and in oil-polluted waters. Using genomic DNA from the hydrocarbon-degrading microbe Marinobacter aquaeolei, we constructed a transgenic library that we expressed in Escherichia coli. We exposed cells to inhibitory levels of pinene, a monoterpene that can serve as a jet fuel precursor with chemical properties similar to existing tactical fuels. Using a sequential strategy with a fosmid library followed by a plasmid library, we were able to isolate a region of DNA from the M. aquaeolei genome that conferred pinene tolerance when expressed in E. coli. We determined that a single gene, yceI, was responsible for the tolerance improvements. Overexpression of this gene placed no additional burden on the host. We also tested tolerance to other monoterpenes and showed that yceI selectively improves tolerance. The genomes of hydrocarbon-tolerant microbes represent a rich resource for tolerance engineering. Using a transgenic library, we were able to identify a single gene that improves E. coli's tolerance to the bio-jet fuel precursor pinene.

  15. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.

    PubMed

    Crawford, Jordan T; Shan, Chin Wei; Budsberg, Erik; Morgan, Hannah; Bura, Renata; Gustafson, Rick

    2016-01-01

    Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated. The process uses a hybrid poplar feedstock, which undergoes dilute acid pretreatment and enzymatic hydrolysis. Sugars are fermented to acetic acid, which undergoes conversion to ethyl acetate, ethanol, ethylene, and finally a saturated hydrocarbon end product. An unfermentable lignin stream may be burned for steam and electricity production, or gasified to produce hydrogen. During biofuel production, hydrogen gas is required and may be obtained by various methods including lignin gasification. Both technical and economic aspects of the biorefinery are analyzed, with different hydrogen sources considered including steam reforming of natural gas and gasification of lignin. Cash operating costs for jet fuel production are estimated to range from 0.67 to 0.86 USD L -1 depending on facility capacity. Minimum fuel selling prices with a 15 % discount rate are estimated to range from 1.14 to 1.79 USD L -1 . Capacities of 76, 190, and 380 million liters of jet fuel per year are investigated. Capital investments range from 356 to 1026 million USD. A unique biorefinery is explored to produce a hydrocarbon biofuel with a high yield from bone dry wood of 330 L t -1 . This yield is achieved chiefly due to the use of acetogenic bacteria that do not produce carbon dioxide as a co-product during fermentation. Capital investment is significant in the biorefinery in part because hydrogen is required to produce a fully de-oxygenated fuel. Minimum selling price to achieve reasonable returns on investment is sensitive to capital financing options because of high capital costs. Various strategies, such as producing alternative, intermediate products, are investigated with the intent to reduce risk in building the proposed facility. It appears that producing and selling these

  16. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  17. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  18. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    NASA Astrophysics Data System (ADS)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  19. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  20. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

    PubMed Central

    Fife, Terry D.; Robb, Michael J. A.; Steenerson, Kristen K.; Saha, Kamala C.

    2018-01-01

    We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel. PMID:29867750

  1. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel.

    PubMed

    Fife, Terry D; Robb, Michael J A; Steenerson, Kristen K; Saha, Kamala C

    2018-01-01

    We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3-5 years' duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n -hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

  2. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality.

    PubMed

    Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2014-04-01

    To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled

  4. Deep desulfurization of hydrocarbon fuels

    DOEpatents

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  5. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  6. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  7. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  8. [Analysis of aromatic hydrocarbons in cracking products of jet fuel by comprehensive two-dimensional gas chromatography-mass spectrometry].

    PubMed

    Li, Haijing; Zhang, Xiangwen

    2017-08-08

    As coking precursors, aromatic hydrocarbons have an effect on the cracking stability of fuels. A method for identifying and quantitating aromatics in the supercritical cracking products of jet fuel was established by comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS). The effects of main chromatographic conditions such as initial oven temperature and modulation period on the separation of supercritical cracking products were studied. The method has good separation ability for polycyclic aromatic hydrocarbons (PAH) isomers. A total of 27 aromatics, including monocyclic aromatic hydrocarbons, bicyclic aromatic hydrocarbons, tricyclic aromatic hydrocarbons, tetracyclic aromatic hydrocarbons, etc., were identified based on standard mass spectra, the retention times of standards and literature reports. Moreover, the corresponding quantitative determination was achieved by external standard method of GC×GC-FID. The results showed that the contents of aromatics increased with the increase of gas yield. When gas yield reached 22%, the bicyclic aromatic hydrocarbons began to produce, and their contents increased exponentially with the increase of gas yield. Compared with the traditional GC-MS, the method has better separation and qualitative ability, and can be applied to the separation of complex samples and qualitative and quantitative analyses of cracking products.

  9. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  10. Past, present and emerging toxicity issues for jet fuel.

    PubMed

    Mattie, David R; Sterner, Teresa R

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Past, present and emerging toxicity issues for jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattie, David R., E-mail: david.mattie@wpafb.af.mil; Sterner, Teresa R.

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8more » and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.« less

  12. Chemistry and Transport Properties for Jet Fuel Combustion

    DTIC Science & Technology

    2013-04-01

    AFRL-OSR-VA-TR-2013-0168 Chemistry and Transport Properties for Jet Fuel Combustion Angela Violi University of Michigan...5a. CONTRACT NUMBER (U) Chemistry and Transport Properties for Jet Fuel Combustion 5b. GRANT NUMBER FA9550-09-1-0021 5c...combustors.   Although,  chemical  kinetic  mechanisms  of  hydrocarbons  have  been  widely  studied,  molecular   transport

  13. Biological and health effects of exposure to kerosene-based jet fuels and performance additives.

    PubMed

    Ritchie, Glenn; Still, Kenneth; Rossi, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl

    2003-01-01

    Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over 5 billion gallon of JP-8 by the militaries of the United States and other NATO countries. JP-8, for example, represents the largest single chemical exposure in the U.S. military (2.53 billion gallon in 2000), while Jet A and A-1 are among the most common sources of nonmilitary occupational chemical exposure. Although more recent figures were not available, approximately 4.06 billion gallon of kerosene per se were consumed in the United States in 1990 (IARC, 1992). These exposures may occur repeatedly to raw fuel, vapor phase, aerosol phase, or fuel combustion exhaust by dermal absorption, pulmonary inhalation, or oral ingestion routes. Additionally, the public may be repeatedly exposed to lower levels of jet fuel vapor/aerosol or to fuel combustion products through atmospheric contamination, or to raw fuel constituents by contact with contaminated groundwater or soil. Kerosene-based hydrocarbon fuels are complex mixtures of up to 260+ aliphatic and aromatic hydrocarbon compounds (C(6) -C(17+); possibly 2000+ isomeric forms), including varying concentrations of potential toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes (including polycyclic aromatic hydrocarbons [PAHs], and certain other C(9)-C(12) fractions (i.e., n-propylbenzene, trimethylbenzene isomers). While hydrocarbon fuel exposures occur typically at concentrations below current permissible exposure limits (PELs) for the parent fuel or its constituent chemicals, it is unknown whether additive or synergistic interactions among hydrocarbon constituents, up to six

  14. Effect of in vivo jet fuel exposure on subsequent in vitro dermal absorption of individual aromatic and aliphatic hydrocarbon fuel constituents.

    PubMed

    Muhammad, F; Monteiro-Riviere, N A; Baynes, R E; Riviere, J E

    2005-05-14

    The percutaneous absorption of topically applied jet fuel hydrocarbons (HC) through skin previously exposed to jet fuel has not been investigated, although this exposure scenario is the occupational norm. Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different HC consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-dJP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-dJP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from

  15. Compatibility of elastomers in alternate jet fuels

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  16. Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO(x)/SiO2 catalyst.

    PubMed

    Chen, Fang; Li, Ning; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2015-07-28

    For the first time, jet fuel range C8-C9 aromatic hydrocarbons were synthesized in high carbon yield (∼80%) by the catalytic conversion of isophorone over MoO(x)/SiO2 at atmospheric pressure. A possible reaction pathway was proposed according to the control experiments and the intermediates generated during the reaction.

  17. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  18. Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures

    DTIC Science & Technology

    2016-07-26

    SECURITY CLASSIFICATION OF: The objective of this research is to characterize combustion of high molecular weight hydrocarbon fuels and jet- fuels (in...Unlimited UU UU UU UU 26-07-2016 1-May-2012 30-Apr-2016 Final Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate...Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures (Research Area 1: Mechanical Sciences) Report Title The

  19. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  20. Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    PubMed

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng

    2017-01-01

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons

  1. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE PAGES

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...

    2017-11-09

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  2. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to

  3. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    PubMed

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Effect of fuel density and heating value on ram-jet airplane range

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M

    1952-01-01

    An analytical investigation of the effects of fuel density and heating value on the cruising range of a ram-jet airplane was made. Results indicate that with present-day knowledge of chemical fuels, neither very high nor very low fuel densities have any advantages for long-range flight. Of the fuels investigated, the borohydrides and metallic boron have the greatest range potential. Aluminum and aluminum hydrocarbon slurries were inferior to pure hydrocarbon fuel and boron-hydrocarbon slurries were superior on a range basis. It was concluded that the practical difficulties associated with the use of liquid hydrogen fuel cannot be justified on a range basis.

  5. A review of the neurotoxicity risk of selected hydrocarbon fuels.

    PubMed

    Ritchie, G D; Still, K R; Alexander, W K; Nordholm, A F; Wilson, C L; Rossi, J; Mattie, D R

    2001-01-01

    Over 1.3 million civilian and military personnel are occupationally exposed to hydrocarbon fuels, emphasizing gasoline, jet fuel, diesel fuel, or kerosene. These exposures may occur acutely or chronically to raw fuel, vapor, aerosol, or fuel combustion exhaust by dermal, respiratory inhalation, or oral ingestion routes, and commonly occur concurrently with exposure to other chemicals and stressors. Hydrocarbon fuels are complex mixtures of 150-260+ aliphatic and aromatic hydrocarbon compounds containing varying concentrations of potential neurotoxicants including benzene, n-hexane, toluene, xylenes, naphthalene, and certain n-C9-C12 fractions (n-propylbenzene, trimethylbenzene isomers). Due to their natural petroleum base, the chemical composition of different hydrocarbon fuels is not defined, and the fuels are classified according to broad performance criteria such as flash and boiling points, complicating toxicological comparisons. While hydrocarbon fuel exposures occur typically at concentrations below permissible exposure limits for their constituent chemicals, it is unknown whether additive or synergistic interactions may result in unpredicted neurotoxicity. The inclusion of up to six performance additives in existing fuel formulations presents additional neurotoxicity challenge. Additionally, exposures to hydrocarbon fuels, typically with minimal respiratory or dermal protection, range from weekly fueling of personal automobiles to waist-deep immersion of personnel in raw fuel during maintenance of aircraft fuel tanks. Occupational exposures may occur on a near daily basis for from several months to over 20 yr. A number of published studies have reported acute or persisting neurotoxic effects from acute, subchronic, or chronic exposure of humans or animals to hydrocarbon fuels, or to certain constituent chemicals of these fuels. This review summarizes human and animal studies of hydrocarbon fuel-induced neurotoxicity and neurobehavioral consequences. It is

  6. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  7. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen.

    PubMed

    Zhang, Jingjing; Zhao, Chen

    2015-12-18

    The traditional methodology includes a carbon-chain shortening strategy to produce bio-jet fuel from lipids via a two-stage process with hydrogen. Here, we propose a new solution using a carbon-chain filling strategy to convert C10 terpene and lipids to jet fuel ranged hydrocarbons with aromatic hydrocarbon ingredients in the absence of hydrogen.

  8. Opposed Jet Burner Approach for Characterizing Flameholding Potentials of Hydrocarbon Scramjet Fuels

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Convery, Janet L.; Wilson, Lloyd G.

    2006-01-01

    Opposed Jet Burner (OJB) tools have been used extensively by the authors to measure Flame Strength (FS) extinction limits of laminar H2/N2 air and (recently) hydrocarbon (HC) air Counterflow Diffusion Flames (CFDFs) at one atm. This paper details normalization of FSs of N2- diluted H2 and HC systems to account for effects of fuel composition, temperature, pressure, jet diameter, inflow Reynolds number, and inflow velocity profile (plug, contoured nozzle; and parabolic, straight tube). Normalized results exemplify a sensitive accurate means of validating, globally, reduced chemical kinetic models at approx. 1 atm and the relatively low temperatures approximating the loss of non-premixed idealized flameholding, e.g., in scramjet combustors. Laminar FS is defined locally as maximum air input velocity, U(sub air), that sustains combustion of a counter-jet of g-fuel at extinction. It uniquely characterizes a fuel. And global axial strain rate at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or (sub t)) can be compared directly with computed extinction limits, determined using either a 1-D Navier Stokes stream-function solution, using detailed transport and finite rate chemistry, or (better yet) a detailed 2-D Navier Stokes numerical simulation. The experimental results define an idealized flameholding reactivity scale that shows wide ranging (50 x) normalized FS s for various vaporized-liquid and gaseous HCs, including, in ascending order: JP-10, methane, JP-7, n-heptane, n-butane, propane, ethane, and ethylene. Results from H2 air produce a unique and exceptionally strong flame that agree within approx. 1% of a recent 2-D numerically simulated FS for a 3 mm tube-OJB. Thus we suggest that experimental FS s and/or FS ratios, for various neat and blended HCs w/ and w/o additives, offer accurate global tests of chemical kinetic models at the Ts and Ps of extinction. In conclusion, we argue the FS approach is more direct and fundamental, for

  9. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.

  10. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Mayo, F. R.; Lan, B.; Cotts, D. B.; Buttrill, S. E., Jr.; St.john, G. A.

    1983-01-01

    The oxidation of two jet turbine fuels and some pure hydrocarbons was studied at 130 C with and without the presence of small amounts of N-methyl pyrrole (NMP) or indene. Tendency to form solid-deposit precursors was studied by measuring soluble gum formation as well as dimer and trimer formation using field ionization mass spectrometry. Pure n-dodecane oxidized fastest and gave the smallest amount of procursors. An unstable fuel oil oxidized much slower but formed large amounts of precursors. Stable Jet A fuel oxidized slowest and gave little precursors. Indene either retarded or accelerated the oxidation of n-dodecane, depending on its concentration, but always caused more gum formation. The NMP greatly retarded n-dodecane oxidation but accelerated Jet A oxidation and greatly increased the latter's gum formation. In general, the additive reacted faster and formed most of the gum. Results are interpreted in terms of classical cooxidation theory. The effect of oxygen pressure on gum formation is also reported.

  11. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalyticmore » system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.« less

  12. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  13. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  14. The Oxidation and Ignition of Jet Fuels

    DTIC Science & Technology

    2017-01-03

    approved for public release. A series of experimental studies designed to elucidate the oxidative reactivity and ignition properties of jet fuel and its...3 2. Experimental Method……………………………………………..………………….……..4 2.1. Shock tube…………………………………………………….…………………….4 2.2. Mid-infrared... experimental kinetics database for larger hydrocarbon components, real transportation fuels, model fuel mixtures, and important intermediate species

  15. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  16. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.

    PubMed

    Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary

    2015-03-25

    Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.

    PubMed

    MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan

    2010-01-01

    Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were

  18. Gum and deposit formation from jet-turbine and diesel fuels at 130C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, Bosco Y.

    1986-01-01

    The ultimate objective of this work is to devise an accelerated test to compare rates of soluble gum and deposit formation from jet-turbine and diesel fuels in storage and of hard deposits in engines. This paper describes rates of oxygen absorption and gum formation in air at 130 C. For a single fuel or hydrocarbon, the rate of gum formation is closely proportional to the oxygen absorbed, even when this rate varies with purification and additives. In general, pure hydrocarbons absorb oxygen much faster than the fuels, but the fuels and 2-ethylnaphthalene give more gum for the oxygen absorbed thanmore » the other pure hydrocarbons. Gum has two main sources; one appears to be associated with the chain termination mechanism in oxidation, the other coupling of fuel molecules in the absence of oxygen. Other possibilities are discussed.« less

  19. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE PAGES

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; ...

    2017-11-14

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  20. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    PubMed

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  2. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels.

    PubMed

    van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat

    2011-07-15

    Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.

    PubMed

    Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D

    2009-04-01

    The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.

  4. Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.

    PubMed

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin

    2016-08-01

    Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  6. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  7. Investigation of the ignition of liquid hydrocarbon fuels with nanoadditives

    NASA Astrophysics Data System (ADS)

    Bakulin, V. N.; Velikodnyi, V. Yu.; Levin, Yu. K.; Popov, V. V.

    2017-12-01

    During our experimental studies we showed a high efficiency of the influence of nanoparticle additives on the stability of the ignition of hydrocarbon fuels and the stabilization of their combustion in a highfrequency high-voltage discharge. We detected the effects of a jet deceleration, an increase in the volume of the combustible mixture, and a reduction in the inflammation delay time. These effects have been estimated quantitatively by digitally processing the video frames of the ignition of a bubbled kerosene jet with 0.5% graphene nanoparticle additives and without these additives. This effect has been explained by the influence of electrodynamic processes.

  8. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  9. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Urinary polycyclic aromatic hydrocarbon (OH-PAH) metabolite concentrations and the effect of GST polymorphisms among US Air Force personnel exposed to jet fuel.

    PubMed

    Rodrigues, Ema G; Smith, Kristen; Maule, Alexis L; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D

    2014-05-01

    To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment interaction was observed with glutathione S-transferase mu-1. USAF personnel experience inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene.

  11. Gaseous Surrogate Hydrocarbons for a Hifire Scramjet that Mimic Opposed Jet Extinction Limits for Cracked JP Fuels

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2008-01-01

    This paper describes, first, the top-down methodology used to define simple gaseous surrogate hydrocarbon (HC) fuel mixtures for a hypersonic scramjet combustion subtask of the HiFIRE program. It then presents new and updated Opposed Jet Burner (OJB) extinction-limit Flame Strength (FS) data obtained from laminar non-premixed HC vs. air counterflow diffusion flames at 1-atm, which follow from earlier investigations. FS represents a strain-induced extinction limit based on cross-section-average air jet velocity, U(sub air), that sustains combustion of a counter jet of gaseous fuel just before extinction. FS uniquely characterizes a kinetically limited fuel combustion rate. More generally, Applied Stress Rates (ASRs) at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or t) can directly be compared with extinction limits determined numerically using either a 1-D or (preferably) a 2-D Navier Stokes simulation with detailed transport and finite rate chemistry. The FS results help to characterize and define three candidate surrogate HC fuel mixtures that exhibit a common FS 70% greater than for vaporized JP-7 fuel. These include a binary fuel mixture of 64% ethylene + 36% methane, which is our primary recommendation. It is intended to mimic the critical flameholding limit of a thermally- or catalytically-cracked JP-7 like fuel in HiFIRE scramjet combustion tests. Our supporting experimental results include: (1) An idealized kinetically-limited ASR reactivity scale, which represents maximum strength non-premixed flames for several gaseous and vaporized liquid HCs; (2) FS characterizations of Colket and Spadaccini s suggested ternary surrogate, of 60% ethylene + 30% methane + 10% n-heptane, which matches the ignition delay of a typical cracked JP fuel; (3) Data showing how our recommended binary surrogate, of 64% ethylene + 36% methane, has an identical FS; (4) Data that characterize an alternate surrogate of 44% ethylene + 56% ethane with identical

  12. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  13. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  14. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    PubMed

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  15. IMPLEMENTATION OF NATURAL ATTENUATION AT A JP-4 JET FUEL RELEASE AFTER ACTIVE REMEDIATION

    EPA Science Inventory

    After eighteen months of active remediation at a JP-4 jet-fuel spill, a residual of unremediated hydrocarbon remained. Further site characterization was conducted to evaluate the contribution of natural attenuation to control exposure to hazards associated with the residual cont...

  16. Cleanup of a jet fuel spill

    NASA Astrophysics Data System (ADS)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  17. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  18. Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterizationmore » of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.« less

  19. Urinary Polycyclic Aromatic Hydrocarbon (OH-PAH) Metabolite Concentrations and the Effect of GST Polymorphisms Among US Air Force Personnel Exposed to Jet Fuel

    PubMed Central

    Rodrigues, Ema G.; Smith, Kristen; Maule, Alexis L.; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D.

    2016-01-01

    Objective To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Methods Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Results Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment interaction was observed with glutathione S-transferase mu-1. Conclusions USAF personnel experience inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene. PMID:24806557

  20. Environmental Quality Research-Fate of Toxic Jet Fuel Components in Aquatic Systems

    DTIC Science & Technology

    1981-12-01

    literature suggests that the maximum growt rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 days at water temperatures near 25°C...the results of an investigation of the potential toxic effects of the jet fuel JP-4 (petroleum-based and shale-based) on the aqueous environ- ment... investigated included fuel/ H 2 0 ratios and mixing times. Hydrocarbon composition of the WSF of JP-4, both petroleum e.nd shale-derived, appears to be

  1. Gum and deposit formation from jet turbine and diesel fuels at 100/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, B.Y.

    1987-02-01

    Rates of oxidation and gum formation for six hydrocarbons, three jet turbine fuels and three diesel fuels have been measured at 100/sup 0/C in the presence of t-Bu/sub 2/O/sub 2/ as initiator. Four of the six fuels oxidize faster at 100/sup 0/C than in previous work at 130/sup 0/C without initiator. For any single substrate, the amount of gum produced for the oxygen absorbed is similar at 100 and 130/sup 0/C, even with large changes in rates and t-Bu/sub 2/O/sub 2/ concentrations. In general, the pure hydrocarbons have long kinetic chains and give good yields of hydroperoxides.

  2. BIOGEOCHEMICAL EVIDENCE FOR MICROBIAL COMMUNITY CHANGE IN A JET FUEL HYDROCARBONS-CONTAMINATED AQUIFER

    EPA Science Inventory

    A glacio-fluvial aquifer located at Wurtsmith Air Force Base, Michigan, had been contaminated with JP-4 fuel hydrocarbons released after the crash of a tanker aircraft in October of 1988 Microbial biomass and community structure, associated with the aquifer sediments, were chara...

  3. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  4. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  5. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats.

    PubMed

    Fechter, Laurence D; Gearhart, Caroline A; Fulton, Sherry

    2010-07-01

    This study was undertaken to identify the ototoxic potential of two jet fuels presented alone and in combination with noise. Rats were exposed via a subacute inhalation paradigm to JP-8 jet fuel, a kerosene-based fuel refined from petroleum, and a synthetic fuel produced by the Fischer-Tropsch (FT) process. Although JP-8 contains small ( approximately 5%) concentrations of aromatic hydrocarbons some of which known to be ototoxic, the synthetic fuel does not. The objectives of this study were to identify a lowest observed adverse effect level and a no observed adverse effect level for each jet fuel and to provide some preliminary, but admittedly, indirect evidence concerning the possible role of the aromatic hydrocarbon component of petroleum-based jet fuel on hearing. Rats (n = 5-19) received inhalation exposure to JP-8 or to FT fuel for 4 h/day on five consecutive days at doses of 500, 1000, and 2000 mg/m(3). Additional groups were exposed to various fuel concentrations followed by 1 h of an octave band of noise, noise alone, or no exposure to fuel or noise. Significant dose-related impairment in the distortion product otoacoustic emissions (DPOAE) was seen in subjects exposed to combined JP-8 plus noise exposure when JP-8 levels of at least 1000 mg/m(3) were presented. No noticeable impairment was observed at JP-8 levels of 500 mg/m(3) + noise. In contrast to the effects of JP-8 on noise-induced hearing loss, FT exposure had no effect by itself or in combination with noise exposure even at the highest exposure level tested. Despite an observed loss in DPOAE amplitude seen only when JP-8 and noise were combined, there was no loss in auditory threshold or increase in hair cell loss in any exposure group.

  6. Computational Flame Characterization of New Large Aircraft Immersed in Hydrocarbon Pool Fires

    DTIC Science & Technology

    2013-08-01

    hydrocarbon liquid pool fires, their interaction with engulfed bodies, along with a brief overview of pool fire modeling. An industry-accepted...two-dimensional (2-D) horizontal liquid , heavy hydrocarbon fuel surface. A heavy hydrocarbon is characterized by properties consistent with aviation... jet fuels representing common diesel derivatives, such as Jet A and JP-8. Pool diameters are assumed to be much greater than 1 m to coincide with

  7. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    PubMed

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass. Copyright © 2015. Published by Elsevier Ltd.

  8. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    PubMed

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  9. Suppression of evaporation of hydrocarbon liquids and fuels by films containing aqueous film forming foam (AFFF) concentrate FC-196. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, J.T.; Burnett, J.C.

    1974-12-31

    Suppression of evaporation of hydrocarbon liquids and fuels by aqueous film containing a fluorocarbon surfactant has been examined as a function of film thickness, time, and hydrocarbon type. The hydrocarbon liquids included the homologous series of n-alkanes from pentane to dodecane, aromatic compounds, motor and aviation gasolines and jet fuels JP-4 and JP-5, and Navy distillate fuel. The surfactant solution used to form the films was a 6 percent solution of aqueous film forming foam (AFFF) concentrate FC-196. Films of the surfactant solution, ranging in thickness from 5 to 100 micrometers, were placed on the surface of the hydrocarbon liquidmore » to test the ability of the film to suppress evaporation over a 1-hr period. Results indicated that for the n-alkanes and the hydrocarbon fuels a certain critical thickness of surfactant solution was required for optimum vapor suppression. In comparison with the n-alkanes, it was considerably more difficult to suppress evaporation of the aromatic compounds. (GRA)« less

  10. Jet Fuel Kerosene is not Immunosuppressive in Mice or Rats Following Inhalation for 28 Days

    PubMed Central

    White, Kimber L.; DeLorme, Michael P.; Beatty, Patrick W.; Smith, Matthew J.; Peachee, Vanessa L.

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m3 for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m3 did not adversely affect the functional immune responses of female mice and rats. PMID:24028664

  11. Jet fuel kerosene is not immunosuppressive in mice or rats following inhalation for 28 days.

    PubMed

    White, Kimber L; DeLorme, Michael P; Beatty, Patrick W; Smith, Matthew J; Peachee, Vanessa L

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m(3) for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m(3) did not adversely affect the functional immune responses of female mice and rats.

  12. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  13. Simplified jet-A kinetic mechanism for combustor application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  14. Trends of jet fuel demand and properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1984-01-01

    Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

  15. Military Jet Fuels, 1944-1987

    DTIC Science & Technology

    1987-11-01

    first high density, synthetic hydrocarbon missile fuel. Developed by the US Navy, RJ-4 was used in the mid-1960s in the ramjet-powered Tales missile...High Density Synthetic Hydrocarbon Type. Grades 7P-9 and JP-10, covers two fuels currently in use in the Air Launched Cruise Missile (ALCM). JP-9...revealed that a significant quantity of copper was in the fuel, carried over from a copper- sweetening process. The copper was chelated by the metal

  16. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  17. Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Trinh, Huu Phuoc; Hartfield, Roy J.; Dobson, Christopher C.; Eskridge, Richard H.

    2000-01-01

    Propellent injector development at MSFC (Marshall Space Flight Center) includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented.

  18. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  19. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    PubMed

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  20. Acute Dermal Irritation Study of Six Jet Fuels in New Zealand White Rabbits: Comparison of Four Bio-Based Jet Fuels with Two Petroleum JP-8 Fuels

    DTIC Science & Technology

    2014-02-01

    NA 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) Sterner, Teresa R.1; Hurley, Jonathon M.2; Edwards, James T.3; Shafer, Linda M.4; Mattie , David R... Mattie , D.R. 2014. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio -Based Jet Fuels with...AFRL-RH-WP-TR-2014-0046 ACUTE DERMAL IRRITATION STUDY OF SIX JET FUELS IN NEW ZEALAND WHITE RABBITS: COMPARISON OF FOUR BIO -BASED JET FUELS

  1. Profiling refined hydrocarbon fuels using polar components

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2007-01-01

    Identification of a fuel released into the environment can be difficult due to biodegradation or weathering. Negative electrospray ionization/mass spectrometry was used to screen for unique polar components in a wide variety of commercial hydrocarbon products and mixtures. These fuels produced unique and relatively simple spectra. When applied to hydrocarbon samples from a large, long-term fuel spill in a relatively cool climate in which the alkane, isoprenoid, and alkylcyclohexane portions had begun to biodegrade or weather, the polar components in these samples had changed little over time. This technique provided rapid fuel identification on hydrocarbons released into the environment, without sample preparation, fractionation, or chromatography. Copyright ?? Taylor & Francis Group, LLC.

  2. Fuzzy Evaluating Customer Satisfaction of Jet Fuel Companies

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Fang, Guoyi

    Based on the market characters of jet fuel companies, the paper proposes an evaluation index system of jet fuel company customer satisfaction from five dimensions as time, business, security, fee and service. And a multi-level fuzzy evaluation model composing with the analytic hierarchy process approach and fuzzy evaluation approach is given. Finally a case of one jet fuel company customer satisfaction evaluation is studied and the evaluation results response the feelings of the jet fuel company customers, which shows the fuzzy evaluation model is effective and efficient.

  3. Gum and deposit formation from jet-turbine and diesel fuels at 100 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, B.Y.

    1987-01-01

    Rates of oxidation and gum formation for six hydrocarbons, three jet-turbine fuels and three diesel fuels have been measured at 100 C in the presence of t-Bu2O2 tert-butyl-peroxide as initiator. Four of six fuels oxidize faster at 100 C than in previous work at 130 C with initiator. Four any single substrate, the amount of gum produced for the oxygen absorbed is similar at 100 and 130 C even with large changes in rates and t-Bu2O2 concentrations. Thus, one mechanism of gum formation is intimately associated with oxidation. The effects of t-Bu2O2 concentration on the rates of oxygen absorption andmore » gum formation show that gum formation is associated with chain termination by two peroxy radicals. In general, the pure hydrocarbons have long kinetic chains and give good yields of hydroperoxides. The fuels give short kinetic chains and produce little hydroperoxide but but much more gum formation is the coupling of substrates by peroxides in the absence of oxygen. The mechanism, condensation of oxidation products from alkylnaphthalenes, is also proposed.« less

  4. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  5. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    EPA Science Inventory

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
    Abstract
    The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  6. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  7. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    NASA Astrophysics Data System (ADS)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  8. Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.

    2000-01-01

    Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system

  9. Effect of swirler-mounted mixing venturi on emissions of flame-tube combustor using jet A fuel

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.

    1979-01-01

    Six headplate modules in a flame-tube combustor were evaluated. Unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were measured for three types of fuel injectors both with and without a mixing venturi. Tests were conducted using jet A fuel at an inlet pressure of 0.69 megapascal, an inlet temperature of 478 K, and an isothermal static pressure drop of 3 percent. Oxides of nitrogen were reduced by over 50 percent with a mixing venturi with no performance penalties in either other gaseous emissions or pressure drop.

  10. Jet Fuel-Associated Occupational Contact Dermatitis.

    PubMed

    Contestable, James J

    2017-03-01

    Occupational contact dermatitis is a ubiquitous problem. Sailors onboard U.S. Navy vessels are at high risk given the multitude of potential workplace exposures. Solvents, petrochemicals, and fuels are abundant and can cause irritant or allergic contact dermatitis. Symptoms of contact dermatitis can cause inability to work and, if chronic, may require a change in rating or job. Prevention of this issue requires patient education about the risks and correct personnel protective equipment. Even with preventative strategies in place, exposures and cases of contact dermatitis will occur. Treatment consists of topical steroids and immunomodulators, as well as barrier creams and emollients. The goal of treatment is to fully restore the skin's natural barrier and prevent further exposure. A classic case of jet fuel-associated contact dermatitis is reviewed. A literature review utilizing PubMed, Google Scholar, and Google Search was conducted to elucidate our understanding of this issue, current occupational health guidelines, preventative approaches, and treatments. This case report provides guidance and recommendations for providers who encounter contact dermatitis related to petrochemicals, such as jet fuel. The literature review revealed limited knowledge surrounding in vivo human skin effects of jet fuel, specifically JP-5. Even larger gaps were found in our understanding of, and guidelines for, protective modalities against jet fuel exposure and dermatitis. A case is presented to facilitate recognition of jet fuel contact dermatitis and guidance for treatment and prevention. Given our current limited knowledge and guidelines concerning protective equipment and skin protectants, multiple proposals for future studies are suggested. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  11. Quantitating the Absorption, Partitioning and Toxicity of Hydrocarbon Components of JP-8 Jet Fuel

    DTIC Science & Technology

    2007-08-24

    with the skin. AFOSR Jet Fuel Toxicology Workshop. Tucson, AZ. October, 2004. 5. Basak SC, Riviere JE, Baynes RE, Xia XR, Gute BD. A hierarchical QSAR ... Toxicology Workshop, Tucson, AZ, 2005. 12. Basak SC, Riviere J, Baynes R, Gute BD: Theoretical descriptor based QSARs in predicting skin penetration of...NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Center for Chemical Toxicology Research and Pharmacokinetics College of Veterinary

  12. Volatile hydrocarbons and fuel oxygenates: Chapter 12

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.

    2014-01-01

    Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.

  13. Acute toxicity evaluation of JP-8 jet fuel and JP-8 jet fuel containing additives. Final report, November 1995-February 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.E.; Kinead, E.R.; Feldmann, M.L.

    1996-11-01

    To reduce fuel fouling in current U.S Navy and Air Force aircraft systems and to provide additional heat sink and thermal stability for future systems, the Air Force is developing an improved JP-8 jet fuel (JP-8 + 100). Two companies (Betz and Mobil) have developed additive packages that are currently being tested in aircraft systems. To determine if the additive packages will produce health effects for flightline personnel, acute testing was performed on JP-8 and the two JP-8 + 100 jet fuels. A single oral dose at 5 mg jet fuel/kg body weight to five male and five female F-344more » rats, and a single dermal application of 2 g jet fuel/kg body weight applied to five male and five female NZW rabbits resulted in no deaths. No signs of toxic stress were observed, and all animals gained weight over the 14-day observation periods. Single treatment of 0.5 mL neat jet fuel to rabbit skin produced negative results for skin irritation. Guinea pigs tailed to elicit a sensitization response following repeated applications of the jet fuels. Inhalation vapor exposure to JP-8, JP-8 + 100 (Betz), and JP-8 (Mobil) were determined to be >3.43, >3.52, and >3.57 mg/L, respectively. LD% values for aerosol exposure to JP-8, JP-8 + 100 (Betz), and JP-8 + 100 (Mobil) were >4.44, >4.39, and >4.54 mg/L, respectively. Under the conditions of these tests, the additive packages did not potentiate the acute effects normally associated with JP-8 jet fuel exposures.« less

  14. CT findings in hydrocarbon pneumonitis after diesel fuel siphonage.

    PubMed

    Yi, Mi Seon; Kim, Kun-Il; Jeong, Yeon Joo; Park, Hye Kyung; Lee, Min Ki

    2009-10-01

    The purpose of this study was to assess CT findings in a series of patients with hydrocarbon pneumonitis after diesel fuel siphonage. The characteristic CT findings of hydrocarbon pneumonitis after diesel fuel siphonage are the presence of air-space consolidations with predominant right middle lobe involvement and areas of low attenuation within consolidation. Occasionally, bronchoalveolar lavage is needed to confirm the diagnosis of hydrocarbon pneumonitis by the presence of lipid-laden macrophages on the basis of a history of diesel fuel aspiration.

  15. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was preparedmore » by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can

  16. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treatedmore » by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.« less

  17. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  18. Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks

    DOE PAGES

    Tao, Ling; Markham, Jennifer N.; Haq, Zia; ...

    2016-12-30

    Here, this study summarizes the detailed techno-economic analysis of the ethanol-to-jet (ETJ) process based on two different feedstocks (corn grain and corn stover) at the plant scale of 2000 dry metric tons per day. Ethanol biologically derived from biomass is upgraded catalytically to jet blendstocks via alcohol dehydration, olefin oligomerization, and hydrotreating. In both pathways, corn-grain-derived ethanol to jet (corn mill ETJ) and corn-stover-derived ethanol to jet (corn stover ETJ), there are portions of gasoline and diesel produced as coproducts. Two cost bases are used in this study: the minimum jet fuel selling prices (MJSP) for jet-range blendstocks and themore » minimum fuel selling prices (MFSP) for all the hydrocarbons (gasoline, jet, and diesel) produced using a gallon gasoline equivalent (GGE) basis. The n th-plant MJSPs for the two pathways are estimated to be 4.20 per gal for corn mill and 6.14 per gal for corn stover, while MFSPs are 3.91 per GGE for corn mill and 5.37 per GGE for corn stover. If all of the hydrocarbon products (gasoline, jet, and diesel ranges) can be considered as fuel blendstocks using a GGE basis, the total hydrocarbon yield for fuel blendstock is 49.6 GGE per dry ton biomass for corn stover and 71.0 GGE per dry ton biomass for corn grain. The outcome of this study shows that the renewable jet fuel could be cost competitive with fossil derived jet fuel if further improvements could be made to increase process yields (particularly yields of sugars, sugar to ethanol, and ethanol to hydrocarbons), research and development of sustainable feedstocks, and more effective catalytic reaction kinetics. Pioneer plant analysis, which considers the increased capital investment and the decreased plant performance over the nth-plant analysis, is also performed, showing a potential 31%–178% increase in cost compared to the n th-plant assumptions for the dry mill pathway, but with a much wider range of 69%–471% cost increase over the

  19. Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Markham, Jennifer N.; Haq, Zia

    Here, this study summarizes the detailed techno-economic analysis of the ethanol-to-jet (ETJ) process based on two different feedstocks (corn grain and corn stover) at the plant scale of 2000 dry metric tons per day. Ethanol biologically derived from biomass is upgraded catalytically to jet blendstocks via alcohol dehydration, olefin oligomerization, and hydrotreating. In both pathways, corn-grain-derived ethanol to jet (corn mill ETJ) and corn-stover-derived ethanol to jet (corn stover ETJ), there are portions of gasoline and diesel produced as coproducts. Two cost bases are used in this study: the minimum jet fuel selling prices (MJSP) for jet-range blendstocks and themore » minimum fuel selling prices (MFSP) for all the hydrocarbons (gasoline, jet, and diesel) produced using a gallon gasoline equivalent (GGE) basis. The n th-plant MJSPs for the two pathways are estimated to be 4.20 per gal for corn mill and 6.14 per gal for corn stover, while MFSPs are 3.91 per GGE for corn mill and 5.37 per GGE for corn stover. If all of the hydrocarbon products (gasoline, jet, and diesel ranges) can be considered as fuel blendstocks using a GGE basis, the total hydrocarbon yield for fuel blendstock is 49.6 GGE per dry ton biomass for corn stover and 71.0 GGE per dry ton biomass for corn grain. The outcome of this study shows that the renewable jet fuel could be cost competitive with fossil derived jet fuel if further improvements could be made to increase process yields (particularly yields of sugars, sugar to ethanol, and ethanol to hydrocarbons), research and development of sustainable feedstocks, and more effective catalytic reaction kinetics. Pioneer plant analysis, which considers the increased capital investment and the decreased plant performance over the nth-plant analysis, is also performed, showing a potential 31%–178% increase in cost compared to the n th-plant assumptions for the dry mill pathway, but with a much wider range of 69%–471% cost increase over the

  20. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis [Livermore, CA

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  1. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  2. Partitioning of Aromatic Constituents into Water from Jet Fuels.

    PubMed

    Tien, Chien-Jung; Shu, Youn-Yuen; Ciou, Shih-Rong; Chen, Colin S

    2015-08-01

    A comprehensive study of the most commonly used jet fuels (i.e., Jet A-1 and JP-8) was performed to properly assess potential contamination of the subsurface environment from a leaking underground storage tank occurred in an airport. The objectives of this study were to evaluate the concentration ranges of the major components in the water-soluble fraction of jet fuels and to estimate the jet fuel-water partition coefficients (K fw) for target compounds using partitioning experiments and a polyparameter linear free-energy relationship (PP-LFER) approach. The average molecular weight of Jet A-1 and JP-8 was estimated to be 161 and 147 g/mole, respectively. The density of Jet A-1 and JP-8 was measured to be 786 and 780 g/L, respectively. The distribution of nonpolar target compounds between the fuel and water phases was described using a two-phase liquid-liquid equilibrium model. Models were derived using Raoult's law convention for the activity coefficients and the liquid solubility. The observed inverse, log-log linear dependence of the K fw values on the aqueous solubility were well predicted by assuming jet fuel to be an ideal solvent mixture. The experimental partition coefficients were generally well reproduced by PP-LFER.

  3. Flame ignition studies of conventional and alternative jet fuels and surrogate components

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    concentrations. As for the detailed high temperature oxidation chemistry, ignition of normal, branched, and cyclic alkane flames were found to be sensitive largely to H2/CO and C1-C4 small hydrocarbon chemistry, while for branched alkanes fuel-related reactions do have accountable effect on ignition due to the low rate of initial fuel decomposition that limits the overall reactions preceding ignition. Analyses of the computed flame structures revealed that the concentrations of ignition-promoting radicals such as H, HCO, C2H3, and OH, and ignition-inhibiting radicals such as C3H6, aC3H5, and CH3 are key to the occurrence of ignition. Finally, the ignition characteristics of conventional and alternative jet fuels were studied and were to correlate with the chemical classifications and diffusivities of the neat species that are present in the practical fuel.

  4. Jet fuels from synthetic crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1977-01-01

    An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.

  5. Detonability of hydrocarbon fuels in air

    NASA Technical Reports Server (NTRS)

    Beeson, H. D.; Mcclenagan, R. D.; Bishop, C. V.; Benz, F. J.; Pitz, W. J.; Westbrook, C. K.; Lee, J. H. S.

    1991-01-01

    Studies were conducted of the detonation of gas-phase mixtures of n-hexane and JP-4, with oxidizers as varied as air and pure oxygen, measuring detonation velocities and cell sizes as a function of stoichiometry and diluent concentration. The induction length of a one-dimensional Zeldovich-von Neumann-Doering detonation was calculated on the basis of a theoretical model that employed the reaction kinetics of the hydrocarbon fuels used. Critical energy and critical tube diameter are compared for a relative measure of the heavy hydrocarbon fuels studied; detonation sensitivity appears to increase slightly with increasing carbon number.

  6. Effects of concurrent noise and jet fuel exposure on hearing loss.

    PubMed

    Kaufman, Laura R; LeMasters, Grace K; Olsen, Donna M; Succop, Paul

    2005-03-01

    We sought to examine the effects of occupational exposure to jet fuel on hearing in military workers. Noise-exposed subjects, with or without jet fuel exposure, underwent hearing tests. Work histories, recreational exposures, protective equipment, medical histories, alcohol, smoking, and demographics were collected by questionnaire. Jet fuel, solvent, and noise exposure data were collected from records. Fuel exposure estimates were less than 34% of the OSHA Threshold Limit Values. Subjects with 3 years of jet fuel exposure had a 70% increase in adjusted odds of hearing loss (OR = 1.7; 95% CI = 1.14-2.53) and the odds increased to 2.41 (95% CI = 1.04-5.57) for 12 years of noise and fuel exposure. These findings suggest that jet fuel has a toxic affect on the auditory system.

  7. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  8. Autoxidation of jet fuels: Implications for modeling and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Chin, L.P.

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less

  9. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  10. Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors

    DOE PAGES

    Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...

    2017-06-21

    We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less

  11. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  12. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  13. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    PubMed

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  14. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  15. Military utility of very large airplanes and alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Stanley, W.L.

    1977-09-01

    Synthetic chemical fuels and nuclear fuels were evaluated for use in very large airplanes (VLA's). Candidate fuels included synthetic jet fuel, liquid hydrogen, liquid methane, methanol, ethanol, ammonia, and gasoline. Airplane life-cycle costs and life-cycle energy consumption are estimated, and energy and cost effectiveness are evaluated. It is concluded that a synthetic conventional hydrocarbon jet fuel remains the most attractive for military aircraft. (PMA)

  16. Chemistry of fuel deposits and sediments and their predursors

    NASA Technical Reports Server (NTRS)

    Mayo, F. R.; Lan, B. Y.; Buttrill, S. E., Jr.; St.john, G. A.

    1984-01-01

    The mechanism of solid deposit formation on hot engine parts from turbine fuels is investigated. Deposit formation is associated with oxidation of the hydrocarbon fuel. Therefore, oxidation rates and soluble gum formation were measured for several jet turbine fuels and pure hydrocarbon mixtures. Experiments were performed at 130 C using thermal initiation and at 100 C using ditertiary butyl peroxide as a chemical initiator. Correlation of the data shows that the ratio of rate of oxidation to rate of gum formation for a single fuel is not much affected by experimental conditions, even though there are differences in the abilities of different hydrocarbons to initiate and continue the oxidation. This indicates a close association of gum formation with the oxidation process. Oxidations of n-dodecane, tetralin and the more unstable jet fuels are autocatalytic, while those of 2-ethylnaphthalene and a stable jet fuel are self-retarding. However, the ratio of oxidation rate to gum formation rate appear to be nearly constant for each substrate. The effect of oxygen pressure on gum and oxidation formation was also studied. Dependence of gum formation on the concentration of initiator at 100 C is discussed and problems for future study are suggested.

  17. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    NASA Astrophysics Data System (ADS)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  18. Deposit formation in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  19. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  20. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae

    PubMed Central

    Brennan, Timothy C. R.; Williams, Thomas C.; Schulz, Benjamin L.; Palfreyman, Robin W.; Nielsen, Lars K.

    2015-01-01

    Monoterpenes are liquid hydrocarbons with applications ranging from flavor and fragrance to replacement jet fuel. Their toxicity, however, presents a major challenge for microbial synthesis. Here we evolved limonene-tolerant Saccharomyces cerevisiae strains and sequenced six strains across the 200-generation evolutionary time course. Mutations were found in the tricalbin proteins Tcb2p and Tcb3p. Genomic reconstruction in the parent strain showed that truncation of a single protein (tTcb3p1-989), but not its complete deletion, was sufficient to recover the evolved phenotype improving limonene fitness 9-fold. tTcb3p1-989 increased tolerance toward two other monoterpenes (β-pinene and myrcene) 11- and 8-fold, respectively, and tolerance toward the biojet fuel blend AMJ-700t (10% cymene, 50% limonene, 40% farnesene) 4-fold. tTcb3p1-989 is the first example of successful engineering of phase tolerance and creates opportunities for production of the highly toxic C10 alkenes in yeast. PMID:25746998

  1. JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats.

    PubMed

    Fechter, Laurence D; Gearhart, Caroline; Fulton, Sherry; Campbell, Jerry; Fisher, Jeffrey; Na, Kwangsam; Cocker, David; Nelson-Miller, Alisa; Moon, Patrick; Pouyatos, Benoit

    2007-08-01

    We report on the transient and persistent effects of JP-8 jet fuel exposure on auditory function in rats. JP-8 has become the standard jet fuel utilized in the United States and North Atlantic Treaty Organization countries for military use and it is closely related to Jet A fuel, which is used in U.S. domestic aviation. Rats received JP-8 fuel (1000 mg/m(3)) by nose-only inhalation for 4 h and half of them were immediately subjected to an octave band of noise ranging between 97 and 105 dB in different experiments. The noise by itself produces a small, but permanent auditory impairment. The current permissible exposure level for JP-8 is 350 mg/m(3). Additionally, a positive control group received only noise exposure, and a fourth group consisted of untreated control subjects. Exposures occurred either on 1 day or repeatedly on 5 successive days. Impairments in auditory function were assessed using distortion product otoacoustic emissions and compound action potential testing. In other rats, tissues were harvested following JP-8 exposure for assessment of hydrocarbon levels or glutathione (GSH) levels. A single JP-8 exposure by itself at 1000 mg/m(3) did not disrupt auditory function. However, exposure to JP-8 and noise produced an additive disruption in outer hair cell function. Repeated 5-day JP-8 exposure at 1000 mg/m(3) for 4 h produced impairment of outer hair cell function that was most evident at the first postexposure assessment time. Partial though not complete recovery was observed over a 4-week postexposure period. The adverse effects of repeated JP-8 exposures on auditory function were inconsistent, but combined treatment with JP-8 + noise yielded greater impairment of auditory function, and hair cell loss than did noise by itself. Qualitative comparison of outer hair cell loss suggests an increase in outer hair cell death among rats treated with JP-8 + noise for 5 days as compared to noise alone. In most instances, hydrocarbon constituents of the fuel

  2. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  3. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  4. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the

  5. Computer analysis of effects of altering jet fuel properties on refinery costs and yields

    NASA Technical Reports Server (NTRS)

    Breton, T.; Dunbar, D.

    1984-01-01

    This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications.

  6. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia

    2010-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  8. NACA Research on Slurry Fuels

    NASA Technical Reports Server (NTRS)

    Pinns, M L; Olson, W T; Barnett, H C; Breitwieser, R

    1958-01-01

    An extensive program was conducted to investigate the use of concentrated slurries of boron and magnesium in liquid hydrocarbon as fuels for afterburners and ramjet engines. Analytical calculations indicated that magnesium fuel would give greater thrust and that boron fuel would give greater range than are obtainable from jet hydrocarbon fuel alone. It was hoped that the use of these solid elements in slurry form would permit the improvement to be obtained without requiring unconventional fuel systems or combustors. Small ramjet vehicles fueled with magnesium slurry were flown successfully, but the test flights indicated that further improvement of combustors and fuel systems was needed.

  9. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  10. Tumorigenic Evaluation of Jet Fuels JP-TS and JP-7.

    DTIC Science & Technology

    1991-04-01

    DTIC AL-TR-1991 0020 3 ELECTE0 AD-A252 012 JUN 2 6 1992• • TUMORIGENIC EVALUATION OF JET FUELS JP-TS AND JP-7 E. R. Kinkead C. L. Gaworski C. D...Evaluation of Jet Fuels JP-TS and JP-7. The research described in this report began in March 1981 and was completed in February 1991 under U.S. Air Force...of jet engines in military and commercial aircraft has led to the development of a number of petroleum distillate fuels with special properties. These

  11. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  12. Human exposure to the jet fuel, JP-8.

    PubMed

    Tu, Raymond H; Mitchell, Clifford S; Kay, Gary G; Risby, Terence H

    2004-01-01

    This study investigates anecdotal reports that have suggested adverse health effects associated with acute or chronic exposure to jet fuel. JP-8 exposure during the course of the study day was estimated using breath analysis. Health effects associated with exposure were measured using a neurocognitive testing battery and liver and kidney function tests. Breath analysis provided an estimate of an individual's recent JP-8 exposure that had occurred via inhalation and dermal routes. All individuals studied on base exhaled aromatic and aliphatic hydrocarbons that are found in JP-8. The subject who showed evidence of the most exposure to JP-8 had a breath concentration of 11.5 mg x m(-3) for total JP-8. This breath concentration suggested that exposure to JP-8 at an Air Guard Base is much less than exposure observed at other Air Force Bases. This reduction in exposure to JP-8 is attributed to the safety practices and standard operating procedures carried out by base personnel. The base personnel who exhibited the highest exposures to JP-8 were fuel cell workers, fuel specialists and smokers, who smoked downwind from the flightline. Although study-day exposures appear to be much less than current guidelines, chronic exposure at these low levels appeared to affect neurocognitive functioning. JP-8-exposed individuals performed significantly poorer than a sample of non-exposed age- and education-matched individuals on 20 of 47 measures of information processing and other cognitive functions.

  13. Indirect Liquefaction of Coal-Biomass Mixture for Production of Jet Fuel with High Productivity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh K; McCabe, Kevin

    Coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes were advanced by testing and demonstrating Southern Research’s sulfur tolerant nickel-based reforming catalyst and Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to clean, upgrade and convert syngas predominantly to jet fuel range hydrocarbon liquids, thereby minimizing expensive cleanup and wax upgrading operations. The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream and simulated syngas testing/demonstration. Reformer testing was performed to (1) reform tar and light hydrocarbons, (2) decompose ammonia in the presence H2S,more » and (3) deliver the required H2 to CO ratio for FT synthesis. FT Testing was performed to produce a product primarily containing C5-C20 liquid hydrocarbons and no C21+ waxy hydrocarbons with productivity greater than 0.7 gC5+/g catalyst/h, and at least 70% diesel and jet fuel range (C8-C20) hydrocarbon selectivity in the liquid product. A novel heat-exchange reactor system was employed to enable the use of the highly active FT catalyst and larger diameter reactors that results in cost reduction for commercial systems. Following laboratory development and testing, SR’s laboratory reformer was modified to operate in a Class 1 Div. 2 environment, installed at NCCC, and successfully tested for 125 hours using raw syngas. The catalyst demonstrated near equilibrium reforming (~90%) of methane and complete reforming/decomposition of tar and ammonia in the presence of up to 380 ppm H2S. For FT synthesis, SR modified and utilized a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport gasifier (TRIG). The test-rig developed in a previous project (DE-FE0010231) was modified to receive up to 7.5 lb/h raw syngas augmented with bottled syngas to adjust the H

  14. Commercial jet fuel quality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  15. Near-term feasibility of alternative jet fuels

    DOT National Transportation Integrated Search

    2009-01-01

    This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...

  16. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  17. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  18. Skeletal Mechanism Generation of Surrogate Jet Fuels for Aeropropulsion Modeling

    NASA Astrophysics Data System (ADS)

    Sung, Chih-Jen; Niemeyer, Kyle E.

    2010-05-01

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with skeletal reductions of two important hydrocarbon components, n-heptane and n-decane, relevant to surrogate jet fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each previous method, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal.

  19. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  20. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  1. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  2. Immunotoxicological effects of JP-8 jet fuel exposure.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that

  3. Laser Induced Fluorescence Detection of Gums in Jet Fuels

    DTIC Science & Technology

    1992-05-01

    Classification) Laser Induced Fluorescence Detection of GLus in Jet Fuels 12 PERSONAL AUTHOR(S) David W. Naegeli and Ralph H. Hill 13a. TYPE OF REPORT 13b...degraded jet fuel.( ) 47 REFERENCES 1. Fodor, G.E.; Naegeli , D.W.; Kohl, K.B.; Cuellar, J.P., Jr., Interim Report BFLRF No. 199, AD A163590, Belvoir Fuels...and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX, June 1985. 2. Fodor, G.E.; Naegeli , D.W., Proceedings of the 2nd

  4. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  5. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  6. Physical and chemical behavior of flowing endothermic jet fuels

    NASA Astrophysics Data System (ADS)

    Ward, Thomas Arthur

    Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting

  7. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  8. Gum and deposit formation from jet turbine and diesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Lan, B.Y.

    1983-09-01

    The present paper describes measurements of rates of oxidation and soluble gum formation in both pure hydrocarbons and in mixed hydrocarbon fuels. Some patterns which appear can be explained on the basis of what is known about co-oxidation of hydrocarbon mixtures. The oxidations were conducted in an oil bath at 130/sup 0/C. Gum formation is closely associated with oxidation. The compounds that copolymerize with oxygen to produce polyperoxides require the least amount of oxygen to yield a mg of gum; among other pure hydrocarbons and fuels, the rates of gum formation and oxygen absorption decrease together. The most useful approachmore » to understanding and reducing gum and deposit formation will come through understanding the effects of condensed aromatic and heterocyclic compounds on the oxidation rates of fuels. 4 figures. 4 tables.« less

  9. MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  10. Review of Jet Fuel Life Cycle Assessment Methods and Sustainability Metrics

    DOT National Transportation Integrated Search

    2015-12-01

    The primary aim of this study is to help aviation jet fuel purchasers (primarily commercial airlines and the U.S. military) to understand the sustainability implications of their jet fuel purchases and provide guidelines for procuring sustainable fue...

  11. Advanced Thermally Stable Coal-Based Jet Fuels

    DTIC Science & Technology

    2008-02-01

    of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity

  12. Pulmonary Evaluation of Permissible Exposure Limit of Syntroleum S-8 Synthetic Jet Fuel in Mice

    PubMed Central

    Wong, Simon S.; Thomas, Alana; Barbaris, Brian; Lantz, R. Clark; Witten, Mark L.

    2009-01-01

    No current studies have systematically examined pulmonary health effects associated with Syntroleum S-8 synthetic jet fuel (S-8). In order to gain an understanding about the threshold concentration in which lung injury is observed, C57BL/6 male mice were nose-only exposed to S-8 for 1 h/day for 7 days at average concentrations of 0 (control), 93, 352, and 616 mg/m3. Evaluation of pulmonary function, airway epithelial barrier integrity, and pathohistology was performed 24 h after the final exposures. Significant decreases were detected in expiratory lung resistance and total lung compliance of the 352 mg/m3 group, for which no clear concentration-dependent alterations could be determined. No significant changes in respiratory permeability were exhibited, indicating that there was no loss of epithelial barrier integrity following S-8 exposure. However, morphological examination and morphometric analysis of distal lung tissue, by using transmission electron microscopy, revealed cellular damage in alveolar type II epithelial cells, with significant increases in volume density of lamellar bodies/vacuoles at 352 and 616 S-8 mg/m3. Moreover, terminal bronchiolar Clara injury, as evidenced by apical membrane blebs, was observed at relatively low concentrations, suggesting if this synthetic jet fuel is utilized, the current permissible exposure limit of 350 mg/m3 for hydrocarbon fuels should cautiously be applied. PMID:19357071

  13. Pulmonary evaluation of permissible exposure limit of syntroleum S-8 synthetic jet fuel in mice.

    PubMed

    Wong, Simon S; Thomas, Alana; Barbaris, Brian; Lantz, R Clark; Witten, Mark L

    2009-06-01

    No current studies have systematically examined pulmonary health effects associated with Syntroleum S-8 synthetic jet fuel (S-8). In order to gain an understanding about the threshold concentration in which lung injury is observed, C57BL/6 male mice were nose-only exposed to S-8 for 1 h/day for 7 days at average concentrations of 0 (control), 93, 352, and 616 mg/m(3). Evaluation of pulmonary function, airway epithelial barrier integrity, and pathohistology was performed 24 h after the final exposures. Significant decreases were detected in expiratory lung resistance and total lung compliance of the 352 mg/m(3) group, for which no clear concentration-dependent alterations could be determined. No significant changes in respiratory permeability were exhibited, indicating that there was no loss of epithelial barrier integrity following S-8 exposure. However, morphological examination and morphometric analysis of distal lung tissue, by using transmission electron microscopy, revealed cellular damage in alveolar type II epithelial cells, with significant increases in volume density of lamellar bodies/vacuoles at 352 and 616 S-8 mg/m(3). Moreover, terminal bronchiolar Clara injury, as evidenced by apical membrane blebs, was observed at relatively low concentrations, suggesting if this synthetic jet fuel is utilized, the current permissible exposure limit of 350 mg/m(3) for hydrocarbon fuels should cautiously be applied.

  14. Phenol-selective mass spectrometric analysis of jet fuel.

    PubMed

    Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott

    2017-08-21

    Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.

  15. Life-cycle analysis of camelina biodiesel and jet-fuel

    NASA Astrophysics Data System (ADS)

    Dangol, Namrata

    Camelina sativa (Camelina) could be a potential feedstock to help meet the goal of 36 billion gallons of biofuel production in the United States by 2022, as set forth by EISA of 2007. This research is focused on assessing the energy balance and greenhouse gas (GHG) emissions from camelina biodiesel grown and produced in the Pacific Northwest (PNW) region of the USA. Data were collected from a camelina farm in the region and compared to literature values. Energy used in camelina crushing and transesterification were measured at the University of Idaho. Life cycle analysis showed that use of camelina biodiesel reduces GHG emissions by 72% compared to 2005 baseline diesel fuel. Camelina biodiesel at B100 level, however, did not meet the ASTM D6751 specification for oxidative stability without any additives but could be corrected with proper additive. Camelina had a smaller seed size compared to canola and consequently required 23% more energy for crushing. Despite higher energy use for crushing, the net energy ratio for camelina biodiesel was found to be 3.68. From the agronomic standpoint, camelina can be incorporated as a rotational crop into low rainfall areas of the PNW. Wheat areas of PNW with annual rainfall from 19 to 38 cm (7.5--15") and currently incorporating fallow into their rotations were considered as potential areas for camelina. There were 846,500 hectares (2.1 million acres) of land available in the region that could potentially produce 443.0 million L of biodiesel (117.1 million gal) and 1.2 billion kg of meal per year. This meal quantity is about 12.1% of the potential camelina meal that could be used as livestock feed in the PNW. Therefore, it was concluded that the meal has adequate market to be consumed locally as livestock feed. This research also conducted the life cycle analysis of camelina jet fuel produced in the laboratory scale facility. The jet fuel was produced via deoxygenation of the camelina oil in an inert environment, in the

  16. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  17. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  18. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  19. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-03-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  20. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed Central

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-01-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  1. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  2. Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1957-01-01

    Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

  3. JP-8+100: The development of high-thermal-stability jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.

    1996-09-01

    Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less

  4. Alternative jet fuel scenario analysis report

    DOT National Transportation Integrated Search

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  5. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    PubMed

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  6. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine

    DTIC Science & Technology

    2006-12-01

    Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K

  7. Thermal Stability of Jet Fuels: Kinetics of Forming Deposit Precursors

    NASA Technical Reports Server (NTRS)

    Naegeli, David W.

    1997-01-01

    The focus of this study was on the autoxidation kinetics of deposit precursor formation in jet fuels. The objectives were: (1) to demonstrate that laser-induced fluorescence is a viable kinetic tool for measuring rates of deposit precursor formation in jet fuels; (2) to determine global rate expressions for the formation of thermal deposit precursors in jet fuels; and (3) to better understand the chemical mechanism of thermal stability. The fuels were isothermally stressed in small glass ampules in the 120 to 180 C range. Concentrations of deposit precursor, hydroperoxide and oxygen consumption were measured over time in the thermally stressed fuels. Deposit precursors were measured using laser-induced fluorescence (LIF), hydroperoxides using a spectrophotometric technique, and oxygen consumption by the pressure loss in the ampule. The expressions, I.P. = 1.278 x 10(exp -11)exp(28,517.9/RT) and R(sub dp) = 2.382 x 10(exp 17)exp(-34,369.2/RT) for the induction period, I.P. and rate of deposit precursor formation R(sub dp), were determined for Jet A fuel. The results of the study support a new theory of deposit formation in jet fuels, which suggest that acid catalyzed ionic reactions compete with free radical reactions to form deposit precursors. The results indicate that deposit precursors form only when aromatics are present in the fuel. Traces of sulfur reduce the rate of autoxidation but increase the yield of deposit precursor. Free radical chemistry is responsible for hydroperoxide formation and the oxidation of sulfur compounds to sulfonic acids. Phenols are then formed by the acid catalyzed decomposition of benzylic hydroperoxides, and deposit precursors are produced by the reaction of phenols with aldehydes, which forms a polymer similar to Bakelite. Deposit precursors appear to have a phenolic resin-like structure because the LIF spectra of the deposit precursors were similar to that of phenolic resin dissolved in TAM.

  8. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  9. Urinary biomarkers of exposure to jet fuel (JP-8).

    PubMed Central

    Serdar, Berrin; Egeghy, Peter P; Waidyanatha, Suramya; Gibson, Roger; Rappaport, Stephen M

    2003-01-01

    Benzene, naphthalene, and 1- and 2-naphthol were measured in urine samples obtained from 322 U.S. Air Force personnel categorized a priori as likely to have low, moderate, or high exposure to jet fuel [jet propulsion fuel-8 (JP-8)]. In postexposure samples, levels of these analytes in the high-exposure group were 3- to 29-fold greater than in the low-exposure group and 2- to 12-fold greater than in the moderate-exposure group. Heavy exposure to JP-8 contributed roughly the same amount of benzene and more than three times the amount of naphthalene compared with cigarette smoking. Strong correlations were observed among postexposure levels of naphthalene-based biomarkers in urine and naphthalene in air and breath. We conclude that urinary naphthalene and the naphthols can serve as biomarkers of exposure to jet fuel. Of these, the naphthols are probably more useful because of their greater abundance and slower elimination kinetics. PMID:14594628

  10. Modeling of Fuel Film Cooling on Chamber Hot Wall

    DTIC Science & Technology

    2013-12-01

    flow at supercritical pressure. The fuel jet and the cross-flow interact. Some part of the jet is stripped off and entrained by the hot gas...modelers. The supercritical pressure makes information on equation of state and transport properties hard to come by. The large temperature range...the modeling of hydrocarbon fuel film cooling at supercritical pressures. A relevant recent simulation study by Yang and Sun [1] used a finite-rate

  11. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  12. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulosemore » (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.« less

  13. Fuel Microemulsions for Jet Engine Smoke Reduction

    DTIC Science & Technology

    1980-05-01

    ESL-TR-80-25 FUEL MICROEMULSIONS FOR JET ENGINE SMOKE REDUCTION LEVEL$: 0• D.W. NAEGELI , G.E. FODOR, C.A. MOSES MOBILE ENERGY DIVISION 1N•j SOUTHWEST...Moses, C.A, and D.W. Naegeli , "Fuel Property Effects on Combustor Per- formance," AS!E Paper 79-GT-178, San Diego, CA, January 1979. 17. Naegeli , D.W

  14. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.

    PubMed

    Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin

    2013-10-01

    Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Age-related differences in pulmonary inflammatory responses to JP-8 jet fuel aerosol inhalation.

    PubMed

    Wang, S; Young, R S; Witten, M L

    2001-02-01

    Our previous studies have demonstrated that JP-8 jet fuel aerosol inhalation induced lung injury and dysfunction. To further examine JP-8 jet fuel-induced inflammatory mechanisms, a total of 40 male C57BL/6 mice (young, 3.5 months; adult, 12 months; half in each age group) were randomly assigned to the exposure or control groups. Mice were nose-only exposed to room air or atmospheres of 1000 mg/m3 JP-8 jet fuel for 1 h/day for 7 days. Lung injury was assessed by pulmonary mechanics, respiratory permeability, lavaged cell profile, and chemical mediators in bronchoalveolar lavage fluid (BALF). The young and adult mice exposed to JP-8 jet fuel had similar values with regards to increased lung dynamic compliance, lung permeability, BALF cell count, and decreased PGE2. However, there were several different responses between the young-versus-adult mice with respect to BALF cell differential, TNF-alpha, and 8-iso-PGF2,, levels after exposure to JP-8 jet fuel. These data suggest that JP-8 jet fuel may have different inflammatory mechanisms leading to lung injury and dysfunction in the younger-versus-adult mice.

  16. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  17. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  18. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  19. Investigation of charge dissipation in jet fuel in a dielectric fuel tank

    NASA Astrophysics Data System (ADS)

    Kitanin, E. L.; Kravtsov, P. A.; Trofimov, V. A.; Kitanina, E. E.; Bondarenko, D. A.

    2017-09-01

    The electrostatic charge dissipation process in jet fuel in a polypropylene tank was investigated experimentally. Groundable metallic terminals were installed in the tank walls to accelerate the dissipation process. Several sensors and an electrometer with a current measuring range from 10-11 to 10-3 A were specifically designed to study the dissipation rates. It was demonstrated that thanks to the sensors and the electrometer one can obtain reliable measurements of the dissipation rate and look at how it is influenced by the number and locations of the terminals. Conductivity of jet fuel and effective conductivity of the tank walls were investigated in addition. The experimental data agree well with the numerical simulation results obtained using COMSOL software package.

  20. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more

  1. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  2. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  3. Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.

    2006-01-01

    A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.

  4. Production of distillate fuels from biomass-derived polyoxygenates

    DOEpatents

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  5. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2011-01-01

    Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.

  6. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  7. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  8. Jet Fuel Exacerbated Noise-Induced Hearing Loss: Focus on Prediction of Central Auditory Processing Dysfunction

    DTIC Science & Technology

    2017-09-01

    to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise induced hearing loss. In...scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated noise-induced hearing loss. Such hearing loss...project was to develop a multi-scale model, together with relevant supporting experimental data, to describe jet fuel exacerbated NIHL. Herein we

  9. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  10. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  11. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  12. Powder Extinguishants for Jet-Fuel Fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C.

    1986-01-01

    Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.

  13. Experimental verification of the thermodynamic properties for a jet-A fuel

    NASA Technical Reports Server (NTRS)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Clifford; Andre Boehman; Chunshan Song

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using knownmore » refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  15. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  16. Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow

    NASA Astrophysics Data System (ADS)

    Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike

    2008-11-01

    The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.

  17. Exposure to low levels of jet-propulsion fuel impairs brainstem encoding of stimulus intensity.

    PubMed

    Guthrie, O'neil W; Xu, Helen; Wong, Brian A; McInturf, Shawn M; Reboulet, Jim E; Ortiz, Pedro A; Mattie, David R

    2014-01-01

    Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.

  18. MEETING IN VANCOUVER, B.C.: MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    EPA Science Inventory

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  19. Photo-assisted removal of fuel oil hydrocarbons from wood and concrete.

    PubMed

    Popova, Inna E; Kozliak, Evguenii I

    2008-08-01

    A novel photo-treatment to decontaminate building structural elements polluted with fuel oil hydrocarbons as a result of spillage and/or a catastrophic flood was examined. A proof-of-concept study evaluating the photocatalytic removal of hydrocarbons (n-hexadecane and fuel oil #2) from contaminated wood (southern yellow pine) and concrete was conducted using scintillation counting (with (14)C-labeled n-hexadecane) and gas chromatography. Contaminated samples were irradiated by UV or fluorescent light in the absence or presence of a photocatalyst, TiO(2). As a result of the treatment, under various scenarios, up to 80-98% of the originally applied n-hexadecane was removed, within a wide range of contaminant concentrations (4-250 mg/g wood). The essential treatment time increased from 1-7 days for low concentrations to several weeks for high concentrations. Mass balance experiments showed that the only product formed from (14)C-labeled n-hexadecane in detectable amounts was (14)CO(2). For low amounts of applied hydrocarbon (4-20 mg/g wood), the overall process rate was limited by the contaminant transport/mobility whereas for high n-hexadecane concentrations (150-250 mg/g, corresponding to 50-80% filling of wood pores), the key factor was the photochemical reaction. Photodegradation experiments conducted with standard heating fuel oil #2 (a representative real-world contaminant) resulted in a significant (up to 80%) photochemical removal of mid-size hydrocarbons (C(13)-C(17)) in 3 weeks whereas heavier hydrocarbons (> C(17)) were not affected; light hydrocarbons (< C(12)) were removed by evaporation. These results point toward a promising technique to reclaim wooden and concrete structures contaminated with semi-volatile chemicals.

  20. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    PubMed

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  1. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  2. Fiber optic distributed chemical sensor for the real time detection of hydrocarbon fuel leaks

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2015-09-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable hydrocarbon fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySense™) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySense™ system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, storage tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  3. Assessment of intrinsic bioremediation of jet fuel contamination in a shallow aquifer, Beaufort, South Carolina

    USGS Publications Warehouse

    Chapelle, Frank; Landmeyer, J.E.; Bradley, P.M.

    1995-01-01

    Field and laboratory studies show that microorganisms indigenous to the ground-water system underlying Tank Farm C, Marine Corps Air Station Beaufort, S.C., degrade petroleum hydrocarbons under aerobic and anaerobic conditions. Under aerobic conditions, sediments from the shallow aquifer underlying the site mineralized radiolabeled (14C) toluene to 14CO2 with first-order rate constants of about -0.29 per day. Sediments incubated under anaerobic conditions mineralized radiolabeled toluene more slowly, with first-order rate constants of -0.001 per day. Although anaerobic rates of biodegradation are low, they are significant in the hydrologic and geochemical context of the site. Because of low hydraulic conductivities (1.9-9.1 feet per day) and low hydraulic gradients (about 0.004 feet per feet), ground water flows slowly (approximately 20 feet per year) at this site. Furthermore, aquifer sediments contain organic-rich peat that has a high sorptive capacity. Under these conditions, hydrocarbon contaminants have moved no further than 10 feet downgradient of the jet fuel free product. Digital solute-transport simulations, using the range of model parameters measured at the site, show that dissolved contaminants will be completely degraded before they are discharged from the aquifer into adjacent surface-water bodies. These results show that natural attenuation processes are containing the migration of soluble hydrocarbons, and that intrinsic bioremediation is a potentially effective remedial strategy at this site.

  4. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Satya P.; Garbark, Daniel B.; Taha, Rachid

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including:more » (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H 2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet turbine

  5. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  6. Comparison of atomization characteristics of drop-in and conventional jet fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  7. Jet Fuel Exposure and Neurological Health in Military Personnel

    DTIC Science & Technology

    2006-07-01

    relationship between JP-8 fuel exposure and adverse neurological outcomes in military personnel working in a cold climate environment. The research...with hypothesized neurocognitive and neurophysiologic performance outcomes . The project has two phases: Tier I is to conduct onsite exposure ...AD_________________ Award Number: W81XWH-06-1-0105 TITLE: Jet Fuel Exposure and Neurological

  8. Syngas Conversion to Hydrocarbon Fuels through Mixed Alcohol Intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; Lebarbier, Vanessa M.; Albrecht, Karl O.

    2013-05-13

    Synthesis gas (syngas) can be used to synthesize a variety of fuels and chemicals. Domestic transportation and military operational interests have driven continued focus on domestic syngas-based fuels production. Liquid transportation fuels may be made from syngas via four basic processes: 1) higher alcohols, 2) Fischer-Tropsch (FT), 3) methanol-to-gasoline (MTG), and 4) methanol-to-olefins (MTO) and olefins-to-gasoline/distillate (MOGD). Compared to FT and higher alcohols, MTG and MTO-MOGD have received less attention in recent years. Due to the high capital cost of these synthetic fuel plants, the production cost of the finished fuel cannot compete with petroleum-derived fuel. Pacific Northwest National Laboratorymore » has recently evaluated one way to potentially reduce capital cost and overall production cost for MTG by combining the methanol and MTG syntheses in a single reactor. The concept consists of mixing the conventional MTG catalyst (i.e. HZSM-5) with an alcohol synthesis catalyst. It was found that a methanol synthesis catalyst, stable at high temperature (i.e. Pd/ZnO/Al2O3) [1], when mixed with ZSM-5, was active for syngas conversion. Relatively high syngas conversion can be achieved as the equilibrium-driven conversion limitations for methanol and dimethyl ether are removed as they are intermediates to the final hydrocarbon product. However, selectivity control was difficult to achieve as formation of undesirable durene and light hydrocarbons was problematic [2]. The objective of the present study was thus to evaluate other potential composite catalyst systems and optimize the reactions conditions for the conversion of syngas to hydrocarbon fuels, through the use of mixed alcohol intermediates. Mixed alcohols are of interest as they have recently been reported to produce higher yields of gasoline compared to methanol [3]. 1. Lebarbier, V.M., Dagle, R.A., Kovarik, L., Lizarazo-Adarme, J.A., King, D.L., Palo, D.R., Catalyst Science & Technology

  9. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  10. Volatile Organic Compounds in Blood as Biomarkers of Exposure to JP-8 Jet Fuel Among US Air Force Personnel.

    PubMed

    Maule, Alexis L; Proctor, Susan P; Blount, Benjamin C; Chambers, David M; McClean, Michael D

    2016-01-01

    This study aimed to evaluate blood volatile organic compound (VOC) levels as biomarkers of occupational jet propulsion fuel 8 (JP-8) exposure while controlling for smoking. Among 69 Air Force personnel, post-shift blood samples were analyzed for components of JP-8, including ethylbenzene, toluene, o-xylene, and m/p-xylene, and for the smoking biomarker, 2,5-dimethylfuran. JP-8 exposure was characterized based on self-report and measured work shift levels of total hydrocarbons in personal air. Multivariate regression was used to evaluate the relationship between JP-8 exposure and post-shift blood VOCs while controlling for potential confounding from smoking. Blood VOC concentrations were higher among US Air Force personnel who reported JP-8 exposure and work shift smoking. Breathing zone total hydrocarbons was a significant predictor of VOC blood levels, after controlling for smoking. These findings support the use of blood VOCs as a biomarker of occupational JP-8 exposure.

  11. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  12. Effect of primary-zone equivalence ratio and hydrogen addition on exhaust emission in a hydrocarbon-fueled combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1974-01-01

    The effects of reducing the primary-zone equivalence ratio on the exhaust emission levels of oxides of nitrogen, carbon monoxide, and unburned hydrocarbons in experimental hydrocarbon-fueled combustor segments at simulated supersonic cruise and idle conditions were investigated. In addition, the effects of the injection of hydrogen fuel (up to 4 percent of the total weight of fuel) on the stability of the hydrocarbon flame and exhaust emissions were studied and compared with results obtained without hydrogen addition.

  13. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V A; Bell, M G; Bell, R E

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi

  14. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    USGS Publications Warehouse

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

  15. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    PubMed

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  16. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  17. Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulder, O.L.

    1989-11-01

    A systematic study of soot formation along the centerlines of axisymmetric laminar diffusion flames of a large number of liquid hydrocarbons, hydrocarbon blends, and transportation fuels were made. Measurements of the attenuation of a laser beam across the flame diameter were used to obtain the soot volume fraction, assuming Rayleigh extinction. Two sets of hydrocarbon blends were designed such that the molecular fuel composition varied considerably but the temperature fields in the flames were kept practically constant. Thus it was possible to separate the effects of molecular structure and the flame temperature on soot formation. It was quantitatively shown thatmore » the smoke height is a lumped measure of fuel molecular constitution and hydrogen-to-carbon ratio. Hydrocarbon fuel molecular composition was characterized by six carbon atom types that can be obtained, for complex hydrocarbon mixtures like transportation fuels, from proton nuclear magnetic resonance (/sup 1/H NMR) measurements. Strong attenuation of the laser beam was observed at heights very close to the burner rim. Visible flame profiles along the flame length were shown to have good self-similarity. Kent's model for diffusion flames was modified to include the effects of differences in flame temperatures and molecular diffusivities between fuels. An analysis based on the present data provides an assessment of the degree of contribution of different carbon atom types to the maximum soot volume fractions.« less

  18. A method of estimating the knock rating of hydrocarbon fuel blend

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D

    1943-01-01

    The usefulness of the knock ratings of pure hydrocarbon compounds would be increased if some reliable method of calculating the knock ratings of fuel blends was known. The purpose of this study was to investigate the possibility of developing a method of predicting the knock ratings of fuel blends.

  19. A Method of Estimating the Knock Rating of Hydrocarbon Fuel Blends

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D.

    1943-01-01

    The usefulness of the knock ratings of pure hydrocarbon compounds would be increased if some reliable method of calculating the knock ratings of fuel blends was known. The purpose of this study was to investigate the possibility of developing a method of predicting the knock ratings of fuel blends.

  20. Subacute effects of inhaled Jet Fuel-A (Jet A) on airway and immune function in female rats.

    PubMed

    Sweeney, Lisa M; Prues, Susan L; Reboulet, James E

    2013-04-01

    Two studies were conducted to assess the potential airway and immune effects following subacute (14 d) exposure of female rats to 500, 1000 or 2000 mg/m³ of Jet-A for 4 h/d. The first study used Sprague-Dawley rats; the second study included both Fischer 344 (F344) and Sprague-Dawley rats. In the first study, exposure to 2000 mg/m³ jet fuel may have caused significant upper airway inflammation on day 7 post-exposure, as indicated by elevated protein and lactate dehydrogenase in nasal lavage fluid, but any inflammation resolved by day 14 post-exposure. No significant impact on immune cell populations in the spleens was observed. The histological examination showed no evidence of infectious or toxic effect. In the second study, body weights of the F344 rats in the 2000 mg/m³ group were depressed, as compared to the controls, at the end of the exposure. Some lung lavage fluid markers were increased at 24 h after the final exposure, however, no test article-induced histological changes were observed in the lungs, nasal cavities, or any other tissue of any of the jet fuel exposed animals. Overall, these studies demonstrated limited evidence of effects of 14 d of exposure to Jet A on the airways, immune system, or any other organ or system of female Sprague-Dawley and F344 rats, with no remarkable differences between strains. The lack of identified significant airway or immune effects was in contrast to previous examinations of jet fuel for pulmonary toxicity in mice and rats and for immunotoxicity in mice.

  1. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  2. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  3. Further studies of fuels from alternate sources - fire extinguishment experiments with JP-5 jet turbine fuel derived from shale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, R.N.; Affens, W.A.; McLaren, G.W.

    1978-05-01

    Fire extinguishment experiments with JP-5 jet fuels derived from shale crude oil and also from petroleum (for comparison) were conducted at NRL's Chesapeake Bay facility. The experiments were conducted in a 40-foot diameter circular pool using Aqueous Film Forming Foam (AFFF) as the fire extinguishing agent. The results with both types of fuel were similar, and it was concluded that the techniques and agents for AFFF application, which have been developed for petroleum fuel fires, can also be used for shale derived jet fuel.

  4. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    PubMed

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  5. A dermatotoxicokinetic model of human exposures to jet fuel.

    PubMed

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  6. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  7. Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.; Thomas, I.

    1977-01-01

    An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.

  8. Transverse liquid fuel jet breakup, burning, and ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hsi-shang

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flamemore » supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.« less

  9. Thermal Stability of Distillate Hydrocarbon Fuels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Reddy, Kishenkumar Tadisina; Cernansky, Nicholas P.

    1987-01-01

    Thermal stability of fuels is expected to become a severe problem in the future due to the anticipated use of broadened specification and alternative fuels. Future fuels will have higher contents of heteroatomic species which are reactive constituents and are known to influence fuel degradation. To study the degradation chemistry of selected model fuels, n-dodecane and n-dodecane plus heteroatoms were aerated by bubbling air through the fuels amd stressed on a modified Jet Fuel Thermal Oxidation Tester facility operating at heater tube temperatures between 200 to 400 C. The resulting samples were fractionated to concentrate the soluble products and then analyzed using gas chromatographic and mass spectrometric techniques to quantify and identify the stable reaction intermediate and product specifically. Heteroatom addition showed that the major soluble products were always the same, with and without heteroatoms, but their distributions varied considerably.

  10. Jet fuel property changes and their effect on producibility and cost in the U.S., Canada, and Europe

    NASA Technical Reports Server (NTRS)

    Varga, G. M., Jr.; Avella, A. J., Jr.; Cunningham, A. R.; Featherston, C. D.; Gorgol, J. F.; Graf, A. J.; Lieberman, M.; Oliver, G. A.

    1985-01-01

    The effects of changes in properties and blending stocks on the refinery output and cost of jet fuel in the U.S., Canada, and Europe were determined. Computerized refinery models that minimize production costs and incorporated a 1981 cost structure and supply/demand projections to the year 2010 were used. Except in the West U.S., no changes in jet fuel properties were required to meet all projected demands, even allowing for deteriorating crude qualities and changes in competing product demand. In the West U.S., property changes or the use of cracked blendstocks were projected to be required after 1990 to meet expected demand. Generally, relaxation of aromatics and freezing point, or the use of cracked stocks produced similar results, i.e., jet fuel output could be increased by up to a factor of three or its production cost lowered by up to $10/cu m. High quality hydrocracked stocks are now used on a limited basis to produce jet fuel. The conversion of U.S. and NATO military forces from wide-cut to kerosene-based jet fuel is addressed. This conversion resulted in increased costs of several hundred million dollars annually. These costs can be reduced by relaxing kerosene jet fuel properties, using cracked stocks and/or considering the greater volumetric energy content of kerosene jet fuel.

  11. Chronic effects on JP-8 jet fuel exposure on the lungs. Final technical report, 1 April 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, M.L.

    1994-06-02

    There are four major findings from the three years of work devoted to the effects of chronic JP-8 jet fuel exposure on the lungs and secondary organs. These findings are the following chronic exposure to JP-8 jet fuel alters pulmonary function and lung structures with an acute response with as little as seven days of low dose, approximately 500 mg/m3, exposure to JP-8 jet fuel; chronic exposure to JP-8 jet fuel increased liver, spleen, and kidney weights compared to controls. Microscopic evaluation of liver sections were normal; however, kidney and spleen had histological changes consistent with organic solvent exposure. Theremore » is a correlation between JP-8 jet fuel exposure-induced decreases in lung Substance P levels and lung neutral endopeptidase levels. Chronic exposure to JP-8 jet fuel caused a decrease in lung Substance P levels with a corresponding increase in lung neutral endopeptidase levels; and, there is a recovery process in the 56 day low dose JP-8 jet fuel-exposed lungs as marked by a return to baseline and longitudinal control 99mTcDTPA values. The 99mTcDTPA data was very consistent with our pathologic findings of very little lung injury in the 56 day low dose JP-8 jet fuel-exposed rats. We speculate that this finding indicates that there is a 'threshold' level of JP-8 jet fuel exposure that the lungs' defense mechanism(s) can tolerate.« less

  12. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-11-01

    Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

  13. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons.

    PubMed

    Narula, Chaitanya K; Li, Zhenglong; Casbeer, Erik M; Geiger, Robert A; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V; Davison, Brian H

    2015-11-03

    Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

  14. Market cost of renewable jet fuel adoption in the United States.

    DOT National Transportation Integrated Search

    2013-03-01

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet : fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines : of meeting this goal using renewable fuel produ...

  15. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  16. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  17. Catalytic partial oxidation reforming of hydrocarbon fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.

    1998-09-21

    The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as inmore » buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.« less

  18. High performance, high density hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.

    1978-01-01

    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.

  19. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaokun; Li, Teng; Tang, Kan

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reactionmore » mechanism is discussed.« less

  20. The Fate of Hydrocarbon Pollution in Kebnekaise, Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Rosqvist, G. N.; Jarjso, J.; Clason, C.; Jansson, P.; Karlin, T.

    2013-12-01

    A C-130J-30 Super Hercules plane crashed into the west-facing wall of the Kebnekaise mountain (2103 m), Arctic Sweden, on March 15th 2012. When starting from Evenes, Narvik, Norway, the aircraft had 14100 l fuel, 50 l hydraulic oil and 170 l motor oil onboard. Best estimates are that at least 12 000 l of fuel was sprayed over the mountain most of which was buried together with the wreck in a huge snow avalanche that was triggered by the impact in a NW facing cirque on Rabots glacier between ca 1600 and 2000 m. Fuel decontamination was not possible because of the extreme impact site conditions. The Hercules airplane was fueled with JET A-1 which is a hydrocarbon product in the Kerosene/Jet Fuel category consisting of sweetened kerosene and hydrotreated light distillates. The major components of all 'kerosene's' are branched- and straight-chain paraffins and naphthenes (cycloparaffins or cycloalkanes), which normally account for 70% by volume. Aromatic hydrocarbons, such as alkyl benzenes (single ring) and alkylnaphthalenes (double ring) do not exceed 25 % by volume of kerosene. The fuel also contains polycyclic aromatic hydrocarbons (PAH), but in very small volumes compared to the major components. The physical and chemical properties of each component (or block) of the hydrocarbon mixture influence its migration rate and fate. Some components of the fuel will volatilize, some are soluble in water but the vast majority are non-soluble. Although the solubility of these so called Light Nonaqueous Phase Liquids (LNAPL) in water is small they are highly toxic. We need to consider transport of the soluble components of the LNAPL in the melt-water, and transport of the non-soluble components with the melt-water system. Transport and storage can occur through and in snow (or firn), crevasses, and cavities on, in or under the glacier. Storage in, and contamination of, basal sediments, located below the glacier, or pro-glacial sediments, in front of the glacier are also

  1. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  2. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  3. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  4. Performance Impact Associated with Ni-Based SOFCs Fueled with Higher Hydrocarbon-Doped Coal Syngas

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory A.; Gerdes, Kirk; Chen, Yun; Song, Xueyan; Zondlo, John

    2015-03-01

    Energy generation strategies demonstrating high efficiency and fuel flexibility are desirable in the contemporary energy market. When integrated with a gasification process, a solid oxide fuel cell (SOFC) can produce electricity at efficiencies exceeding 50 pct by consuming fuels such as coal, biomass, municipal solid waste, or other opportunity wastes. The synthesis gas derived from such fuel may contain trace species (including arsenic, lead, cadmium, mercury, phosphorus, sulfur, and tars) and low concentration organic species that adversely affect the SOFC performance. This work demonstrates the impact of exposure of the hydrocarbons ethylene, benzene, and naphthalene at various concentrations. The cell performance degradation rate is determined for tests exceeding 500 hours at 1073 K (800 °C). Cell performance is evaluated during operation with electrochemical impedance spectroscopy, and exposed samples are post-operationally analyzed by scanning electron microscopy/energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The short-term performance is modeled to predict performances to the desired 40,000-hours operational lifetime for SOFCs. Possible hydrocarbon interactions with the nickel anode are postulated, and acceptable hydrocarbon exposure limits are discussed.

  5. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    PubMed Central

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.

    2015-01-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557

  6. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

    NASA Astrophysics Data System (ADS)

    Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

    2018-06-01

    Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

  7. Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.

  8. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  9. Oilseeds for use in biodiesel and drop-in renewable jet fuel

    USDA-ARS?s Scientific Manuscript database

    Oilseeds, primarily soybean and canola, are currently used as feedstocks for biodiesel production. Oilseeds can also be used to produce drop-in renewable jet fuel and diesel products. While soybean and canola are the most common oilseed crops used for renewable fuel production in the U.S., many othe...

  10. Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Freeman, W. G.; Cowell, L. H.

    1986-01-01

    The influence of pressure on the autoignition characteristics of homogeneous mixtures of hydrocarbon fuels in air is examined. Autoignition delay times are measured for propane, ethylene, methane, and acetylene in a continuous flow apparatus featuring a multi-point fuel injector. Results are presented for mixture temperatures from 670K to 1020K, pressures from 1 to 10 atmospheres, equivalence ratios from 0.2 to 0.7, and velocities from 5 to 30 m/s. Delay time is related to pressure, temperature, and fuel concentration by global reaction theory. The results show variations in global activation energy from 25 to 38 kcal/kg-mol, pressure exponents from 0.66 to 1.21, and fuel concentration exponents from 0.19 to 0.75 for the fuels studied. These results are generally in good agreement with previous studies carried out under similar conditions.

  11. Effects of in utero JP-8 jet fuel exposure on the immune systems of pregnant and newborn mice.

    PubMed

    Harris, D T; Sakiestewa, D; He, X; Titone, D; Witten, M

    2007-10-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. In the present study, the effects of in-utero JP-8 jet fuel exposure in mice were examined to ascertain any potential effects of jet fuel exposure on female personnel and their offspring. Exposure by the aerosol route (at 1000 mg/m3 for 1 h/day; similar to exposures incurred by flight line personnel) commencing during the first (d7 to birth) or last (d15 to birth) trimester of pregnancy was analyzed. It was observed that even 6-8 weeks after the last jet fuel exposure that the immune system of the dams (mother of newborn mice) was affected (in accordance with previous reports on normal mice). That is, thymus organ weights and viable cell numbers were decreased, and immune function was depressed. A decrease in viable male offspring was found, notably more pronounced when exposure started during the first trimester of pregnancy. Regardless of when jet fuel exposure started, all newborn mice (at 6-8 weeks after birth) reported significant immunosuppression. That is, newborn pups displayed decreased immune organ weights, decreased viable immune cell numbers and suppressed immune function. When the data were analyzed in relation to the respective mothers of the pups the data were more pronounced. Although all jet fuel-exposed pups were immunosuppressed as compared with control pups, male offspring were more affected by jet fuel exposure than female pups. Furthermore, the immune function of the newborn mice was directly correlated to the immune function of their respective mothers. That is, mothers showing the lowest immune function after JP-8 exposure gave birth to pups displaying the greatest effects of jet fuel exposure on immune function. Mothers who showed the highest levels of immune function after in-utero JP-8

  12. Chemicals and energy co-generation from direct hydrocarbons/oxygen proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, W. S.; Lu, D. S.; Luo, J. L.; Chuang, K. T.

    A proton exchange membrane fuel cell for chemicals and energy co-generation was set up with hydrocarbons ethane, propane and butane as fuels, and the electrochemical performance of the cell was studied by using linear potential sweep, alternating current impedance and gas chromatography. The cell performance can be improved to a great extent by increasing the platinum load in the catalyst, by treating the membrane with phosphoric acid and by elevating temperature. The improvement of cell performance by the increase of platinum load is ascribed to the increase of reaction sites for hydrocarbon oxidation, that by phosphoric acid treatment to the increase of proton conductivity in Nafion membrane, and that by elevating temperature to the improvement in thermodynamic as well as kinetic aspects. Only a small fraction of the hydrocarbon is converted to carbon dioxide in this cell during its power generation. The current efficiency is 5% for the conversion of ethane to carbon dioxide in the ethane/oxygen fuel cell with 20% carbon-supported platinum as catalyst and phosphoric acid-treated membrane as proton exchange membrane at 0.2 V, 80 °C and ambient pressure. The reaction activity of hydrocarbons at the anode is in the order of propane, butane and ethane. The possible chemicals produced from the cell were hydrocarbons with more than six carbons, which are inactive at the anode under cell conditions.

  13. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  14. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  15. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  16. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  17. The influence of droplet evaporation on fuel-air mixing rate in a burner

    NASA Technical Reports Server (NTRS)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  18. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Buttrill, S. E., Jr.; Mayo, F. R.; Lan, B.; St.john, G. A.; Dulin, D.

    1982-01-01

    A practical fuel, home heating oil no. 2 (Fuel C), and the pure hydrocarbon, n-dodecane, were subjected to mild oxidation at 130 C and the resulting oxygenated reaction products, deposit precursors, were analyzed using field ionization mass spectrometry. Results for fuel C indicated that, as oxidation was initially extended, certain oxygenated reaction products of increasing molecular weights in the form of monomers, dimers and some trimers were produced. Further oxidation time increase resulted in further increase in monomers but a marked decrease in dimers and trimers. This suggests that these larger molecular weight products have proceeded to form deposit and separated from the fuel mixture. Results for a dodecane indicated that yields for dimers and trimers were very low. Dimers were produced as a result of interaction between oxygenated products with each other rather than with another fuel molecule. This occurred even though fuel molecule concentration was 50 times, or more greater than that for these oxygenated reaction products.

  19. Jet Fuel, Noise, and the Central Auditory Nervous System: A Literature Review.

    PubMed

    Warner, Rachelle; Fuente, Adrian; Hickson, Louise

    2015-09-01

    Prompted by the continued prevalence of hearing related disabilities accepted as eligible for compensation and treatment under Australian Department of Veterans' Affairs legislation, a review of recent literature regarding possible causation mechanisms and thus, possible prevention strategies, is timely. The emerging thoughts on the effects of a combination of jet fuel and noise exposure on the central auditory nervous system (CANS) have relevance in the military aviation context because of the high exposures to solvents (including fuels) and unique noise hazards related to weapons systems and military aircraft. This literature review aimed to identify and analyze the current knowledge base of the effects of combined exposure to JP-8 jet fuel (or its aromatic solvent components) and noise on the CANS in human populations. We reviewed articles examining electrophysiological and behavioral measurement of the CANS following combined exposures to jet fuel (or its aromatic constituents) and noise. A total of 6 articles met the inclusion criteria for the review and their results are summarized. The articles considered in this review indicate that assessment of the CANS should be undertaken as part of a comprehensive test battery for military members exposed to both noise and solvents in the workplace. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  20. IET. Jet fuel tank being lowered into position below grade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Jet fuel tank being lowered into position below grade. Two tanks already in place. Date: October 18, 1954. INEEL negative no. 12535 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Jet Fuel Thermal Stability Investigations using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Nash, Leigh; Klettlinger, Jennifer; Vasu, Subith

    2017-01-01

    Ellipsometry is an optical technique used to measure the thickness of thin films. This technique was used to measure the thickness of deposits created by heated jet fuel, specifically Sasol IPK on stainless steel tubes. A new amorphous model was used to iteratively determine the film thickness. This method was found to be repeatable, and the thickness of deposit increased with increasing temperature and increasing concentration of naphthalene.

  2. Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine.

    PubMed

    Corporan, Edwin; Reich, Richard; Monroig, Orvin; DeWitt, Matthew J; Larson, Venus; Aulich, Ted; Mann, Michael; Seames, Wayne

    2005-07-01

    The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained

  3. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    PubMed

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C 8 -C 19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report

    NASA Technical Reports Server (NTRS)

    Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

    2011-01-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

  5. Initial characterization of an Experimental Referee Broadened-Specification (ERBS) aviation turbine fuel

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Seng, G. T.

    1980-01-01

    Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental referee broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerojet specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.

  6. Identification of microorganisms isolated from jet fuel systems.

    PubMed

    Edmonds, P; Cooney, J J

    1967-03-01

    Seventy-two samples from jet aircraft fuel systems were examined for microbial contamination. Ten contaminated samples yielded 43 microorganisms which were classified into nine genera of bacteria and three genera of fungi. The predominant types, comprising about 37% of the isolated cultures, were identified as Bacillus spp. The remaining cultures were distributed among 11 genera, each of which represented 2 to 9% of the total isolates. Four cultures could not be assigned to a genus on the basis of the diagnostic criteria used. Only five isolates, in the genera Pseudomonas and Hormodendrum (Cladosporium), grew abundantly in a mineral salts solution with JP-4 fuel as the sole source of carbon. The presence of fuel utilizers in a fuel system may be a better index to potential problems that have been correlated with microbial contamination than the presence of aerobic sporeforming bacilli.

  7. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons

    PubMed Central

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-01-01

    Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX. PMID:26526963

  8. Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons

    DOE PAGES

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; ...

    2015-11-03

    Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C 2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C 2 (<13%) as compared to that over H-ZSM-5. Experiments with C 2H 5OD and in situ DRIFT suggest that most of the productsmore » come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.« less

  9. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.

  10. Techno-Economic Analysis of Camelina-Derived Hydroprocessed Renewable Jet Fuel and its Implications on the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    Although the aviation industry contributes toward global economic growth via transportation of passengers and cargo, the increasing demand for air transportation causes concern due to the corresponding increase in aircraft engine exhaust emissions. Use of alternative fuels is one pathway that has been explored for reducing emissions in the aviation industry. Hydroprocessed renewable jet (HRJ) (also known as Hydroprocessed Esters and Fatty Acids - HEFA) fuels have been approved for blending with traditional jet fuel up to 50% by volume to be used as drop-in fuels. However, limited information exists on the economic viability of these fuels. While techno-economic studies have been conducted on the HRJ production process using soybean oil, different vegetable oils possess different hydrocarbon structures that affect the yield of HRJ fuels. This study involves the techno-economic analysis of producing Camelina-derived HRJ fuel using the option of hydro-deoxygenation (HDO). The hydrodeoxygenation option requires extra hydrogen and hence affects the overall cost of HRJ fuel production. Similar studies have been conducted on the production of Camelina-derived HRJ fuels using the same path of hydrodeoxygenation with minor contributions from both decarbonylation and decarboxylation reactions. This study, however, employs the UOP Honeywell procedure using the hydrodeoxygenation chemical reaction to estimate the breakeven price of Camelina-derived HRJ fuel. In addition, the study treats the cultivation of Camelina oilseeds, extraction of oilseeds, and the conversion of HRJ fuel as separate entities. The production of Camelina oilseed, Camelina oil, and finally Camelina-derived HRJ fuel is modeled in order to estimate the breakeven price of the fuel. In addition, the information obtained from the techno-economic analysis is used to assess the breakeven carbon price. All costs are analyzed based on 2016 US dollars. The breakeven price of Camelina oilseeds is found to be 228

  11. Determination of solid mass fraction in partially frozen hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Cotterell, E. M.; Mossadegh, R.; Bruce, A. J.; Moynihan, C. T.

    1986-01-01

    Filtration procedures alone are insufficient to determine the amounts of crystalline solid in a partially frozen hydrocarbon distillate fraction. This is due to the nature of the solidification process by which a large amount of liquid becomes entrapped within an interconnected crystalline structure. A technique has been developed to supplement filtration methods with an independent determination of the amount of liquid in the precipitate thereby revealing the actual value of mass percent crystalline solid, %S. A non-crystallizing dye is injected into the fuel and used as a tracer during the filtration. The relative concentrations of the dye in the filtrate and precipitate fractions is subsequently detected by a spectrophotometric comparison. The filtration apparatus was assembled so that the temperature of the sample is recorded immediately above the filter. Also, a second method of calculation has been established which allows significant reduction in test time while retaining acceptable accuracy of results. Data have been obtained for eight different kerosene range hydrocarbon fuels.

  12. Opportunities and challenges for developing an oilseed to renewable jet fuel industry

    USDA-ARS?s Scientific Manuscript database

    Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...

  13. Heat transfer correlations for kerosene fuels and mixtures and physical properties for Jet A fuel

    NASA Technical Reports Server (NTRS)

    Ackerman, G. H.; Faith, L. E.

    1972-01-01

    Heat transfer correlations are reported for conventional Jet A fuel for both laminar and turbulent flow in circular tubes. Correlations were developed for cooling in turbine engines, but have broader applications in petroleum and chemical processing, and other industrial applications.

  14. The effects of oxygen scavenging on jet fuel thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Williams, T.F.; Whitacre, S.

    1996-10-01

    Preliminary tests with a proposed oxygen scavenger (triphenyl-phosphine, TPP) have been done in closed static and flowing systems to study its effects on the oxidation and the deposit formation of jet fuel. TPP was found to significantly slow the oxidation of hexadecane or jet fuel at some temperatures/concentrations and increase the oxidation rate at other conditions. The additive helped decrease the formation of deposits at higher concentrations (200 mg/l) but not at lower concentrations. No evidence of phosphorous was observed in the deposits that were formed. Gas chomatography combined with mass spectrometry and atomic emission detection showed that TPP producedmore » the expected oxidation product (triphenylphosphineoxide) and an unexpected triphenylphosphine-sulfide. The GC/AED allowed A quantitative analysis of the conversion efficiency of TPP to TPPO upon stressing in a closed system.« less

  15. Environmental cost-benefit analysis of ultra low sulfur jet fuel.

    DOT National Transportation Integrated Search

    2011-12-01

    Aircraft emissions can reduce air quality, leading to adverse health impacts including : increased risk of premature mortality. A technically viable way to mitigate the health : impacts of aviation is the use of desulfurized jet fuel, as has been don...

  16. Analytic tests and their relation to jet fuel thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Kauffman, R.E.

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions showmore » that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.« less

  17. Post-Shock Sampling of Shock-Heated Hydrocarbon Fuels

    DTIC Science & Technology

    2016-07-07

    on the ability to measure key hydrocarbon fragments (e.g. ethylene , methane, and acetylene) over a wide range of temperatures and pressures. The...series of experiments was conducted to validate the sampling system results and explore the thermal decomposition of ethylene and methane. Initially, a...1% ethylene /0.1% methane/balance argon fuel mixture was shock-heated to ~960 K – a temperature low enough that no reaction would occur. GC analysis

  18. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.

    1979-01-01

    The feasibility of using a heavy hydrocarbon fuel as a rocket propellant is examined. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. Experiments were done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in) to 55.9 cm (22 in). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by reaming each injector several times to provide test data over a range of injector pressure drop.

  19. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  20. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  1. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, Edward J.; Anderson, Brian L.; Wijesinghe, Ananda M.; Viani, Brian E.

    1999-01-01

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

  2. Emission FTIR analyses of thin microscopic patches of jet fuel residues deposited on heated metal surfaces

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Vogel, P.

    1986-01-01

    The relationship of fuel stability to fuel composition and the development of mechanisms for deposit formation were investigated. Fuel deposits reduce heat transfer efficiency and increase resistance to fuel flow and are highly detrimental to aircraft performance. Infrared emission Fourier transform spectroscopy was chosen as the primary method of analysis because it was sensitive enough to be used in-situ on tiny patches of monolayers or of only a few molecular layers of deposits which generally proved completely insoluble in any nondestructive solvents. Deposits of four base fuels were compared; dodecane, a dodecane/tetralin blend, commercial Jet A fuel, and a broadened-properties jet fuel particularly rich in polynuclear aromatics. Every fuel in turn was provided with and without small additions of such additives as thiophene, furan, pyrrole, and copper and iron naphthenates.

  3. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  4. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE PAGES

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; ...

    2017-05-18

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  5. Chapter 8: Pyrolysis of Biomass for Aviation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J; Jenkins, Rhodri W.; Sutton, Andrew D.

    2016-07-15

    Pyrolysis, the breaking down of organic material using heat and the absence of oxygen, is a method that has been widely researched for the production of liquid fuels. In this chapter, we review the feedstocks typically used for pyrolysis, the properties and the composition of the liquid fraction (termed 'bio-oil') obtained, the studies in which pyrolysis has been used in an attempt to increase the bio-oil yield, and how the bio-oil has been upgraded to fuel-like molecules. We also discuss the viability of pyrolysis to produce jet fuel hydrocarbons.

  6. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Performance of Aqueous Film Forming Foam (AFFF) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires

    DTIC Science & Technology

    2011-12-01

    aqueous film forming foam ( AFFF ) firefighting agents and equipment are capable of...AFRL-RX-TY-TR-2012-0012 PERFORMANCE OF AQUEOUS FILM FORMING FOAM ( AFFF ) ON LARGE-SCALE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES...Performance of Aqueous Film Forming Foam ( AFFF ) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires FA4819-09-C-0030 0602102F 4915 D0

  8. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  9. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  10. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    Negative electrospray ionization/MS enabled rapid, specific, and selective screening for unique polar components at parts per million concentrations in commercial hydrocarbon products without extensive sample preparation, separation, chromatography, or quantitation. Commercial fuel types were analyzed with this method, including kerosene, jet fuel, white gas, charcoal lighter fluid, on-road and off-road diesel fuels, and various grades and brands of gasolines. The different types of fuels produced unique and relatively simple spectra. These analyses were then applied to hydrocarbon samples from a large, long-term fuel spill. Although the alkane, isoprenoid, and alkylcyclohexane portions began to biodegrade or weather, the polar components in these samples remained relatively unchanged. The type of fuel involved was readily identified by negative electrospray ionization/MS. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).

  11. Influence of environmental factors on denitrification in sediment contaminated with JP-4 jet fuel

    USGS Publications Warehouse

    Bradley, Paul M.; Aelion, C. Marjorie; Vroblesky, Don A.

    1992-01-01

    In 1975, the loss of approximately 83,000 gallons of JP-4 grade jet fuel resulted in contamination of the shallow aquifer near North Charleston, South Carolina. To identify those factors likely to influence microbial activity under denitrifying conditions, we examined the fate of amended NO3, the effect of pH, NO3, and PO4 on denitrification, and the variability of denitrification in sediments collected at the site. Denitrification (N2O-N production) accounted for 98% of the depletion of NO3-N under anaerobic conditions. Both carbon mineralization and denitrification rates increased asymptotically with increasing NO3 to a maximum at approximately 1 mM NO3. Addition of up to 1 mM PO4 did not significantly increase N2O and CO2 production. Denitrification rates were at least 38% lower at pH = 4 than observed at pH = 7. Comparison of samples with differing degrees of hydrocarbon contamination indicated that at least a tenfold variation in sediment denitrification occurs at the North Charleston site.

  12. JP-8 jet fuel exposure suppresses the immune response to viral infections.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; He, X; Hyde, J; Witten, M

    2008-05-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1A h/day resulted in immediate secretion of two immunosuppressive agents, namely, interleukin-10 and prostaglandin E2. Thus, it was of interest to determine if jet fuel exposure might alter the immune response to infectious agents. The Hong Kong influenza model was used for these studies. Mice were exposed to 1000A mg/m(3) JP-8 (1A h/day) for 7A days before influenza viral infection. Animals were infected intra-nasally with virus and followed in terms of overall survival as well as immune responses. All surviving animals were killed 14A days after viral infection. In the present study, JP-8 exposure increased the severity of the viral infection by suppressing the anti-viral immune responses. That is, exposure of mice to JP-8 for 1A h/day for 7A days before infection resulted in decreased immune cell viability after exposure and infection, a greater than fourfold decrease in immune proliferative responses to mitogens, as well as an overall loss of CD3(+), CD4(+), and CD8(+) T cells from the lymph nodes, but not the spleens, of infected animals. These changes resulted in decreased survival of the exposed and infected mice, with only 33% of animals surviving as compared with 50% of mice infected but not jet fuel-exposed (and 100% of mice exposed only to JP-8). Thus, short-term, low-concentration JP-8 jet fuel exposures have significant suppressive effects on the immune system which can result in increased severity of viral infections.

  13. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  14. Effects of repeated exposure of rats to JP-5 or JP-8 jet fuel vapor on neurobehavioral capacity and neurotransmitter levels.

    PubMed

    Rossi, J; Nordholm, A F; Carpenter, R L; Ritchie, G D; Malcomb, W

    2001-07-20

    The U.S. Naval Service is anticipating transition from the nearly exclusive use of JP-5 jet fuel to predominant use of JP-8, consistent with the primary utilization by the U.S. Army, U.S. Air Force, and the militaries of most NATO countries. To compare the relative risk of repeated exposure to JP-5 versus JP-8 vapor, groups of 32 male Sprague-Dawley rats each were exposed for 6 h/d, 5 d/wk for 6 wk (180 h) to JP-8 jet fuel vapor (1,000 +/- 10% mg/m3), IP-5 vapor (1,200 +/- 10% mg/m3), or room air control conditions. Following a 65-d rest period, rats completed 10 tests selected from the Neurobehavioral Toxicity Assessment Battery (NTAB) to evaluate changes in performance capacity. Repeated exposure to JP-5 resulted in significant effects on only one test, forelimb grip strength (FGS), while exposure to JP-8 vapor resulted in a significant difference versus controls on appetitive reinforcer approach sensitization (ARAS). Rats were further evaluated for concentrations of major neurotransmitters and metabolites in five brain regions and in the blood serum. Levels of dopamine, the dopamine metabolite dihydroxyphenylacetic acid (DOPAC), and the serotonin metabolite homovanillic acid (HVA) were significantly modulated in various brain regions, as measured 85+ d postexposure. Similarly, serum levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were differentially modulated following JP-8 or JP-5 exposure. Results are compared to previously published research evaluating the neurotoxicity of repeated exposure to other hydrocarbon fuels and solvents.

  15. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B

    2015-07-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    DOE PAGES

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; ...

    2015-05-11

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  17. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    PubMed

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  18. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.

    1979-01-01

    An experimental program to determine the feasibility of using a heavy hydrocarbon fuel as a rocket propellant is reported herein. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. The work was done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in.) to 55.9 cm (22 in.). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by 'reaming' each injector several times to provide test data over a range of injector pressure drop.

  19. Low-Cost Jet Fuel Starter Design Study

    DTIC Science & Technology

    1974-12-02

    2G 27 3^ 38 & 39 60 vi WflU I LIST OF TABLES (continued) TABLE NO, 7 D-l I>-2 TITLE PAGE NO, Sea Level Design Point Component...Improvements 60 Turbojet Performance Summary D-3 Turbofan Performance Summary D-5 vii 1 SECTION INTRODUCTION The purpose of this study was to define...temperature difference between the top and bot- tom of the starter, does not begin to have an effect until after 60 seconds from shutdown. The Jet fuel

  20. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.

    PubMed

    Liang, Renxing; Duncan, Kathleen E; Le Borgne, Sylvie; Davidova, Irene; Yakimov, Michail M; Suflita, Joseph M

    2017-08-20

    Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8μM/d) relative to incubations receiving a hydroprocessed biofuel (16.1μM/d) or a fuel-unamended control (17.8μM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Flight and Preflight Tests of a Ram Jet Burning Magnesium Slurry Fuel and Utilizing a Solid-propellant Gas Generator for Fuel Expulsion

    NASA Technical Reports Server (NTRS)

    Bartlett, Walter, A , jr; Hagginbotham, William K , Jr

    1955-01-01

    Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.

  2. Conversion of crop seed oils to jet fuel and associated methods

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  3. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    PubMed

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  4. Novel applications of topological indices. 2. Prediction of the threshold soot index for hydrocarbon fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, M.P.; Rouvray, D.H.

    The propensity of hydrocarbons to form soot in a diffusion flame is correlated here for the first time against various topological indices. Two of the indices, the hydrogen deficiency index and the Balaban distance sum connectivity index, were found to be especially valuable for correlational purposes. For the total of 98 hydrocarbon fuel molecules of differing types, regression analyses yielded good correlations between the threshold soot indices (TSIs) for diffusion flames and these two indices. An equation which can be used to estimate TSI values in fuel molecules is presented.

  5. Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine : Liquid Oxygen Mixtures with Jet Fuel

    NASA Technical Reports Server (NTRS)

    Rothenberg, Edward A; Ordin, Paul M

    1954-01-01

    The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.

  6. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    PubMed

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  8. Procedure for and results of simultaneous determination of aromatic hydrocarbons and fatty acid methyl esters in diesel fuels by high performance liquid chromatography.

    PubMed

    Kamiński, M; Gilgenast, E; Przyjazny, A; Romanik, G

    2006-07-28

    The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.

  9. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.

  10. Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2003-01-01

    Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.

  11. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    PubMed

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biomass Processing using Ionic Liquids for Jet Fuel Production

    DTIC Science & Technology

    2014-04-09

    lignocellulosic biomass. Biomass consists predominantly of three biopolymers— lignin , hemicellulose and cellulose. For fuel production, it is necessary to...hydrocarbons. The lignin and cellulose, however, have very low solubility in conventional solvents making processing difficult. Typically a pretreatment step...is used to break up the lignin and make the cellulose accessible to further hydrolysis to glucose. Pretreatment, however, is one of the most

  13. Shock wave calibration of under-expanded natural gas fuel jets

    NASA Astrophysics Data System (ADS)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  14. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  15. Minimum-fuel, three-dimensional flight paths for jet transports

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1985-01-01

    A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.

  16. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  17. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam

  18. NATURAL ATTENUATION OF FUEL HYDROCARBONS AT MULTIPLE AIR FORCE BASE DEMONSTRATION SITES

    EPA Science Inventory

    ABSTRACT
    A major initiative to evaluate monitored natural attenuation (MNA) of ground-water contaminated with fuel hydrocarbons began in June, 1993, and continued through September, 1999. The main emphasis was to evaluate natural degradation mechanisms to reduce dissolved ...

  19. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  20. Evaluation of 10 Jet Fuels in the Salmonella-Escherichia coli Mutagenicity Assay

    DTIC Science & Technology

    2016-09-07

    4658), Valero 25% Aromatic JP8 (POSF 8457), KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327), ARA ReadiJet (POSF 10328), Amyris Farnesane (POSF...JP8 (POSF 8457) * KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327) * ARA ReadiJet (POSF 10328) * Amyris Farnesane (POSF 10329) * Virent HDO-SK...fuel/plate. Due to evidence of toxicity, KiOR Hydrotreated Kerosene/ Bio -Kerosene (POSF 10327) and Virent HDO-SK (POSF 10330) were used at

  1. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  2. Transverse liquid fuel jet breakup, burning, and ignition. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Li, Hsi-Shang

    1990-01-01

    An analytical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion. Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, were used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic cross flow. Typical flame structures and concentration profiles were calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integration reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  3. Gene expression profiles in the rat central nervous system induced by JP-8 jet fuel vapor exposure.

    PubMed

    Lin, Baochuan; Ritchie, Glenn D; Rossi, John; Pancrazio, Joseph J

    2004-06-17

    Jet propulsion fuel-8 (JP-8) is the predominant fuel for military land vehicles and aircraft used in the US and NATO. Occupational exposure to jet fuel in military personnel has raised concern for the health risk associated with such exposure in the Department of Defense. Clinical studies of humans chronically exposed to jet fuel have suggested both neurotoxicity and neurobehavioral deficits. We utilized rat neurobiology U34 array to measure gene expression changes in whole brain tissue of rats exposed repeatedly to JP-8, under conditions that simulated possible occupational exposure (6 h/day for 91 days) to JP-8 vapor at 250, 500, and 1000 mg/m(3), respectively. Our studies revealed that the gene expression changes of exposure groups can be divided into two main categories according to their functions: (1). neurotransmitter signaling pathways; and (2). stress response. The implications of these gene expression changes are discussed.

  4. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    EPA Science Inventory

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  5. A Study of the Nephrotoxicity and Metabolism of Tetralin and Indan in Fischer 344 Rats

    DTIC Science & Technology

    1989-05-01

    5, a jet fuel composed of aliphatic and aromatic hydrocarbons with the majority of the straight-chain hydrocarbons being between C10 and C15...hydrocarbon of intermediate boiling point and volatility and is similar to the civilian jet fuel , A-1. DFM is a mixture of long chain aliphatic...to compliment earlier research on jet fuel , JP-10, cis- and trans- decalin, and tetralin, it was anticipated some enlightenment could be obtained on

  6. A Study of the Nephrotoxicity and Metabolism of Tetralin and Indan in Fischer 344 Rats.

    DTIC Science & Technology

    1988-02-08

    evaluated petroleum and shale-derived JP-5, a jet fuel composed of aliphatic and aromatic hydrocarbons with the majority of the straight-chain hydrocarbons...much like gasoline. JP-8 is a mixture of hydrocarbon of intermediate boiling point and volatility and is similar to the civilian jet fuel , A-1. DFM is a...conventional versus shale-derived JP-5 jet fuel : Light microscopy, hematologic, and serum chemistry studies. Toxicol Appl Pharmacol, 57, 302-317 (1981

  7. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.

    2006-07-01

    The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.

  8. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  9. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  10. Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    PubMed

    Yao, Guolin; Staples, Mark D; Malina, Robert; Tyner, Wallace E

    2017-01-01

    Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven

  11. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8.more » Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)« less

  12. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Kinchin, C.; McCormick, R.

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  13. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor

    DTIC Science & Technology

    2009-12-01

    In the primary zone, high- temperature, high-pressure air enters from the compressor and flows around fuel injectors spraying atomized liquid -droplet...chemical reaction in which synthesis gas , a mixture of carbon monoxide and hydrogen, is converted into liquid hydrocarbons of various forms. The most...the fuel lines needed to be rebuilt due to a recent COAL lab renovation. The liquid fuel system had not been used for nearly two years so some

  14. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    PubMed

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P < 0.0001), with similar differences observed for other analytes in air. Naphthalene was strongly correlated with THC (r = 0.82, P < 0.0001) and both were positively correlated with the relative humidity of the work environment. Exposures to THC and naphthalene varied significantly by job categories based on USAF specialty codes and were highest among personnel working in fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups

  15. Protection from JP-8 jet fuel induced immunotoxicity by administration of aerosolized substance P.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and decreased sensorimotor speed. The United States Air Force has decided to implement the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Exposure to potential environment toxicants such as JP-8 may have significant effects on host physiology. Previous studies in mice have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system; e.g., decreased viable immune cell numbers, decreased immune organ weights, and loss on immune function that persisted for extended periods of time (i.e., up to 4 weeks post-exposure). Previous studies have shown that JP-8 induced pulmonary dysfunction was associated with a decrease in levels of the neuropeptide substance P (SP) in lung lavage fluids. It was found that administration of aerosolized SP was able to protect exposed animals from such JP-8 induced pulmonary changes. In the current study, aerosolized SP was analyzed for its effects on JP-i induced immunotoxicity in exposed mice. It was observed that SP administration could protect JP-8 exposed animals from losses of viable immune cell numbers, but not losses in immune organ weights. Further, exposure of animals to SP inhibitors generally increased the immunotoxicity of JP-8 exposure. SP appeared to act on all immune cell populations equally as analyzed by flow cytometry, as no one immune cell population appeared to be preferentially protected by SP. Also, SP administration was capable of protecting JP-8 exposed animals from loss of immune function at all concentrations of JP-8 utilized (250-2500 mg/m3). Significantly, SP only needed to be administered for 15 minutes after JP-8 exposure, and was active at both 1 microM and 1 nM concentrations. Thus, SP administration appears to be a

  16. Propane-Fueled Jet Engine

    NASA Astrophysics Data System (ADS)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  17. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.

    PubMed

    Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E

    2007-11-01

    Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of

  18. NATURAL ATTENUATION OF FUEL HYDROCARBONS AT MULTIPLE AIR FORCE BASE DEMONSTRATION SITES

    EPA Science Inventory

    A major initiative to evaluate monitored natural attenuation(MNA) of ground water contaminated with fuel hydrocarbons began in June 1993 and continued through October 2000. During this time site characterization studies, both initial and follow-up, were conducted at 28 Air Forc...

  19. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  20. Deposit formation and heat transfer in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.

    1983-01-01

    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.

  1. Addition agents effects on hydrocarbon fuels burning

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.

    2016-01-01

    Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.

  2. Applications of photoacoustic techniques to the study of jet fuel residue

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.

    1983-01-01

    It has been known for many years that fuels for jet aircraft engines demonstrate thermal instability. One manifestation of this thermal instability is the formation of deleterious fuel-derived thermally-induced deposits on surfaces of the aircraft's fuel-handling system. The results of an investigation of the feasibility of applying photoacoustic techniques to the study of the physical properties of these thermal deposits are presented. Both phase imaging and magnitude imaging and spectroscopy were investigated. It is concluded that the use of photoacoustic techniques in the study of films of the type encountered in this investigation is not practical.

  3. Hydrocarbon-fuel/copper combustion chamber liner compatibility, corrosion prevention, and refurbishment

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Gage, M. L.; Homer, G. D.; Franklin, J. E.

    1991-01-01

    An evaluation is made of combustion product/combustion chamber compatibility in the case of a LOX/liquid hydrocarbon booster engine based on copper-alloy thrust chamber which is regeneratively cooled by the fuel. It is found that sulfur impurities in the fuel are the primary causes of copper corrosion, through formation of Cu2S; sulfur levels as low as 1 ppm can result in sufficiently severe copper corrosion to degrade cooling channel performance. This corrosion can be completely eliminated, however, through the incorporation of an electrodeposited gold coating on the copper cooling-channel walls.

  4. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  5. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  6. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  7. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    EPA Science Inventory

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  8. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.

    2002-01-01

    Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.

  9. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    PubMed

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  10. Enhanced Bioreclamation of Jet Fuels: A Full-Scale Test at Eglin AFB, Florida

    DTIC Science & Technology

    1989-09-01

    accelerated fuel degradation. To the authors’ knowledge , in the United States only one relatively undocumented attempt at nitrate utilization has...site demonstrations. To the authors’ knowledge . only the nitrate demonstrations previously discussed have been attempted to clean tip fuel...authors* knowledge -, enhanced bioreclamation is the only demonstrated technology for in situ treatment of hydrocarbons in deeper groundwaters. 5

  11. The costs of production of alternative jet fuel: A harmonized stochastic assessment.

    PubMed

    Bann, Seamus J; Malina, Robert; Staples, Mark D; Suresh, Pooja; Pearlson, Matthew; Tyner, Wallace E; Hileman, James I; Barrett, Steven

    2017-03-01

    This study quantifies and compares the costs of production for six alternative jet fuel pathways using consistent financial and technical assumptions. Uncertainty was propagated through the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast pyrolysis. The results indicate that none of the six processes would be profitable in the absence of government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in the United States with a Renewable Fuel Standard policy analysis. Results indicate that some pathways could achieve positive NPV with relatively high likelihood under existing policy supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively, in the best-case scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  13. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  14. BREATH MEASUREMENT OF TOTAL BODY BURDEN OF JP-8 JET FUEL FOR EPIDEMIOLOGICAL STUDY

    EPA Science Inventory

    A complex epidemiological investigation of the effects of acute exposure to JP-8 jet fuel in the U.S. Air Force was performed through the study of about 350 human subjects across six Air Force bases. The focus was on fuels system maintenance personnel as the "exposed"...

  15. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    NASA Astrophysics Data System (ADS)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  16. An evaluation of very large airplanes and alternative fuels. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Hederman, W.F.

    1976-12-01

    Very large airplanes using alternative fuels are examined in the context of existing and possible future Air Force missions. Synthetic jet fuel (JP), liquid methane, liquid hydrogen, and nuclear propulsion are the fuel alternatives selected for detailed analysis. Conceptual designs of airplanes using each of these fuels were developed and estimates were made of their lifecycle cost and life-cycle energy consumption. Mission analyses were performed to determine the effectiveness of the alternative airplanes in strategic airlift specifically and in the station-keeping role in general. Results indicate that for most military applications airplanes with gross weights in excess of one millionmore » pounds promise to be superior to any comtemporary airplanes in terms of cost-effectiveness and energy-hydrocarbon jet fuel, whether manufactured from oil shale, coal or crude oil, remains the most attractive aviation fuel for future Air Force use. Policy recommendations are made pertaining both to alternative fuels and to advanced-technology large airplanes. Future research and developments are also identified.« less

  17. Lessons Learned Using Fractions to Assess Risk at Petroleum Release Sites

    DTIC Science & Technology

    2004-04-01

    Jet Fuel Bioavailability Hydrocarbon fractions Total Petroleum Hydrocarbons Weathered petroleum Sequestration 16. SECURITY CLASSIFICATION OF: 17...requirements at sites that were contaminated with petroleum products such as gasoline, diesel fuel , jet fuel , heating oil, lubricants and used motor oils...December 2002. Four of the demonstration sites were contaminated with jet fuel (i.e., JP-4, JP-5 or JP-8). The Misawa Air Base site was contaminated with

  18. Starting characteristics and combustion performance of magnesium slurry in 6.5-inch-diameter ram-jet engine mounted in connected-pipe facility

    NASA Technical Reports Server (NTRS)

    Gibbs, James B

    1954-01-01

    The starting characteristics and combustion performance of slurry type fuels, consisting of 50 percent magnesium powder in a hydrocarbon carrier, have been investigated in a flight-type, 6.5-inch-diameter ram-jet engine in a connected-pipe facility. Quick, dependable starting of the engine was obtained by the use of a disk which blocked part of the combustor area downstream of the flame holder. Acceptable performance was achieved with a short fuel-air mixing length by the development of a fuel-distribution control sleeve.

  19. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1991-01-01

    Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.

  20. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOEpatents

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  1. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  2. An evaluation of the relative fire hazards of jet A and jet B for commercial flight

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Hacker, P. T.

    1973-01-01

    The relative fire hazards of Jet A and Jet B aircraft fuels are evaluated. The evaluation is based on a consideration of the presence of and/or the generation of flammable mixtures in fuel systems, the ignition characteristics, and the flame propagation rates for the two fuel types. Three distinct aircraft operating regimes where fuel type may be a factor in fire hazards are considered. These are: (1) ground handling and refueling, (2) flight, and (3) crash. The evaluation indicates that the overall fire hazards for Jet A are less than for Jet B fuel.

  3. Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1995-01-01

    Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.

  4. Novel application of topological indices. 2. Prediction of the threshold soot index for hydrocarbon fuels. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, M.P.; Rouvray, D.H.

    The propensity of hydrocarbons to form soot in a diffusion flame is correlated here for the first time against various topological indices. Two of the indices, the hydrogen deficiency index, and the Balaban distance-sum connectivity index were found to be especially valuable for correlational purposes. For a total of 98 hydrocarbon fuel moelcules, of differing types, regression analyses yielded good correlations between the threshold soot indices (TSIs) for diffusion flames and these two indices. An equation that can be used to estimate TSI values in fuel molecules is presented.

  5. Development of Detailed and Reduced Kinetics Mechanisms for Surrogates of Petroleum-Derived and Synthetic Jet Fuels

    DTIC Science & Technology

    2014-12-04

    is determined with an on-line, continuous NDIR analyzer and O2 is measured using an electrochemical oxygen sensor . 8 3.1.2 Modelling Approach...hydrocarbons were discussed. Additionally, the possibility to extend the reach of JetSurF model and apply it for models of soot formation in gas turbine engines was addressed.

  6. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  7. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  8. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  9. Methodological aspects of fuel performance system analysis at raw hydrocarbon processing plants

    NASA Astrophysics Data System (ADS)

    Kulbjakina, A. V.; Dolotovskij, I. V.

    2018-01-01

    The article discusses the methodological aspects of fuel performance system analysis at raw hydrocarbon (RH) processing plants. Modern RH processing facilities are the major consumers of energy resources (ER) for their own needs. To reduce ER, including fuel consumption, and to develop rational fuel system structure are complex and relevant scientific tasks that can only be done using system analysis and complex system synthesis. In accordance with the principles of system analysis, the hierarchical structure of the fuel system, the block scheme for the synthesis of the most efficient alternative of the fuel system using mathematical models and the set of performance criteria have been developed on the main stages of the study. The results from the introduction of specific engineering solutions to develop their own energy supply sources for RH processing facilities have been provided.

  10. Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed. Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (i.e., physiology, cardiology, respiratory, etc.); e.g., the immune system. Previous studies have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system, which should have serious consequences for the exposed host in terms of susceptibility to infectious agents. If these alterations in immune function were long-lasting, it might also result in an increased likelihood of development and/or progression of cancer, as well as autoimmune disease. In the current study, mice were exposed for 1 h/day for 7 days to a moderate (1000 mg/m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel to stimulate occupational exposures. One to 28 days after the last exposure the mice were analyzed for effects of the exposure on their immune systems. It was observed that decrease in viable immune cell numbers and immune organ weights found at 24 h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analyzed by mitogenesis assays, which persisted for up to 4 weeks post-exposure. Thus, short-term exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long-lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure. Such long

  11. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  12. The Utility of Naphthyl-Keratin Adducts as Biomarkers for Jet-Fuel Exposure

    EPA Science Inventory

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). Th...

  13. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  14. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    USDA-ARS?s Scientific Manuscript database

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  15. Evaluation of Jet Fuel Induced Hearing Loss in Rats

    DTIC Science & Technology

    2011-10-13

    flow of approximately 20 liters per minute (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an...inch PVC pipe contained the spray pattern. The pipe was initially reduced in size to accept an orifice plate which can be used to measure flow rate...chamber flow . Two drain ports were used to remove residual jet fuel which accumulated after a day‟s exposure. To achieve the 10 1500 mg/m 3

  16. Past, Present and Emerging Toxicity Issues for Jet Fuel

    DTIC Science & Technology

    2011-01-01

    Statistically significant dominant lethal effects were not observed for either mice or rats (Air Force, 1978). However, because of the small sample...Adams, M.M., 2004. Immunological and hematological effects observed in B6C3F1 mice exposed to JP-8 jet fuel for 14 days. J. Toxicol. Environ. Health A...acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with

  17. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  18. Experimental study of the thermal stability of hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Marteney, P. J.; Colket, M. B.; Vranos, A.

    1982-01-01

    The thermal stability of two hydrocarbon fuels (premium diesel and regular diesel) was determined in a flow reactor under conditions representing operation of an aircraft gas turbine engine. Temperature was varied from 300 to 750 F (422 to 672 K) for fuel flows of 2.84 to 56.8 liters/hr (corresponding to 6.84 x 0.00010 to 1.63 x 0.010 kg/sec for regular diesel fuel and 6.55 x 0.00010 to 1.37 x 0.010 kg/sec for premium diesel fuel); test times varied between 1 and 8 hr. The rate of deposition was obtained through measurement of weight gained by metal discs fixed along the channel wall. The rate of deposit formation is best correlated by an Arrhenius expression. The sample discs in the flow reactor were varied among stainless steel, aluminum and brass; fuels were doped with quinoline, indole, and benzoyl perioxide to yield nitrogen or oxygen concentrations of approximately 1000 ppm. The most substantial change in rate was an increase in deposits for brass discs; other disc materials or the additives caused only small perturbations. Tests were also conducted in a static reactor at temperatures of 300 to 800 F for times of 30 min to 2 1/2 hr. Much smaller deposition was found, indicating the importance of fluid transport in the mechanism.

  19. Subacute Effects of Inhaled Jet Fuel-A (JET A) on Airway and Immune Function in Rats

    DTIC Science & Technology

    2012-07-16

    the source of the oil used in its manufacture. This study used fuel provided by five of the major oil companies ( blend POSF-4658, Chevron, Shell Oil... using a Hastings (Model 40) monitor. The chamber system schematic is depicted in Figure 4. Figure 4. Schematic of exposure control system...were used due to concerns that the air control animals (Group 2) might be unintentionally exposed to background levels of Jet A. Group 2 was exposed

  20. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  1. Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

    NASA Astrophysics Data System (ADS)

    Gardner, William Geoffrey

    2011-12-01

    Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.

  2. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  3. The Metabolism of Tetralin in Fischer 344 Rats

    DTIC Science & Technology

    1986-04-01

    evaluated petroleum and shale-derived JP-5, a jet fuel composed of aliphatic and aromatic hydrocarbons with the majority of the straight-chain...much like gasoline. JP-8 is a mixture of hydrocarbons of intermediate boiling point and volatility and is similar to the civilian jet fuel , A-1. DFM...toxicity of conventional versus shale-derived JP-5 jet fuel : Light microscopy, hematologic, and serum chemistry studies. Toxicol Appl Pharmacol, 57

  4. Fire Safety Tests Comparing Synthetic Jet and Diesel Fuels with JP-8 (POSTPRINT)

    DTIC Science & Technology

    2010-04-01

    about 25% aromatics and 75% saturated (paraffin and naphthene ) hydro- carbons [5]. JP-8 is produced from jet fuel A by adding a corrosion inhibitor...4529a 43.9 44.2 Lubricity (mm) ASTM D – 5001 0.58 0.92 Acidity (mg KOH/g) ASTM D – 3242 0.004 0.003 SPK fuels taken from Moses [7], diesel fuels taken...this occurred the burnback pan was removed from the agent pan. The flames in the agent pan were allowed to break up the foam blanket and propagate until

  5. Proteomic analysis of the renal effects of simulated occupational jet fuel exposure.

    PubMed

    Witzmann, F A; Bauer, M D; Fieno, A M; Grant, R A; Keough, T W; Lacey, M P; Sun, Y; Witten, M L; Young, R S

    2000-03-01

    We analyzed protein expression in the cytosolic fraction prepared from whole kidneys in male Swiss-Webster mice exposed 1 h/day for five days to aerosolized JP-8 jet fuel at a concentration of 1000 mg/m3, simulating military occupational exposure. Kidney cytosol samples were solubilized and separated via large-scale, high-resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant changes in soluble kidney proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass finger-printing and related to ultrastructural abnormalities, altered protein processing, metabolic effects, and paradoxical stress protein/detoxification system responses. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression in the kidney and provide novel molecular evidence of JP-8 nephrotoxicity. Human risk is suggested by these data but conclusive assessment awaits a noninvasive search for biomarkers in JP-8 exposed humans.

  6. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  7. Method for producing hydrocarbon and alcohol mixtures. [Patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1980-12-01

    It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  8. Cost and fuel consumption per nautical mile for two engine jet transports using OPTIM and TRAGEN

    NASA Technical Reports Server (NTRS)

    Wiggs, J. F.

    1982-01-01

    The cost and fuel consumption per nautical mile for two engine jet transports are computed using OPTIM and TRAGEN. The savings in fuel and direct operating costs per nautical mile for each of the different types of optimal trajectories over a standard profile are shown.

  9. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock

    USDA-ARS?s Scientific Manuscript database

    Hydrotreated renewable jet fuel (HRJ) derived from crop oils has been commercially demonstrated but full-scale production has been hindered by feedstock costs that make the product more costly than petroleum-based fuels. Maintaining low feedstock costs while developing crops attractive to farmers to...

  10. IN-SITU AIR INJECTION, SOIL VACUUM EXTRACTION AND ENHANCED BIODEGRADATION: A CASE STUDY IN A JP-4 JET FUEL CONTAMINATED SITE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) and the U.S. Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that ext...

  11. Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

  12. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  13. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOEpatents

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  14. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    NASA Astrophysics Data System (ADS)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  15. STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS

    EPA Science Inventory

    Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

  16. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil.

    PubMed

    Bailis, Robert E; Baka, Jennifer E

    2010-11-15

    This analysis presents a comparison of life-cycle GHG emissions from synthetic paraffinic kerosene (SPK) produced as jet fuel substitute from jatropha curcas feedstock cultivated in Brazil against a reference scenario of conventional jet fuel. Life cycle inventory data are derived from surveys of actual Jatropha growers and processors. Results indicate that a baseline scenario, which assumes a medium yield of 4 tons of dry fruit per hectare under drip irrigation with existing logistical conditions using energy-based coproduct allocation methodology, and assumes a 20-year plantation lifetime with no direct land use change (dLUC), results in the emissions of 40 kg CO₂e per GJ of fuel produced, a 55% reduction relative to conventional jet fuel. However, dLUC based on observations of land-use transitions leads to widely varying changes in carbon stocks ranging from losses in excess of 50 tons of carbon per hectare when Jatropha is planted in native cerrado woodlands to gains of 10-15 tons of carbon per hectare when Jatropha is planted in former agro-pastoral land. Thus, aggregate emissions vary from a low of 13 kg CO₂e per GJ when Jatropha is planted in former agro-pastoral lands, an 85% decrease from the reference scenario, to 141 kg CO₂e per GJ when Jatropha is planted in cerrado woodlands, a 60% increase over the reference scenario. Additional sensitivities are also explored, including changes in yield, exclusion of irrigation, shortened supply chains, and alternative allocation methodologies.

  17. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  18. Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.

  19. The Effect of Glucose on the Growth of Filamentous Fungi in Jet Fuel.

    DTIC Science & Technology

    1996-01-01

    A single strain of Penicillium produced the best growth under all conditions and was used in experiments analyzing hydrocarbon degradation using gas...chromatography/mass spectrometry (GC/MS). Penicillium was grown in 2 and 3% fuel alone and with supplemental glucose (1%) and the non-polar extracts

  20. Molten salt pyrolysis of latex. [synthetic hydrocarbon fuel production using the Guayule shrub

    NASA Technical Reports Server (NTRS)

    Bauman, A. J. (Inventor)

    1981-01-01

    Latex-rich plants such as Guayule or extracts thereof are pyrolyzed in an inert nitrogen atmosphere inorganic salt melts such as a LiCl/KCl eutectic at a temperature of about 500 C. The yield is over 60% of a highly aromatic, combustible hydrocarbon oil suitable for use as a synthetic liquid fuel.

  1. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel.

    PubMed

    Rohan, Joyce G; McInturf, Shawn M; Miklasevich, Molly K; Gut, Chester P; Grimm, Michael D; Reboulet, James E; Howard, William R; Mumy, Karen L

    2018-01-01

    Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m 3 ). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.

  2. Comparative TEA for Indirect Liquefaction Pathways to Distillate-Range Fuels via Oxygenated Intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediatesmore » have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.« less

  3. Detailed and Simplified Chemical Kinetics of Aviation Fuels and Surrogates

    DTIC Science & Technology

    2009-11-12

    Cyclopentene and Methyl-Cyclopentadiene Mixtures, Proc. Comb. Inst. 29:2291-2298 (2002). [13] Final Report, Computational Fluid Dynamics for...Determination of Total and Polycyclic Aromatic Hydrocarbons in Aviation Jet Fuel, Journal of Chromatography A (1- 2) 985 (2003), 197-203. [10] C. K...DiNaro, J. B. Howard, W. H. Green, J. W. Tester and J. W. Bozzelli, Elementary Reaction Mechanism for Benzene Oxidation in Supercritical Water, J

  4. Detailed and Simplified Chemical Kinetics of Aviation Fuels and Surrogates

    DTIC Science & Technology

    2009-09-01

    Cyclopentene and Methyl-Cyclopentadiene Mixtures, Proc. Comb. Inst. 29:2291-2298 (2002). [13] Final Report, Computational Fluid Dynamics for...Determination of Total and Polycyclic Aromatic Hydrocarbons in Aviation Jet Fuel, Journal of Chromatography A (1- 2) 985 (2003), 197-203. [10] C. K...DiNaro, J. B. Howard, W. H. Green, J. W. Tester and J. W. Bozzelli, Elementary Reaction Mechanism for Benzene Oxidation in Supercritical Water, J

  5. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils ...canola, jatropha, soy, palm , etc.) Alternative fuels – University of North Dakota EERC – UOP – General Electric (GE) t i o n C o s t t i o n C o s t

  6. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  7. Cryogenic Gellant and Fuel Formulation for Metallized Gelled Propellants: Hydrocarbons and Hydrogen with Aluminum

    NASA Technical Reports Server (NTRS)

    Wong, Wing; Starkovich, John; Adams, Scott; Palaszewski, Bryan; Davison, William; Burt, William; Thridandam, Hareesh; Hu-Peng, Hsiao; Santy, Myrrl J.

    1994-01-01

    An experimental program to determine the viability of nanoparticulate gellant materials for gelled hydrocarbons and gelled liquid hydrogen was conducted. The gellants included alkoxides (BTMSE and BTMSH) and silica-based materials. Hexane, ethane, propane and hydrogen were gelled with the newly-formulated materials and their rheological properties were determined: shear stress versus shear rate and their attendant viscosities. Metallized hexane with aluminum particles was also rheologically characterized. The propellant and gellant formulations were selected for the very high surface area and relatively-high energy content of the gellants. These new gellants can therefore improve rocket engine specific impulse over that obtained with traditional cryogenic-fuel gellant materials silicon dioxide, frozen methane, or frozen ethane particles. Significant reductions in the total mass of the gellant were enabled in the fuels. In gelled liquid hydrogen, the total mass of gellant was reduced from 10-40 wt percent of frozen hydrocarbon particles to less that 8 wt percent with the alkoxide.

  8. Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers

    PubMed Central

    Chao, Yi-Chun E.; Kupper, Lawrence L.; Serdar, Berrin; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.

    2006-01-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure. PMID:16451852

  9. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    PubMed

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  10. Jet-A fuel evaporation analysis in conical tube injectors

    NASA Technical Reports Server (NTRS)

    Lai, M.-C.; Chue, T.-H.; Zhu, G.; Sun, H.; Tacina, R.; Chun, K.; Hicks, Y.

    1991-01-01

    A simple one-dimensional drop-life-history analysis and a multidimensional spray calculation using KIVA-II code are applied to the vaporization of Jet-A fuel in multiple tube injectors. Within the assumptions of the analysis, the one-dimensional results are useful for design purposes. The pressure-atomizer breakup models do not accurately predict the dropsize measured experimentally or deduced from the one-dimensional analysis. Cold flow visualization and dropsize measurements show that capillary wave breakup mechanism plays an important role in the spray angle and droplet impingement on the tube wall.

  11. Oil from Tobacco Leaves: FOLIUM - Installation of Hydrocarbon Accumulating Pathways in Tobacco Leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    PETRO Project: LBNL is modifying tobacco to enable it to directly produce fuel molecules in its leaves for use as a biofuel. Tobacco is a good crop for biofuels production because it is an outstanding biomass crop, has a long history of cultivation, does not compete with the national food supply, and is highly responsive to genetic manipulation. LBNL will incorporate traits for hydrocarbon biosynthesis from cyanobacteria and algae, and enhance light utilization and carbon uptake in tobacco, improving the efficiency of photosynthesis so more fuel can be produced in the leaves. The tobacco-generated biofuels can be processed for gasoline,more » jet fuel or diesel alternatives. LBNL is also working to optimize methods for planting, cultivating and harvesting tobacco to increase biomass production several-fold over the level of traditional growing techniques.« less

  12. Life cycle water footprint analysis for rapeseed derived jet fuel in North Dakota

    USDA-ARS?s Scientific Manuscript database

    Rapeseed is a promising feedstock source for hydroprocessed esters and fatty acids (HEFA) jet fuel production to address energy security and climate change mitigation. However, concerns have been raised about its impact on water as large scale biofuels production may place pressure on fresh water su...

  13. Long-term exposure to jet fuel: an investigation on occupationally exposed workers with special reference to the nervous system.

    PubMed

    Knave, B; Persson, H E; Goldberg, J M; Westerholm, P

    1976-09-01

    In the present study the results of a neurological and neurophysiological health examination of 29 aircraft factory workers chronically exposed to jet fuel vapors are presented. The exposed subjects were classified into a heavily exposed and a less heavily exposed group. The examination included a standardized clinical neurological examination, measurements of the conduction velocities in the peripheral nerves, and threshold determinations of vibratory sensations in the extremities. All 13 persons examined in the heavily exposed group and 7 of the 16 in the less heavily exposed group stated that they had repeatedly experienced acute effects (dizziness, respiratory tract symptoms, heart palpitations, a feeling of pressure on the chest, nausea, headache) of the jet fuel vapors in the inhaled air. A high rate of symptoms indicative of neurasthenia and psychasthenia and symptoms and signs indicative of polyneuropathy was observed both in the heavily exposed group and in the two groups combined in comparison with reference groups. Considering the presented facts concerning (a) the acute effects on repeated occasions, (b) the high rates of symptoms indicative of neurasthenia and psychasthenia and symptoms and signs indicative of polyneuropathy, and (c) the differences in the observations made between the two groups with varying degrees of exposure to jet fuel, the authors interpreted the results as indicative of a possible effect of long-term exposure to jet fuel on the nervous system.

  14. Overview of fuel inventory in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Brezinsek, S.; Catarino, N.; Corregidor, V.; Heinola, K.; Koivuranta, S.; Krat, S.; Lahtinen, A.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET

    2017-08-01

    Post mortem analyses of JET ITER-Like-Wall tiles and passive diagnostics have been completed after each of the first two campaigns (ILW-1 and ILW-2). They show that the global fuel inventory is still dominated by co-deposition; hence plasma parameters and sputtering processes affecting material migration influence the distribution of retained fuel. In particular, differences between results from the two campaigns may be attributed to a greater proportion of pulses run with strike points in the divertor corners, and having about 300 discharges in hydrogen at the end of ILW-2. Recessed and remote areas can contribute to fuel retention due to the larger areas involved, e.g. recessed main chamber walls, gaps in castellated Be main chamber tiles and material migration to remote divertor areas. The fuel retention and material migration due to the bulk W Tile 5 during ILW-1 are presented. Overall these tiles account for only a small percentage of the global accountancy for ILW-1.

  15. Effect of high surface area activated carbon on thermal degradation of jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergova, K.; Eser, S.; Arumugam, R.

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. Wemore » also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.« less

  16. Occupational Jet Fuel Exposure and Invasive Cancer Occurrence in the United States Air Force, 1989-2003

    DTIC Science & Technology

    2007-01-01

    Krishnadasan, A., Kennedy, N., Morgenstern, H., Ritz , B. Estimated effects of solvents and mineral oils on cancer incidence and mortality in a cohort of...aerospace workers. Am J Ind Med 2005; 48: 249-58. 25. Carlton , GN and Smith, LB. Exposures to jet fuel and benzene during aircraft fuel tank repair in

  17. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  18. A mathematical model for jet engine combustor pollutant emissions

    NASA Technical Reports Server (NTRS)

    Boccio, J. L.; Weilerstein, G.; Edelman, R. B.

    1973-01-01

    Mathematical modeling for the description of the origin and disposition of combustion-generated pollutants in gas turbines is presented. A unified model in modular form is proposed which includes kinetics, recirculation, turbulent mixing, multiphase flow effects, swirl and secondary air injection. Subelements of the overall model were applied to data relevant to laboratory reactors and practical combustor configurations. Comparisons between the theory and available data show excellent agreement for basic CO/H2/Air chemical systems. For hydrocarbons the trends are predicted well including higher-than-equilibrium NO levels within the fuel rich regime. Although the need for improved accuracy in fuel rich combustion is indicated, comparisons with actual jet engine data in terms of the effect of combustor-inlet temperature is excellent. In addition, excellent agreement with data is obtained regarding reduced NO emissions with water droplet and steam injection.

  19. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    DOT National Transportation Integrated Search

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  20. Effect of fuel vapor concentrations on combustor emissions and performance

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1973-01-01

    Effects of fuel vaporization on the exhaust emission levels of oxides of nitrogen, carbon monoxide, total hydrocarbons, and smoke number were obtained in an experimental turbojet combustor segment. Two different fuel injectors were used in which liquid ASTM A-1 jet fuel and vapor propane fuel were independently controlled to simulate varying degrees of vaporization. Tests were conducted over a range of inlet-air temperatures from 478 to 700 K, pressures from 4 to 20 atm, and combustor reference velocities from 15.3 to 27.4 m/sec. Converting from liquid to complete vapor fuel resulted in oxides of nitrogen reductions of as much as 22 percent and smoke number reductions up to 51 percent. Supplement data are also presented on flame emissivity, flame temperature, and primary-zone liner wall temperatures.

  1. Methods for reducing pollutant emissions from jet aircraft

    NASA Technical Reports Server (NTRS)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  2. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  3. Long-term fuel retention in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Widdowson, A.; Likonen, J.; Alves, E.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Koivuranta, S.; Krat, S.; Matthews, G. F.; Mayer, M.; Petersson, P.; Contributors, JET

    2016-02-01

    Post-mortem studies with ion beam analysis, thermal desorption, and secondary ion mass spectrometry have been applied for investigating the long-term fuel retention in the JET ITER-like wall components. The retention takes place via implantation and co-deposition, and the highest retention values were found to correlate with the thickness of the deposited impurity layers. From the total amount of retained D fuel over half was detected in the divertor region. The majority of the retained D is on the top surface of the inner divertor, whereas the least retention was measured in the main chamber on the mid-plane of the inner wall limiter. The recessed areas of the inner wall showed significant contribution to the main chamber total retention. Thermal desorption spectroscopy analysis revealed the energetic T from DD reactions being implanted in the divertor. The total T inventory was assessed to be \\gt 0.3 {{mg}}.

  4. [Aviation fuels and aircraft emissions. A risk characterization for airport neighbors using Hamburg Airport as an example].

    PubMed

    Tesseraux, I; Mach, B; Koss, G

    1998-06-01

    Aviation fuels are well characterised regarding their physical and chemical properties. Health effects of fuel vapours and of liquid fuel are described after occupational exposure and in animal studies. Exposure of the general population (airport visitors and people living in the vicinity of airports) may occur during fuel supply particularly in warm summers (odour). Aircraft emissions vary with the engine type and the kind of fuel. Combustion of aviation fuel results in CO2, H2O, CO, C, NOx and a great number of organic compounds. Among the emitted polyaromatic hydrocarbons (PAH) no compound characteristic for jet engines (tracer) could be detected so far. Hardly any data exist on the toxicology of jet engine emissions. According to analyses of their chemical composition, however, they contain various toxicologically relevant compounds including carcinogenic substances. Measurements in ambient air around the Hamburg Airport show no elevated pollutant levels. However, no such data exist on aldehydes, black smoke or fine particles. Annoying odours have been stated in some areas around the airport, which were mainly attributed to the aircraft engine emissions rather than to fuel vapours.

  5. Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to

  6. Analysis of Twenty-Two Performance Properties of Diesel, Gasoline, and Jet Fuels Using a Field-Portable Near-Infrared (NIR) Analyzer.

    PubMed

    Brouillette, Carl; Smith, Wayne; Shende, Chetan; Gladding, Zack; Farquharson, Stuart; Morris, Robert E; Cramer, Jeffrey A; Schmitigal, Joel

    2016-05-01

    The change in custody of fuel shipments at depots, pipelines, and ports could benefit from an analyzer that could rapidly verify that properties are within specifications. To meet this need, the design requirements for a fuel analyzer based on near-infrared (NIR) spectroscopy, such as spectral region and resolution, were examined. It was found that the 1000 to 1600 nm region, containing the second CH overtone and combination vibrational modes of hydrocarbons, provided the best near-infrared to fuel property correlations when path length was taken into account, whereas 4 cm(-1) resolution provided only a modest improvement compared to 16 cm(-1) resolution when four or more latent variables were used. Based on these results, a field-portable near-infrared fuel analyzer was built that employed an incandescent light source, sample compartment optics to hold 2 mL glass sample vials with ∼1 cm path length, a transmission grating, and a 256 channel InGaAs detector that measured the above stated wavelength range with 5-6 nm (∼32 cm(-1)) resolution. The analyzer produced high signal-to-noise ratio (SNR) spectra of samples in 5 s. Twenty-two property correlation models were developed for diesel, gasoline, and jet fuels with root mean squared error of correlation - cross-validated values that compared favorably to corresponding ASTM reproducibility values. The standard deviations of predicted properties for repeat measurements at 4, 24, and 38℃ were often better than ASTM documented repeatability values. The analyzer and diesel property models were tested by measuring seven diesel samples at a local ASTM certification laboratory. The standard deviations between the analyzer determined values and the ASTM measured values for these samples were generally better than the model root mean squared error of correlation-cross-validated values for each property. © The Author(s) 2016.

  7. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  8. Jet propulsion for airplanes

    NASA Technical Reports Server (NTRS)

    Buckingham, Edgar

    1924-01-01

    This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.

  9. Conversion of Dimethyl Ether to Branched Hydrocarbons Over Cu/BEA: the Roles of Lewis Acidic and Metallic Sites in H2 Incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse E.; Schaidle, Joshua A.; Ruddy, Daniel A.

    2017-04-26

    Conversion of biomass to fuels remains as one of the most promising approach to support our energy needs. It has been previously shown that the gasification of non-edible cellulosic biomass can be used to derive fuels like methanol and dimethyl ether (DME). However, the use of methanol and DME is limited due to the fact that they have low energy densities, poor lubricity and lower viscosity when compared to long-chain hydrocarbons. Increasing the blending percentage can also lead to undesired amounts of oxygenated molecules in the transportation fuel infrastructure, which restrict their applicability as jet or diesel fuels. Consequently, themore » petroleum-derived hydrocarbons remain as the main constituent of the middle-distillate based fuels. One way to increase the share of biofuels in middle-distillates is to use methanol/DME as building blocks for producing renewable, energy-dense hydrocarbons. One way to achieve this is by catalytically converting the DME and methanol to light olefins, followed by oligomerization to higher molecular weight premium alkanes, which can directly be used as kerosene/diesel fuels. Here, we report the catalytic dimerization of biomass-derived deoxygenated olefins into transportation fuel-range hydrocarbons under liquid-phase stirred-batch conditions. Specifically, the effect of operating conditions, such as reaction temperature, solvent-type, reaction duration and olefin-structure, on the conversion, selectivity and kinetics of dimerization of triptene (2,3,3-trimethyl-1-butene) were investigated. Triptene, as previously reported, is one of the major products of DME-homologation reaction over a BEA zeolite4. We show that triptene can be converted to high quality middle-distillates using a commercially available ion-exchange acid resin, Amberlyst-35 (dry) by the process of catalytic dimerization.« less

  10. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  11. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  12. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.

    2006-10-01

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have

  13. JP-8 jet fuel exposure potentiates tumor development in two experimental model systems.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; He, X; Hyde, J; Witten, M

    2007-11-01

    The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). Thus, it was of interest to determine if jet fuel exposure might promote tumor growth and metastasis. The syngeneic B16 tumor model was used for these studies. Animals were injected intravenously with tumor cells, and lung colonies were enumerated. Animals were also examined for metastatic spread of the tumor. Mice were either exposed to 1000 mg/m3 JP-8 (1 h/ day) for 7 days before tumor injection or were exposed to JP-8 at the time of tumor injection. All animals were killed 17 days after tumor injection. In the present study, JP8 exposure potentiated the growth and metastases of B16 tumors in an animal model. Exposure of mice to JP-8 for 1 h/day before tumor induction resulted in an approximately 8.7-fold increase in tumors, whereas those mice exposed to JP8 at the time of tumor induction had a 5.6-fold increase in tumor numbers. Thus, low concentration JP-8 jet fuel exposures have significant immune suppressive effects on the immune system that can result in increased tumor formation and metastases. We have now extended the observations to an experimental subcutaneous tumor model. JP8 exposure at the time of tumor induction in this model did not affect the growth of the tumor. However, JP8-exposed, tumor-bearing animals died at an accelerated rate as compared with air-exposed, tumor-bearing mice.

  14. Partitioning microbial respiration between jet fuel and native organic matter in an organic-rich long time-contaminated aquifer.

    PubMed

    Bugna, G C; Chanton, J P; Stauffer, T B; MacIntyre, W G; Libelo, E L

    2005-07-01

    The relative importance of jet fuel biodegradation relative to the respiration of natural organic matter in a contaminated organic-rich aquifer underlying a fire training area at Tyndall Air Force Base, Florida, USA was determined with isotopic measurements. Thirteen wells were sampled and analyzed for BTX (benzene, toluene, xylene), dissolved inorganic carbon (DIC) and CH4 concentrations, and delta13C and 14C of DIC. Results range from non-detectable to 3790 ppb, 1.4-24 mM, 0.2-776 microM, +5.8 per thousand to -22 per thousand, and from 52 to 99 pmc, respectively. Residual fuel was confined to two center wells underlying the fire training area. DIC and CH4 concentrations were elevated down-gradient of the contamination, but also at sites that were not in the apparent flow path of the contaminated groundwater. DIC exhibited greatest delta13C enrichment at highest DIC and CH4 concentrations indicating that CH4 production was an important respiration mode. Radiocarbon-depleted DIC was observed at sites with high hydrocarbon concentrations and down-gradient of the site. The results indicate that while natural attenuation was not rapidly reducing the quantity of free product overlying the aquifer at the site of contamination, it was at least constraining its flow away from the spill site. Apparently under the conditions of this study, BTX was degraded as rapidly as it was dissolved.

  15. Emulsification of hydrocarbons by subsurface bacteria

    USGS Publications Warehouse

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been

  16. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  17. Agronomic comparison of several brassica species in the U.S. Corn Belt as feedstock for hydrotreated jet fuel

    USDA-ARS?s Scientific Manuscript database

    Through a patented process developed in the U.S., hydrotreated renewable jet fuel (HRJ) derived from plant oils has been commercially demonstrated. However, full-scale production has not yet come to fruition because HRJ is not economically competitive with petroleum-based fuels due to high feedstock...

  18. Mixing and Flow-field Characteristics of Strongly-forced Transitional / Turbulent Jets and Jet Flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, Krishna

    2005-11-01

    Strong pulsations of the fuel flow rate have previously been shown to dramatically alter the flame length and luminosity of nonpremixed jet flames. The mechanisms responsible for such changes are explored experimentally in nonreacting and reacting strongly pulsed jets by using cinematographic PIV and acetone PLIF. The large amplitude forcing was obtained by pulsing the flow using a solenoid valve at the organ-pipe resonance frequency of the fuel delivery tube. The velocity fluctuations in the flow produced by the resonant pulsing of the jet can reach to about 8 times that of the mean flow. The jet characteristics were studied for Reynolds numbers based on mean flow velocity ranging between 800 and 2400. The PIV shows that with strong pulsations the jet exhibits significant reverse flow into the fuel delivery tube and an increase in turbulence in the near-field region. The acetone PLIF imaging was performed inside and outside the fuel tube in order to study the effects of pulsations on the mixing. These measurements showed significant in-tube partial premixing due to the reverse flow near the nozzle exit as well as enhanced mixing due to coherent vortical structures and increased turbulence.

  19. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fuel Regression Characteristics of Cascaded Multistage Impinging-Jet (CAMUI) Type Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    Itoh, Mitsunori; Maeda, Takenori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Nakashima, Takuji; Wakita, Masashi; Uematsu, Tsutomu; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori

    A series of lab-scale firing tests was conducted to investigate the fuel regression characteristics of Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket. The alternative fuel grain used in this rocket consists of a number of cylindrical fuel blocks with two ports, which were aligned along the axis of the combustion chamber with a small gap. The ports are aligned staggered with respect to ones of neighboring blocks so that the combustion gas flow impinges on the forward-end surface of each block. In this fuel grain, forward-end surfaces, back-end surfaces and ports of fuel blocks contribute as burning surfaces. Polyethylene and LOX were used as a propellant, and the tests were conducted at the chamber pressure of 0.5 2MPa and the mass flux of 50 200kg/m2s. Main results obtained in this study are in the followings: The regression rate of each surface was obtained as a function of the propellant mass flux and local equivalent ratio of the combustion gas. At back-end surfaces the regression rate has a high sensitivity on the gap height of neighboring fuel blocks. These fuel regression characteristics will contribute as fundamental data to improve the optimum design of the fuel grain.

  1. Rapid Response R&D for the Propulsion Directorate. Delivery Order 0019: Advanced Alternative Energy Technologies, Subtask: Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer-Tropsch Based SPK-1 Case Study

    DTIC Science & Technology

    2011-09-01

    carry finished jet fuel from the CBTL facility. The pipeline connects the CBTL facility to a petroleum refinery located in Wood River, Illinois...Under Option 1, all the blended jet fuel is transported via pipeline from the refinery in Wood River to Chicago’s O’Hare airport. Under Option 2...shipping F-T jet fuel to a refinery in Wood River, Illinois (near St. Louis, Missouri) for blending and final transport of the blended jet fuel to

  2. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elander, Rick

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representativemore » large volume, sustainable feedstock.« less

  3. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.

    PubMed

    Puckett, Sean D; Pacey, Gilbert E

    2009-04-15

    The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples.

  4. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    EPA Science Inventory

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  5. Effect of fuel properties on performance of a single aircraft turbojet combustor

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  6. Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufferand, H.; Tosatto, L.; La Mantia, B.

    2009-08-15

    The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less

  7. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.

  8. Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery)

    DTIC Science & Technology

    2012-09-01

    1α may serve as a marker of epidermal damage or stress due to irritation in this in vitro model. As an alternative to the 3-dimensional human skin...AFRL-RH-FS-SR-2013-0003 Final Report: Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery) David R. Mattie...2. REPORT TYPE Special Report 3. DATES COVERED (From - To) Oct 2010 – Dec 2011 4. TITLE AND SUBTITLE Evaluation of the Occupational Risks from

  9. Toxicological profile for jet fuels (JP-4 and JP-7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This statement was prepared to give you information about jet fuels JP-4 and JP-7 and to emphasize the human effects that may result from exposure to them. The Environmental Protection Agency (EPA) has identified 1,397 hazardous waste sites as the most serious in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal clean-up activities. JP-4 has been found in at least 4 of these sites. JP-7 has not been found in any NPL site.

  10. Volatile Fuel Hydrocarbons and MTBE in the Environment

    NASA Astrophysics Data System (ADS)

    Cozzarelli, I. M.; Baehr, A. L.

    2003-12-01

    Petroleum hydrocarbons (hydrocarbons that result from petroleum products such as oil, gasoline, or diesel fuel) are among the most commonly occurring and widely distributed contaminants in the environment. Volatile hydrocarbons are the lighter fraction of the petroleum hydrocarbons and, together with fuel oxygenates, are most often released from crude oil and liquid petroleum products produced from crude oil. The demand for crude oil stems from the world's ever-growing energy need. From 1970 to 1999, primary energy production of the world grew by 76% (Energy Information Administration, 2001), with fossil fuels (crude oil, natural gas, and coal) accounting for ˜85% of all energy produced worldwide (Figure 1). World crude oil production reached a record 68 million barrels (bbl) per day (1.08×1010 L d-1) in 2000. The world's dependence on oil as an energy source clearly is identified as contributing to global warming and worsening air and water quality. (7K)Figure 1. World primary energy production by source from 1970 to 1999 (Energy Information Administration, 2001). Petroleum products are present in Earth's subsurface as solids, liquids, or gases. This chapter presents a summary of the environmental problems and issues related to the use of liquid petroleum, or oil. The focus is on the sources of volatile hydrocarbons and fuel oxygenates and the geochemical behavior of these compounds when they are released into the environment. Although oxygenates currently in commercial use include compounds other than methyl t-butyl ether (MTBE), such as ethanol (ETOH), most of the information presented here focuses on MTBE because of its widespread occurrence. The environmental impact of higher molecular weight hydrocarbons that also originate from petroleum products is described in (Chapter 9.13, Abrajano et al.).Crude oil occurs within the Earth and is a complex mixture of natural compounds composed largely of hydrocarbons containing only hydrogen and carbon atoms. The minor

  11. Dynamic characteristics of hydrocarbon fuel within the channel at supercritical and pyrolysis condition

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Zhou, Weixing; Qin, Jiang; Bao, Wen

    2017-12-01

    Regenerative cooling with fuel as the coolant is used in the scramjet engine. In order to grasp the dynamic characteristics of engine fuel supply processes, this article studies the dynamic characteristics of hydrocarbon fuel within the channel. A one-dimensional dynamic model was proved, the thermal energy storage effect, fuel volume effect and chemical dynamic effect have been considered in the model, the ordinary differential equations were solved using a 4th order Runge-Kutta method. The precision of the model was validated by three groups of experimental data. The effects of input signal, working condition, tube size on the dynamic characteristics of pressure, flow rate, temperature have been simulated. It is found that cracking reaction increased the compressibility of the fuel pyrolysis mixture and lead to longer responding time of outlet flow. The responding time of outlet flow can reach 3s when tube is 5m long which will greatly influence the control performance of the engine thrust system. Meanwhile, when the inlet flow rate appears the step change, the inlet pressure leads to overshoot, the overshoot can reach as much as 100%, such highly transient impulse will result in detrimental effect on fuel pump.

  12. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  13. Property evaluations of hydrocarbon fuels under supercritical conditions based on cubic equation of state

    NASA Astrophysics Data System (ADS)

    Li, Haohan; Wu, Yong; Zeng, Xiaojun; Wang, Xiaohan; Zhao, Daiqing

    2017-06-01

    Thermophysical properties, such as density, specific heat, viscosity and thermal conductivity, vary sharply near critical point. To evaluate these properties of hydrocarbons accurately is crucial to the further research of fuel system. Comparison was made by the calculating program based on four widely used equations of state (EoS), and results indicated that calculations based on the Peng-Robinson (PR) equation of state achieve better prediction accuracy among the four equations of state. Due to the small computational amount and high accuracy, the evaluation method proposed in this paper can be implemented into practical application for the design of fuel system.

  14. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  15. Minimum-fuel, 3-dimensional flightpath guidance of transfer jets

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1984-01-01

    Minimum fuel, three dimensional flightpaths for commercial jet aircraft are discussed. The theoretical development is divided into two sections. In both sections, the necessary conditions of optimal control, including singular arcs and state constraints, are used. One section treats the initial and final portions (below 10,000 ft) of long optimal flightpaths. Here all possible paths can be derived by generating fields of extremals. Another section treats the complete intermediate length, three dimensional terminal area flightpaths. Here only representative sample flightpaths can be computed. Sufficient detail is provided to give the student of optimal control a complex example of a useful application of optimal control theory.

  16. Nox reduction system utilizing pulsed hydrocarbon injection

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  17. Introductory study of the chemical behavior of jet emissions in photochemical smog. [computerized simulation

    NASA Technical Reports Server (NTRS)

    Whitten, G. Z.; Hogo, H.

    1976-01-01

    Jet aircraft emissions data from the literature were used as initial conditions for a series of computer simulations of photochemical smog formation in static air. The chemical kinetics mechanism used in these simulations was an updated version which contains certain parameters designed to account for hydrocarbon reactivity. These parameters were varied to simulate the reaction rate constants and average carbon numbers associated with the jet emissions. The roles of surface effects, variable light sources, NO/NO2 ratio, continuous emissions, and untested mechanistic parameters were also assessed. The results of these calculations indicate that the present jet emissions are capable of producing oxidant by themselves. The hydrocarbon/nitrous oxides ratio of present jet aircraft emissions is much higher than that of automobiles. These two ratios appear to bracket the hydrocarbon/nitrous oxides ratio that maximizes ozone production. Hence an enhanced effect is seen in the simulation when jet exhaust emissions are mixed with automobile emissions.

  18. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible

  20. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermúdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum

  1. Air impacts from three alternatives for producing JP-8 jet fuel.

    PubMed

    Kositkanawuth, Ketwalee; Gangupomu, Roja Haritha; Sattler, Melanie L; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-10-01

    To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. The United States currently imports two

  2. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  3. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.

    PubMed

    Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen

    2013-09-09

    Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.

  4. NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.

    2003-08-01

    The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.

  5. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    USGS Publications Warehouse

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  6. The liquid fuel jet in subsonic crossflow

    NASA Technical Reports Server (NTRS)

    Nguyen, T. T.; Karagozian, A. R.

    1990-01-01

    An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.

  7. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  8. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    DTIC Science & Technology

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  9. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  10. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.

    PubMed

    Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V

    2008-06-15

    The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.

  11. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  12. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  13. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    DTIC Science & Technology

    2016-01-28

    49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A

  14. The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft

    NASA Astrophysics Data System (ADS)

    Kovtun, V. S.

    2012-12-01

    Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of motion control systems (MCS). The efficiency of propellant fuel consumption depends not only on the operation of the MCS, but also, to one extent or another, on all systems functioning on board of a spacecraft, and on processes that occur in them and involve conversion of variable management of propellant fuel consumption by JPEs as a constituent part of the control of the complex process of spacecraft flight.

  15. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  16. Local and systemic toxicity of JP-8 from cutaneous exposures.

    PubMed

    McDougal, James N; Rogers, James V

    2004-04-01

    Jet propellant-8 (JP-8) jet fuel is a version of commercial jet fuel, Jet A, and is a complex mixture of primarily aliphatic (but also aromatic) hydrocarbons that varies in composition from batch to batch. There is potential for dermal exposure to jet fuels with personnel involved in aircraft refueling and maintenance operations as well as ground personnel. Cutaneous exposures have the potential to cause skin irritation, sensitization or skin cancer. JP-8 has been shown to be irritating and causes molecular changes in the skin of laboratory animals. The mechanisms of some of these effects have been investigated in intact skin and cultured skin cells. Hydrocarbons have also been shown to cause skin cancer with repeated application to the skin. Additionally, there is concern about systemic toxicity from dermal exposures to jet fuels, such as JP-8. Assessing risks from systemic absorption of hydrocarbon components is complex because most of the components are present in the mixture in small quantities (less than 1%). The effect of the fuel as a vehicle, different rates of penetration through the skin and different target organ toxicities all complicate the assessment of the hazards of cutaneous exposures. The purpose of this manuscript is to review studies of local and systemic toxicity of JP-8.

  17. Design Considerations of ISTAR Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2003-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  18. Design Considerations of Istar Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2002-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  19. Long-term exposure to jet fuel. II. A cross-sectional epidemiologic investigation on occupationally exposed industrial workers with special reference to the nervous system.

    PubMed

    Knave, B; Olson, B A; Elofsson, S; Gamberale, F; Isaksson, A; Mindus, P; Persson, H E; Struwe, G; Wennberg, A; Westerholm, P

    1978-03-01

    Thirty jet fuel exposed workers selected according to exposure criteria and thirty nonexposed controls from a jet motor factory were examined, with special reference to the nervous system, by occupational hygiene physicians, psychiatrists, psychologists, and neurophysiologists. The controls and the exposed subjects were matched with respect to age, employment duration, and education. Among the exposed subjects the mean exposure duration was 17 years, and 300 mg/m3 was calculated as a rough time-weighted average exposure level. The investigation revealed significant differences between the exposed and nonexposed groups for (a) incidence and prevalence of psychiatric symptoms, (b) psychological tests with the load on attention and sensorimotor speed and (c) electroencephalograms. When the control group was selected, it was ensured that the two groups were essentially equivalent except for exposure to jet fuel. It is concluded, therefore, that the differences found between the groups are probably related to exposure to jet fuel.

  20. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    NASA Astrophysics Data System (ADS)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in