Science.gov

Sample records for jet ii x-ray

  1. Chandra Reveals Twin X-Ray Jets in the Powerful FR II Radio Galaxy 3C 353

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Stawarz, Ł.; Harris, D. E.; Siemiginowska, A.; Ostrowski, M.; Swain, M. R.; Hardcastle, M. J.; Goodger, J. L.; Iwasawa, K.; Edwards, P. G.

    2008-10-01

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-Ray Observatory. Due to 3C 353's two 4' ' wide and 2' long jets we are able to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the subarcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hot spots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely nonthermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio to X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular although not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  2. Chandra Reveals Twin X-ray Jets in the Powerful FR-II Radio Galaxy 3C353

    SciTech Connect

    Kataoka, J.; Stawarz, L.; Harris, D.E.; Siemiginowska, A.; Ostrowski, M.; Swain, M.R.; Hardcastle, M.J.; Goodger, J.L.; Iwasawa, K.; Edwards, P.G.

    2008-06-13

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-ray Observatory. 3C 353's two 4-inch wide and 2-feet long jets allow us to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the sub-arcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hotspots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely non-thermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature, and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio-to-X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular though not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  3. Chandra Reveals Twin X-ray Jets in the Powerful FR II Radio Galaxy 3C 353

    SciTech Connect

    Kataoka, Jun

    2008-12-24

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-ray Observatory. 3C 353's two 4''-wide and 2'-long jets allow us to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the sub-arcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hotspots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely non-thermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature, and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio-to-X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular though not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  4. Solar X-ray Jets, Type-II Spicules, Granule-size Emerging Bipoles, and the Genesis of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Cirtain, Jonathan W.; Falconer, David A.

    2011-04-01

    From Hinode observations of solar X-ray jets, Type-II spicules, and granule-size emerging bipolar magnetic fields in quiet regions and coronal holes, we advocate a scenario for powering coronal heating and the solar wind. In this scenario, Type-II spicules and Alfvén waves are generated by the granule-size emerging bipoles (EBs) in the manner of the generation of X-ray jets by larger magnetic bipoles. From observations and this scenario, we estimate that Type-II spicules and their co-generated Alfvén waves carry into the corona an area-average flux of mechanical energy of ~7 × 105 erg cm-2 s-1. This is enough to power the corona and solar wind in quiet regions and coronal holes, and therefore indicates that the granule-size EBs are the main engines that generate and sustain the entire heliosphere.

  5. AGN jet power, formation of X-ray cavities, and FR I/II dichotomy in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Kawakatu, Nozomu; Shlosman, Isaac

    2016-04-01

    We investigate the ability of jets in active galactic nuclei to break out of the ambient gas with sufficiently large advance velocities. Using observationally estimated jet power, we analyze 28 bright elliptical galaxies in nearby galaxy clusters. Because the gas density profiles in the innermost regions of galaxies have not been resolved so far, we consider two extreme cases for temperature and density profiles. We also follow two types of evolution for the jet cocoons: being driven by the pressure inside the cocoon [Fanaroff-Riley (FR) type I], and being driven by the jet momentum (FR type II). Our main result is that regardless of the assumed form of the density profiles, jets with observed powers of ≲1044 erg s-1 are not powerful enough to evolve as FR II sources. Instead, they evolve as FR I sources and appear to be decelerated below the buoyant velocities of the cocoons when jets were propagating through the central dense regions of the host galaxies. This explains why FR I sources are more frequent than FR II sources in clusters. Furthermore, we predict the sizes of X-ray cavities from the observed jet powers and compare them with the observed ones-they are consistent within a factor of two if the FR I type evolution is realized. Finally, we find that the jets with a power ≳1044 erg s-1 are less affected by the ambient medium, and some of them, but not all, could serve as precursors of the FR II sources.

  6. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  7. Complete multiwavelength evolution of galactic black hole transients during outburst decay. II. Compact jets and X-ray variability properties

    SciTech Connect

    Dinçer, T.; Kalemci, E.; Tomsick, J. A.; Buxton, M. M.; Bailyn, C. D.

    2014-11-01

    We investigated the relation between compact jet emission and X-ray variability properties of all black hole transients with multiwavelength coverage during their outburst decays. We studied the evolution of all power spectral components (including low-frequency quasi-periodic oscillations; QPOs), and related this evolution to changes in jet properties tracked by radio and infrared observations. We grouped sources according to their tracks in the radio/X-ray luminosity relation and show that the standards show stronger broadband X-ray variability than outliers at a given X-ray luminosity when the compact jet turns on. This trend is consistent with the internal shock model and can be important for the understanding of the presence of tracks in the radio/X-ray luminosity relation. We also observed that the total and the QPO rms amplitudes increase together during the earlier part of the outburst decay, but after the compact jet turns, either the QPO disappears or its rms amplitude decreases significantly while the total rms amplitudes remain high. We discuss these results with a scenario including a variable corona and a non-variable disk with a mechanism for the QPO separate from the mechanism that creates broad components. Finally, we evaluated the timing predictions of the magnetically dominated accretion flow model that can explain the presence of tracks in the radio/X-ray luminosity relation.

  8. Jets from ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Urquhart, Ryan

    2017-08-01

    An important set of unsolved problems in accretion physics is whether super-Eddington accretion flows produce jets, what the jet power is (compared with the accretion power), and what the large-scale effect of the jet is on the surrounding gas. Most ultraluminous X-ray sources (ULXs) are super-Eddington stellar-mass compact objects: they provide the best local-Universe test of MHD accretion flow simulations. Observational evidence of collimated jets and fast outflows in ULXs may come in different forms: steady synchrotron radio emission from an unresolved, persistent core; radio flaring associated with discrete ejecta; internal shocks along the jet; hotspots from the jet/ISM interaction; hundred-parsec scale wind/jet-inflated nebulae. We discuss examples of the various cases, use them as proxies to measure the jet power, and compare them with (sub-Eddington) AGN and X-ray binary jets.

  9. X-ray jets in microquasar

    NASA Astrophysics Data System (ADS)

    Corbel, S.

    2003-03-01

    Large scale moving relativistic X-ray jets have been recently discovered around the microquasar XTE J1550--564 (Corbel et al. 2002, Sci., 298, 196). They have been observed over a timescale of at least four years. The broadband spectra of the jets are consistent with synchrotron emission from high energy (up to 10 TeV) particles accelerated in shocks, possibly during the interaction of the jets with the interstellar medium. XTE J1550-564 offers a unique opportunity to study the dynamical evolution of relativistic jets on time scales inaccessible for active galactic nuclei jets, with implications for our understanding of relativistic jets from Galactic x-ray binaries and active galactic nuclei. New results from the continuing multiwavelength campaign, as well as a comparison with other jet producing system, will be shown during this presentation.

  10. The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets

    SciTech Connect

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Robe, Dominic

    2013-06-01

    We present results from a study of 54 polar X-ray jets that were observed in coronal X-ray movies from the X-ray Telescope on Hinode and had simultaneous coverage in movies of the cooler transition region (T ∼ 10{sup 5} K) taken in the He II 304 Å band of the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatory. These dual observations verify the standard-jet/blowout-jet dichotomy of polar X-ray jets previously found primarily from XRT movies alone. In accord with models of blowout jets and standard jets, the AIA 304 Å movies show a cool (T ∼ 10{sup 5} K) component in nearly all blowout X-ray jets and in a small minority of standard X-ray jets, obvious lateral expansion in blowout X-ray jets but none in standard X-ray jets, and obvious axial rotation in both blowout X-ray jets and standard X-ray jets. In our sample, the number of turns of axial rotation in the cool-component standard X-ray jets is typical of that in the blowout X-ray jets, suggesting that the closed bipolar magnetic field in the jet base has substantial twist not only in all blowout X-ray jets but also in many standard X-ray jets. We point out that our results for the dichotomy, lateral expansion, and axial rotation of X-ray jets add credence to published speculation that type-II spicules are miniature analogs of X-ray jets, are generated by granule-size emerging bipoles, and thereby carry enough energy to power the corona and solar wind.

  11. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  12. Observations of X-ray jets with the Yohkoh Soft X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Shibata, Kazunari; Ishido, Yoshinori; Acton, Loren W.; Strong, Keith T.; Hirayama, Tadashi; Uchida, Yutaka; Mcallister, Alan H.; Matsumoto, Ryoji; Tsuneta, Saku; Shimizu, Toshifumi

    1992-01-01

    The features of the multiple X-ray jets in the solar corona, revealed by the time series of the Yohkoh Soft X-ray Telescope images are described. The typical size of a jet was from 5 x 10 exp 3 to 4 x 10 exp 5 km, the translational velocity was 30-300 km/s, and the corresponding kinetic energy was estimated to be from 10 exp 25 to 10 exp 28 erg. Many of the jets were found to be associated with flares in X-ray bright points, emerging flux regions, or active regions, and they sometimes occurred several times from the same X-ray feature. One of the jets associated with a flaring bright point was identified as being an H-alpha surge.

  13. Surprise Discovery of an X-Ray Jet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Accreting, supermassive black holes that reside at galactic centers can power enormous jets, bright enough to be observed from vast distances away. The recent discovery of such a jet in X-ray wavelengths, without an apparent radio counterpart, has interesting implications for our understanding of how these distant behemoths shine.An Excess of X-RaysQuasar B3 0727+409 was serendipitously discovered to host an X-ray jet when a group of scientists, led by Aurora Simionescu (Institute of Space and Astronautical Sciences of the Japan Aerospace Exploration Agency), was examining Chandra observations of another object.The Chandra data reveal bright, compact, extended emission from the core of quasar B3 0727+409, with a projected length of ~100 kpc. There also appears to be further X-ray emission at a distance of ~280 kpc, which Simionescu and collaborators speculate may be the terminal hotspot of the jet.The quasar is located at a redshift of z=2.5 which makes this jet one of only a few high-redshift X-ray jets known to date. But what makes it especially intriguing is that, though the authors searched through both recent and archival radio observations of the quasar, the only radio counterpart they could find was a small feature close to the quasar core (which may be a knot in the jet). Unlike what is typical of quasar jets, there was no significant additional radio emission coinciding with the rest of the X-ray jet.Making Jets ShineX-ray-to-radio flux ratio vs. redshift, for X-ray quasar jets detected with Chandra. B3 0727+409 is shown in red (with and without the radio knot). The curves represent inverse-Compton scattering models with different magnetic field strengths. [Simionescu et al. 2016]What does this mean? To answer this, we must consider one of the outstanding questions about quasar jets: what radiation processes dominate their emission? One process possibly contributing to the X-ray emission is inverse-Compton scattering of low-energy cosmic microwave

  14. DISCOVERY OF AN EXTENDED X-RAY JET IN AP LIBRAE

    SciTech Connect

    Kaufmann, S.; Wagner, S. J.; Tibolla, O.

    2013-10-20

    Chandra observations of the low-energy-peaked BL Lac object (LBL) AP Librae (AP Lib) revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first LBL with an extended non-thermal X-ray jet that shows emission into the very high energy range. The X-ray jet has an extension of ∼15''(≈ 14 kpc). The X-ray jet morphology is similar to the radio jet observed with Very Large Array at 1.36 GHz emerging in the southeast direction and bends by 50° at a distance of 12'' toward the northeast. The intensity profiles of the X-ray emission studied are consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse-Compton-(IC)-dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC-dominated and thus more similar to the high-luminosity Fanaroff-Riley II sources than to the low-luminosity Fanaroff-Riley I objects, which are usually considered to be the parent population of BL Lac objects.

  15. Discovery of an Extended X-Ray Jet in AP Librae

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Wagner, S. J.; Tibolla, O.

    2013-10-01

    Chandra observations of the low-energy-peaked BL Lac object (LBL) AP Librae (AP Lib) revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first LBL with an extended non-thermal X-ray jet that shows emission into the very high energy range. The X-ray jet has an extension of ~15''(≈ 14 kpc). The X-ray jet morphology is similar to the radio jet observed with Very Large Array at 1.36 GHz emerging in the southeast direction and bends by 50° at a distance of 12'' toward the northeast. The intensity profiles of the X-ray emission studied are consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse-Compton-(IC)-dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC-dominated and thus more similar to the high-luminosity Fanaroff-Riley II sources than to the low-luminosity Fanaroff-Riley I objects, which are usually considered to be the parent population of BL Lac objects.

  16. The Spectacular Radio-Near-IR-X-Ray Jet of 3C 111: the X-Ray Emission Mechanism and Jet Kinematics

    NASA Technical Reports Server (NTRS)

    Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos; Lister, Matthew L.; Tombesi, Francesco; Cara, Mihai; Marshall, Herman L.; Hogan, Brandon M.; Kazanas, Demos

    2016-01-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the subparsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near- IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope (HST) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.

  17. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  18. The Relationship Between X-Rays and Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Jorstad, S. G.; McHardy, I. M.; Aller, M. F.; Balonek, T. J.; Villata, M.; Raiteri, C. M.; Ostorero, L.; Tosti, G.; Terasranta, H.

    2002-01-01

    We present recent multiwaveband observations centered on X-ray monitoring of blazars and the radio galaxy 3C 120 with the RXTE satellite, In 3C 120, we observed four X-ray dips, each followed by ejections of superluminal radio knots down the jet. This behavior, similar to that of the microquasar GRS 1915+105, is interpreted as infall of a piece of the inner accretion disk causing ejection of energy into the relativistic jet. The X-ray emission from the quasars PKS 1510-089, 3C 279, and 3C 273 is highly variable on timescales as short as approximately 1 day. Over 2 years, X-ray flares in PKS 1510-089 occurred about 2 weeks after radio outbursts, which can be explained by light-travel delays. In 3C 279 the X-ray and optical variations are usually well correlated, with very little, if any, time delay. We conclude that the X-ray and optical emission from blazars occurs near the radio core rather than close to the black hole.

  19. X-ray Emission from YSOs, Protostellar Jets, and Accretion Eruptive Variables

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy

    2010-10-01

    Imaging in X-rays has become an extremely useful tool to identify YSOs residing in star forming regions. X-ray emission is also being measured in eruptive young stars, the FUOr-EXOr type stars, and in protostellar jets. Recent deep near-IR imaging of the North American and Pelican nebulae in JHKs and narrowband emission lines of H2 and [FeII] have revealed one of the most active, richest star forming regions in the Galaxy. Within a single EPIC FOV lies dozens of resolved outflows, jets, clusters of YSOs, and even eruptive FUOR-EXOr stars currently undergoing outbursts. I propose to obtain XMM-Newton imaging of three regions rich in all three types of objects to render x-ray detections to assist with confirming the YSOs, and to measure the x-ray flux of the eruptive stars and shocked outflows.

  20. Revised View of Solar X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Moore, R. L.; Falconer, D. A.; Adams, M.

    2015-12-01

    We investigate the onset of ~20 random X-ray jets observed by Hinode/XRT. Each jetwas near the limb in a polar coronal hole, and showed a ''bright point'' in anedge of the base of the jet, as is typical for previously-observed X-ray jets. Weexamined SDO/AIA EUV images of each of the jets over multiple AIA channels,including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang,which detect cooler-coronal emissions. We find the jets to result from eruptionsof miniature (size <~10 arcsec) filaments from the bases of the jets. In manycases, much of the erupting-filament material forms a chromospheric-temperaturejet. In the cool-coronal channels, often the filament appears in absorption andthe hotter EUV component of the jet appears in emission. The jet bright point formsat the location from which the miniature filament erupts, analogous to theformation of a standard solar flare arcade via flare (``internal'') reconnection in the wake of the eruption of a typical larger-scale chromospheric filament. Thespire of the jet forms on open field lines that presumably have undergoneinterchange (''external'') reconnection with the erupting field that envelops andcarries the miniature filament. This is consistent with what we found for theonset of an on-disk coronal jet we examined in Adams et al. (2014), and theobservations of other workers. It is however not consistent with the basicversion of the ''emerging-flux model'' for X-ray jets. This work was supported byfunding from NASA/LWS, Hinode, and ISSI.

  1. A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2015-04-01

    The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.

  2. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    NASA Astrophysics Data System (ADS)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  3. A KPC-Scale X-Ray Jet in the BL Lac Source S5 2007+777

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Donato, Davide; Cheung, C.C.; Tavecchio, F.; Maraschi, L.

    2008-01-01

    X-ray jets in AGN are commonly observed in FRII and FRI radiogalaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACISS observations of this source revealed an X-ray counterpart to the 19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index gamma(sub x) approximately 1. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta= 13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.

  4. JET x-ray pulse-height analysis system

    SciTech Connect

    Pasini, D.; Gill, R.D.; Holm, J.; van der Goot, E.; Weller, A.

    1988-05-01

    The pulse-height-analysis (PHA) system installed on the Joint European Torus (JET) measures the plasma soft x-ray emission (2--30 keV) with an energy resolution of 450 eV and a time resolution of 200 ms. This diagnostic includes three Si(Li) detectors, equipped with sets of remotely controlled apertures and filters, which view the plasma in the midhorizontal plane of the torus along a single tangential line of sight. Automatic analysis of the spectra yields the central electron temperature, the central concentrations of chlorine, chromium, and nickel, and Z/sub eff/. Simulations of the measured spectra using a radiation code provides the basis to construct a consistent picture of the soft x-ray emission in the central region of JET plasmas.

  5. Electrospinning jets as X-ray sources at atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Mikeš, P.; Lukáš, D.

    2010-11-01

    Electrospinning jets producing nanofibres from a polymer solution by electrical forces are fine cylindrical electrodes that create extremely high electric-field strength in their vicinity at atmospheric conditions. However, this quality of electrospinning is only scarcely investigated, and the interactions of the electric fields generated by them with ambient gases are nearly unknown. Here we report on the discovery that electrospinning jets generate X-ray beams up to energies of 20 keV at atmospheric conditions. The X-ray nature of the detected radiation is incontrovertibly proved by a spectroscopic experiment. We hypothesize how the field strength increases to gigantic values in the vicinity of charged electrospinning jets, as a consequence of counterion condensation, to accelerate charged particles, at a short distance, comparable with their mean path at atmospheric pressure, up to kinetic energies that give rise to the detection of X-rays. The experimental set-up designed by us for the generation and detection of high-energy electromagnetic radiation from electrospinning is extremely simple.

  6. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; hide

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  7. An X-ray survey of the 2 Jy sample - II. X-ray emission from extended structures

    NASA Astrophysics Data System (ADS)

    Mingo, B.; Hardcastle, M. J.; Ineson, J.; Mahatma, V.; Croston, J. H.; Dicken, D.; Evans, D. A.; Morganti, R.; Tadhunter, C.

    2017-09-01

    The 2 Jy sample is a survey of radio galaxies with flux densities above 2 Jy at 2.7 GHz. As part of our ongoing work on the southern subset of 2 Jy sources, in paper I of this series we analysed the X-ray cores of the complete 2 Jy sample with redshifts 0.05 < z < 0.7. For this work we focus on the X-ray emission associated with the extended structures (jets, lobes, and environments) of the complete subset of 2 Jy sources with 0.05 < z < 0.2 that we have observed with Chandra. We find that hotspots and jet knots are ubiquitous in Fanaroff-Riley class II (FRII) sources, which also inhabit systematically poorer environments than the Fanaroff-Riley class I (FRI) sources in our sample. Spectral fits of the hotspots with good X-ray statistics invariably show properties consistent with synchrotron emission, and we show that inverse-Compton mechanisms underpredict the X-ray emission we observe by 1-2 orders of magnitude. Inverse-Compton emission is detected from many of the lobes in our sample, and we find that the lobes of the FRII sources show magnetic fields lower by up to an order of magnitude than expected from equipartition extrapolations. This is consistent with previous results, which show that most FRII sources have electron energy densities higher than minimum energy requirements.

  8. The Energetics of 100 KPC X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.; Marshall, Herman L.; Gelbord, Jonathan; Worrall, Diana M.; Birkinshaw, Mark; Lovell, James J.; Jauncey, David L.; Perlman, Eric S.; Murphy, David W.

    We discuss the physical properties of 12 quasar jets as revealed by our Chandra X-ray and our ATCA and VLA radio observations. These 12 jets were detected in a 5 ksec snapshot survey of a sample of 20 bright flat spectrum radio sources with arcsec scale jets. When we interpret the X-ray emission as inverse Compton scattering of the radio emitting electrons on the Cosmic Microwave Background and assume equipartition we find that the emitting regions must be relativistically beamed even at distances 200 to 500 kpc from the quasar. We report on the structure of magnetic field strengths relativistic Doppler factors and kinetic flux as a function of distance from the quasar core. The minimum kinetic power is generally comparable to or larger than the quasar radiative luminosity implying that the jets must be a significant factor in the energetics of the accretion process powering the central black hole. This research has been funded in part by NASA contract NAS8-39073 to SAO and SAO SV1-61010 to MIT and NASA grant GO2-3151C to SAO. E.S.P. acknowledges support from NASA LTSA grant NAG5-9997. Part of this research was performed at JPL/CIT under contract to NASA.

  9. Blowout Jets: Hinode X-Ray Jets that Don't Fit the Standard Model

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-01-01

    Nearly half of all H-alpha macrospicules in polar coronal holes appear to be miniature filament eruptions. This suggests that there is a large class of X-ray jets in which the jet-base magnetic arcade undergoes a blowout eruption as in a CME, instead of remaining static as in most solar X-ray jets, the standard jets that fit the model advocated by Shibata. Along with a cartoon depicting the standard model, we present a cartoon depicting the signatures expected of blowout jets in coronal X-ray images. From Hinode/XRT movies and STEREO/EUVI snapshots in polar coronal holes, we present examples of (1) X-ray jets that fit the standard model, and (2) X-ray jets that do not fit the standard model but do have features appropriate for blowout jets. These features are (1) a flare arcade inside the jet-base arcade in addition to the small flare arcade (bright point) outside that standard jets have, (2) a filament of cool (T is approximately 80,000K) plasma that erupts from the core of the jetbase arcade, and (3) an extra jet strand that should not be made by the reconnection for standard jets but could be made by reconnection between the ambient unipolar open field and the opposite-polarity leg of the filament-carrying flux-rope core field of the erupting jet-base arcade. We therefore infer that these non-standard jets are blowout jets, jets made by miniature versions of the sheared-core-arcade eruptions that make CMEs

  10. Powerful jets from black hole X-ray binaries in low/hard X-ray states

    NASA Astrophysics Data System (ADS)

    Fender, R. P.

    2001-03-01

    Four persistent (Cygnus X-1, GX 339-4, GRS 1758-258 and 1E 1740.7-2942) and three transient (GS 2023+38, GRO J0422+32 and GS 1354-64) black hole X-ray binary systems have been extensively observed at radio wavelengths during extended periods in the low/hard X-ray state, which is characterized in X-rays by a hard power-law spectrum and strong variability. All seven systems show a persistent flat or inverted (in the sense that α>~0, where Sν~να) radio spectrum in this state, markedly different from the optically thin radio spectra exhibited by most X-ray transients within days of outburst. Furthermore, in none of the systems is a high-frequency cut-off to this spectral component detected, and there is evidence that it extends to near-infrared or optical regimes. Luminous persistent hard X-ray states in the black hole system GRS 1915+105 produce a comparable spectrum. This spectral component is considered to arise in synchrotron emission from a conical, partially self-absorbed jet, of the same genre as those originally considered for active galactic nuclei. Whatever the physical origin of the low/hard X-ray states, these self-similar outflows are an ever-present feature. The power in the jet component is likely to be a significant (>=5per cent) and approximately fixed fraction of the total accretion luminosity. The correlation between hard X-ray and synchrotron emission in all the sources implies that the jets are intimately related to the Comptonization process, and do not have very large bulk Lorentz factors, unless the hard X-ray emission is also beamed by the same factor.

  11. Modeling the X-ray light curves of Cygnus X-3. Possible role of the jet

    NASA Astrophysics Data System (ADS)

    Vilhu, O.; Hannikainen, D. C.

    2013-02-01

    Context. We address the physics behind the soft X-ray light curve asymmetries in Cygnus X-3, a well-known microquasar. Aims: Observable effects of the jet close to the line-of-sight were investigated and interpreted within the frame of light curve physics. Methods: The path of a hypothetical imprint of the jet, advected by the Wolf-Rayet-wind, was computed and its crossing with the line-of-sight during the binary orbit determined. We explored the possibility that physically this "imprint" is a formation of dense clumps triggered by jet bow shocks in the wind ("clumpy trail"). Models for X-ray continuum and emission line light curves were constructed using two absorbers: mass columns along the line-of-sight of i) the WR wind and ii) the clumpy trail, as seen from the compact star. These model light curves were compared with the observed ones from the RXTE/ASM (continuum) and Chandra/HETG (emission lines). Results: We show that the shapes of the Cyg X-3 light curves can be explained by the two absorbers using the inclination and true anomaly angles of the jet as derived from gamma-ray Fermi/LAT observations. The clumpy trail absorber is much larger for the lines than for the continuum. We suggest that the clumpy trail is a mixture of equilibrium and hot (shock heated) clumps. Conclusions: A possible way for studying jets in binary stars when the jet axis and the line-of-sight are close to each other is demonstrated. The X-ray continuum and emission line light curves of Cygnus X-3 can be explained by two absorbers: the WR companion wind plus an absorber lying in the jet path (clumpy trail). We propose that the clumpy trail absorber is due to dense clumps triggered by jet bow shocks.

  12. Probing X-Ray Jet Emission Mechanisms in a Complete Blazar Sample

    NASA Astrophysics Data System (ADS)

    Kharb, Preeti

    2008-09-01

    We propose deep (70 ksec) followup Chandra X-ray observations and new HST WFPC2/F450W observations of two quasars belonging to the complete flux-limited MOJAVE Chandra blazar sample. These two quasars have HST WFPC2/F702W data available in the archive. Combining the existing optical and radio data with the new Chandra and HST data at an additional optical band we aim to construct asignificantly more accurate multi-waveband (four frequency) spectral energy distributions for distinct knots in the jets. This will serve as a first step towards resolving longstanding ambiguities surrounding the primary X-ray emission mechanisms in a well-defined sample of powerful FR-II class jets.

  13. Probing X-Ray Jet Emission Mechanisms in a Complete Blazar Sample

    NASA Astrophysics Data System (ADS)

    Kharb, Preeti

    2009-07-01

    We propose deep {70 ksec} followup Chandra X-ray observations and new HST ACS/WFC/F475W observations of two quasars, viz., 0106+013 and 1641+399, belonging to the complete flux-limited MOJAVE Chandra blazar sample. These two quasars have HST WFPC2/F702W data available in the archive. Combining the existing optical and radio data with the new Chandra and HST data at an additional optical band we aim to construct a significantly more accurate multi-waveband {four frequency} spectral energy distributions for distinct knots in the jets. This will serve as a first step towards resolving longstanding ambiguities surrounding the primary X-ray emission mechanisms in a well-defined sample of powerful FR-II class jets.

  14. NSLS-II X-Ray Diagnostics Development

    SciTech Connect

    ILINSKI, P.

    2011-03-28

    NSLS-II x-ray diagnostics will provide continuous online data of electron beam dimensions, which will be used to derive electron beam emittance and energy spread. It will also provide information of electron beam tilt for coupling evaluation. X-ray diagnostics will be based on imaging of bending magnet and three-pole wiggler synchrotron radiation sources. Diagnostics from three-pole wiggler source will be used to derive particles energy spread. Beta and dispersion functions will have to be evaluated for emittance and particles energy spread calculations. Due to small vertical source sizes imaging need to be performed in x-ray energy range. X-ray optics with high numerical aperture, such as compound refractive lens, will be used to achieve required spatial resolution. Optical setups with different magnifications in horizontal and vertical directions fill be employed to deal with large aspect ratio of the source. X-ray diagnostics setup will include x-ray imaging optics, monochromatization, x-ray imaging and recording components.

  15. X-Ray Astronomy Discovery Experiments, II

    NASA Astrophysics Data System (ADS)

    Fisher, P. C.

    2009-05-01

    Paper I provided proof of concurrent discovery experiments at the start of cosmic x-ray source studies. It was noted that since the Lockheed discovery was postulated before any source was observed, that discovery was of equal or greater importance to the start of such studies than the discovery of Sco X-1. Illusions about the nonexistence of the Lockheed discovery that may have been caused by organizers and invited reviewers of a meeting, and related events (including A. E. Whitford, private communication (1975). and, R. Giacconi, Les Prix Nobel, Nobel Foundation, Stockholm, Sweden, p. 114 (2003). will be described. This paper's goal is to have the American Institute of Physics require members to properly credit contributions of others. P. C. Fisher, BAPS 53 No. 2, 165 (2008). S. B. Pikelner et al., Transactions of the IAU (L. Perek ed.), D. Reidel, Dordrecht/Holland and Springer-Verlag, New York XIIIA, p. 179 (1968). H. Friedman, op cit, p.180. R. Giacconi, op cit, p. 184.

  16. The 300 Kpc Long X-Ray Jet in PKS 1127-145, Z=1.18 Quasar: Constraining X-Ray Emission Models

    SciTech Connect

    Siemiginowska, Aneta; Stawarz, Lukasz; Cheung, C.C.; Harris, D.E.; Sikora, Marek; Aldcroft, Thomas L.; Bechtold, Jill; /Arizona U., Astron. Dept. - Steward Observ.

    2006-11-20

    We present a {approx} 100 ksec Chandra X-ray observation and new VLA radio data of the large scale, 300 kpc long X-ray jet in PKS 1127-145, a radio loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to be strikingly different with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. The jet X-ray surface brightness gradually decreases by an order of magnitude going out from the core. The new X-ray data contain sufficient counts to do spectral analysis of the key jet features. The X-ray energy index of the inner jet is relatively flat with {alpha}{sub x} = 0.66 {+-} 0.15 and steep in the outer jet with {alpha}{sub x} = 1.0 {+-} 0.2. We discuss the constraints implied by the new data on the X-ray emission models and conclude that ''one-zone'' models fail and at least a two component model is needed to explain the jet's broad-band emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology.

  17. The Active Nucleus and 200-KPC X-Ray Jet in NGC 6251

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2002-09-01

    The jet of the FRI radio galaxy NGC 6251 is known to be an X-ray source on scales out to 200 kpc from the nucleus, making it the largest-scale FRI X-ray jet known. However, existing observations do not provide adequate information on the structure or spectrum of any of the X-ray jet components or on the spectrum of the active nucleus. We propose to make a sensitive observation of this unique object. We will measure the X-ray spectrum at multiple points along the jet to determine the emission mechanism and search for differences in particle acceleration as a function of distance. We will also determine whether the hot gas around the jet has pressure sufficient to confine it, and we will make a good spectrum of the X-ray nucleus for comparison with radio and optical observations.

  18. Constraints on the Nature of Jets from KPC Scale X-Ray Data

    NASA Astrophysics Data System (ADS)

    Harris, D. E.; Krawczynski, H.

    2007-03-01

    Motivated by the large number of jets detected by the Chandra X-ray Observatory, and by the inverse Compton X-ray emission model (IC/CMB) for relativistic jets, we revisit two basic questions: ``If the medium that carries the jet's energy consists of hot electrons, can we use the physical length of the jet to constrain the maximum electron energy?'' and ``Why do jets have knots?'' Based on the two non-thermal emission processes for X-rays from jets, we consider constraints on the jet medium and other properties from these two simple questions. We argue that hot pairs cannot be the dominant constituent of the medium responsible for the jet's momentum flux and that some mechanisms for producing fluctuating brightness along jets (rather than a monotonically decreasing intensity) are precluded by observed jet morphologies.

  19. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  20. A High-Resolution X-Ray Image of the Jet in M87

    NASA Astrophysics Data System (ADS)

    Marshall, H. L.; Miller, B. P.; Davis, D. S.; Perlman, E. S.; Wise, M.; Canizares, C. R.; Harris, D. E.

    2002-01-01

    We present the first high-resolution X-ray image of the jet in M87 using the Chandra X-Ray Observatory. There is clear structure in the jet and almost all of the optically bright knots are detected individually. The unresolved core is the brightest X-ray feature but is only 2-3 times brighter than knot A (12.3" from the core) and the inner knot HST-1 (1.0" from the core). The X-ray and optical positions of the knots are consistent at the 0.1" level, but the X-ray emission from the brightest knot (A) is marginally upstream of the optical emission peak. Detailed Gaussian fits to the X-ray jet one-dimensional profile show distinct X-ray emission that is not associated with specific optical features. The X-ray/optical flux ratio decreases systematically from the core, and X-ray emission is not clearly detected beyond 20" from the core. The X-ray spectra of the core and the two brightest knots, HST-1 and A, are consistent with a simple power law (Sν~ν-α) with α=1.46+/-0.05, practically ruling out inverse Compton models as the dominant X-ray emission mechanism. The core flux is significantly larger than expected from an advective accretion flow, and the spectrum is much steeper, indicating that the core emission may be due to synchrotron emission from a small-scale jet. The spectral energy distributions of the knots are well fitted by synchrotron models. The spectral indices in the X-ray band, however, are comparable to that expected in the Kardashev-Pacholczyk synchrotron model but are much flatter than expected in the pitch-angle isotropization model of Jaffe and Perola. The break frequencies derived from both models drop by factors of 10-100 with distance from the core.

  1. A High Resolution X-ray Image of the Jet in M 87

    NASA Astrophysics Data System (ADS)

    Miller, B. P.; Marshall, H. L.; Davis, D. S.; Perlman, E. S.; Wise, M.; Canizares, C. R.; Harris, D. E.

    2001-12-01

    We present the first high resolution X-ray image of the jet in M 87 using the Chandra X-ray Observatory. There is clear structure in the jet and almost all of the optically bright knots are detected individually. The unresolved core is the brightest X-ray feature but is only 2-3 times brighter than knot A (12.3" from the core) and the inner knot HST-1 (1.0" from the core). The X-ray and optical positions of the knots are consistent at the 0.1" level but the X-ray emission from the brightest knot (A) is marginally upstream of the optical emission peak. Detailed Gaussian fits to the X-ray jet one-dimensional profile show distinct X-ray emission that is not associated with specific optical features. The X-ray/optical flux ratio decreases systematically from the core and X-ray emission is not clearly detected beyond 20" from the core. The X-ray spectra of the core and the two brightest knots, HST-1 and A1, are consistent with a simple power law with alpha = 1.46 +/- 0.05, practically ruling out inverse Compton models as the dominant X-ray emission mechanism. The core flux is significantly larger than expected from an advective accretion flow and the spectrum is much steeper, indicating that the core emission may be due to synchrotron emission from a small scale jet. The spectral energy distributions (SEDs) of the knots are well fit by synchrotron models. The spectral indices in the X-ray band, however are comparable to that expected in the Kardashev-Pacholczyk synchrotron model but are much flatter than expected in the pitch angle isotropization model of Jaffe and Perola. The break frequencies derived from both models drop by factors of 10-100 with distance from the core.

  2. Analysis of the PKS0637-752 X-Ray Jet System

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; Marshall, H. L.; Lovell, J. E. J.; Piner, B. G.; Tingay, S. J.; Birkinshaw, M.; Chartas, G.; Elvis, M.; Feigelson, E. D.; Ghosh, K. K.; hide

    2000-01-01

    The X-ray jet emitted from the quasar PKS0637-752 is the largest and most luminous detected to date. It extends 10 arcsec west of the nucleus, and is coincident with GHz radio jet emission in this region. If the individual X-ray/optical/radio knots in this jet were detected as isolated objects, they might be classified as BL Lac objects or quasars. We present a detailed analysis of the Chandra observations of this system, including a search for an intra-cluster medium to confine the jet, and limits to X-ray emission from the eastern radio knot and past the bend of the radio jet to the northwest. The projection in the plane of the sky implies that the X-ray jet is an aligned extension of the pc-scale jet, for which VLBI/VSOP observations show super-luminal motion with an apparent velocity of 11c. In this case, the X-ray jet is of order 1 Mpc in length, and explaining the X-ray emission mechanism presents new challenges.

  3. Numerical Simulation of Solar Coronal X-Ray Jets Based on the Magnetic Reconnection Model

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takaaki; Shibata, Kazunari

    1996-04-01

    We performed two-dimensional numerical simulations of solar coronal X-ray jets by solving the resistive magnetohydrodynamic (MHD) equations. The simulations were based on the magnetic reconnection model, in which the plasma of an X-ray jet is accelerated and heated by reconnection between the emerging flux and a pre-existing coronal field. Many observed characteristics of X-ray jets could be successfully reproduced. Morphologically, the two observed types of jets, two-sided-loop type and anemone-jet type, were well reproduced. Here, the two-sided-loop type is a pair of horizontal jets (or loops), which occurs when an emerging flux appears in a quiet region where the coronal field is approximately horizontal. In contrast, the anemone-jet type is a vertical jet, which takes place when an emerging flux appears in a coronal hole where the coronal field is vertical or oblique. Quantitatively, the velocity, temperature, thermal energy, kinetic energy, and other parameters obtained in the simulation are in good agreement with the observations. Furthermore, the simulations reveal new features which might be associated with X-ray jets: (1) A fast-mode MHD shock is produced at the collision site of each reconnection jet with the ambient magnetic field. (2) Reconnection produces a cool jet as well as a hot jet (X-ray jet). The hot and cool jets are adjacent to each other, which is consistent with the observed simultaneous coexistence of X-ray jets and {Hα } surges in the sun.

  4. Detecting Relativistic X-Ray Jets in High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Cheung, C. C.; Stawarz, Łukasz; Kashyap, Vinay L.; Stein, Nathan; Stampoulis, Vasileios; van Dyk, David A.; Wardle, J. F. C.; Lee, N. P.; Harris, D. E.; Schwartz, D. A.; Donato, Davide; Maraschi, Laura; Tavecchio, Fabrizio

    2016-12-01

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift (z ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 < z < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p-value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  5. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    SciTech Connect

    Jester, Sebastian; Harris, D.E.; Marshall, H.L.; Meisenheimer, K.; /Heidelberg, Max Planck Inst. Astron.

    2006-05-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

  6. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem

    2012-07-20

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  7. Small-animal tomography with a liquid-metal-jet x-ray source

    NASA Astrophysics Data System (ADS)

    Larsson, D. H.; Lundström, U.; Westermark, U.; Takman, P. A. C.; Burvall, A.; Arsenian Henriksson, M.; Hertz, H. M.

    2012-03-01

    X-ray tomography of small animals is an important tool for medical research. For high-resolution x-ray imaging of few-cm-thick samples such as, e.g., mice, high-brightness x-ray sources with energies in the few-10-keV range are required. In this paper we perform the first small-animal imaging and tomography experiments using liquid-metal-jet-anode x-ray sources. This type of source shows promise to increase the brightness of microfocus x-ray systems, but present sources are typically optimized for an energy of 9 keV. Here we describe the details of a high-brightness 24-keV electron-impact laboratory microfocus x-ray source based on continuous operation of a heated liquid-In/Ga-jet anode. The source normally operates with 40 W of electron-beam power focused onto the metal jet, producing a 7×7 μm2 FWHM x-ray spot. The peak spectral brightness is 4 × 109 photons / ( s × mm2 × mrad2 × 0.1%BW) at the 24.2 keV In Kα line. We use the new In/Ga source and an existing Ga/In/Sn source for high-resolution imaging and tomography of mice.

  8. Miniature Filament Eruptions and their Reconnections in X-Ray Jets: Evidence for a New Paradigm

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    2014-01-01

    We investigate the onset of approximately10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size less than approximately 10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the jet in emission. The jet bright point forms at the location from which the miniature filament is ejected, analogous to the formation of a standard solar flare in the wake of the eruption of a typical larger-scale chromospheric filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions. They are evidently produced the same way as an on-disk coronal jet we observed in Adams et al. (2014); that on-disk jet had no obvious emerging magnetic field in its base. We conclude that, for many jets, the standard idea of X-ray jets forming from reconnection between emerging flux and preexisting coronal field is incorrect. ACS and RLM were supported by funding from NASA/LWS, Hinode, and ISSI.

  9. X-ray jets from B2224+65: A Middle-aged Pulsar's New Trick

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Johnson, Seth

    2015-01-01

    Pulsars, though typically not aged ones, are believed to be an important source of energetic cosmic rays. Therefore, it may not be too surprising to detect an X-ray jet associated with the middle-aged radio/X-ray pulsar B2224+65, which is well known for its very high proper motion and its trailing ``Guitar Nebula''. Most unexpected, however, is that this jet is offset from its proper motion direction by 118 degree. Furthermore, an X-ray counter jet and a faint X-ray trail associated with the ``Guitar Nebula'' are now identified in the combined data set of three epoch Chandra observations with a total exposure of 200 ks. We are carrying out a detailed measurements of the X-ray spectral variation with time and across the jets and are critically testing scenarios proposed to explain this enigmatic phenomenon. The study should have strong implications for understanding the origin of cosmic rays, as well as similar linear nonthermal X-ray-emitting features that are associated with more distant pulsars, especially pulsar wind nebula candidates in the central 100 pc region of the Galaxy.

  10. Searching for X-Ray Variability in Resolved Jets from Radio-Loud AGN

    NASA Astrophysics Data System (ADS)

    DeNigris, Natalie; Meyer, Eileen T.; Georganopoulos, Markos

    2017-01-01

    Nearly all large galaxies host a super-massive black hole (SMBH) at their centers, featuring an accretion disk that may become so luminious that it outshines the host galaxy. In some cases, accreting SMBH may also produce bipolar jets of fully-ionized relativistic plasma. The origin of these jets is not fully understood; however, they are large enough to be resolved by high-resolution telescopes such as the Hubble Space Telescope and the Chandra Space Telescope. Through multi-wavelength observations it has been shown that these jets produce synchrotron (ST) radiation; still, the nature of X-ray emission from the jets is a long-standing mystery. We propose that any variability observed would conclusively rule out one of the two competing models for the X-ray emission, namely, the inverse-Compton (IC) model where relativistic electrons in the jet upscatter ambient CMB photons to produce electrons. In this case, the flux of the jet should remain steady over time. On the other hand, by detecting significant variability, the ST radiation model would be preferred. By measuring the flux in jet knots over multiple observations of a single source, we tested variability in the X-ray emission of jets. Observations were obtained using Chandra’s open-source archive of X-ray imaging data, and processed using the open-source processing package CIAO.

  11. Dark jets in the soft X-ray state of black hole binaries?

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.

    2017-04-01

    X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.

  12. Jet power and feedback from the newly-discovered radio/optical/X-ray microquasar S26 in NGC 7793

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Corbel, Stephane; Pakull, Manfred; Motch, Christian

    2009-07-01

    We have discovered an exceptional radio/optical/X-ray microquasar in the Sculptor galaxy NGC7793 (distance of 3.4 Mpc), with a large (300 x 150 pc) shock-ionized bubble, and X-ray hot spots where the collimated jet hits the interstellar medium. The radio nebula has an integrated flux of 1.2 mJy at 6 cm (more luminous than Cas A). The system resembles the famous Galactic microquasar SS433, but on an even grander scale. We propose deeper radio observations at higher spatial resolution with the ATCA: to identify the radio hot spots; to infer the jet power from the synchrotron luminosity of the hot spots; to determine the shape of the radio cocoon and compare it with the H-alpha, HeII 4686 and X-ray nebulae; to estimate the total (integrated) energy injected in the nebula by the jet/wind, and constrain its age; to search for the radio core. Our combined radio, X-ray and optical study of this source will help us model the radiative and mechanical power budget of accreting black holes, and their feedback onto the interstellar or intergalactic medium.

  13. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  14. X-Ray Telescope Onboard Astro-E. II. Ground-Based X-Ray Characterization.

    PubMed

    Shibata, R; Ishida, M; Kunieda, H; Endo, T; Honda, H; Misaki, K; Ishida, J; Imamura, K; Hidaka, Y; Maeda, M; Tawara, Y; Ogasaka, Y; Furuzawa, A; Watanabe, M; Terashima, Y; Yoshioka, T; Okajima, T; Yamashita, K; Serlemitsos, P J; Soong, Y; Chan, K W

    2001-08-01

    X-ray characterization measurements of the x-ray telescope (XRT) onboard the Astro-E satellite were carried out at the Institute of Space and Astronautical Science (Japan) x-ray beam facility by means of a raster scan with a narrow x-ray pencil beam. The on-axis half-power diameter (HPD) was evaluated to be 1.8?-2.2?, irrespective of the x-ray energy. The on-axis effective areas of the XRTs for x-ray imaging spectrometers (XISs) were approximately 440, 320, 240, and 170 cm(2) at energies of 1.49, 4.51, 8.04, and 9.44 keV, respectively. Those of the x-ray spectrometer (XRS) were larger by 5-10%. The replication method introduced for reflector production significantly improved the imaging capability of the Advanced Satellite for Cosmology and Astrophyics (ASCA) XRT, whose HPD is ~3.6?. The increase in the effective area by a factor of 1.5-2.5, depending upon the x-ray energy, compared with that of the ASCA, was brought about by mechanical scale up and longer focal lengths. The off-axis HPDs were almost the same as those obtained on the optical axis. The field of view is defined as the off-axis angle at which the effective area becomes half of the on-axis value. The diameter of the field of view was ~19? at 1.49 keV, decreasing with increasing x-ray energy, and became ~13? at 9.44 keV. The intensity of stray light and the distribution of this kind of light on the focal plane were measured at the large off-axis angles 30? and 60?. In the entire XIS field of view (25.4 mm x 25.4 mm), the intensity of the stray light caused by a pointlike x-ray source became at most 1% of the same pointlike source that was on the optical axis.

  15. FIBRILLAR CHROMOSPHERIC SPICULE-LIKE COUNTERPARTS TO AN EXTREME-ULTRAVIOLET AND SOFT X-RAY BLOWOUT CORONAL JET

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K. E-mail: ron.moore@nasa.go

    2010-10-20

    We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/Solar Optical Telescope (SOT), Extreme Ultraviolet Imaging Spectrometer (EIS), and X-Ray Telescope (XRT), with supplemental data from STEREO/EUVI. From extreme-ultraviolet (EUV) and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with a bright base, and in EUV it appears as an eruption of relatively cool ({approx}50,000 K) material of horizontal size scale {approx}30'' originating from the base of the SXR jet. In SOT Ca II H images, the most pronounced analog is a pair of thin ({approx}1'') ejections at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45'', leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of 'type II' spicules, {approx}100 km s{sup -1}, and they appear to have spicule-like substructures splitting off from them with horizontal velocity {approx}50 km s{sup -1}, similar to the velocities of splitting spicules measured by Sterling et al. Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggest that a subpopulation of Ca II type II spicules are the Ca II manifestation of portions of larger scale erupting magnetic jets. A different subpopulation of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.

  16. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  17. Evidence for Simultaneous Jets and Disk Winds in Luminous Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.; Chakrabarty, Deepto; Fender, Rob; Fridriksson, Joel K.; Remillard, Ronald A.; Schulz, Norbert

    2016-10-01

    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in its X-ray color-color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.

  18. The Swift X-ray Telescope Cluster Survey. II. X-ray spectral analysis

    NASA Astrophysics Data System (ADS)

    Tozzi, P.; Moretti, A.; Tundo, E.; Liu, T.; Rosati, P.; Borgani, S.; Tagliaferri, G.; Campana, S.; Fugazza, D.; D'Avanzo, P.

    2014-07-01

    Aims: We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg s-1 cm-2 (SWXCS). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the intracluster medium (ICM) for the majority of the SWXCS sources. Methods: Optical counterparts and spectroscopic or photometric redshifts for some of the sources are obtained with a cross-correlation with the NASA/IPAC Extragalactic Database. Additional photometric redshifts are computed with a dedicated follow-up program with the Telescopio Nazionale Galileo and a cross-correlation with the SDSS. In addition, we also blindly search for the Hydrogen-like and He-like iron Kα emission line complex in the X-ray spectrum. We detect the iron emission lines in 35% of the sample, and hence obtain a robust measure of the X-ray redshift zX with typical rms error 1-5%. We use zX whenever the optical redshift is not available. Finally, for all the sources with measured redshift, background-subtracted spectra are fitted with a single-temperature mekal model to measure global temperature, X-ray luminosity and iron abundance of the ICM. We perform extensive spectral simulations to accounts for fitting bias, and to assess the robustness of our results. We derive a criterion to select reliable best-fit models and an empirical formula to account for fitting bias. The bias-corrected values are then used to investigate the scaling properties of the X-ray observables. Results: Overall, we are able to characterize the ICM of 46 sources with redshifts (64% of the sample). The sample is mostly constituted by clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and groups with temperatures below 3 keV. The redshift distribution peaks around z ~ 0.25 and extends up to z ~ 1, with 60% of the sample at 0.1 < z

  19. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2015-08-01

    We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  20. X-ray grating interferometry with a liquid-metal-jet source

    NASA Astrophysics Data System (ADS)

    Thüring, T.; Zhou, T.; Lundström, U.; Burvall, A.; Rutishauser, S.; David, C.; Hertz, H. M.; Stampanoni, M.

    2013-08-01

    A liquid-metal-jet X-ray tube is used in an X-ray phase-contrast microscope based on a Talbot type grating interferometer. With a focal spot size in the range of a few microns and a photon flux of ˜1012 photons/s×sr, the brightness of such a source is approximately one order of magnitude higher than for a conventional microfocus source. For comparison, a standard microfocus source was used with the same grating interferometer, showing significantly increased visibility for the liquid-metal-jet arrangement. Together with the increased flux, this results in improved signal-to-noise ratio.

  1. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  2. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari

    2017-09-01

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of ≳106 K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.

  3. X-ray jets from B2224+65: A Middle-aged Pulsar's New Trick

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel

    2014-11-01

    B2224+65 is well known to have a very high proper motion and to be associated with the ``Guitar Nebula'' in the opposite direction of the motion. A jet-like X-ray feature, however, is offset from its proper motion direction by 118 degree. Furthermore, the X-ray luminosity and morphology of the feature changed significantly between three Chandra observations. We are carrying out a detailed measurements of the X-ray spectral variation with time and across the feature and are critically testing scenarios proposed to explain this enigmatic system. The study will also have strong implications for understanding somewhat similar linear nonthermal X-ray-emitting features that have been identified in the central 100 pc region of the Galaxy.

  4. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  5. Witnessing the Gradual Slowdown of Powerful Extragalactic Jets: The X-Ray-Optical-Radio Connection

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes

    2004-01-01

    A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.

  6. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  7. Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets

    SciTech Connect

    Poludniowski, Gavin G.

    2007-06-15

    A new approach to the calculation of the x-ray spectrum emerging from an x-ray tube is proposed. Theoretical results for the bremsstrahlung cross section appearing in the literature are summarized. Four different treatments of electron penetration, based on the work presented in Part I, are then used to generate bremsstrahlung spectra. These spectra are compared to experimental data at 50, 80 and 100 kVp tube potentials. The most sophisticated treatment of electron penetration was required to obtain good agreement. With this treatment both the National Institute of Standards and Technology bremsstrahlung cross sections, based on accurate partial wave calculations, and the Bethe-Heitler cross section [H. A. Bethe and W. Heitler, Proc R. Soc. London, Ser. A. 146, 83-112 (1934)] corrected by a modified Elwert factor [G. Elwert, Ann. Phys. (Leipzig) 426, 178-208 (1939)], provided good agreement to measured data. An approximate treatment of the characteristic spectrum is suggested. The dependencies of the bremsstrahlung and characteristic outputs of an x-ray tube on tube potential are compared to experimentally derived data for 70-140 kVp potentials. Agreement is to within a few percent of the total output over the entire range. The spectral predictions of the semiempirical models of Birch and Marshall [R. Birch and M. Marshall, Phys. Med. Biol. 24, 505-513 (1979)] (IPEM Report 78) and of Tucker et al. [D. M. Tucker, G. T. Barnes, and D. P. Chakraborty, Med. Phys. 18, 211-218 (1991).] are also assessed. The predictions of Tucker et al. are very close to the model developed here. The predictions of IPEM Report 78 are similar, but consistently harder for the range of tube potentials examined (50-100 kV). Unlike the semiempirical models, the model proposed here requires the introduction of no empirical and unphysical parameters in the differential bremsstrahlung cross section, bar an overall normalization factor which is close to unity.

  8. Small-Scale Filament Eruptions Leading to Solar X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse; Moore, Ronald; Falconer, David

    2015-04-01

    We investigate the onset of ~10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Å, which detects chromospheric emissions, and 171, 193, and 211 Å, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size <~10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the hotter EUV component of the jet appears in emission. The jet bright point forms at the location from which the miniature filament erupts, analogous to the formation of a standard solar flare arcade in the wake of the eruption of a typical larger-scalechromospheric filament. The spire of the jet forms on open field lines that presumably have undergone interchange reconnection with the erupting field that envelops and carries the miniature filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions via ``internal'' and ``external'' reconnection of the erupting field. This is consistent with what we found for the onset of an on-disk coronal jet we examined in Adams et al. (2014). This work was supported by funding from NASA/LWS, Hinode, and ISSI.

  9. Relativistic baryonic jets from an ultraluminous supersoft X-ray source

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1’s soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  10. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    PubMed

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-03

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

  11. Observations of solar X-ray and EUV jets and their related phenomena

    NASA Astrophysics Data System (ADS)

    Innes, D. E.; Bučík, R.; Guo, L.-J.; Nitta, N.

    2016-11-01

    Solar jets are fast-moving, elongated brightenings related to ejections seen in both images and spectra on all scales from barely visible chromospheric jets to coronal jets extending up to a few solar radii. The largest, most powerful jets are the source of type III radio bursts, energetic electrons and ions with greatly enhanced 3He and heavy element abundances. The frequent coronal jets from polar and equatorial coronal holes may contribute to the solar wind. The primary acceleration mechanism for all jets is believed to be release of magnetic stress via reconnection; however the energy buildup depends on the jets' source environment. In this review, we discuss how certain features of X-ray and EUV jets, such as their repetition rate and association with radio emission, depends on their underlying photospheric field configurations (active regions, polar and equatorial coronal holes, and quiet Sun).

  12. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2016-02-01

    We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  13. From Cradle To Grave: Chandra Discovers The History Of Black Hole X-Ray Jets

    NASA Astrophysics Data System (ADS)

    2002-10-01

    For the first time, astronomers have tracked the life cycle of X-ray jets from a black hole. A series of images from NASA's Chandra X-ray Observatory has revealed that as the jets evolved, they traveled at near light speed for several years before slowing down and fading. "Watching these jets slow down and disappear is like watching a time-lapse movie of the rise and fall of the Bronze Age," said Stephane Corbel of the University of Paris VII and the French Atomic Energy Commission in Saclay, lead author of a paper in the October 4th issue of the journal Science. "Since the jets came from a stellar black hole in our galaxy, we watched in a few years developments that would have taken thousands of years to occur around a supermassive black hole in a distant galaxy." Astronomers have been using Chandra and radio telescopes to observe two opposing jets of high-energy particles emitted following an outburst, first detected in 1998 by NASA's Rossi X-ray Timing Explorer, from the double-star system XTE J1550-564. The X-ray jets, which require a continuous source of trillion-volt electrons to remain bright, were observed moving at about half the speed of light. Four years later, they are now more than three light years apart and slowing down. One of the jets has recently been observed to fade. XTE J1550-564 Time-Lapse Movie XTE J1550-564 Time-Lapse Movie "The ejection of jets from stellar and supermassive black holes is a common occurrence in the universe, so it is extremely important to understand the process," said John Tomsick of the University of California, San Diego, and author of an Astrophysical Journal paper scheduled for January 2003 publication describing the research. "For the first time, we have observed a jet from the initial explosion until it slowed and faded." The observations indicate that one jet, the eastern jet, is moving along a line tilted toward the Earth whereas the western jet is pointed away from the Earth. This alignment explains why the

  14. The pulsar B2224+65 and its jets: a two epoch X-ray analysis

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wang, Q. D.

    2010-10-01

    We present an X-ray morphological and spectroscopic study of the pulsar B2224+65 and its apparent jet-like X-ray features based on two epoch Chandra observations. The main X-ray feature, which shows a large directional offset from the ram-pressure confined pulsar wind nebula (Guitar nebula), is broader in apparent width and shows evidence for spectral hardening (at 95 per cent confidence) in the second epoch compared to the first. Furthermore, the sharp leading edge of the feature is found to have a proper motion consistent with that of the pulsar (~180 mas yr-1). The combined data set also provides evidence for the presence of a counter feature, albeit substantially fainter and shorter than the main one. Additional spectral trends along the major and minor axes of the feature are only marginally detected in the two epoch data, including softening counter to the direction of proper motion. Possible explanations for the X-ray features include diffuse energetic particles being confined by an organized ambient magnetic field as well as a simple ballistic jet interpretation; however, the former may have difficulty in explaining observed spectral trends between epochs and along the feature's major axis, whereas the latter may struggle to elucidate its linearity. Given the low counting statistics available in the two epoch observations, it remains difficult to determine a physical production scenario for these enigmatic X-ray emitting features with any certainty.

  15. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  16. Catching A Symbiotic Star's Pulsed Jet in the Act: X-Ray Observations of MWC560

    NASA Astrophysics Data System (ADS)

    Stute, Matthias

    2011-10-01

    Although jets are ubiquitous and important components in many different astrophysical systems, their formation remains very poorly understood. The pole-on jet in the symbiotic system MWC 560 serves as a Rosetta Stone for understanding pulsed, highly collimated, jets. We propose to use XMM for X-ray observations of the symbiotic star MWC 560. It provides us with a unique opportunity to observe the launch site of the jet, the shock-induced propagation of the jet, and its end point, where the ejecta merge into the jet head. We detected with XMM a hard component from the accretion site and a soft component associated with the jet. Further observations are required for solving questions concerning the accretion process and for characterizing the soft component.

  17. Structure of the X-Ray Emission from the Jet of 3C 273

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Lee, J. C.; Ogle, P. M.; Drake, J. J.; Fruscione, A.; Grimes, J.; Harris, D.; Kraft, R.; Pease, D.; Schwartz, D.; Siemiginowska, A.; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present images from four Chandra observations of the quasar 3C 273. The zeroth order images from two grating observations using the AXAF CCD Imaging Spectrometer (ACIS-S) detector are used to examine the structure and spectrum of the jet. The jet has at least four distinct features which are not resolved in previous observations. Using jet feature nomenclature based on HST observations, we find that knot Al is very bright in X-rays. We have measured the X-ray spectrum of this X-ray knot for the first time, obtaining a photon index of 1.36 +/- 0.11 and a flux density of 37 +/- 4 nJy at 1 keV. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of knot Al from 4 GHz to 5 keV (over nine decades in energy) without a change of spectral slope. Knot A2 is also detected and is somewhat blended with knot B1 but synchrotron emission is not likely to explain the X-ray emission due to the spectral turnover observed in the optical-UV band. No other knots are clearly detected but there is an indication of weak emission from the eastern portion of knot H3. near the "head," which is radio-bright. There is diffuse flux which extends from 14 arcsec to 20 arcsec which shows curvature that is comparable to the optical flux found by Bahcall, et al.

  18. Structure of the X-Ray Emission from the Jet of 3C 273

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Lee, J. C.; Ogle, P. M.; Drake, J. J.; Fruscione, A.; Grimes, J.; Harris, D.; Kraft, R.; Pease, D.; Schwartz, D.; hide

    2000-01-01

    We present images from four Chandra observations of the quasar 3C 273. The zeroth order images from two grating observations using the AXAF CCD Imaging Spectrometer (ACIS-S) detector are used to examine the structure and spectrum of the jet. The jet has at least four distinct features which are not resolved in previous observations. Using jet feature nomenclature based on HST observations, we find that knot Al is very bright in X-rays. We have measured the X-ray spectrum of this X-ray knot for the first time, obtaining a photon index of 1.36 +/- 0.11 and a flux density of 37 +/- 4 nJy at 1 keV. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of knot Al from 4 GHz to 5 keV (over nine decades in energy) without a change of spectral slope. Knot A2 is also detected and is somewhat blended with knot B1 but synchrotron emission is not likely to explain the X-ray emission due to the spectral turnover observed in the optical-UV band. No other knots are clearly detected but there is an indication of weak emission from the eastern portion of knot H3. near the "head," which is radio-bright. There is diffuse flux which extends from 14 arcsec to 20 arcsec which shows curvature that is comparable to the optical flux found by Bahcall, et al.

  19. Evidence for Alfvén waves in solar x-ray jets.

    PubMed

    Cirtain, J W; Golub, L; Lundquist, L; van Ballegooijen, A; Savcheva, A; Shimojo, M; Deluca, E; Tsuneta, S; Sakao, T; Reeves, K; Weber, M; Kano, R; Narukage, N; Shibasaki, K

    2007-12-07

    Coronal magnetic fields are dynamic, and field lines may misalign, reassemble, and release energy by means of magnetic reconnection. Giant releases may generate solar flares and coronal mass ejections and, on a smaller scale, produce x-ray jets. Hinode observations of polar coronal holes reveal that x-ray jets have two distinct velocities: one near the Alfvén speed ( approximately 800 kilometers per second) and another near the sound speed (200 kilometers per second). Many more jets were seen than have been reported previously; we detected an average of 10 events per hour up to these speeds, whereas previous observations documented only a handful per day with lower average speeds of 200 kilometers per second. The x-ray jets are about 2 x 10(3) to 2 x 10(4) kilometers wide and 1 x 10(5) kilometers long and last from 100 to 2500 seconds. The large number of events, coupled with the high velocities of the apparent outflows, indicates that the jets may contribute to the high-speed solar wind.

  20. EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND

    SciTech Connect

    Neugebauer, Marcia

    2012-05-01

    It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solar polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.

  1. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: II

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    Report describes research on use of x-ray diffraction to measure stresses in metal conductors of complementary metal oxide/semiconductor (CMOS) integrated circuits exposed to ionizing radiation. Expanding upon report summarized in "X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I" (NPO-18803), presenting data further suggesting relationship between electrical performances of circuits and stresses and strains in metal conductors.

  2. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: II

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    Report describes research on use of x-ray diffraction to measure stresses in metal conductors of complementary metal oxide/semiconductor (CMOS) integrated circuits exposed to ionizing radiation. Expanding upon report summarized in "X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I" (NPO-18803), presenting data further suggesting relationship between electrical performances of circuits and stresses and strains in metal conductors.

  3. Fibrillar Chromospheric Spicule-Like Counterparts to an EUV and Soft X-Ray Blowout Coronal Jet

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.

    2010-01-01

    We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/SOT, EIS, and XRT, with supplemental data from STEREO/EUVI. From EUV and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with bright base, and in EUV it appears as an eruption of relatively cool (approximately 50,000 K) material of horizontal size scale approximately 30" originating from the base of the SXR jet. In SOT Ca II H images the most pronounced analog is a pair of thin (approximately 1") ejections, at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45", leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of "type II" spicules, approximately 100 kilometers per second, and they appear to have spicule-like substructures splitting off from them with horizontal velocity approximately 50 kilometers per second, similar to the velocities of splitting spicules measured by Sterling et al. (2010). Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggests that a sub-population of Ca II type II spicules are the Ca II manifestation of portions of larger-scale erupting magnetic jets. A different sub-population of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.

  4. On-axis microscopes for the inelastic x-ray scattering beamline at NSLS-II

    SciTech Connect

    Gofron, K. J. Cai, Y. Q.; Coburn, D. S.; Antonelli, S.; Suvorov, A.; Flores, J.

    2016-07-27

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  5. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab C.; Misra, Ranjeev; Pawar, Pramod K.

    2016-03-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II Zw 177 using a 137 ks long and another 13 ks short XMM-Newton observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing 76.9 ± 4.9 per cent in 2012 and 58.8 ± 10.2 per cent in 2001 in the 0.3-2 keV band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of ˜20 ks reveals strong correlation between the soft excess and the power-law components. The fractional variability amplitude Fvar derived from EPIC-pn light curves at different energy bands is nearly constant (Fvar ˜ 20 per cent). This is in contrast to other active galactic nuclei where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the `lamppost' model. Thus, the variations in power-law emission are most likely intrinsic to corona rather than just due to the changes of height of compact corona. The variable UV emission (Fvar ˜ 1 per cent) is uncorrelated to any of the X-ray components on short time-scales suggesting that the UV emission is not dominated by the reprocessed emission. The gradual observed decline in the UV emission in 2012 may be related to the secular decline due to the changes in the accretion rate. In this case, the short term X-ray variability is not due to the changes in the seed photons but intrinsic to the hot corona.

  6. Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Aurand, B.; Brown, C. G.; Constantin, C. G.; Everson, E. T.; Glenzer, S. H.; Schaeffer, D. B.; Tauschwitz, A.; Niemann, C.

    2012-07-01

    Laser-produced plasmas are often used as bright x-ray backlighters for time-resolved plasma diagnostics, but such backlighters simultaneously generate damaging electromagnetic pulse (EMP). A laser-driven Ar gas jet x-ray source has been measured with magnetic flux B-dot probes to produce 20 times ±37% less integrated EMP in the 0.5-2.5 GHz band than a solid chlorinated plastic foil, while retaining 85% of the laser to ≈3 keV x-ray conversion efficiency. These results are important for future backlighter development, since tailoring target density may provide a way to reduce EMP even as laser power increases.

  7. X-ray jet emission from the black hole X-ray binary XTE J1550-564 with CHANDRA in 2000

    NASA Astrophysics Data System (ADS)

    Tomsick, J. A.; Corbel, S.; Fender, R. P.; Miller, J. M.; Orosz, J. A.; Tzioumis, T.; Wijnands, R.; Kaaret, P.

    We have discovered an X-ray jet due to material ejected from the black hole X-ray transient XTE J1550-564 (see also the Corbel et al. contribution to these proceedings). We present results from three Chandra observations made between 2000 June and 2000 September. For these observations, a source is present that moves in an eastward direction away from the point source associated with the compact object. The separation between the new source and the compact object changes from 21''.3 in June to 23''.4 in September, implying a proper motion of 21.2 ± 7.2 mas day-1, a projected separation of 0.31-0.85 pc and a jet velocity >0.22c for a source distance range of d = 2.8-7.6 kpc. These observations represent the first time that an X-ray jet proper motion measurement has been obtained for any accretion powered Galactic or extra-galactic source. Along with a 1998 VLBI proper motion measurement, the Chandra proper motion indicates that the jet decelerated between 1998 and 2000. Although we cannot definitively determine the X-ray emission mechanism, a synchrotron origin is viable and may provide the simplest explanation for the observations.

  8. POTENTIAL GAMMA-RAY EMISSIONS FROM LOW-MASS X-RAY BINARY JETS

    SciTech Connect

    Zhang, Jian-Fu; Gu, Wei-Min; Liu, Tong; Xue, Li; Lu, Ju-Fu E-mail: guwm@xmu.edu.cn

    2015-06-20

    By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by magnetic and proton–matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339–4. The results not only can reproduce the currently available observations from GX 339–4, but also predict detectable radiation at GeV and TeV bands by the Fermi and CTA telescopes. Future observations with Fermi and CTA can be used to test our model, which could be employed to distinguish the origin of X-ray emissions.

  9. The Megaparsec-scale X-ray Jet of The BL Lac Object OJ287

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.; Jorstad, Svetlana G.

    2011-03-01

    We present an X-ray image of the BL Lacertae (BL Lac) object OJ287 revealing a long jet, curved by 55° and extending 20'' or 90 kpc from the nucleus. This de-projects to >1 Mpc based on the viewing angle on parsec scales. Radio emission follows the general X-ray morphology but extends even farther from the nucleus. The upper limit to the isotropic radio luminosity, ~2 × 1024 W Hz-1, places the source in the Fanaroff-Riley 1 (FR 1) class, as expected for BL Lac objects. The spectral energy distribution indicates that the extended X-ray emission is from inverse Compton scattering of cosmic microwave background photons. In this case, the derived magnetic field is B ≈ 5 μG, the minimum electron energy is 7-40m e c 2, and the Doppler factor is δ ≈ 8 in a knot 8'' from the nucleus. The minimum total kinetic power of the jet is (1-2)×1045 erg s-1. Upstream of the bend, the width of the X-ray emission in the jet is about half the projected distance from the nucleus. This implies that the highly relativistic bulk motion is not limited to an extremely thin spine, as has been proposed previously for FR 1 sources. The bending of the jet, the deceleration of the flow from parsec to kiloparsec scales, and the knotty structure can all be caused by standing shocks inclined by ~7° to the jet axis. Moving shocks resulting from major changes in the flow properties can also reproduce the knotty structure, but such a model does not explain as many of the observational details.

  10. Blowout Jets: Evidence from Hinode/XRT for X-Ray Jets Made by Blowout Eruption of the Emerging Bipole

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2009-01-01

    Yamauchi et al (2004, ApJ, 605, 511) found that there are two structurally and dynamically distinct types of H macrospicules in polar coronal holes: single-column jet macrospicules and erupting-loop macrospicules. The structure and motion of the single-column jet macrospicules fit the standard Shibata reconnection picture for solar X-ray jets (Shibata et al 1992, PASJ, 44, L173). The form and motion of the erupting-loop macrospicules is reminiscent of the ejective eruption of the sheared-core-field flux rope in the filament-eruption birth of a bubble-type coronal mass ejection (CME). That roughly half of all polar H macrospicules were observed to be erupting-loop macrospicules suggests that there should be a corresponding large class of X-ray jets in which the emerging bipole at the base of the jet undergoes a blowout eruption as in a bubble-type CME, instead of staying closed as in the standard picture for X-ray jets. Along with a cartoon of the standard picture, we present a cartoon depicting the signatures to be expected of a blowout jet in high-resolution coronal X-ray movies such as from Hinode/XRT. From Hinode/XRT movies in polar coronal holes, we show: (1) examples of X-ray jets that fit the standard picture very well, and (2) other examples that do not fit the standard picture but do show signatures appropriate for blowout jets. These signatures are (1) a flare arcade inside the emerging bipole in addition to the flare arcade produced between the emerging bipole and the ambient high-reaching unipolar field by reconnection of these two fields as in the standard picture, and (2) in addition to the jet prong expected from the standard reconnection, a second jet prong or strand, one that could not be produced by the standard reconnection but could be produced by reconnection between the ambient unipolar field and one leg of an erupting core-field flux rope that has blown out the emerging bipole. We therefore infer that these "two pronged" jets are made by

  11. Blowout Jets: Evidence from Hinode/XRT for X-Ray Jets Made by Blowout Eruption of the Emerging Bipole

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2009-01-01

    Yamauchi et al (2004, ApJ, 605, 511) found that there are two structurally and dynamically distinct types of H macrospicules in polar coronal holes: single-column jet macrospicules and erupting-loop macrospicules. The structure and motion of the single-column jet macrospicules fit the standard Shibata reconnection picture for solar X-ray jets (Shibata et al 1992, PASJ, 44, L173). The form and motion of the erupting-loop macrospicules is reminiscent of the ejective eruption of the sheared-core-field flux rope in the filament-eruption birth of a bubble-type coronal mass ejection (CME). That roughly half of all polar H macrospicules were observed to be erupting-loop macrospicules suggests that there should be a corresponding large class of X-ray jets in which the emerging bipole at the base of the jet undergoes a blowout eruption as in a bubble-type CME, instead of staying closed as in the standard picture for X-ray jets. Along with a cartoon of the standard picture, we present a cartoon depicting the signatures to be expected of a blowout jet in high-resolution coronal X-ray movies such as from Hinode/XRT. From Hinode/XRT movies in polar coronal holes, we show: (1) examples of X-ray jets that fit the standard picture very well, and (2) other examples that do not fit the standard picture but do show signatures appropriate for blowout jets. These signatures are (1) a flare arcade inside the emerging bipole in addition to the flare arcade produced between the emerging bipole and the ambient high-reaching unipolar field by reconnection of these two fields as in the standard picture, and (2) in addition to the jet prong expected from the standard reconnection, a second jet prong or strand, one that could not be produced by the standard reconnection but could be produced by reconnection between the ambient unipolar field and one leg of an erupting core-field flux rope that has blown out the emerging bipole. We therefore infer that these "two pronged" jets are made by

  12. Fermi non-detections of four Anomalous X-ray Jet Sources and Implications for the IC/CMB Mechanism

    NASA Astrophysics Data System (ADS)

    Breiding, Peter; Meyer, Eileen T.; Keenan, Mary; Denigris, Natalie; Georganopoulos, Markos; Hewitt, Jennifer

    2017-08-01

    The Chandra X-ray observatory has discovered kpc-scale X-ray jets in many powerful quasars over the past 2 decades (Harris & Krawczynski, 2006). In many cases these X-rays cannot be explained by the extension of the radio-optical spectrum produced by synchrotron-emitting electrons in the jet, since the observed X-ray flux is too high and/or the X-ray spectral index is too hard. A widely accepted model for the X-ray emission, first proposed by Celotti et al. (2001) and Tavecchio et al. (2000), posits that the X-rays are produced when relativistic electrons in the jet up-scatter ambient cosmic microwave background (CMB) photons via inverse Compton scattering from microwave to X-ray energies (the IC/CMB model). However, explaining the X-ray emission for these jets with the IC/CMB model requires high levels of IC/CMB γ-ray emission (Georganopoulos et al., 2006), which we are looking for using the Fermi/LAT γ-ray space telescope. Another viable model for the large scale jet X-ray emission, favored by the results of Meyer et al. (2015) and Meyer & Georganopoulos (2014), is a second population of synchrotron-emitting electrons with up to multi-TeV energies. In contrast with the second synchrotron interpretation; the IC/CMB model requires jets with high kinetic powers which can exceed the Eddington luminosity which remain highly relativistic (Γ≈10) up to kpc scales. I will present recently obtained deep γ-ray upper-limits from the Fermi/LAT which rule out the IC/CMB model in four sources previously modeled with IC/CMB, and discuss the properties of the growing sample of non-IC/CMB anomalous jets and the implications for jet energetics and environmental impact.

  13. Search for differences in the velocities and directions of the kiloparsec-scale jets of quasars with and without X-ray emission

    NASA Astrophysics Data System (ADS)

    Butuzova, M. S.

    2016-03-01

    The X-ray emission of the kiloparsec-scale jets of core-dominant quasars is usually interpreted as inverse Compton scattering on the cosmic microwave background (CMB) emission (Sample I). By analogy with the situation on parsec scales, ultrarelativistic motion along a jet oriented at a small angle to the line of sight is usually invoked to explain the X-ray emission while also satisfying the condition of equipartition between the energies associated with the relativistic particles and the magnetic field on kiloparsec scales. This leads to an increase in the energy flux of the CMB radiation in the rest frame of the kiloparsec-scale jets. Consequently, the intensity of the CMB radiation is enhanced to the level required for detectable X-ray emission. This suggests that kiloparsec jets of quasars with similar extents and radio flux densities that are not detected in the X-ray (Sample II) could have subrelativistic speeds and larger angles to the line of sight, due to deceleration and bending of the jet between parsec and kiloparsec scales. This suggests the possible presence of differences in the distributions of the difference between the position angle for the parsec-scale and kiloparsec-scale jets for these two groups of quasars; this is not confirmed by a statistical analysis of the data for Samples I and II. It is deduced that most of the sources considered exhibit bending of their jets by less than about 1.5 times the angle of the parsec-scale jet to the line of sight. This suggests that the X-ray emission is generated by other mechanisms that there is no equipartition.

  14. X-Ray Jet Emission from the Black Hole X-Ray Binary XTE J1550-564 with Chandra in 2000

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Corbel, Stéphane; Fender, Rob; Miller, Jon M.; Orosz, Jerome A.; Tzioumis, Tasso; Wijnands, Rudy; Kaaret, Philip

    2003-01-01

    We have discovered an X-ray jet due to material ejected from the black hole X-ray transient XTE J1550-564. The discovery was first reported in 2002 by Corbel and coworkers, and here we present an analysis of the three Chandra observations made between 2000 June and September. For these observations, a source is present that moves in an eastward direction away from the point source associated with the compact object. The separation between the new source and the compact object changes from 21.3" in June to 23.4" in September, implying a proper motion of 21.2+/-7.2 mas day-1, a projected separation of 0.31-0.85 pc, and an apparent jet velocity between 0.34+/-0.12 and 0.93+/-0.32 times the speed of light for a source distance range of d=2.8-7.6 kpc. These observations represent the first time that an X-ray jet proper-motion measurement has been obtained for any accretion-powered Galactic or extragalactic source. While this work deals with the jet to the east of the compact object, the western jet has also been detected in the X-ray and radio bands. The most likely scenario is that the eastern jet is the approaching jet and that the jet material was ejected from the black hole in 1998. Along with a 1998 VLBI proper-motion measurement, the Chandra proper motion indicates that the eastern jet decelerated between 1998 and 2000. There is evidence that the eastern jet is extended by +/-2"-3" in the direction of the proper motion. The upper limit on the source extension in the perpendicular direction is +/-1.5", which corresponds to a jet opening angle of less than 7.5d. The X-ray jet energy spectrum is well but not uniquely described by a power law with an energy index of α=-0.8+/-0.4 (Sν~να) and interstellar absorption. The eastern jet was also detected in the radio band during an observation made within 7.4 days of the June Chandra observation. The overall radio flux level is consistent with an extrapolation of the X-ray power law with α=-0.6. The 0.3-8 keV X-ray jet

  15. Development of light weight replicated x-ray optics, II

    NASA Astrophysics Data System (ADS)

    Romaine, S.; Bruni, R.; Choi, B.; Jensen, C.; Kilaru, K.; Ramsey, B.; Sampath, S.

    2014-07-01

    NASA'S future X-ray astronomy missions will require X-ray optics that have large effective area while remaining lightweight, and cost effective. Some X-ray missions, such as XMM-Newton[1] , and the upcoming Spectrum-Röntgen- Gamma[2] mission use an electroformed nickel replication (ENR) process[3] to fabricate the nested grazing incidence X-ray telescope mirror shells for an array of moderate resolution, moderate effective area telescopes. We are developing a process to fabricate metal-ceramic replicated optics which will be lighter weight than current nickel replicated technology. Our technology development takes full advantage of the replication technique by fabricating large diameter mirrors with thin cross sections allowing maximum nesting and increase in collecting area. This will lead to future cost effective missions with large effective area and lightweight optics with good angular resolution. Recent results on fabrication and testing of these optics is presented.

  16. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  17. [C ii] emission from galactic nuclei in the presence of X-rays

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Pineda, J. L.

    2015-08-01

    Context. The luminosity of [C ii] is used as a probe of the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C ii] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C ii] luminosity. Aims: We aim to determine the properties of the ionized carbon and its distribution among highly ionized states in the interstellar gas in galactic nuclei under the influence of X-ray sources. We calculate the [C ii] luminosity in galactic nuclei under the influence of bright sources of soft X-rays. Methods: We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [C ii] emission from the interstellar medium (ISM) in galactic nuclei representing conditions in the Galactic central molecular zone and a higher density AGN model. The behavior of the [C ii] luminosity is calculated as a function of the X-ray luminosity. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. Results: We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C ii] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C+ abundance in the WIM, converting some fraction to C2+ and higher ionization states and thus reducing its [C ii] luminosity. For an X-ray luminosity L(X-ray) ≳ 1043 erg s-1 the [C ii] luminosity can be suppressed by a factor of a few, and for very strong sources, L(X-ray) >1044 erg s-1 such as found for many AGNs, the [C ii] luminosity is significantly depressed. Comparison of the model with several extragalactic sources shows that the [C ii] to far-infrared ratio declines for L(X-ray) ≳ 1043 erg s-1, in reasonable agreement with our model. Conclusions: We conclude that X-rays

  18. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  19. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization.

    PubMed

    Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-07

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  20. A KPC-scale X-ray jet in the BL LAC Source S5 2007+777

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Maraschi, Laura; Tavecchio, Fabrizio

    2008-01-01

    The BL Lac S3 2007++777, a classical radio-selected BL Lac from the sample of Stirkel et al. exhibiting an extended (19") radio jet. was observed with Chandra revealing an X-ray jet with simi1ar morphology. The hard X-ray spectrum and broad band SED is consistent with an IC/CMB origin for the X-ray emission, implying a highly relativistic flow at small angle to the line of sight with an unusually large deprojected length, 300 kpc. A structured jet consisting of a fast spine and slow wall is consistent with the observations.

  1. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET.

    PubMed

    Shumack, A E; Rzadkiewicz, J; Chernyshova, M; Jakubowska, K; Scholz, M; Byszuk, A; Cieszewski, R; Czarski, T; Dominik, W; Karpinski, L; Kasprowicz, G; Pozniak, K; Wojenski, A; Zabolotny, W; Conway, N J; Dalley, S; Figueiredo, J; Nakano, T; Tyrrell, S; Zastrow, K-D; Zoita, V

    2014-11-01

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  2. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  3. Evidence for an X-Ray Jet in DG Tauri A?

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Skinner, S. L.; Briggs, K. R.; Audard, M.; Arzner, K.; Telleschi, A.

    2005-06-01

    We present evidence for an X-ray jet in the T Tauri star DG Tau A based on Chandra ACIS data. DG Tau A, a jet-driving classical T Tauri star with a flat infrared spectrum, reveals an unusual X-ray spectrum that requires two thermal components with different intervening absorption column densities. The softer component shows a low temperature of T~2.9 MK, and its absorption is compatible with the stellar optical extinction (hydrogen column density NH~5×1021 cm-2). In contrast, the harder component reveals a temperature (22 MK) characteristic of active T Tauri stars, but its emission is more strongly absorbed (NH~2.8×1022 cm-2). Furthermore, the high-resolution ACIS-S image reveals a weak excess of soft (0.5-2 keV) counts at distances of 2"-4" from the star precisely along the optical jet, with a suggestive concentration at 4", where a bow shock-like structure has previously been identified in optical line observations. The energy distribution of these photons is similar to those of the stellar soft component. We interpret the soft spectral component as originating from shocks at the base of the jet, with shock-heating continuing out to a distance of at least 500 AU along the jet, whereas the hard component is most likely coronal or magnetospheric as in other young stellar systems.

  4. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE PAGES

    Steinke, I.; Walther, M.; Lehmkühler, F.; ...

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  5. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources.

    PubMed

    Steinke, I; Walther, M; Lehmkühler, F; Wochner, P; Valerio, J; Mager, R; Schroer, M A; Lee, S; Roseker, W; Jain, A; Sikorski, M; Song, S; Hartmann, R; Huth, M; Strüder, L; Sprung, M; Robert, A; Fuoss, P H; Stephenson, G B; Grübel, G

    2016-06-01

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXS and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.

  6. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Walther, M.; Lehmkühler, F.; Wochner, P.; Valerio, J.; Mager, R.; Schroer, M. A.; Lee, S.; Roseker, W.; Jain, A.; Sikorski, M.; Song, S.; Hartmann, R.; Huth, M.; Strüder, L.; Sprung, M.; Robert, A.; Fuoss, P. H.; Stephenson, G. B.; Grübel, G.

    2016-06-01

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXS and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.

  7. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    SciTech Connect

    Steinke, I.; Walther, M.; Lehmkühler, F.; Wochner, P.; Valerio, J.; Mager, R.; Schroer, M. A.; Lee, S.; Roseker, W.; Jain, A.; Sikorski, M.; Song, S.; Hartmann, R.; Huth, M.; Strüder, L.; Sprung, M.; Robert, A.; Fuoss, P. H.; Stephenson, G. B.; Grübel, G.

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXS and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.

  8. Modelling X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2017-03-01

    The early stages of a star birth are characterized by a variety of mass ejection phenomena, including outflows and collimated jets that are strongly related to the accretion process developed in the context of the star-disc interaction. Jets move through the ambient medium producing complex structures observed at different wavelengths. In particular, X-ray observations show evidence of strong shocks heating the plasma up to a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of magnetic fields on the collimation of the jet and the formation of a stationary shock. We performed 2.5D MHD simulations modelling the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium and compared the results with observations.

  9. INFLATING A CHAIN OF X-RAY-DEFICIENT BUBBLES BY A SINGLE JET ACTIVITY EPISODE

    SciTech Connect

    Refaelovich, Michael; Soker, Noam E-mail: soker@physics.technion.ac.il

    2012-08-10

    We show that a continuous jet with time-independent launching properties can inflate a chain of close and overlapping X-ray deficient bubbles. Using the numerical code PLUTO we run 2.5D (i.e., a spherical coordinate system with cylindrical symmetry) hydrodynamic simulations and study the interaction of the jets with the intracluster medium. A key process is vortex fragmentation due to several mechanisms, including vortex-shedding and Kelvin-Helmholtz instabilities. Our results can account for the structure of two opposite chains of close bubbles as observed in the galaxy cluster Hydra A. Our results imply that the presence of multiple pairs of bubbles does not necessarily imply several jet-launching episodes. This finding might have implications for feedback mechanisms operating by jets.

  10. Inflating a Chain of X-Ray-deficient Bubbles by a Single Jet Activity Episode

    NASA Astrophysics Data System (ADS)

    Refaelovich, Michael; Soker, Noam

    2012-08-01

    We show that a continuous jet with time-independent launching properties can inflate a chain of close and overlapping X-ray deficient bubbles. Using the numerical code PLUTO we run 2.5D (i.e., a spherical coordinate system with cylindrical symmetry) hydrodynamic simulations and study the interaction of the jets with the intracluster medium. A key process is vortex fragmentation due to several mechanisms, including vortex-shedding and Kelvin-Helmholtz instabilities. Our results can account for the structure of two opposite chains of close bubbles as observed in the galaxy cluster Hydra A. Our results imply that the presence of multiple pairs of bubbles does not necessarily imply several jet-launching episodes. This finding might have implications for feedback mechanisms operating by jets.

  11. Jet Breaks and Missing Breaks in the X-Ray Afterglow of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Dado, Shlomo; Dar, Arnon; De Rújula, A.

    2008-06-01

    The X-ray afterglows (AGs) of gamma-ray bursts (GRBs) and X-ray flashes (XRFs) have, after the fast-decline phase of their prompt emission, a temporal behavior varying between two extremes. A large fraction of these AGs has a canonical light curve which, after an initial shallow-decay plateau phase, breaks smoothly into a fast power-law decline. Very energetic GRBs, contrariwise, appear to not have a break: their AGs decline like a power law from the start of the observations. Breaks and "missing breaks" are intimately related to the geometry and deceleration of the jets responsible for GRBs. In the frame of the cannonball (CB) model of GRBs and XRFs, we analyze the cited extreme behaviors (canonical and pure power law) and intermediate cases spanning the observed range of X-ray AG shapes. We show that the entire panoply of X-ray light-curve shapes—measured with Swift and other satellites—are as anticipated in the CB model. We test the expected correlations between the AG's shape and the peak and isotropic energies of the prompt radiation, strengthening a simple conclusion of the analysis of AG shapes: in energetic GRBs the break is not truly missing, it is hidden under the tail of the prompt emission, or it occurs too early to be recorded. We also verify that the spectral index of the unabsorbed AGs and the temporal indexes of their late power-law decline differ by half a unit, as predicted.

  12. X-RAY EMISSION FROM STELLAR JETS BY COLLISION AGAINST HIGH-DENSITY MOLECULAR CLOUDS: AN APPLICATION TO HH 248

    SciTech Connect

    López-Santiago, J.; Ustamujic, S.; Castro, A. I. Gómez de; Bonito, R.; Orlando, S.; Orellana, M.; Miceli, M.; Albacete-Colombo, J. F.

    2015-06-10

    We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts a dense molecular cloud, a scenario that may be typical for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud using two-dimensional axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig–Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10{sup 7} K, consistent with production of X-ray emission, after impacting a dense cloud. We find that jets denser than the ambient medium but less dense than the cloud produce detectable X-ray emission only at impact with the cloud. From an exploration of the model parameter space, we constrain the physical conditions (jet density and velocity and cloud density) that reproduce the intrinsic luminosity and emission measure of the X-ray source possibly associated with HH 248 well. Thus, we suggest that the extended X-ray source close to HH 248 corresponds to a jet impacting a dense cloud.

  13. X-ray Emission from Stellar Jets by Collision against High-density Molecular Clouds: an Application to HH 248

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Bonito, R.; Orellana, M.; Miceli, M.; Orlando, S.; Ustamujic, S.; Albacete-Colombo, J. F.; de Castro, E.; Gómez de Castro, A. I.

    2015-06-01

    We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts a dense molecular cloud, a scenario that may be typical for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud using two-dimensional axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 107 K, consistent with production of X-ray emission, after impacting a dense cloud. We find that jets denser than the ambient medium but less dense than the cloud produce detectable X-ray emission only at impact with the cloud. From an exploration of the model parameter space, we constrain the physical conditions (jet density and velocity and cloud density) that reproduce the intrinsic luminosity and emission measure of the X-ray source possibly associated with HH 248 well. Thus, we suggest that the extended X-ray source close to HH 248 corresponds to a jet impacting a dense cloud.

  14. FAST X-RAY/IR CROSS-CORRELATIONS AND RELATIVISTIC JET FORMATION IN GRS 1915+105

    SciTech Connect

    Lasso-Cabrera, N. M.; Eikenberry, S. S.

    2013-10-01

    We present cross-correlation analyses of simultaneous X-ray and near-infrared (near-IR) observations of the microquasar GRS 1915+105 during relativistic jet-producing epochs (X-ray class α and β). While previous studies have linked the large amplitude IR flares and X-ray behaviors to jet formation in these states, our new analyses are sensitive to much lower amplitude IR variability, providing more sensitive probes of the jet formation process. The X-ray to IR cross-correlation function (CCF) shows significant correlations that vary in form between the different X-ray states. During low/hard dips in both classes, we find no significant X-ray/IR correlation. During high-variability epochs, we find consistently significant correlations in both α and β classes, but with strong differences in the CCF structure. The high variability α CCF shows strong anti-correlation between X-ray/IR, with the X-ray preceding the IR by ∼13 ± 2 s. The high variability β state shows a time-variable CCF structure, which is statistically significant but without a clearly consistent lag. Our simulated IR light curves, designed to match the observed CCFs, show variably flickering IR emission during the class β high-variability epoch, while class α can be fit by IR flickering with frequencies in the range 0.1-0.3 Hz, strengthening ∼10 s after every X-ray subflare. We interpret these features in the context of the X-ray-emitting accretion disk and IR emission from relativistic jet formation in GRS 1915+105, concluding that the CCF analysis places the origin in a synchrotron-emitting relativistic compact jet at a distance from the compact object of ∼0.02 AU.

  15. Laser heated gas-jet: a soft x-ray source

    SciTech Connect

    Charatis, G.; Slater, D.C.; Mayer, F.J.; Tarvin, J.A.; Busch, G.E.; Sullivan, D.; Musinski, D.; Matthews, D.L.; Koppel, L.

    1981-01-01

    The laser irradiated gas jet developed to study collective scattering processes has proven to be a useful soft x-ray source. It is a reproducible and stationary source with large yield and plasma properties characterized by conventional diagnostic techniques. With a density gradient initially set by orifice size and gas pressure, a short (approx. 100 to 1000 psec) pulse operating at 1.05 ..mu..m (or 0.53 ..mu..m) is focused coaxially upstream into the jet producing a moderate temperature plasma. X-ray pinhole photographs show an axially symmetric radiating plume located at the electron density critical surface. The density gradient is obtained by holographic interferometry using a 0.26 ..mu..m wavelength probe pulse. The scale length of approx. 100 to 200 ..mu..m is measured by 2..omega.. and 3/2..omega.. photography. Electron temperatures are determined by using spatially resolving x-ray crystal spectroscopy to record and analyze line emission from H- and He-like configurations. Electron temperatures from approx. 200 to 700 eV were observed at critical electron densities as high as N/sub cr/ approx. 4 x 10/sup 21/ cm/sup -3/ for gases of hydrogen, nitrogen, neon, argon, and SF/sub 6/.

  16. Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang

    NASA Astrophysics Data System (ADS)

    2003-11-01

    The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago. The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no indication of any complex structure or a jet. "This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the Big Bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20th Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the Big Bang. Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. Radio image of GB1508 Radio Image of GB1508 As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe. When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions," said Siemiginowska. "This jet is hopefully just the

  17. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  18. Mass estimation of shaped charge jets from x-ray shadow graph with new calibration curve method

    NASA Astrophysics Data System (ADS)

    Saito, Fumikazu; Kishimura, Hiroaki; Kumakura, Akira; Sakai, Shun

    2015-06-01

    In order to assess the penetration capability of the Al and Cu metal jets against a bumper structure (such as Al plate and/or Al block), we measured the initial formation process of the metal jets generated from conical shaped charge device. The shaped charge device configurations employed in the experimental and numerical investigations have conical aluminum (and cupper) liner and steel casing with PBX explosive charge. The profile and velocity of the jets are measured with flash x-ray and x-ray film system. The mass of the jet tip are estimated from x-ray images by a calibration curve method proposed by our group. Al targets are used to evaluate a penetration performance of the jets. Additionally, we have simulated the initial formation process of the shaped charge jets with Autodyne-2D hydrodynamic code, which proposed important data to compare the experimental one.

  19. X-ray instrumentation in astronomy II; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988

    SciTech Connect

    Golub, L.

    1988-01-01

    Various papers on X-ray instrumentation in astronomy are presented. Individual topics addressed include: concentrating hard X-ray collector, advanced X-ray Astrophysics Facility high resolution camera, Fano-noise-limited CCDs, linear CCD with enhanced X-ray quantum efficiency, advances in microchannel plate detectors, X-ray imaging spectroscopy with EEV CCDs, large aperture imaging gas scintillation proportional counter, all-sky monitor for the X-ray Timing Explorer, and miniature satellite technology capabilities for space astronomy. Also discussed are: high-resolution X-ray spectroscopy using microcalorimeters, high-throughput X-ray astrophysics cornerstone, gas mixtures for X-ray proportional counters, transmission grating spectrometer for SPEKTROSAT, efficiency of X-ray reflection gratings, soft X-ray spectrographs for solar observations, observability of coronal variations, Berkeley extreme-UV calibration facility, SURF-II radiometric instrumentation calibration facility, and evaluation of toroidal gratings in the EUV.

  20. X-Ray Triple Rings around the M87 Jets in the Central Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Feng, Hua; Zhang, Shuang-Nan; Lou, Yu-Qing; Li, Ti-Pei

    2004-06-01

    The Chandra X-ray data of the central Virgo Cluster are reexamined to reveal a triple-ring structure around the galaxy M87, reminiscent of the spectacular triple-ring pattern of the supernova SN 1987A in the Large Magellanic Cloud. In the sky plane, the two apparent smaller ellipses are roughly aligned along the M87 jets; the larger ring centers at the M87 nucleus and is likely a circle roughly perpendicular to the M87 jet. Certain similarities of these two triple-ring structures might hint at similar processes that operate in these two systems with entirely different sizes and mass scales. We suspect that a major merging event of two galaxies with nuclear supermassive black holes (SMBHs) might create such a triple-ring structure and drove acoustic and internal gravity waves far and near. The M87 jets are perhaps powered by a spinning SMBH resulting from this catastrophic merging event.

  1. 32.8-nm X-ray laser produced in a krypton cluster jet

    SciTech Connect

    Ivanova, E P; Vinokhodov, A Yu

    2013-12-31

    We have interpreted the well-known experimental quantum yield data for a 32.8-nm X-ray laser operating at the 3d{sup 9}4d (J = 0) – 3d{sup 9}4p (J = 1) transition of Kr{sup 8+} with the use of gaseous krypton or a krypton cluster jet. Proceeding from our model we propose a novel scheme for the 32.8-nm laser produced in a krypton cluster jet. The quantum yield is shown to saturate for a plasma length of ∼300 μm, a krypton ion density n{sub Kr} ∼ (4 – 9) × 10{sup 19} cm{sup -3}, and an electron temperature Te ∼ 5000 eV. In this case, the energy conversion coefficient amounts to ∼5 × 10{sup -3} of the pump pulse energy. We propose the experimental setup for producing a highefficiency subpicosecond X-ray laser in a krypton cluster jet. (lasers)

  2. Constraining the particle spectrum in blazar jets: importance of the hard X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Sinha, Atreyee; Sahayanathan, Sunder; Chitnis, Varsha

    2016-07-01

    Measurement of the spectral curvature in blazar jets can throw light on the underlying particle spectral distribution, and hence, the acceleration and diffusion processes at play. With the advent of NuSTAR and ASTROSAT, and the upcoming ASTRO-H, this curvature can now be measured accurately across the broadband X-ray energies. We will discuss results from our recent works on two HBLs, Mkn421 (Sinha et al, A&A 2015) and 1ES1011+496 (Sinha et al, ApJ submitted), and show how simultaneous measurement at hard and soft X-ray energies can be crucial in understanding the underlying particle spectrum. Detection of lognormality in blazars is beginning to hint at strong disk-jet connections. India's recently launched multiwavelength satellite, the ASTROSAT will provide simultaneous time resolved data between 0.2-80keV, along with measurements at Optical-UV energies. We will discuss prospects from ASTROSAT for studying jet triggering mechanisms in blazars.

  3. Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II

    NASA Astrophysics Data System (ADS)

    Erko, A.; Zizak, I.

    2009-09-01

    The capabilities of the X-ray beamlines at Berliner Elektronenspeicherring für Synchrotronstrahlung II (BESSY II) for hard X-ray measurements with micro- and nanometer spatial resolution are reviewed. The micro-X-ray fluorescence analysis (micro-XRF), micro-extended X-ray absorption fine structure (micro-EXAFS), micro-X-ray absorption near-edge structure (micro-XANES) as well as X-ray standing wave technique (XSW), X-ray beam induced current (XBIC) in combination with micro-XRF and micro-diffraction as powerful methods for organic and inorganic sample characterization with synchrotron radiation are discussed. Mono and polycapillary optical systems were used for fine X-ray focusing down to 1 µm spot size with monochromatic and white synchrotron radiation. Polycapillary based confocal detection was applied for depth-resolved micro-XRF analysis with a volume resolution down to 3.4 · 10 - 6 mm 3. Standing wave excitation in waveguides was also applied to nano-EXAFS measurements with depth resolution on the order of 1 nm. Several examples of the methods and its applications in material research, biological investigations and metal-semiconductor interfaces analysis are given.

  4. First Detection of Mid-infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Heida, M.; Kasliwal, M. M.; Walton, D. J.

    2017-04-01

    We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the Spitzer Space Telescope at 3.6 and 4.5 μm in the Spitzer Infrared Intensive Transients Survey. The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature ({T}{{d}}∼ 600{--}800 {{K}}), IR luminosity ({L}{IR}∼ 3× {10}4 {L}ȯ ), mass ({M}{{d}}∼ 1{--}3× {10}-6 {M}ȯ ), and equilibrium temperature radius ({R}{eq}∼ 10{--}20 {au}). A comparison of X-1 with a sample of spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color–magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe ii] (λ =1.644 μ {{m}}) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to the increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX, given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.

  5. Experimental and Monte Carlo simulated spectra of a liquid-metal-jet x-ray source.

    PubMed

    Marziani, M; Gambaccini, M; Di Domenico, G; Taibi, A; Cardarelli, P

    2014-09-01

    A prototype x-ray system based on a liquid-metal-jet anode was evaluated within the framework of the LABSYNC project. The generated spectrum was measured using a CZT-based spectrometer and was compared with spectra simulated by three Monte Carlo codes: MCNPX, PENELOPE and EGS5. Notable differences in the simulated spectra were found. These are mainly attributable to differences in the models adopted for the electron-impact ionization cross section. The simulation that more closely reproduces the experimentally measured spectrum was provided by PENELOPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Adams, Mitzi

    2015-07-01

    Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the `emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the `legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament.

  7. Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes.

    PubMed

    Sterling, Alphonse C; Moore, Ronald L; Falconer, David A; Adams, Mitzi

    2015-07-23

    Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the 'emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the 'legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament.

  8. Magnetic jets from accretion disks : field structure and X-ray emission

    NASA Astrophysics Data System (ADS)

    Memola, Elisabetta

    2002-06-01

    . We also calculate the X-ray emission in the energy range 0.2--10.1,keV from a microquasar relativistic jet close to its source of 5 solar masses. In order to do it, we apply the jet flow parameters (densities, velocities, temperatures of each volume element along the collimating jet) derived in the literature from the relativistic magnetohydrodynamic equations. We obtain theoretical thermal X-ray spectra of the innermost jet as composition of the spectral contributions of the single volume elements along the jet. Since relativistic effects as Doppler shift and Doppler boosting due to the motion of jets toward us might be important, we investigate how the spectra are affected by them considering different inclinations of the line of sight to the jet axis. Emission lines of highly ionized iron are clearly visible in our spectra, probably also observed in the Galactic microquasars GRS 1915+105 and XTE J1748-288. The Doppler shift of the emission lines is always evident. Due to the chosen geometry of the magnetohydrodynamic jet, the inner X-ray emitting part is not yet collimated. Ergo, depending on the viewing angle, the Doppler boosting does not play a major role in the total spectra. This is the first time that X-ray spectra have been calculated from the numerical solution of a magnetohydrodynamic jet. Astrophysikalische Jets sind stark kollimierte Materieströmungen hoher Geschwindigkeit. Sie stehen im Zusammenhang mit einer Fülle verschiedener astrophysikalischer Objekte wie jungen Sternen, stellaren schwarzen Löchern ('Mikro-Quasare'), Galaxien mit aktivem Kern (AGN) und wahrscheinlich auch mit dem beobachteten intensiven Aufblitzen von Gamma-Strahlung (Gamma Ray Bursts). Insbesondere hat sich gezeigt, dass die Jets der Mikro-Quasare wahrscheinlich als kleinskalige Version der Jets der AGN anzusehen sind. Neben den Beobachtungen haben vor allem auch theoretische Überlegungen gezeigt, dass Magnetfelder bei der Jetentstehung, -beschleunigung und -kollimation eine

  9. GIANT H II REGIONS IN M101. I. X-RAY ANALYSIS OF HOT GAS

    SciTech Connect

    Sun Wei; Chen Yang; Feng Li; Chu, You-Hua; Chen, C.-H. Rosie; Wang, Q. Daniel; Li Jiangtao

    2012-11-20

    We performed a Chandra X-ray study of three giant H II regions (GHRs), NGC 5461, NGC 5462, and NGC 5471, in the spiral galaxy M101. The X-ray spectra of the three GHRs all contain a prominent thermal component with a temperature of {approx}0.2 keV. In NGC 5461, the spatial distribution of the soft (<1.5 keV) X-ray emission is generally in agreement with the extent of H1105, the most luminous H II region therein, but extends beyond its southern boundary, which could be attributed to outflows from the star cloud between H1105 and H1098. In NGC 5462, the X-ray emission is displaced from the H II regions and a ridge of blue stars; the H{alpha} filaments extending from the ridge of star cloud to the diffuse X-rays suggest that hot gas outflows have occurred. The X-rays from NGC 5471 are concentrated at the B-knot, a 'hypernova remnant' candidate. Assuming a Sedov-Taylor evolution, the derived explosion energy, on the order of 10{sup 52} erg, is consistent with a hypernova origin. In addition, a bright source in the field of NGC 5462 has been identified as a background active galactic nucleus, instead of a black hole X-ray binary in M101.

  10. X-ray States of Black-Hole Binaries and Implications for the Mechanism of Steady Jets

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.

    RXTE and other high-energy observatories continue to probe the properties of stellar-size black holes and the physics of accretion using bright X-ray transients in the Galaxy. Progress has been made in recognizing that the three states of active accretion are related to different physical elements that may contribute radiation: the accretion disk, a jet, and a compact and radio-quiet corona. Each X-ray state offers potential applications for general relativity in the regime of strong gravity. The temporal evolution of X-ray states is displayed for a few representative black-hole systems. Radio investigations have shown conclusively that the hard X-ray state is associated with the presence of a steady radio jet. The three X-ray states can be synthesized with the “unified model for black hole binary jets” by Fender, Belloni, & Gallo (2004) to gain further insights into the disk:jet connection. The “jet line” appears to coincide with the hard limit of the SPL state. Furthermore there are broad power peaks in PDS that appear to be confined to intermediate and hard states where a jet is present. This suggests that broad power peaks exhibit temporal signatures of non-thermal processes that are related to the jet mechanism, rather than properties inherent to a standard accretion disk.

  11. Study of laser-created laboratory plasma jets with soft x-ray laser interferometry

    NASA Astrophysics Data System (ADS)

    Grava, Jonathan; Purvis, Michael; Filevich, Jorge; Marconi, Mario; Rocca, Jorge; Dunn, James; Moon, Stephen; Shlyaptsev, Vyacheslav

    2008-04-01

    Jet-like plasma structures were generated by irradiating V-shaped Al targets at I=1x10^12 W/cm^2 with 0.8 J Ti:Sa laser pulses of 120 ps duration. A narrow plasma plume was observed to expand from the bottom of the cavity with Mach number ˜ 5. The plasma jet evolution was studied using soft x-ray laser interferometry (λ= 46.9 nm), allowing electron density measurements of the 1-mm plasma that exceeded 1x10^20 cm-3. Late in the evolution the jet expands laterally and develops sidelobes as it interacts with additional material expanding from the walls. The measurements were compared with 2-D simulations from the code HYDRA to gain understanding of the mechanisms that form the narrow plasma jet, including the role of radiation cooling. Measurements of similar jets generated by irradiating targets of different Z are under way Work sponsored by NNSA-SSAA DOE Grant # DE-FG52-060NA26152 and the U.S. DOE LLNL through ILSA contract No. W-7405-Eng-48.

  12. Kelvin-Helmholtz instability of kink waves in photospheric, chromospheric, and X-ray solar jets

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, I.

    2013-09-01

    One of the most enduring mysteries in solar physics is why the Sun's outer atmosphere, or corona, is millions of kelvins hotter than its surface. Among suggested theories for coronal heating are those that consider the role of various jets of plasma shooting up from just above the Sun's surface through the photosphere and chromosphere to corona. The energy carrying by the waves propagating along the jets can be dissipated and thus transferred to the medium via different mechanisms. Among the various magnetohydrodynamic (MHD) waves which can propagate in the solar atmosphere the most promising for the heating process turns out to be the so cold kink waves. These waves actually are normal modes of the MHD waves running in spatially (or magnetically) bounded flux tubes. When plasma in a flux tube floats the kink mode can become unstable if the jet's speed exceeds some threshold/critical value. The instability which appears is of the Kelvin-Helmholtz type and it can trigger MHD turbulence, more specifically Alvfén waves' turbulence. Notably this kind of turbulence is considered to be one of the main mechanisms of coronal heating. Here, we consider the conditions under which kink waves traveling on three types of solar flowing plasmas, namely photospheric jets, spicules, and X-ray jets, can become unstable against the Kelvin-Helmholtz instability.

  13. Aborted jets and the X-ray emission of radio-quiet AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Matt, G.

    2004-01-01

    We propose that radio-quiet quasars and Seyfert galaxies have central black holes powering outflows and jets which propagate only for a short distance, because the velocity of the ejected material is smaller than the escape velocity. We call them ``aborted" jets. If the central engine works intermittently, blobs of material may be produced, which can reach a maximum radial distance and then fall back, colliding with the blobs produced later and still moving outwards. These collisions dissipate the bulk kinetic energy of the blobs by heating the plasma, and can be responsible (entirely or at least in part) for the generation of the high energy emission in radio-quiet objects. This is alternative to the more conventional scenario in which the X-ray spectrum of radio-quiet sources originates in a hot (and possibly patchy) corona above the accretion disk. In the latter case the ultimate source of energy of the emission of both the disk and the corona is accretion. Here we instead propose that the high energy emission is powered also by the extraction of the rotational energy of the black hole (and possibly of the disk). By means of Montecarlo simulations we calculate the time dependent spectra and light curves, and discuss their relevance to the X-ray spectra in radio-quiet AGNs and galactic black hole sources. In particular, we show that time variability and spectra are similar to those observed in Narrow Line Seyfert 1 galaxies.

  14. Investigation of Propellant and Explosive Solid Solution Systems II X-Ray Studies

    DTIC Science & Technology

    1978-03-01

    A\\Yj* ^\\C/*^ ^ 1 tatf AD 7t ott w AD-E400 125 TECHNICAL REPORT ARLCD-TR-77066 INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS...Report ARLCD-TR-77066 2. GOVT ACCESSION NO. *. TITLE (and Subtitle) INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS II X-RAY...Interplanar spacings and x-ray diffraction 9 intensities of AP, KP and their physical mixtures and solid solutions 4 X-ray data of 3 AN: KP solid solution and

  15. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  16. Sub-mm Jet Properties of the X-Ray Binary Swift J1745-26

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Sivakoff, G. R.; Miller-Jones, J. C. A.; Curran, P. A.; Russell, T. D.; Coulson, I. M.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Petitpas, G. R.; Rupen, M. P.; Rushton, A. P.; Russell, D. M.; Sarazin, C. L.

    2015-05-01

    We present the results of our observations of the early stages of the 2012-2013 outburst of the transient black hole X-ray binary (BHXRB), Swift J1745-26, with the Very Large Array, Submillimeter Array, and James Clerk Maxwell telescope (SCUBA-2). Our data mark the first multiple-band mm and sub-mm observations of a BHXRB. During our observations the system was in the hard accretion state producing a steady, compact jet. The unique combination of radio and mm/sub-mm data allows us to directly measure the spectral indices in and between the radio and mm/sub-mm regimes, including the first mm/sub-mm spectral index measured for a BHXRB. Spectral fitting revealed that both the mm (230 GHz) and sub-mm (350 GHz) measurements are consistent with extrapolations of an inverted power law from contemporaneous radio data (1-30 GHz). This indicates that, as standard jet models predict, a power law extending up to mm/sub-mm frequencies can adequately describe the spectrum, and suggests that the mechanism driving spectral inversion could be responsible for the high mm/sub-mm fluxes (compared to radio fluxes) observed in outbursting BHXRBs. While this power law is also consistent with contemporaneous optical data, the optical data could arise from either jet emission with a jet spectral break frequency of {{ν }break}≳ 1× {{10}14} Hz or the combination of jet emission with a lower jet spectral break frequency of {{ν }break}≳ 2× {{10}11} Hz and accretion disk emission. Our analysis solidifies the importance of the mm/sub-mm regime in bridging the crucial gap between radio and IR frequencies in the jet spectrum, and justifies the need to explore this regime further.

  17. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng

    2016-03-01

    Two types of correlations between the radio and X-ray luminosities (LR and LX) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion-jet model. We attribute the difference between these two types of sources to the different value of viscosity parameter α. One possible reason for different α is the different configuration of magnetic field in the accretion material coming from the companion stars. For the `single power-law' sources, their α is high; so their accretion is always in the mode of advection-dominated accretion flow (ADAF) for the whole range of X-ray luminosity. For those `hybrid power-law' sources, the value of α is small so their accretion mode changes from an ADAF to a luminous hot accretion flow, and eventually to two-phase accretion as the accretion rate increases. Because the dependence of radiative efficiency on the mass accretion rate is different for these three accretion modes, different power-law indexes in the LR-LX correlation are expected. Constraints on the ratio of the mass-loss rate into the jet and the mass accretion rate in the accretion flow are obtained, which can be tested in future by radiative magnetohydrodynamic numerical simulations of jet formation.

  18. SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows

    NASA Technical Reports Server (NTRS)

    Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.; hide

    2007-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.

  19. Jet-dominated quiescent states in black hole X-ray binaries: the case of V404 Cyg

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yang, Qi-Xiang; Ma, Renyi

    2014-07-01

    The dynamical structure and radiative properties of the quiescent state (X-ray luminosity ≲1034 erg s-1) of black hole X-ray transients (BHXTs) remain unclear, mainly because of low luminosity and poor data quantity. We demonstrate that the simultaneous multi-wavelength (including radio, optical, ultraviolet and X-ray bands) spectrum of V404 Cyg in its bright quiescent state can be well described by the radiation from the companion star and more importantly, the compact jet. Neither the outer thin disc nor the inner hot accretion flow is important in the total spectrum. Together with recent findings, i.e. the power-law X-ray spectrum and the non-variable X-ray spectral shape (or constant photon index) in contrast to the dramatic change in the X-ray luminosity, we argue the quiescent state spectrum of BHXTs is actually jet-dominated. Additional observational properties consistent with this jet model are also discussed as supporting evidence.

  20. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    NASA Astrophysics Data System (ADS)

    Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.

    2017-09-01

    We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio (<13 μJy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence (LX = 1034-35 erg s-1) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with β > 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX < 1035 erg s-1 than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.

  1. High-Resolution X-Ray Imaging of Colliding Radio-Jet Galaxies

    NASA Technical Reports Server (NTRS)

    Born, Kirk D.; Whitmore, Brad

    1996-01-01

    We received ROSAT data for four program objects:3C31,3C278,3C449,and NGC1044. The first three sources were observed with the ROSAT HRI instrument. Our plan was to use the HRI to image the hot gas distribution in a few pairs of strongly disturbed interacting elliptical galaxies which are also strong radio sources having a bent-jet source morphology. The PSPC was used for NGC1044 in order to obtain a flux measurement to use in planning future High Resolution Imager (HRI) observations of that source. Though we never requested such HRI observations of NGC1044, others have used those archival PSPC data from our project for other research projects and analyses. The goal of the program was to elucidate the detailed distribution of hot gas into which the jets flow. The X-ray data were consequently analyzed in conjunction with existing VLA radio maps, optical broad-band and H-alpha Charge Couple device (CCD) images, and optical kinematic data to constrain models for the propagation of ballistic jets in interacting galaxies. We were able to test and validate the claimed causal connection between tidal interaction, the presence of gas, and the onset of activity in galaxies. The full multi-wavelength multi-observatory analyses described here are still on-going and will be published in the future. Because of the relevance of this research to on-going work in the field of active galaxies, the grant was used to support travel to several scientific meetings where our x-ray analysis, numerical modeling, and related radio results were presented and discussed.

  2. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  3. Disk-jet coupling in the Galactic black hole X-ray binary MAXI J1836-194

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    2014-01-01

    There is a universal connection between the accretion and ejection phenomena that are observed in black holes across the mass scale. Quantifying this relationship is the first step in understanding how jets are launched, accelerated and collimated. X-ray binaries are ideal systems to study this relationship, as they evolve on human timescales. In outburst, their luminosities increase by several orders of magnitude, with the thermal X-ray emission from the accretion disk and the radio emission from the relativistic jets undergoing dramatic, coupled changes. We present the results of our multiwavelength radio through to X-ray observations of the Galactic black hole candidate X-ray binary MAXI J1836-194 during its 2011 outburst. We find that this system has a near face-on accretion disk with the jet, that is pointed almost directly towards us, accounting for ~6% of the total energy output of the system early in the outburst. We observed the frequency of the transition from optically thick to optically thin synchrotron emission in the jet spectrum evolve by ~3 orders of magnitude as the jet gradually switches on and off on a timescale of a few weeks. This evolution does not appear to follow the expected positive relation with source luminosity. Instead the jet break shifted to higher frequencies as the source luminosity decreased and is likely coupled to the accretion flow in a more complex way. We find the region where the jet is accelerated up to relativistic speeds occurs at much larger distances from the black hole than previously thought and does not scale with the inner radius of the accretion disk. Our simultaneous, high cadence observations provide an unprecedented insight into the accretion processes occurring during an outburst, allowing us to observe the compact jet evolve and the corresponding changes within the accretion regime. This has implications for the launching of jets on all scales, from X-ray binaries to their larger-scale analogues, AGN.

  4. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  5. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  6. 1RXS J180408.9-342058: An ultra compact X-ray binary candidate with a transient jet

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; D'Avanzo, P.; Campana, S.; Goldoni, P.; Masetti, N.; Muñoz-Darias, T.; Patiño-Álvarez, V.; Chavushyan, V.

    2016-03-01

    Aims: We present a detailed near-infrared/optical/UV study of the transient low-mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, which is aimed at determining the nature of its companion star. Methods: We obtained three optical spectra (R ~ 1000) at the 2.1 m San Pedro Mártir Observatory telescope (México). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source using the EFOSC2 instrument mounted on the NTT. Results: The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are not observed either. We marginally detect the He II 4686 Å emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. Conclusions: The lack of hydrogen and He I emission lines in the spectrum implies that the companion is likely not a main-sequence star. Driven by the tentative detection of the He II 4686 Å emission line, we suggest that the system could harbour a helium white dwarf. If this is the case, 1RXS J180408.9-342058 would be an ultra-compact X-ray binary. By combining an estimate of the mass accretion rate together with evolutionary tracks for a He white dwarf, we obtain a tentative orbital period of ~40 min. We also built the NIR-optical-UV spectral energy distribution (SED) of the source at two different epochs. One SED was gathered when the source was in the soft X-ray state and this SED is consistent with the presence of a single thermal component. The second SED, obtained when the source was in the hard X-ray state, shows a thermal component along with a tail in the NIR, which likely indicates the presence of a (transient) jet. Based on observations made with

  7. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ∼1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ∼50% of the detected flares follow the 'classical' definition of Δt/t ≤ 0.5, with many of the largest flares exceeding this value.

  8. X-ray and Radio Observations of the Jet--environment Interaction in 3C 123

    NASA Astrophysics Data System (ADS)

    Harrison, Sarah; Evans, D.; Lee, J.

    2007-12-01

    We present a 46.7 ks Chandra observation of the hot intracluster gas associated with the radio galaxy 3C 123, in order to study the energetics of the interaction between the large-scale radio jets emitted from the AGN and the gaseous, X-ray-emitting ICM. We observe large-scale asymmetries in the gas distribution out to 100'' together with smaller scale variations on scales of 20-30''. While gas temperatures on the large scale are well-described by an APEC model with temperature 8 keV, temperatures of the small-scale gaseous regions are described by a similar model with temperature 3 keV. We find that the significant overdensities and underdensities of the intracluster gas on large and small scales are caused by different processes. We calculate the "bubble” enthalpy of a small-scale eastern cavity to be 3 × 1059 ergs per bubble evacuated. We observe a corresponding overdense region which has the same enthalpy in pressure equilibrium with this cavity. We also find that the black hole accretion rate required to evacuate this region is R = 0.05Msunyear-1 per bubble. Our results support the interpretation that there is a large-scale disturbance from equilibrium most likely due to "sloshing” of gas caused by the impact of a subcluster merger, whereas on small scales, the radio outbursts from the AGN have created cavities within the X-ray--emitting gas.

  9. Development and commissioning of an x-ray beam alignment flag for NSLS-II

    SciTech Connect

    Kosciuk, B. Hu, Y.; Keister, J.; Seletskiy, S.

    2016-07-27

    The NSLS-II Synchrotron Light Source is a 3 GeV electron storage ring recently commissioned and is now entering operations at Brookhaven National Laboratory. One of the major tasks was to commission the six project beamline front ends which required a diagnostic to resolve x-ray beam position for the purpose of beam alignment at low current. Since none of the front ends were outfitted with any x-ray diagnostics in the baseline design, an x-ray beam profile monitor or “flag” that could be easily installed into existing front end vacuum chambers was proposed to satisfy this requirement. Here we present the development of this novel device which utilizes a polycrystalline CVD diamond luminescent screen to produce a visible image of the x-ray beam cross-section and is then captured with a CCD camera.

  10. Collimated Jet Or Expanding Outflow: Possible Origins of GRBs And X-Ray Flashes

    SciTech Connect

    Mizuta, Akira; Yamasaki, Tatsuya; Nagataki, Shigehiro; Mineshige, Shin; /Kyoto U., Yukawa Inst., Kyoto

    2006-08-10

    transition between the GRBs, X-ray rich GRBs (XRRs) and X-ray Flashes (XRFs) by the same model but with different {epsilon}{sub 0} values.

  11. Moving relativistic large-scale X-ray jets in the microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Corbel, S.; Fender, R. P.; Tzioumis, A. K.; Tomsick, J. A.; Orosz, J. A.; Miller, J. M.; Wijnands, R.; Kaaret, P.

    2003-10-01

    We have discovered large-scale moving X-ray and radio jets from the microquasar XTE J1550-564. Using X-ray and radio observations performed between 2000 and 2002, we showed that plasma ejected from XTE J1550-564 has been able to travel at relativistic velocities during many years, with evidence for gradual deceleration. The broadband spectrum of the jets is consistent with synchrotron emission from high energy particles accelerated in shocks. Full details can be found in Corbel et al. [Science 298 (2002a) 196], Karret et al. [ApJ 582 (2003) 933] and Tomsick et al. [ApJ (2003) 945].

  12. Moving relativistic large-scale X-ray jets in the microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Corbel, S.; Fender, R. P.; Tzioumis, A. K.; Tomsick, J. A.; Orosz, J. A.; Miller, J. M.; Wijnands, R.; Kaaret, P.

    We have discovered large-scale moving X-ray and radio jets from the microquasar XTE J1550-564. Using X-ray observations from the Chandra Observatory performed between June 2000 (see also Tomsick et al., these proceedings) and June 2002, we showed that ejected plasma from XTE J1550-564 has been able to travel at relativistic velocities during many years, with evidence for gradual deceleration. The broadband spectrum of the jets is consistent with synchrotron emission from high energy particles accelerated in shocks. Full details can be found in Corbel et al. 2002, Kaaret et al. 2002, Tomsick et al. 2002.

  13. Energetic X-ray-emitting jets from the fast-moving middle-aged pulsar B2224+65

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Johnson, Seth

    2017-08-01

    We present evidence for jets from the nearby pulsar, B2224+65, based on three epochs of Chandra X-ray observations, separated by 6 years from each other. This relatively slow rotating pulsar is well known for its extreme velocity of proper motion and associated "Guitar"-shaped optical nebula in the opposite direction. The main jet-like X-ray-emitting feature is extremely narrow and significantly curved near the pulsar, but further away remains amazingly straight and is directed about 62 degrees away from the nebula, the X-ray emission of which is also detected. We find the consistent proper motions of the pulsar and the feature. The substructure of the feature varies among the epochs, while its spectrum is well characterized by a power law with a photon index of 1.2, is significantly harder than that of the pulsar, and remains remarkably consistent spatially and with the time. These results can be explained most intuitively by ballistic, relativistic, and probably magnetic field-dominated jets from the pulsar, similar to those from active galactic nuclei. Indeed, we also detect the extended X-ray emission from the putative counter-jet, albeit at a much fainter level and a much smaller scale. The luminosity of these features is 7e30 erg/s in the Chandra band, accounting for about 1% of the spin-down energy rate of the pulsar. Because of the flat nonthermal X-ray spectrum, this fraction increases with the photon energy. The total power required to generate the jets is likely greater than 10% of the rate. Much of the acceleration of the particles for the (synchrotron) X-ray emission to energies > 100 TeV likely occurs within the jets, probably via magnetic field re-connection. This jet scenario and the underlying physics can be further tested by a carefully designed X-ray monitoring of the substructure and by a measurement of the radio polarization of the pulsar, as its spin axis is expected to be aligned with the jets. We speculate that the energetic jet ejection

  14. Nine Years of Observations of Hard X-Rays from Relativistic Jet Objects with BATSE

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Harmon, B. A.; Fishman, G. J.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The observed hard X-ray temporal and spectral characteristics will be displayed for over nine years of BATSE (Burst and Transient Source Experiment) data from the Compton Observatory. These observations were obtained using the Earth occultation technique, a technique that has become increasingly more sensitive and accurate as systematic effects are understood and corrected. The principal objects that are being presented in this study include: GRO J1655-40, GRS 1915+105, Cyg X-3, Cyg X-1, XTE J1550-564, XTE J1859+226, XTE J1748-288, and V4641 Sgr. Light curves and spectral will be presented and discussed in terms of relativistic jet production in these systems.

  15. Extreme jet ejections from the black hole X-ray binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Sivakoff, G. R.; Miller-Jones, J. C. A.; Rosolowsky, E. W.; Petitpas, G.; Gurwell, M.; Wouterloot, J.; Fender, R.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Rupen, M. P.; Rushton, A. P.; Russell, D. M.; Russell, T. D.; Sarazin, C. L.

    2017-08-01

    We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of a BHXB jet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well. With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.

  16. X-ray and optical performance of the flight filters for the JET-X telescope

    NASA Astrophysics Data System (ADS)

    Castelli, Christian M.; Watson, D. J.; Wells, Alan A.; Kent, Barry J.; Barbera, Marco; Collura, Alfonso; Bavdaz, Marcos

    1997-10-01

    The optical filters on board the JET-X telescope comprise thin foils of aluminum coated Lexan. During ground calibration of the filters, narrow spectral regions of high UV leakage, with peak levels of up to a few percent, were observed in broad band optical measurements in the 1000 to 10,000 angstrom range. Furthermore, transmission values were typically up to two orders of magnitude higher than calculated for the aluminum thickness. Investigation showed that these effects were attributed to a combination of aluminum oxidation, which reduces the opacity, and the use of a double sided aluminum layer in the filter design which behaves as a Fabry-Perot interference filter. These effects were verified by a multi- layer model of the filter UV response. Recent redesign of the filters for the flight program eliminated the UV leakage by adopting a single aluminum layer configuration, thus eliminating interference effects, and increasing the thickness by 30% to compensate for oxidation levels. The integrated x- ray transmission below 1 keV was found to be only reduced by 3%. In parallel with the production of the new Lexan flight filters, a set of qualification model filters was produced by the Luxel Corporation in the USA. These filters use polyimide as a substrate material which has the advantage that it is optically opaque to wavelengths below 3000 angstroms, unlike Lexan which is transparent. These new filters were found to have superior mechanical strength, being able to survive extended qualification vibration without any visible degradation in performance, and had a higher cosmetic quality and attenuation levels. As a result, these filters have now been included in the JET-X flight program. We report on the optical tests results from both Lexan and polyimide filters along with high resolution x-ray transmission results carried out at the BESSY synchrotron facility in Germany. Results of the mapping of the filter edge structures, global transmission values and

  17. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  18. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  19. No X-Ray-bright Type II Quasars among the Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Malhotra, S.; Wang, J. X.; Rhoads, J. E.; Heckman, T. M.; Norman, C. A.

    2003-03-01

    The Lyα emitters found at z=4.5 and 5.7 by the Large Area Lyman Alpha (LALA) survey have high equivalent widths in the Lyα line. Such lines can be produced by narrow-lined active galactic nuclei or by stellar populations with a very high proportion of young massive stars. To check for type II (i.e., narrow-lined) quasars, we obtained a deep X-ray image of 49 Lyα sources in a single field of the ACIS instrument on the Chandra X-Ray Observatory. None of these sources was detected with a 3 σ limiting X-ray luminosity of 2.9×1043 ergs s-1. For comparison, the two known high-redshift type II quasars have luminosities of 4×1043 ergs s-1 before extinction correction. The sources remain undetected in stacked images of the 49 Lyα sources (with 6.5 Ms effective Chandra on-axis exposure) at 3 σ limits of 4.9×1042. The resulting X-ray-to-Lyα ratio is about 4-24 times lower than the ratio for known type II quasars, while the average Lyα luminosity of the LALA sample is between the two type II's. The cumulative X-ray-to-Lyα ratio limit is also below that of 90% of low-redshift Seyfert galaxies.

  20. Chandra ACIS Survey of X-Ray Point Sources in Nearby Galaxies. II. X-Ray Luminosity Functions and Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Wang, Song; Qiu, Yanli; Liu, Jifeng; Bregman, Joel N.

    2016-09-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α ˜ 1.50 ± 0.07) to elliptical (˜1.21 ± 0.02), to spirals (˜0.80 ± 0.02), to peculiars (˜0.55 ± 0.30), and to irregulars (˜0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D 25 and 2D 25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 1040 erg s-1, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M ⊙ black holes with super-Eddington radiation and intermediate mass black holes.

  1. Confronting X-Ray Emission Models with theHighest-Redshift Kiloparsec-Scale Jets: The z = 3.89 Jet in Quasar 1745+624

    SciTech Connect

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; /Harvard-Smithsonian Ctr. Astrophys.

    2006-06-28

    A newly identified kiloparsec-scale X-ray jet in the high-redshift z=3.89 quasar 1745+624 is studied with multi-frequency Very Large Array, Hubble Space Telescope, and Chandra X-ray imaging data. This is only the third large-scale X-ray jet beyond z > 3 known and is further distinguished as being the most luminous relativistic jet observed at any redshift, exceeding 10{sup 45} erg/s in both the radio and X-ray bands. Apart from the jet's extreme redshift, luminosity, and high inferred equipartition magnetic field (in comparison to local analogues), its basic properties such as X-ray/radio morphology and radio polarization are similar to lower-redshift examples. Its resolved linear structure and the convex broad-band spectral energy distributions of three distinct knots are also a common feature among known powerful X-ray jets at lower-redshift. Relativistically beamed inverse Compton and ''non-standard'' synchrotron models have been considered to account for such excess X-ray emission in other jets; both models are applicable to this high-redshift example but with differing requirements for the underlying jet physical properties, such as velocity, energetics, and electron acceleration processes. One potentially very important distinguishing characteristic between the two models is their strongly diverging predictions for the X-ray/radio emission with increasing redshift. This is considered, though with the limited sample of three z > 3 jets it is apparent that future studies targeted at very high-redshift jets are required for further elucidation of this issue. Finally, from the broad-band jet emission we estimate the jet kinetic power to be no less than 10{sup 46} erg/s, which is about 10% of the Eddington luminosity corresponding to this galaxy's central supermassive black hole mass M{sub BH} {approx}> 10{sup 9} M{sub {circle_dot}} estimated here via the virial relation. The optical luminosity of the quasar core is about ten times over Eddington, hence the

  2. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  3. A decelerating jet observed by the EVN and VLBA in the X-ray transient XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Yang, J.; Brocksopp, C.; Corbel, S.; Paragi, Z.; Tzioumis, T.; Fender, R. P.

    2010-11-01

    The recently discovered Galactic X-ray transient XTE J1752-223 entered its first known outburst in 2010, emitting from the X-ray to the radio regimes. Its general X-ray properties were consistent with those of a black hole candidate in various spectral states, when ejection of jet components is expected. To verify this, we carried out very long baseline interferometry (VLBI) observations. The measurements were carried out with the European VLBI Network (EVN) and the Very Long Baseline Array (VLBA) at four epochs in 2010 February. The images at the first three epochs show a moving jet component that is significantly decelerated by the last epoch, when a new jet component appears that is likely to be associated with the receding jet side. The overall picture is consistent with an initially mildly relativistic jet, interacting with the interstellar medium or with swept-up material along the jet. The brightening of the receding ejecta at the final epoch can be well explained by initial Doppler deboosting of the emission in the decelerating jet.

  4. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE PAGES

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; ...

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen andmore » focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  5. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    SciTech Connect

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  6. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  7. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    SciTech Connect

    Fletcher, L. B. Galtier, E.; Gamboa, E. J.; Schumaker, W.; Gauthier, M.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Glenzer, S. H.; Zastrau, U.; Goede, S.; Ravasio, A.; MacDonald, M. J.; Chen, Z.; Pelka, A.; Kraus, D.; Barbrel, B.; and others

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  8. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source.

    PubMed

    Fletcher, L B; Zastrau, U; Galtier, E; Gamboa, E J; Goede, S; Schumaker, W; Ravasio, A; Gauthier, M; MacDonald, M J; Chen, Z; Granados, E; Lee, H J; Fry, A; Kim, J B; Roedel, C; Mishra, R; Pelka, A; Kraus, D; Barbrel, B; Döppner, T; Glenzer, S H

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  9. Formation and X-ray emission from hot bubbles in planetary nebulae - II. Hot bubble X-ray emission

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2016-12-01

    We present a study of the X-ray emission from numerical simulations of hot bubbles in planetary nebulae (PNe). High-resolution, two-dimensional, radiation-hydrodynamical simulations of the formation and evolution of hot bubbles in PNe, with and without thermal conduction, are used to calculate the X-ray emission and study its time-dependence and relationship to the changing stellar parameters. Instabilities in the wind-wind interaction zone produce clumps and filaments in the swept-up shell of nebular material. Turbulent mixing and thermal conduction at the corrugated interface can produce quantities of intermediate temperature and density gas between the hot, shocked wind bubble, and the swept-up photoionized nebular material, which can emit in soft, diffuse X-rays. We use the CHIANTI software to compute synthetic spectra for the models and calculate their luminosities. We find that models both with conduction and those without can produce the X-ray temperatures and luminosities that are in the ranges reported in observations, although the models including thermal conduction are an order of magnitude more luminous than those without. Our results show that at early times the diffuse X-ray emission should be dominated by the contribution from the hot, shocked stellar wind, whereas at later times the nebular gas will dominate the spectrum. We analyse the effect of sampling on the resultant spectra and conclude that a minimum of 200 counts is required to reliably reproduce the spectral shape. Likewise, heavily smoothed surface-brightness profiles obtained from low-count detections of PNe do not provide a reliable description of the spatial distribution of the X-ray-emitting gas.

  10. Laser power meters as x-ray intensity monitors for LCLS-II (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Heimann, Philip A.; Moeller, Stefan P.; Carbajo Garcia, Sergio; Song, Sanghoon; Feng, Yiping; Glownia, James M.; Fritz, David M.

    2017-06-01

    For the LCLS-II instruments we are developing laser power meters as compact intensity monitors that can operate at soft and tender X-ray photon energies. There is a need to monitor the relative X-ray intensity at various locations along an X-ray FEL beamline in order to observe a possible decrease in the reflectivity of X-ray mirrors. In addition for experiments, it is valuable to know the absolute intensity at the sample. There are two types of laser power meters based on thermopile and pyroelectric sensors. The thermopile power meters measure an average temperature and are compatible with the high repetition rates of LCLS-II. Pyroelectric power meters provide a pulse-by-pulse response. Ultra-high vacuum compatibility is being tested by residual gas analysis. An in-house development beamtime is being conducted at the LCLS SXR instrument. Measurements using both thermopile and pyroelectric power meters will be conducted at a set of photon energies in the soft X-ray range. The detectors' response will be compared with the gas monitor detector installed at the SXR instrument.

  11. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.

    PubMed

    Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz

    2014-01-01

    Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.

  12. Final Report on X-ray Yields from OMEGA II Targets

    SciTech Connect

    Fournier, K B; May, M J; MacLaren, S A; Coverdale, C A; Davis, J F

    2007-06-20

    We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the X-ray emissions have increasing duration as the spectral content gets softer.

  13. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J; Glatzel, Pieter; Grosse-Kunstleve, Ralf W; Latimer, Matthew J; McQueen, Trevor A; DiFiore, Dörte; Fry, Alan R; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W; Seibert, M Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H; White, William E; Adams, Paul D; Bogan, Michael J; Boutet, Sébastien; Williams, Garth J; Messinger, Johannes; Sauter, Nicholas K; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K

    2012-06-19

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn(4)CaO(5) cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O-O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the "probe before destroy" approach using an X-ray free electron laser works even for the highly-sensitive Mn(4)CaO(5) cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn(4)CaO(5) cluster without any damage at room temperature, and of the reaction intermediates of PS II during O-O bond formation.

  14. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  15. LCLS-II: The Next Leap for X-Ray Science

    SciTech Connect

    2016-04-04

    This movie introduces LCLS-II, a future light source at SLAC. It will generate over 8,000 times more light pulses per second than today’s most powerful X-ray laser, LCLS, and produce an almost continuous X-ray beam that on average will be 10,000 times brighter. These unrivaled capabilities will help researchers address a number of grand challenges in science by capturing detailed snapshots of rapid processes that are beyond the reach of other light sources.

  16. Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reig, P.; Nersesian, A.; Zezas, A.; Gkouvelis, L.; Coe, M. J.

    2016-05-01

    Context. High-mass X-ray binaries are bright X-ray sources. The high-energy emission is caused by the accretion of matter from the massive companion onto a neutron star. The accreting material comes from either the strong stellar wind in binaries with supergiant companions or the cirscumstellar disk in Be/X-ray binaries. In either case, the Hα line stands out as the main source of information about the state of the accreting material. Aims: We present the results of our monitoring program to study the long-term variability of the Hα line in high-mass X-ray binaries. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Methods: We fitted the Hα line with Gaussian profiles and obtained the line parameters and equivalent width. The peak separation in split profiles was used to determine the disk velocity law and estimate the disk radius. The relative intensity of the two peaks (V/R ratio) allowed us to investigate the distribution of gas particles in the disk. The equivalent width was used to characterise the degree of variability of the systems. We also studied the variability of the Hα line in correlation with the X-ray activity. Results: Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods; ii) we show that a Keplerian distribution of gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars; iii) a decrease in the Hα equivalent width is generally observed after major X-ray outbursts; iv) we confirm that the Hα equivalent width correlates with disk radius; v) while systems with supergiant companions display multi-structured profiles, most of the Be/X-ray binaries show, at some epoch, double-peak asymmetric profiles, which indicates that density inhomogeneities is a common property in the disk of Be/X-ray binaries; vi) the

  17. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  18. Second Preliminary Report on X-ray Yields from OMEGA II Targets

    SciTech Connect

    Fournier, K B; May, M J; MacLaren, S A; Coverdale, C A; Davis, J F

    2006-08-28

    We present details about X-ray yields measured with LLNL and SNL diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields may be 35-40% too large. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the nearly sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtering. There is a persistent disagreement between the H11 PCD and SNL PCD measured FWHM, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope, and which are not plotted here.

  19. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses.

    PubMed

    Kantsyrev, V L; Schultz, K A; Shlyaptseva, V V; Petrov, G M; Safronova, A S; Petkov, E E; Moschella, J J; Shrestha, I; Cline, W; Wiewior, P; Chalyy, O

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 10^{18}-10^{19}W/cm^{2} heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (10^{7} or 10^{5}). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 10^{18}-10^{19}cm^{-3}. Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  20. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  1. The disc-jet coupling in the neutron star X-ray binary 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Tudose, Valeriu; Tzioumis, Anastasios; Belloni, Tomaso; Altamirano, Diego; Linares, Manuel; Mendez, Mariano; Hiemstra, Beike

    2010-10-01

    The present radio proposal is part of a multi-wavelength campaign focused on the study of the accretion/ejection process in the neutron star X-ray binary system 4U 1728-34. Our intention is to study the behaviour of the inner part of the accretion disc as inferred from the X-ray observations of the Fe emission line and the kHz quasi-periodic oscillations, and to link it to the properties of the radio jet. To achieve this goal we request 5 × 11h of observing time with ATCA, scheduled at regular intervals in the period 2010 August 27- October 13, the visibility window of the granted X-ray observations with RXTE (PI: Mendez) and Suzaku (PI: Linares).

  2. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    SciTech Connect

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Broderick, Jess W.; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  3. Emerging pictures on the disk-jet connection from simultaneous multiwavelength observations of black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory; Russell, David; Markoff, Sera; Miller-Jones, James; Tetarenko, Alexandra; Curran, Peter

    2016-07-01

    Relativistic jets in black hole X-ray binaries (BHXBs) are fundamentally linked to accretion onto the central black hole. Since the outbursts of X-ray binaries, stellar mass cousins of AGN, typically last weeks to months, BHXBs are ideal targets for probing the connected physics of accretion disks and jets over entire outbursts. However, this fast evolution requires coordinated multiwavelength monitoring observations to best probe this physics. The relativistic jet is typically best probed at low frequencies (radio, mm/sub-mm, mid-IR, near-IR, optical) with ground-based observatories while the accretion disk is best probed at X-ray frequencies from space-based observatories. Over the last several years stronger coordination among scientific teams and these facilities has enabled a greater number of near-simultaneous or simultaneous observations. In this talk, I use examples from a range of campaigns (e.g., MAXI J1836-194 & V404 Cyg) to discuss the gains that are being made with increasingly simultaneous observations. I highlight how four specific multi-wavelength trends (flux monitoring with high resolution imaging; dynamic nearly simultaneous SEDs; the push to mm/sub-mm frequencies; comparison of high time resolution data) are producing data that are increasingly testing theoretical models of jet production.

  4. A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.

    2014-03-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  5. Population synthesis of accreting white dwarfs - II. X-ray and UV emission

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2015-11-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm interstellar medium (ISM). In an earlier paper, we modelled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code BSE, and then following their evolution with a grid of evolutionary tracks computed with MESA. Now we use these results to estimate the soft X-ray (0.3-0.7 keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of supersoft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ˜1 Gyr and decline by ˜1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ˜10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686 Å/H β line ratio measured in stacked Sloan Digital Sky Survey spectra of retired galaxies, the latter characterizing the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He II 4686 Å/H β ratio are significantly overpredicted for stellar ages of ≲4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass-loss for giant stars.

  6. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    SciTech Connect

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  7. Energy-dependent Orbital Modulation of X-rays and Constraints on Emission of the Jet in Cyg X-3

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Maitra, Chandreyee; Frankowski, Adam; Skinner, Gerald K.; Misra, Ranjeev

    2012-01-01

    We study orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of the presently available data and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above 5 keV, the modulation depth decreases with the increasing energy, which is consistent with the modulation being caused by both bound-free absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below 3 keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies > 0.1 GeV in soft spectral states, is found to be minor up to 100 keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum.We also calculate phase-resolved RXTE X-ray spectra, and show the difference between the spectra corresponding to phases around the superior and inferior conjunctions can indeed be accounted for by a combined effect of bound-free absorption in an ionized medium and Compton scattering.

  8. Connection Between X-Ray Emission and Relativistic Jets in the Radio Galaxies 3C 111 and 3C 120

    NASA Technical Reports Server (NTRS)

    Aller, Margo F.

    2005-01-01

    This work represents a part of a longterm study of the X-ray flux variability in radio galaxies and its relation to flux and structural changes in the associated radio jet. The work described here included: 1) continued study of the emission properties of the FR I radio galaxy 3C 120 known to exhibit a jet/disk connection from our past work; and 2) the commencement of monitoring of a second radio galaxy, the FR I1 object 3C 111 which was selected because of similar radio and X-ray properties to 3C 120, including the presence of Fe K a emission. The association between X-ray dips and new superluminal components, suggesting a picture in which the radio jet is fed by accretion events near the black hole, was identified in 3C 120 using combined RXTE and radio flux monitoring data and bi-monthly to monthly imaging data from the VLBA at 43 GHz. Such data were also obtained for both targets during the period described here. Specific goals were to more broadly investigate the X-ray dip/superluminal connection in 3C 120, thereby determining the epochs of X-ray minima and superluminal ejections more accurately (and hence more precisely determining the distance between the accretion disk and the core of the radio jet), and to determine whether a similar pattern is present in the data for a second radio galaxy. In 3C 111 a different time scale (longer time delays between X-ray dips and superluminal ejections) was expected due to the higher black hole mass implied by its higher radio luminosity: no black hole mass is published for this object but one can be determined from a PDS analysis of the RXTE data. The addition of the second source to the study would identify whether a similar connection was present in other sources and, if found, would provide important information on how time scale (and hence size scale) of accretion disk/jet systems depends on black hole mass. The grant included funding for the reduction and analysis of data obtained during the time period of Rossi

  9. Optical and X-ray properties of CAL 83 - II. An X-ray pulsation at ˜67 s

    NASA Astrophysics Data System (ADS)

    Odendaal, A.; Meintjes, P. J.; Charles, P. A.; Rajoelimanana, A. F.

    2014-01-01

    CAL 83 is the prototypical close binary supersoft X-ray source in the Large Magellanic Cloud, has a 1 d orbital period, and is believed to consist of a white dwarf (WD) primary accreting from an evolved donor. Based on published WD model atmosphere fits to X-ray data, the WD has a mass of ˜1.3 M⊙, just below the Chandrasekhar limit. From a systematic search through archival XMM-Newton data for periodic emission from CAL 83 down to the shortest possible period just above the WD break-up period, we report the discovery of an ˜67 s supersoft X-ray modulation, which we interpret as the rotation period of a highly spun-up WD. Such a short period can be explained within the framework of a high mass accretion history, where accretion disc torques could have spun up the WD over time-scales comparable to the thermal time-scale. The presence of carbon, oxygen and nitrogen in published optical and ultraviolet spectra may suggest CNO cycling in the envelope of a secondary star that is oversized for its inferred mass, suggesting that the secondary star shed a significant fraction of its envelope during a high mass-transfer history, resulting in a highly spun-up WD. The reported 67 s period shows an approximately ±3 s drift from the median value in single runs, which we interpret as a hydrogen burning gas envelope surrounding the WD, with a period not quite synchronized with the WD rotation period.

  10. Guitar with a bow: a jet-like X-ray-emitting feature associated a fast-moving pulsar

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel

    2011-09-01

    The Guitar Nebula is known to be a ram-pressure confined pulsar wind nebula associated with the very fast-moving pulsar B2224+65. Existing observations at two epochs have shown an unexpected 2 arcmin long X-ray-emitting jet-like feature emanating from the pulsar and offset from its proper motion direction by 118 degree. We propose a deep third epoch observation of this system in order to measure the X-ray spectral gradient across the feature as well as to confirm its proper motion, its morphological variation with time, and the presence of a counter jet. We will then critically test scenarios proposed to explain this system, which represents a class of similarly enigmatic objects recently discovered locally and in the central region of our Galaxy.

  11. High contrast Kr gas jet K alpha x-ray source for high energy density physics experiments.

    PubMed

    Kugland, N L; Neumayer, P; Döppner, T; Chung, H-K; Constantin, C G; Girard, F; Glenzer, S H; Kemp, A; Niemann, C

    2008-10-01

    A high contrast 12.6 keV Kr K alpha source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (K alpha to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10(-5). Filtered shadowgraphy indicates that the Kr K alpha and K beta x rays are emitted from a roughly 1x2 mm(2) emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e., mean ionization state 13-16), based on the observed ratio of K alpha to K beta. Kr gas jets provide a debris-free high energy K alpha source for time-resolved diagnosis of dense matter.

  12. A comparative study of local galaxy clusters - II. X-ray and SZ scaling relations

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Evrard, A. E.; Rykoff, E. S.; Bartlett, J. G.

    2014-02-01

    We compare cluster scaling relations published for three different samples selected via X-ray and Sunyaev-Zel'dovich (SZ) signatures. We find tensions driven mainly by two factors: (i) systematic differences in the X-ray cluster observables used to derive the scaling relations and (ii) uncertainty in the modelling of how the gas mass of galaxy clusters scales with total mass. All scaling relations are in agreement after accounting for these two effects. We describe a multivariate scaling model that enables a fully self-consistent treatment of multiple observational catalogues in the presence of property covariance and apply this formalism when interpreting published results. The corrections due to scatter and observable covariance can be significant. For instance, our predicted YSZ-LX scaling relation differs from that derived using the naive `plug in' method by ≈25 per cent. Finally, we test the mass normalization for each of the X-ray data sets we consider by applying a space density consistency test: we compare the observed ROSAT-ESO Flux-Limited X-ray (REFLEX) luminosity function to expectations from published LX-M relations convolved with the mass function for a Wilkinson Microwave Anisotropy Probe 7 flat Λ cold dark matter model.

  13. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  14. X-RAY AND GAMMA-RAY POLARIZATION IN LEPTONIC AND HADRONIC JET MODELS OF BLAZARS

    SciTech Connect

    Zhang, H.; Boettcher, M.

    2013-09-01

    We present a theoretical analysis of the expected X-ray and {gamma}-ray polarization signatures resulting from synchrotron self-Compton emission in leptonic models compared to the polarization signatures from proton synchrotron and cascade synchrotron emission in hadronic models for blazars. Source parameters resulting from detailed spectral-energy-distribution modeling are used to calculate photon-energy-dependent upper limits on the degree of polarization, assuming a perfectly organized mono-directional magnetic field. In low-synchrotron-peaked blazars, hadronic models exhibit substantially higher maximum degrees of X-ray and gamma-ray polarization than leptonic models, which may be within reach of existing X-ray and {gamma}-ray polarimeters. In high-synchrotron-peaked blazars (with electron-synchrotron-dominated X-ray emission), leptonic and hadronic models predict the same degree of X-ray polarization but substantially higher maximum {gamma}-ray polarization in hadronic models than leptonic ones. These predictions are particularly relevant in view of the new generation of balloon-borne X-ray polarimeters (and possibly GEMS, if revived), and the ability of Fermi-LAT to measure {gamma}-ray polarization at <200 MeV. We suggest observational strategies combining optical, X-ray, and {gamma}-ray polarimetry to determine the degree of ordering of the magnetic field and to distinguish between leptonic and hadronic high-energy emissions.

  15. FRAME DRAGGING, DISK WARPING, JET PRECESSING, AND DIPPED X-RAY LIGHT CURVE OF Sw J1644+57

    SciTech Connect

    Lei, Wei-Hua; Zhang, Bing; Gao, He E-mail: zhang@physics.unlv.edu

    2013-01-10

    The X-ray transient source Sw J1644+57 recently discovered by Swift is believed to be triggered by tidal disruption of a star by a rapidly spinning supermassive black hole (SMBH). For such events, the outer disk is very likely misaligned with respect to the equatorial plane of the spinning SMBH, since the incoming star before disruption most likely has an inclined orbital plane. The tilted disk is subject to the Lense-Thirring torque, which tends to twist and warp due to the Bardeen-Petterson effect. The inner disk tends to align with the SMBH spin, while the outer region tends to remain in the stellar orbital plane, with a transition zone around the Bardeen-Petterson radius. The relativistic jet launched from the spinning SMBH would undergo precession. The 5-30 day X-ray light curve of Sw J1644+57 shows a quasi-periodic (2.7 day) variation with noticeable narrow dips. We numerically solve a warped disk and propose a jet-precessing model by invoking a Blandford-Znajek jet collimated by a wind launched near the Bardeen-Petterson radius. Through simulations, we show that the narrow dips in the X-ray light curve can be reproduced for a range of geometric configurations. From the data we infer that the inclination angle of the initial stellar orbit is in the range of 10 Degree-Sign -20 Degree-Sign from the SMBH equatorial plane, that the jet should have a moderately high Lorentz factor, and that the inclination angle, jet opening angle, and observer's viewing angle are such that the duty cycle of the line of sight sweeping the jet cone is somewhat less than 0.5.

  16. Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline

    SciTech Connect

    Simos, N.; Chu, Y. S.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

    2011-09-09

    The hard x-ray nanoprobe (HXN) beamline of the National Synchrotron Light Source II (NSLS-II) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic, and NSLS II operating systems have been studied using state-of-the-art simulations and an array of field data. Further, final stage vibration isolation principles have been explored.

  17. Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline

    NASA Astrophysics Data System (ADS)

    Simos, N.; Chu, Y. S.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

    2011-09-01

    The hard x-ray nanoprobe (HXN) beamline of the National Synchrotron Light Source II (NSLS-II) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic, and NSLS II operating systems have been studied using state-of-the-art simulations and an array of field data. Further, final stage vibration isolation principles have been explored.

  18. Collective properties of neutron-star X-ray binary populations of galaxies. II. Pre-low-mass X-ray binary properties, formation rates, and constraints

    SciTech Connect

    Bhadkamkar, H.; Ghosh, P.

    2014-04-01

    We continue our exploration of the collective properties of neutron-star X-ray binaries in the stellar fields (i.e., outside globular clusters) of normal galaxies. In Paper I of this series, we considered high-mass X-ray binaries (HMXBs). In this paper (Paper II), we consider low-mass X-ray binaries (LMXBs), whose evolutionary scenario is very different from that of HMXBs. We consider the evolution of primordial binaries up to the stage where the neutron star just formed in the supernova explosion of the primary is in a binary with its low-mass, unevolved companion, and this binary has circularized tidally, producing what we call a pre-low-mass X-ray binary (pre-LMXB). We study the constraints on the formation of such pre-LMXBs in detail (since these are low-probability events), and calculate their collective properties and formation rates. To this end, we first consider the changes in the binary parameters in the various steps involved, viz., the common-envelope phase, the supernova, and the tidal evolution. This naturally leads to a clarification of the constraints. We then describe our calculation of the evolution of the distributions of primordial binary parameters into those of pre-LMXB parameters, following the standard evolutionary scenario for individual binaries. We display the latter as both bivariate and monovariate distributions, discuss their essential properties, and indicate the influences of some essential factors on these. Finally, we calculate the formation rate of these pre-LMXBs. The results of this paper will be used in a subsequent one to compute the expected X-ray luminosity function of LMXBs.

  19. Hot, Entrained Gas in the 5-arcmin-long X-ray Jet of the Nearby Spiral Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Cecil, G.; Depree, C.; Wilson, A. S.

    1993-12-01

    The famous, large-scale, bisymmetric ``braided" jets are found to emit most of the X-rays from this nearby SABbc LINER/Seyfert galaxy. After removing wobble-related errors of up to +/-6('') in our 27 ksec ROSAT HRI image, we find that the SE branch of the jet is spatially unresolved across its width along much of its 2.5-arcmin length. The NW branch is more diffuse, and fainter X-ray emission is present throughout much of the more extensive, trailing (in the sense of galactic rotation) radio ``plateaus". The energy spectrum of the jet from a 4 ksec ROSAT PSPC exposure is quite noisy, but the best fit is provided by a Raymond-Smith plasma with T ~ 0.2 keV, log (N_H)~ 20.3 cm(-2) , and integrated X-ray luminosity of 2.2*E(40) ergs s(-1) in the 0.1:2.4 keV band. Shocks with velocities 200-400 km s(-1) (depending on the physical state of the pre-shock gas) produce this temperature. The gaseous excitation and radial velocities derived from our optical, emission-line spectra of the jets (Cecil, Wilson, & Tully 1992 ApJ, 390, 365) are also consistent with these shock speeds, provided that the gas flows along intrinsically helical paths in the region of kinematic braiding near the nucleus. Observed and modeled X-ray luminosities agree if the average ambient gas density is similar to that inferred from the H I. This component is plausibly gas that has become entrained as the jets scrape along complexes of dense molecular clouds, known to be adjacent to the jet in the gas-rich disk of this barred galaxy. The major deficiency of our current spectral model is that it produces too few photons above 0.6 keV, suggesting the presence of a hard component from the jets themselves. Finally, we will also discuss newly acquired optical long-slit and Fabry-Perot spectra that constrain the excitation mechanism of the optical gas.

  20. X-ray emission from the nuclei, lobes and hot-gas environments of two FR II radio galaxies

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Birkinshaw, M.; Hardcastle, M. J.; Worrall, D. M.

    2004-09-01

    We report on the detection of multiple components of X-ray emission from the two FR II radio galaxies, 3C 223 and 3C 284, based on new XMM-Newton observations. We attribute the detected X-ray emission from the lobes of both sources to inverse-Compton scattering of cosmic microwave background photons. With this model, we find that the magnetic field strength in the lobes is at the equipartition value for 3C 284, and within a factor of 2 of the equipartition value for 3C 223. We also detect group-scale hot atmospheres around both sources, and determine temperatures and pressures in the gas. The lobes of both sources are in pressure balance with the hot-gas environments, if the lobes contain only the synchrotron-emitting particles and the measured magnetic field strength. The core spectra of both sources contain an unabsorbed soft component, likely to be related to the radio jet, and an additional heavily absorbed power-law component. 3C 223 also displays a bright (EW ~500 eV) Fe Kα emission line.

  1. Chandra and HST Imaging of the Quasars PKS B0106+013 and 3C 345: Inverse Compton X-Rays and Magnetized Jets

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Lister, M. L.; Marshall, H. L.; Hogan, B. S.

    2012-04-01

    We present results from deep (~70 ks) Chandra/ACIS observations and Hubble Space Telescope (HST) Advanced Camera for Surveys F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C 345). These observations reveal X-ray and optical emissions from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles—the X-ray emission is brightest at the first prominent kiloparsec jet bend. A picture of a helical kiloparsec jet with the first kiloparsec-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end, however, peaks at about 0farcs4 (~3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0farcs2 (~1.3 kpc) in the short projected jet of 3C 345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1'' downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the parsec-scale radio and the kiloparsec-scale radio/X-ray data, we derive constraints on the jet Lorentz factors (Γjet) and inclination angles (θ): for a constant jet speed from parsec to kiloparsec scales, we obtain a Γjet of ~70 for 0106+013 and ~40 for 3C 345. On relaxing this assumption, we derive a Γjet of ~2.5 for both the sources. Upper limits on θ of ~13° are obtained for the two quasars. Broadband (radio-optical-X-ray) spectral

  2. Surface, morphology and X-ray diffraction studies of Co (II) complexes of pyrazole ligands

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Jain, Garima; Ninama, S.

    2014-09-01

    Pyrazole based complexes of the cobalt (II) Bis-(diethyl 4-amino-1-(P-nitrophenyl) 1H-pyrazole-3,5dicarboxylate) [Co (D4A1(P-N)1HP35D)] and cobalt (II) Bis-(diethyl 4- amino-1-(3-chlorophenyl) 1H-pyrazole-3,5dicarboxylate) [Co (D4A1(3-Cl)1HP35D)] were synthesized by chemical root method and characterized by different method viz. X-ray diffraction, Fourier transform infrared spectroscopy and Transmission electron microscopy studies. All these studies were in good agreement with the synthesized complexes.

  3. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  4. DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421

    SciTech Connect

    Niinuma, K.; Kino, M.; Doi, A.; Hada, K.; Nagai, H.; Koyama, S.

    2015-07-01

    We investigate the location of the radio jet bases (“radio cores”) of blazars in radio images and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted a 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time,we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of 10{sup 5} Schwarzschild radii (R{sub s}) at the distance of Markarian 421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.

  5. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    SciTech Connect

    Massaro, F.; Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J.; Liuzzo, E.; Orienti, M.; Paladino, R.; Tremblay, G. R.; Baum, S. A.; O’Dea, C. P.

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  6. The life science x-ray scattering beamline at NSLS-II

    SciTech Connect

    DiFabio, Jonathan; Chodankar, Shirish; Pjerov, Sal; Jakoncic, Jean; Lucas, Michael; Graziano, Vito; Yang, Lin; Krywka, Christina

    2016-07-27

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ∼0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beam stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.

  7. The life science X-ray scattering beamline at NSLS-II

    DOE PAGES

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish; ...

    2015-09-30

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  8. Performance calculations of the X-ray powder diffraction beamline at NSLS-II.

    PubMed

    Shi, Xianbo; Ghose, Sanjit; Dooryhee, Eric

    2013-03-01

    The X-ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi-purpose high-energy X-ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double-Laue crystal monochromator to provide X-rays over a large energy range (30-70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi-lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.

  9. The life science X-ray scattering beamline at NSLS-II

    SciTech Connect

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish; Pjerov, Sal; Jakoncic, Jean; Lucas, Michael; Krywka, Christina; Graziano, Vito

    2015-09-30

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beam stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.

  10. X-ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-ray Observations

    NASA Astrophysics Data System (ADS)

    García, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-04-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance, and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner shell of the iron and oxygen isonuclear sequences. We concentrate our analysis on the 2-10 keV energy region and in particular on the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Kα on the ionization parameter. The maximum value of the EW is ~800 eV for models with log ξ ~ 1.5 and decreases monotonically as ξ increases. For lower values of ξ, the Fe Kα EW decreases to a minimum near log ξ ~ 0.8. We produce simulated CCD observations based on our reflection models. For low-ionized, reflection-dominated cases, the 2-10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S Lα lines, a blend of Ar VIII-XI lines, and the Ca X Kα line. In some cases, the S XV blends with the He-like Si radiative recombination continua producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  11. X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  12. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. II. DIAGNOSTIC TOOLS FOR X-RAY OBSERVATIONS

    SciTech Connect

    GarcIa, J.; Kallman, T. R.; Mushotzky, R. F. E-mail: timothy.r.kallman@nasa.gov

    2011-04-20

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance, and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner shell of the iron and oxygen isonuclear sequences. We concentrate our analysis on the 2-10 keV energy region and in particular on the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe K{alpha} on the ionization parameter. The maximum value of the EW is {approx}800 eV for models with log {xi} {approx} 1.5 and decreases monotonically as {xi} increases. For lower values of {xi}, the Fe K{alpha} EW decreases to a minimum near log {xi} {approx} 0.8. We produce simulated CCD observations based on our reflection models. For low-ionized, reflection-dominated cases, the 2-10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L{alpha} lines, a blend of Ar VIII-XI lines, and the Ca X K{alpha} line. In some cases, the S XV blends with the He-like Si radiative recombination continua producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  13. X-ray absorption and diffraction study of II VI dilute oxide semiconductor alloy epilayers

    NASA Astrophysics Data System (ADS)

    Boscherini, F.; Malvestuto, M.; Ciatto, G.; D'Acapito, F.; Bisognin, G.; DeSalvador, D.; Berti, M.; Felici, M.; Polimeni, A.; Nabetani, Y.

    2007-11-01

    Dilute oxide semiconductor alloys obtained by adding oxygen to a II-VI binary compound are of potential applicative interest for blue-light emitters in which the oxygen content could be used to tune the band gap. Moreover, their properties can be usefully compared to the more thoroughly studied dilute nitrides in order to gain insight into the common mechanisms which give rise to their highly non-linear physical properties. Recently, it has been possible to deposit ZnSeO and ZnSeOS epilayers on GaAs(001), which exhibit a red-shift of the band gap and giant optical bowing. In order to provide a structural basis for an understanding of their physical properties, we have performed a study of a set of ZnSeO and ZnSeOS epilayers on GaAs by high resolution x-ray diffraction and x-ray absorption fine structure. We have found that the strain goes from compressive to tensile with increasing O and S concentration and that, while all epilayers are never found to be pseudomorphic, the ternary ones exhibit a low relaxed fraction if compared to the ZnSe/GaAs sample. O K-edge x-ray absorption near edge spectra and corresponding simulations within the full multiple-scattering regime show that O is substitutionally incorporated in the host lattice. Zn and Se K-edge extended x-ray absorption fine structure detect the formation of Zn-O and Zn-S bonds; the analysis of these spectra within multiple-scattering theory has allowed us to measure the local structural parameters. The value of Zn-Se bond length is found to be in agreement with estimates based on models of local distortions in strained and relaxed epilayers; an increase of the mean-square relative displacement is detected at high O and S concentration and is related to both intrinsic and extrinsic factors.

  14. The kinetic flux of X-ray jets, and a connection to spinning super-massive black holes

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2017-08-01

    We use the kinetic fluxes measured for 100 kpc X-ray jets to calculate the required mass loss for rapidly spinning supermassive black holes to supply the power. For the quasars in the survey by Marshall et al. (2005, 2011, 2017, submitted) this power can be accommodated, even with parameterized spins as low as a=0.2. If we assume the initial power is purely Poynting flux, then since the magnetic field carries both the energy and the angular momentum lost by the black hole, we can derive constraints on the magnetic field as a function of jet radius, r. This must break down at some distance prior to the initiation of radiation from the jet; e.g., where particles are accelerated.

  15. AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

    SciTech Connect

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; Soria, R.; Slaven-Blair, T.; Curran, P. A.; O'Brien, K.; Sivakoff, G. R.; Lewis, F.; Markoff, S.; Altamirano, D.; Homan, J.; Rupen, M. P.; Dhawan, V.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Gallo, E.; and others

    2013-05-10

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from {approx}10{sup 11} to {approx}4 Multiplication-Sign 10{sup 13} Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  16. An Evolving Compact Jet in the Black Hole X-Ray Binary Maxi J1836-194

    NASA Technical Reports Server (NTRS)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; Altanirano, D.; Curran, P. A.; Rupen, M. P.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Dhawan, V.; Fender, R. P.; Gallo, E.; Gandhi, P.; Heinz, S.; Koerding, E. G.; Krimm, H. A.; Maitra, D.

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from approx 10(exp 11) to approx 4 × 10(exp 13) Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  17. Real-Time Processing System for the JET Hard X-Ray and Gamma-Ray Profile Monitor Enhancement

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana M.; Pereira, Rita C.; Neto, André; Valcárcel, Daniel F.; Alves, Diogo; Sousa, Jorge; Carvalho, Bernardo B.; Kiptily, Vasily; Syme, Brian; Blanchard, Patrick; Murari, Andrea; Correia, Carlos M. B. A.; Varandas, Carlos A. F.; Gonçalves, Bruno

    2014-06-01

    The Joint European Torus (JET) is currently undertaking an enhancement program which includes tests of relevant diagnostics with real-time processing capabilities for the International Thermonuclear Experimental Reactor (ITER). Accordingly, a new real-time processing system was developed and installed at JET for the gamma-ray and hard X-ray profile monitor diagnostic. The new system is connected to 19 CsI(Tl) photodiodes in order to obtain the line-integrated profiles of the gamma-ray and hard X-ray emissions. Moreover, it was designed to overcome the former data acquisition (DAQ) limitations while exploiting the required real-time features. The new DAQ hardware, based on the Advanced Telecommunication Computer Architecture (ATCA) standard, includes reconfigurable digitizer modules with embedded field-programmable gate array (FPGA) devices capable of acquiring and simultaneously processing data in real-time from the 19 detectors. A suitable algorithm was developed and implemented in the FPGAs, which are able to deliver the corresponding energy of the acquired pulses. The processed data is sent periodically, during the discharge, through the JET real-time network and stored in the JET scientific databases at the end of the pulse. The interface between the ATCA digitizers, the JET control and data acquisition system (CODAS), and the JET real-time network is provided by the Multithreaded Application Real-Time executor (MARTe). The work developed allowed attaining two of the major milestones required by next fusion devices: the ability to process and simultaneously supply high volume data rates in real-time.

  18. An Evolving Compact Jet in the Black Hole X-Ray Binary MAXI J1836-194

    NASA Astrophysics Data System (ADS)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; Altamirano, D.; Curran, P. A.; Rupen, M. P.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Dhawan, V.; Fender, R. P.; Gallo, E.; Gandhi, P.; Heinz, S.; Körding, E. G.; Krimm, H. A.; Maitra, D.; Migliari, S.; Remillard, R. A.; Sarazin, C. L.; Shahbaz, T.; Tudose, V.

    2013-05-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from ~1011 to ~4 × 1013 Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process. Based on observations collected at the European Southern Observatory, Chile, under ESO Program IDs 087.D-0914 and 089.D-0970.

  19. Modeling X-Ray Emission of a Straight Jet: PKS 0920-397

    DTIC Science & Technology

    2010-01-01

    and with the jet at an angle 2◦to 4◦from our line of sight. Keywords: Quasar jets; X–ray jets; jet emission mechanisms. In t. J. M od . P hy s. D...detection of the jet in the quasar PKS 0637–7513 during the very first pointed observation. While X–ray jet emission from FR I radio galaxies is normally...explained via the synchrotron mechanism, the quasar jets initially presented a puz- zle. Observations, or upper limits, to optical emission from quasar

  20. Purification, crystallization and preliminary X-ray diffraction analysis of the glyoxalase II from Leishmania infantum

    SciTech Connect

    Trincão, José; Sousa Silva, Marta; Barata, Lídia; Bonifácio, Cecília; Carvalho, Sandra; Tomás, Ana Maria; Ferreira, António E. N.; Cordeiro, Carlos; Ponces Freire, Ana; Romão, Maria João

    2006-08-01

    A glyoxalase II from L. infantum was cloned, purified and crystallized and its structure was solved by X-ray crystallography. In trypanosomatids, trypanothione replaces glutathione in all glutathione-dependent processes. Of the two enzymes involved in the glyoxalase pathway, glyoxalase I and glyoxalase II, the latter shows absolute specificity towards trypanothione thioester, making this enzyme an excellent model to understand the molecular basis of trypanothione binding. Cloned glyoxalase II from Leishmania infantum was overexpressed in Escherichia coli, purified and crystallized. Crystals belong to space group C222{sub 1} (unit-cell parameters a = 65.6, b = 88.3, c = 85.2 Å) and diffract beyond 2.15 Å using synchrotron radiation. The structure was solved by molecular replacement using the human glyoxalase II structure as a search model. These results, together with future detailed kinetic characterization using lactoyltrypanothione, should shed light on the evolutionary selection of trypanothione instead of glutathione by trypano-somatids.

  1. Development of the XFP beamline for x-ray footprinting at NSLS-II

    SciTech Connect

    Bohon, Jen Sullivan, Michael; Abel, Don; Toomey, John; Chance, Mark R.; Dvorak, Joseph

    2016-07-27

    For over a decade, synchrotron-based footprinting studies at the NSLS X28C beamline have provided unique insights and approaches for examining the solution-state structures of large macromolecular assemblies, membrane proteins, and soluble proteins, for time-resolved studies of macromolecular dynamics, and most recently for in vivo studies of RNA-protein complexes. The transition from NSLS to NSLS-II has provided the opportunity to create an upgraded facility for the study of increasingly complex systems; progress on the development of the XFP (X-ray Footprinting for In Vitro and In Vivo Structural Studies of Biological Macromolecules) beamline at NSLS-II is presented here. The XFP beamline will utilize a focused 3-pole wiggler source to deliver a high flux density x-ray beam, where dynamics can be studied on the microsecond to millisecond timescales appropriate for probing biological macromolecules while minimizing sample perturbation. The beamline optics and diagnostics enable adaptation of the beam size and shape to accommodate a variety of sample morphologies with accurate measurement of the incident beam, and the upgrades in sample handling and environment control will allow study of highly sensitive or unstable samples. The XFP beamline is expected to enhance relevant flux densities more than an order of magnitude from that previously available at X28C, allowing static and time-resolved structural analysis of highly complex samples that have previously pushed the boundaries of x-ray footprinting technology. XFP, located at NSLS-II 17-BM, is anticipated to become available for users in 2016.

  2. X-Raying the MOJAVE Sample of Compact Extragalactic Radio Jets

    NASA Technical Reports Server (NTRS)

    Kadler, M.; Sato, G.; Tueller, J.; Sambruna, R. M.; Markwardt, C. B.; Giommi, P.; Gehrels, N.

    2007-01-01

    The MOJAVE sample is the first large radio-selected, VLBI-monitored AGN sample for which complete X-ray spectral information is being gathered. We report on the status of Swift survey observations which complement the available archival X-ray data at 0.3-10 keV and in the UV with its XRT and UVOT instruments. Many of these 133 radio-brightest AGN in the northern sky are now being observed for the first time at these energies. These and complementary other multiwavelength observations provide a large statistical sample of radio-selected AGN whose spectral energy distributions we measured from radio to gamma-ray wavelengths, available at the beginning of GLAST operations in 2008. Here, we report the X-ray spectral characteristics of 36 of these previously unobserved MOJAVE sources. In addition, the number of MOJAVE sources detected by the BAT instrument in the hard X-ray band is growing: we report the detection of five new blazars with BAT.

  3. Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography

    DOEpatents

    Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.

    2016-03-01

    Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.

  4. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from "rare-earth" formulated particles.

    PubMed

    Abliz, Erkinay; Collins, Joshua E; Bell, Howard; Tata, Darrell B

    2011-01-01

    In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd_{2}O_{2}S:Tb. Photodynamic agents such as Photo II utilized in PDT possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through (visible light) photon absorption, the agents exert their cellular cytotoxicity through type I and type II pathways through extensive generation of reactive oxygen species (ROS); namely, singlet oxygen ^{1}O_{2}, superoxide anion O_{2}^{-}, and hydrogen peroxide H_{2}O_{2}, within the intra-tumoral environment. Unfortunately, due to shallow visible light penetration depth (∼ 2 mm to 5 mm) in tissues, the current PDT strategy has largely been restricted to the treatment of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. X-ray induced visible luminescence from Gd_{2}O_{2}S:Tb particles were spectroscopically characterized, and the potential in-vitro cellular cytotoxicity of Gd_{2}O_{2}S:Tb particles on human glioblastoma cells (due to 48 Hrs Gd_{2}O_{2}S:Tb particle exposure) was screened through the MTS cellular metabolic assay. In-vitro human glioblastoma cellular exposures in presence of Photo II with Gd_{2}O_{2}S:Tb particles were performed in the dark in sterile 96 well tissue culture plates

  5. Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets.

    PubMed

    Müller, Matthias; Kühl, Frank-Christian; Großmann, Peter; Vrba, Pavel; Mann, Klaus

    2013-05-20

    The influcence of the pulse duration on the emission characteristics of nearly debris-free laser-induced plasmas in the soft x-ray region (λ ≈ 1-5 nm) was investigated, using six different target gases from a pulsed jet. Compared to ns pulses of the same energy, a ps laser generates a smaller, more strongly ionized plasma, being about 10 times brighter than the ns laser plasma. Moreover, the spectra are considerably shifted towards shorter wavelengths. Electron temperatures and densities of the plasma are obtained by comparing the spectra with model calculations using a magneto-hydrodynamic code.

  6. Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging

    SciTech Connect

    Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

    2010-04-08

    Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

  7. AN X-RAY VIEW OF THE JET CYCLE IN THE RADIO-LOUD AGN 3C120

    SciTech Connect

    Lohfink, Anne M.; Reynolds, Christopher S.; Mushotzky, Richard F.; Tombesi, Francesco; Jorstad, Svetlana G.; Marscher, Alan P.; Miller, Eric D.; Nowak, Michael A.; Aller, Hugh; Aller, Margo F.; Miller, Jon M.; Brenneman, Laura W.; Fabian, Andrew C.

    2013-08-01

    We present a study of the central engine in the broad-line radio galaxy 3C120 using a multi-epoch analysis of a deep XMM-Newton observation and two deep Suzaku pointings (in 2012). In order to place our spectral data into the context of the disk-disruption/jet-ejection cycles displayed by this object, we monitor the source in the UV/X-ray bands, and in the radio band. We find three statistically acceptable spectral models: a disk-reflection model, a jet model, and a jet+disk model. Despite being good descriptions of the data, the disk-reflection model violates the radio constraints on the inclination, and the jet model has a fine-tuning problem, requiring a jet contribution exceeding that expected. Thus, we argue for a composite jet+disk model. Within the context of this model, we verify the basic predictions of the jet-cycle paradigm, finding a truncated/refilling disk during the Suzaku observations and a complete disk extending down to the innermost stable circular orbit during the XMM-Newton observation. The idea of a refilling disk is further supported by the detection of the ejection of a new jet knot approximately one month after the Suzaku pointings. We also discover a step-like event in one of the Suzaku pointings in which the soft band lags the hard band. We suggest that we are witnessing the propagation of a disturbance from the disk into the jet on a timescale set by the magnetic field.

  8. Photometry of slow X-ray pulsars. II - The 13.9 minute period of X Persei

    NASA Technical Reports Server (NTRS)

    Margon, B.; Thorstensen, J. R.; Bowyer, S.; Mason, K. O.; White, N. E.; Sanford, P. W.; Parkes, G.; Stone, R. P. S.; Bailey, J.

    1977-01-01

    Results are presented for time-resolved narrow-band photometry and spectrophotometry of X Per performed in an unsuccessful effort to confirm previously reported observations of 13.9-min pulsations in the intensity of the He II line at 4686 A. No features that are synchronous with a 13.9-min period are found in the optical data, and simultaneous X-ray observations of 3U 0352+30 are reported which show that a strong 13.9-min X-ray modulation was present during the optical photometry. Some implications of the X-ray periodicities observed for X Per are considered.

  9. Analysis of the Response of CVD Diamond Detectors for UV and sX-Ray Plasma Diagnostics Installed at JET

    NASA Astrophysics Data System (ADS)

    Caiffi, B.; Coffey, I.; Pillon, M.; Osipenko, M.; Prestopino, G.; Ripani, M.; Taiuti, M.; Verona, C.; Verona-Rinati, G.

    Diamond detectors are very promising candidates for plasma diagnostics in a harsh environment. In fact, they have several proprieties which make them suitable for magnetic fusion devices: radiation hardness, high thermal conductivity, high resistivity, high carrier mobility and a large bandgap (5.5 eV). The latter makes them insensitive to visible radiation and allows low noise measurements without any cooling. In 2008 two CVD (Chemical Vapour Deposition) single crystal diamond (SCD) detectors were installed at the JET tokamak as extreme UV and soft X-Ray diagnostics [1]. In this work the neutron background in these detectors was measured shielding the UV and soft X-Ray radiation by closing a local vacuum valve. The UV detector was found to be insensitive to the neutron flux, while the soft X Ray detector signal exhibited spikes during the highest neutron rate pulse (neutron rate 1016n/s, which corresponds to a flux of φn ˜105n/cm2s in the detector location). These spikes were found to be due to the (n,p) reaction within the plastic filter in front of the soft X-Ray detector. The UV SCD was also used to perform time of flight (ToF) measurements in laser ablation experiments. ToFs were found to be an order of magnitude higher than expected if only the drift velocity is considered. This discrepancy could be due to a delay between the arrival time of the impurities in the plasma and their emission in an energy range which SCD is sensitive to (Eph >5.5 eV). The delay is found to be comparable with the expected ionization times for edge plasma conditions.

  10. DISCOVERY OF A KILOPARSEC-SCALE X-RAY/RADIO JET IN THE z = 4.72 QUASAR GB 1428+4217

    SciTech Connect

    Cheung, C. C.; Stawarz, L.; Siemiginowska, A.; Harris, D. E.; Schwartz, D. A.; Gobeille, D.; Wardle, J. F. C.

    2012-09-01

    We report the discovery of a one-sided 3.''6 (24 kpc, projected) long jet in the high-redshift, z = 4.72, quasar GB 1428+4217 in new Chandra X-ray and Very Large Array (VLA) radio observations. This is the highest redshift kiloparsec-scale X-ray/radio jet known. Analysis of archival very long baseline interferometry 2.3 and 8.6 GHz data reveal a faint one-sided jet extending out to {approx}200 pc and aligned to within {approx}30 Degree-Sign of the Chandra/VLA emission. The 3.''6 distant knot is not detected in an archival Hubble Space Telescope image, and its broadband spectral energy distribution is consistent with an origin from inverse Compton scattering of cosmic microwave background photons for the X-rays. Assuming also equipartition between the radiating particles and magnetic field, the implied jet Lorentz factor is Almost-Equal-To 5. This is similar to the other two known z {approx} 4 kpc scale X-ray jet cases and smaller than typically inferred in lower-redshift cases. Although there are still but a few such very high redshift quasar X-ray jets known, for an inverse Compton origin, the present data suggest that they are less relativistic on large scales than their lower-redshift counterparts.

  11. A combined optical and X-ray study of unobscured type 1 active galactic nuclei - II. Relation between X-ray emission and optical spectra

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ward, Martin; Done, Chris

    2012-06-01

    In this second paper in a series of three, we study the properties of the various emission features and underlying continuum in the optical spectra of type 1 active galactic nuclei (AGNs) by using the unobscured hard X-ray emission as a diagnostic. We introduce the use of the 'correlation spectrum technique' (CST) for the first time. We use this to show the strength of the correlation between the hard X-ray luminosity and each wavelength of the optical spectrum. This shows that for broad-line Seyfert 1 galaxies all the strong emission lines (the broad component of Hα and Hβ, [Ne III] λλ3869/3967, [O I] λλ6300/6364, [O II] λλ3726/3729 and [O III] λλ4959/5007) and the optical underlying continuum all strongly correlate with the hard X-ray emission. In contrast, the narrow-line Seyfert 1 galaxies show a stronger correlation in the optical continuum but a weaker correlation in the lines. A cross-correlation with luminosity between the various Balmer line components and the broad-band spectral energy distribution (SED) components shows that the best correlation exists between the hard X-ray component and the broad component (BC) of the Balmer lines. Such a correlation is weaker for the intermediate (IC) and narrow components, which supports the view that the broad-line region (BLR) has the closest link with the AGN's compact X-ray emission. The equivalent widths of the Balmer line IC and BC are found to correlate with ?, ?, Balmer line full width at half-maximum (FWHM) and black hole mass. There is a non-linear dependence of the Balmer line IC and BC luminosities with ? and L5100, which suggests that a second-order factor such as the intermediate-line region (ILR) and BLR covering factors affect the Balmer line component luminosities. The Balmer decrement is found to decrease from ˜5 in the line core to ˜2 in the extended wings, with mean decrements of 2.1 in the BLR and 4.8 in the ILR. This suggests different physical conditions in these regions, such as

  12. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  13. The ROSAT-ESO flux limited X-ray galaxy cluster survey (REFLEX II). I. Newly identified X-ray luminous clusters at z ≥ 0.2

    NASA Astrophysics Data System (ADS)

    Chon, G.; Böhringer, H.

    2012-02-01

    We report 19 intermediate redshift clusters newly detected in the ROSAT All-Sky survey that are spectroscopically confirmed. They form a part of 911 objects in the REFLEX II cluster catalogue with a limiting flux of 1.8 × 10-12 erg/s/cm2 in the 0.1-2.4 keV ROSAT band at redshift z ≥ 0.2. In addition we report three clusters from the REFLEX III supplementary catalogue, which contains objects below the REFLEX II flux limit but satisfies the redshift constraint above. These clusters are spectroscopically followed-up by our ESO NTT-EFOSC2 campaigns for the redshift measurement. We describe our observing and data reduction methods. We show how X-ray properties such as spectral hardness ratio and source extent can be used as important diagnostics in selecting galaxy cluster candidates. Physical properties of the clusters are subsequently calculated from the X-ray observations. This sample contains the high mass and intermediate-redshift galaxy clusters for astrophysical and cosmological applications. Based on the data obtained at the European Southern Observatory, La Silla, Chile.

  14. Single crystal artificial diamond detectors for VUV and soft X-rays measurements on JET thermonuclear fusion plasma

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Pillon, M.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Coffey, I.; Murari, A.; Tartoni, N.; JET-EFDA contributors

    2010-11-01

    Diamond appears to be a promising material for VUV and soft X-ray radiation detection. Its wide band-gap (5.5 eV) results in a very low leakage current (it can operate above room temperature) and its electronic properties (high carrier mobility) allow a fast time response. More importantly, it is optimally suited for harsh environment applications, like those in the JET Tokamak located at the Culham laboratory (UK). Its extreme radiation hardness is well known and another interesting feature, again related to the wide band-gap, is its selective sensitivity to radiation with wavelengths shorter than 225 nm (visible-blind detectors).We report on the performances of two photodetectors based on Chemical Vapor Deposition (CVD) single crystal diamonds, one optimized for extreme UV detection, the other for soft X-ray radiation detection in the 0.8-8 keV range. These detectors have been fabricated at Roma "Tor Vergata" University using a p-type/intrinsic/metal configuration and they behave like photodiodes allowing operation with no external applied voltage. They have been installed on JET inside a vacuum chamber with a direct horizontal view of JET plasma without any wavelength selection. Their low thickness, low sensitivity to gamma ray and the unbiased operation mode make both detectors ideal for a Tokamak environment. The measurements routinely performed at JET show a low intrinsic dark current (˜0.01 pA) and very high signal to noise ratio (50 dB). Both detectors show a fast response and their signals are acquired using an electronic chain and ADC able to operate at 200 kHz, providing very interesting results for MHD and Edge Localized Modes (ELMs) instability studies on fusion plasmas.

  15. Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline

    SciTech Connect

    Simos, N.; Chu, Y. N.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

    2010-08-30

    The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

  16. Complete polarization analysis of an APPLE II undulator using a soft X-ray polarimeter.

    PubMed

    Wang, Hongchang; Bencok, Peter; Steadman, Paul; Longhi, Emily; Zhu, Jingtao; Wang, Zhanshan

    2012-11-01

    Two APPLE II undulators installed on the Diamond I10 beamline have all four magnet arrays shiftable and thus can generate linear polarization at any arbitrary angle from 0° to 180°, as well as all other states of elliptical polarization. To characterize the emitted radiation polarization state from one APPLE II undulator, the complete polarization measurement was performed using a multilayer-based soft X-ray polarimeter. The measurement results appear to show that the linear polarization angle offset is about 6° compared with other measurements at 712 eV, equivalent to an undulator jaw phase offset of 1.1 mm. In addition, the polarization states of various ellipticities have also been measured as a function of the undulator row phase.

  17. Local structure studies of some cobalt (II) complexes using extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Ninama, Samrath; Trivedi, Apurva

    2014-09-01

    Extended X-ray Absorption Fine Structure (EXAFS) analysis of Cobalt (II) complex as a ligand of 2 -methyl-3-[(bis-aniline(R) phenyl]-3H-l,5 benzodiazepine for finding local structure using conventional method .The Co(II) complexes were prepared by chemical root method. The EXAFS spectra were recorded at Cobalt K-edge i.e.; 7709 eV using Dispersive EXFAS beam line at 2.5GeV Indus-2 Synchrotron Radiation Source(SRS) at RRCAT, Indore, India. The recorded EXAFS data were analysed using the computer software Athena for determine the nearest neighbouring distances (bond lengths) of these complexes with conventional methods and it compared with Fourier transform(FT) analysis. The Fourier Transform convert EXAFS data signal into r-space or k-space. This is useful for visualizing the major contributions to the EXAFS spectrum.

  18. A comprehensive long-term study of the radio and X-ray variability of NGC 4051 Paper II

    NASA Astrophysics Data System (ADS)

    Jones, S.; McHardy, I.; Maccarone, T. J.

    2017-02-01

    The origin of the low-luminosity radio emission in radio-quiet active galactic nucleus, is unknown. The detection of a positive correlation between the radio and X-ray emission would imply a jet-like origin, similar to that seen in 'hard-state' X-ray binary systems. In our previous work, we found no believable radio variability in the well-known X-ray bright Seyfert 1 galaxy NGC 4051, despite large amplitude X-ray variability. In this study, we have carefully re-analysed radio and X-ray observations using the same methods as our previous work; we again find no evidence for core radio variability. In direct contrast to our findings, another study claim significant radio variability and a distinctive anticorrelation between radio and X-ray data for the same source. The other study report only integral flux values and do not consider the effect of the changing array on the synthesized beam. In both our studies of NGC 4051, we have taken great care to account for the effect that the changing beam size has on the measured radio flux and as a result we are confident that our method gives more accurate values for the intrinsic core radio flux. However, the lack of radio variability we find is hard to reconcile because radio images of NGC 4051 do show jet-like structure. We suggest that the radio structures observed are likely the result of a previous period of higher radio activity and that the current level of radio emission from a compact nuclear jet is low.

  19. The observed characteristics of flare energy release. II - High-speed soft X-ray fronts

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Xiao, Y. C.; Wu, S. T.; Prokakis, TH.; Dialetis, D.

    1988-01-01

    Flare-associated large-scale brightenings of magnetic loop structures have recently been shown to be related to the propagation of soft X-ray fronts, moving at speeds of the order of 1000 km/s. These are also linked with the brightening of remote H-alpha patches and, in many cases, with type II or U radio emission. A detailed study of the best example found in the Solar Maximum Mission's Hard X-ray Imaging Spectrometer data was performed and with the help of numerical simulations and additional information provided by H-alpha records, it is shown that all together the three energy transport processes proposed by previous authors, namely high-energy particles, conduction fronts, and shocks, play significant roles in the redistribution of flare energy within the loops. The observable evidence of thermal flux limitation and the implication of these and previous results on the efficiency ratio between thermal and nonthermal processes in flares are discussed. Finally, these results are placed under the perspective of the interacting loop model of flares discussed in previous papers, to show that only about 10 percent of the total energy conversion occurs at the interface between loops. The bulk of the flare energy seems to be released internally within one of the bipolar loop structures.

  20. The observed characteristics of flare energy release. II - High-speed soft X-ray fronts

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Xiao, Y. C.; Wu, S. T.; Prokakis, TH.; Dialetis, D.

    1988-01-01

    Flare-associated large-scale brightenings of magnetic loop structures have recently been shown to be related to the propagation of soft X-ray fronts, moving at speeds of the order of 1000 km/s. These are also linked with the brightening of remote H-alpha patches and, in many cases, with type II or U radio emission. A detailed study of the best example found in the Solar Maximum Mission's Hard X-ray Imaging Spectrometer data was performed and with the help of numerical simulations and additional information provided by H-alpha records, it is shown that all together the three energy transport processes proposed by previous authors, namely high-energy particles, conduction fronts, and shocks, play significant roles in the redistribution of flare energy within the loops. The observable evidence of thermal flux limitation and the implication of these and previous results on the efficiency ratio between thermal and nonthermal processes in flares are discussed. Finally, these results are placed under the perspective of the interacting loop model of flares discussed in previous papers, to show that only about 10 percent of the total energy conversion occurs at the interface between loops. The bulk of the flare energy seems to be released internally within one of the bipolar loop structures.

  1. X-RAY SPECTRAL STATE IS NOT CORRELATED WITH LUMINOSITY IN HOLMBERG II X-1

    SciTech Connect

    Grise, F.; Kaaret, P.; Feng, H.; Kajava, J. J. E.; Farrell, S. A.

    2010-12-01

    The ultraluminous X-ray source (ULX) Holmberg II X-1 has been observed over four months in 2009/2010 by the Swift observatory. The source luminosity varied by a factor of up to 14, reaching a maximum 0.3-10 keV luminosity of {approx}3.0 x 10{sup 40} erg s{sup -1}. The spectral properties do not vary much over these four months, with only a slight monotonic increase of the hardness ratio with the count rate. This means that the erratic flaring activity of the source is not associated with spectral changes, as seen in other ULXs. Conversely, comparison with data obtained by Swift in 2006 shows a completely different picture: while at a luminosity also seen in the 2009/2010 data, the source appears with a hard spectrum. Thus, it appears that, as in Galactic black hole binaries, spectral states in this ULX are not determined only by the X-ray luminosity.

  2. Small-angle x-ray scattering studies of the manganese stabilizing subunit in photosystem II.

    SciTech Connect

    Svensson, B.; Tiede, D. M.; Barry, B. A.; Univ. of Minnesota

    2002-08-29

    Small-angle X-ray scattering studies (SAXS) were used to determine the size, shape, and oligomeric composition of the manganese stabilizing protein (MSP) of photosystem II. This extrinsic protein subunit plays an important role in photosynthetic oxygen evolution. As its name implies, MSP stabilizes the tetranuclear Mn cluster of the water oxidation complex. Removal of MSP lowers activity and decreases the stability of active-site manganese. Reconstitution of MSP reverses these effects. In this study, MSP was extracted from spinach PSII membranes using CaCl{sub 2} or urea. Through the use of MALDI-TOF mass spectrometry, the molecular weight of MSP was determined to be 26.53 kDa. X-ray scattering results show that both samples display a monodisperse scattering pattern; this pattern is consistent with a homogeneous protein solution. The CaCl{sub 2} extracted and urea extracted MSP samples have radii of gyration of 25.9 {+-} 0.4 and 27.0 {+-} 0.01 {angstrom}, respectively. MSP is shown to be monomeric in solution. This was determined using a cytochrome c standard and the scattering intensity, extrapolated to zero scattering angle, which is proportional to the molecular weight. This SAXS study suggests that, in solution, MSP is a monomeric, elongated prolate ellipsoid with dimensions, 112 x 23 x 23 {angstrom}{sup 3} and an axial ratio of 4.8.

  3. Extended X-ray absorption studies of copper (II) dibenzoyal methane diquinoline complexes

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Sharma, P.; Malviya, P. K.

    2013-06-01

    X-ray K-absorption spectroscopic studies have been carried out on copper (II) mixed-ligand complexes. Copper is a transition metal, which in the zero oxidation state has an electron configuration of [Ar] 4s24p63d9. Copper is found in three different oxidation states: Cu(I), Cu(II), and Cu(III). In the copper (II) oxidation state, the metal has 9 d electrons. Jahn-Teller distortion causes a splitting of eg and t2g orbitals. Most Cu(II) complexes are square planar for this reason. In a series of those compounds, we have prepared copper (II) complexes containing two nitrato ligands and a 2,2'-dipyridylamine(dpa) derivative ligand. The 2,2' - dipyridylamine and its derivatives have been widely used for metal complexes because of their good chelating property, structural flexibility. we have estimated the average metalligand bond distances from the fine structure data. We have determined the bond lengths for the copper (II) complexes with the help of Levy's, LSS, Fourier transform, Lytle's Methods.

  4. The 2015 Decay of the Black Hole X-Ray Binary V404 Cygni: Robust Disk-jet Coupling and a Sharp Transition into Quiescence

    NASA Astrophysics Data System (ADS)

    Plotkin, R. M.; Miller-Jones, J. C. A.; Gallo, E.; Jonker, P. G.; Homan, J.; Tomsick, J. A.; Kaaret, P.; Russell, D. M.; Heinz, S.; Hodges-Kluck, E. J.; Markoff, S.; Sivakoff, G. R.; Altamirano, D.; Neilsen, J.

    2017-01-01

    We present simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cygni at the end of its 2015 outburst. From 2015 July 11–August 5, we monitored V404 Cygni with Chandra, Swift, and NuSTAR in the X-ray, and with the Karl G. Jansky Very Large Array and the Very Long Baseline Array in the radio, spanning a range of luminosities that were poorly covered during its previous outburst in 1989 (our 2015 campaign covers 2× {10}33≲ {L}{{X}}≲ {10}34 {erg} {{{s}}}-1). During our 2015 campaign, the X-ray spectrum evolved rapidly from a hard photon index of {{Γ }}≈ 1.6 (at {L}{{X}}≈ {10}34 {erg} {{{s}}}-1) to a softer {{Γ }}≈ 2 (at {L}{{X}}≈ 3× {10}33 {erg} {{{s}}}-1). We argue that V404 Cygni reaching {{Γ }}≈ 2 marks the beginning of the quiescent spectral state, which occurs at a factor of ≈3–4 higher X-ray luminosity than the average pre-outburst luminosity of ≈ 8× {10}32 {erg} {{{s}}}-1. V404 Cygni falls along the same radio/X-ray luminosity correlation that it followed during its previous outburst in 1989, implying a robust disk-jet coupling. We exclude the possibility that a synchrotron-cooled jet dominates the X-ray emission in quiescence, leaving synchrotron self-Compton from either a hot accretion flow or from a radiatively cooled jet as the most likely sources of X-ray radiation, and/or particle acceleration along the jet becoming less efficient in quiescence. Finally, we present the first indications of correlated radio and X-ray variability on minute timescales in quiescence, tentatively measuring the radio emission to lag the X-ray by 15+/- 4 minute, suggestive of X-ray variations propagating down a jet with a length of <3.0 au.

  5. A setup for synchrotron-radiation-induced total reflection X-ray fluorescence and X-ray absorption near-edge structure recently commissioned at BESSY II BAMline.

    PubMed

    Fittschen, U; Guilherme, A; Böttger, S; Rosenberg, D; Menzel, M; Jansen, W; Busker, M; Gotlib, Z P; Radtke, M; Riesemeier, H; Wobrauschek, P; Streli, C

    2016-05-01

    An automatic sample changer chamber for total reflection X-ray fluorescence (TXRF) and X-ray absorption near-edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF-XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml(-1) to µg ml(-1)). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml(-1)) for Ni were found. TXRF-XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state.

  6. Simulation of a He II Lyman-alpha soft x-ray laser pumped by DESY/XFEL radiation

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Fill, Ernst E.; Meyer-ter-Vehn, Jurgen

    2003-12-01

    The high brilliance expected from the X-ray Free-Electron Lasers (XFEL"s) now under construction suggest re-investigating the feasibility of a photopumped soft X-ray laser. We present simulations of a Lyman-α X-ray laser in hydrogenic He (λ = 30.4 nm) pumped by XFEL radiation with parameters of the TESLA Test Facility, phase II, at DESY/Hamburg. The simulations show that high gain can be achieved at a pump intensity of 1015 W/cm2. The realization of such a laser could provide a better understanding of the physics of photopumped lasers and thus help to develop table-top X-ray lasers.

  7. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics

    SciTech Connect

    Dizière, A.; Pelka, A.; Ravasio, A.; Yurchak, R.; Loupias, B.; Falize, E.; Kuramitsu, Y.; Sakawa, Y.; Morita, T.; Pikuz, S.; Koenig, M.

    2015-01-15

    In this paper, we present experimental results obtained on the LULI2000 laser facility regarding structure and dynamics of astrophysical jets propagating in interstellar medium. The jets, generated by using a cone-shaped target, propagate in a nitrogen gas that mimics the interstellar medium. X-ray radiography as well as optical diagnostics were used to probe both high and low density regions. In this paper, we show how collimation of the jets evolves with the gas density.

  8. Resonant L{sub II,III} x-ray Raman scattering from HCl

    SciTech Connect

    Saathe, C.; Rubensson, J.-E.; Nordgren, J.; Guimaraes, F. F.; Agui, A.; Guo, J.; Ekstroem, U.; Norman, P.; Gel'mukhanov, F.; Aagren, H.

    2006-12-15

    We have studied the spectral features of Cl L{sub II,III} resonant x-ray Raman scattering of HCl molecules in gas phase both experimentally and theoretically. The theory, formulated in the intermediate-coupling scheme, takes into account the spin-orbital and molecular-field splittings in the Cl 2p shells, as well as the Coulomb interaction of the core hole with unoccupied molecular orbitals. Experiment and theory display nondispersive dissociative peaks formed by decay transitions in both molecular and dissociative regions. The molecular and atomic peaks collapse in a single narrow resonance because the dissociative potentials of core-excited and final states are parallel to each other along the whole pathway of the nuclear wave packet.

  9. The sub-micron resolution X-ray spectroscopy beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    De Andrade, V.; Thieme, J.; Northrup, P.; Yao, Y.; Lanzirotti, A.; Eng, P.; Shen, Q.

    2011-09-01

    For many research areas such as life, environmental, earth or material sciences, novel analytical resources have to be developed for an advance understanding of complex natural and engineered systems that are heterogeneous on the micron to the tenths of microns scale. NSLS-II at BNL will be a synchrotron radiation source with an ultra-high brilliance delivering a high current (500 mA). One of the 1st six NSLS-II beamlines will be the Sub-micron Resolution X-ray spectroscopy beamline (SRX), dedicated as an analytical tool to study complex systems on a sub-micron length scale. SRX will comprise two branches thanks to a canted setup with two undulators: the first branch using Kirkpatrick-Baez mirrors as focusing optics will cover the energy range of 4.65-23 keV, allowing for XANES experiments from the Ti to the Rh K-edge. Thanks to a horizontally deflecting double crystal monochromator with maximum stability, a set of slits located on the secondary source, and two sets of complementary and quickly interchangeable KB mirrors, spectroscopy with very high spectral and spatial resolution will be achieved. The spot size will almost fully cover a range from 60×60 to 1300×500 nm 2, providing an attractive adaptability of the observation scale. A 1.5 m long IVU21 will serve as a light source. The expected high flux in a sub-micron-spot (5×10 12 and 7×10 13 ph s -1 at maximum and lowest resolutions) will open new possibilities for spectromicroscopy of trace elements. The 2nd canted undulator will serve as an independent light source for the second branch designed for experiments with X-ray energies in the range of 2-15 keV. Using Fresnel zone plates, the spatial resolution aimed for is around 30 nm with up to 7×10 9 ph s -1 in the spot. This branch would be attractive for many biological applications from life and environmental science due to low-Z elements of interest within that energy range. In both experimental stations, X-ray fluorescence will be used for imaging

  10. Completing a Flux-limited Survey for X-ray Emission from Radio Jets

    NASA Astrophysics Data System (ADS)

    Marshall, Herman

    2009-07-01

    We will measure the changing flow speeds, magnetic fields, and energy fluxes in well-resolved quasar jets found in our short-exposure Chandra survey by combining new, deep Chandra data with radio and optical imaging. We will image each jet with sufficient sensitivity to estimate beaming factors and magnetic fields in several distinct regions, and so map the variations in these parameters down the jets. HST observations will help diagnose the role of synchrotron emission in the overall SED, and may reveal condensations on scales less than 0.1 arcsec.

  11. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  12. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  13. Liquid-Jet X-ray Photoelectron Spectra of TiO(2) Nanoparticles in an Aqueous Electrolyte Solution.

    PubMed

    Makowski, Michael J; Galhenage, Randima P; Langford, Joel; Hemminger, John C

    2016-05-05

    Titania has attracted significant interest due to its broad catalytic applications, many of which involve titania nanoparticles in contact with aqueous electrolyte solutions. Understanding the titania nanoparticle/electrolyte interface is critical for the rational development of such systems. Here, we have employed liquid-jet ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to investigate the solid/electrolyte interface of 20 nm diameter TiO2 nanoparticles in 0.1 M aqueous nitric acid solution. The Ti 2p line shape and absolute binding energy reflect a fully oxidized stoichiometric titania lattice. Further, by increasing the X-ray excitation energy, the difference in O 1s binding energies between that of liquid water (O 1sliq) and the titania lattice (O 1slat) oxygen was measured as a function of probe depth into the particles. The titania lattice, O 1slat, binding energy decreases by 250 meV when probing from the particle surface into the bulk. This is interpreted as downward band bending at the interface.

  14. The Large-Scale, Decelerating X-ray Jets from the Microquasar Xte J1550-564: Evidence for External Shocks Caused by the Jet-Ism Interaction?

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dai, Z. G.; Lu, T.

    2005-06-01

    Large-scale, decelerating, relativistic X-ray jets from microquasar XTE J1550-564 has been recently discovered with Chandra by Corbel et al. (2002). We find that the dynamical evolution of the approaching jet at the late time is consistent with the well-known Sedov evolutionary phase R∝ t 2/5. A trans-relativistic external shock dynamic model by analogy with the evolution of gamma-ray burst remnants, is shown to be able to fit the proper-motion data of the approaching jet reasonably well. The inferred interstellar medium density around the source is well below the canonical value n ISM˜1 cm-3. The rapidly fading X-ray emission can be interpreted as synchrotron radiation from the non-thermal electrons in the adiabatically expanding ejecta. These electrons were accelerated by the reverse shock (moving back into the ejecta) which becomes important when the inertia of the swept external matter leads to an appreciable slowing down of the original ejecta.

  15. The Large-Scale, Decelerating X-Ray Jets from the Microquasar XTE J1550—564: Evidence for External Shocks Caused by the Jet-Ism Interaction?

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dai, Z. G.; Lu, T.

    Large-scale, decelerating, relativistic X-ray jets from microquasar XTE J1550—564 has been recently discovered with Chandra by Corbel et al. (2002). We find that the dynamical evolution of the approaching jet at the late time is consistent with the well-known Sedov evolutionary phase R ∝ t2/5. A trans-relativistic external shock dynamic model by analogy with the evolution of gammaray burst remnants, is shown to be able to fit the proper-motion data of the approaching jet reasonably well. The inferred interstellar medium density around the source is well below the canonical value nISM ˜ 1 cm-3. The rapidly fading X-ray emission can be interpreted as synchrotron radiation from the non-thermal electrons in the adiabatically expanding ejecta. These electrons were accelerated by the reverse shock (moving back into the ejecta) which becomes important when the inertia of the swept external matter leads to an appreciable slowing down of the original ejecta.

  16. Jets, hotspots and lobes: what X-ray observations tell us about extra-galactic radio sources.

    PubMed

    Hardcastle, Martin J

    2005-12-15

    The brightest and most numerous discrete radio sources in the sky, radio galaxies and quasars, are powered by twin jets of plasma which emerge at relativistic speeds from very small regions at the centre of large elliptical galaxies, powered by mass infall on to supermassive black holes. The jets can carry material out to very large distances (millions of light years) where it forms balloon-like lobes. Until recently it has been impossible to make definite statements about the energy or the nature of the matter supplied by the jets, or the dynamics of the lobes as they expand into the external medium. This has meant that crucial questions about the generation of radio sources and their effect on their environment have gone unanswered. The situation has been revolutionized by the launch at the start of this decade of a new generation of X-ray observatories, Chandra and XMM-Newton. In this article, I explain why observations with these instruments have made such a difference, what we have learned as a result and why the community remains divided on some important features of the interpretation of the data.

  17. FERMI RULES OUT THE INVERSE COMPTON/CMB MODEL FOR THE LARGE-SCALE JET X-RAY EMISSION OF 3C 273

    SciTech Connect

    Meyer, Eileen T.; Georganopoulos, Markos

    2014-01-10

    The X-ray emission mechanism in large-scale jets of powerful radio quasars has been a source of debate in recent years, with two competing interpretations: either the X-rays are of synchrotron origin, arising from a different electron energy distribution than that producing the radio to optical synchrotron component, or they are due to inverse Compton scattering of cosmic microwave background photons (IC/CMB) by relativistic electrons in a powerful relativistic jet with bulk Lorentz factor Γ ∼ 10-20. These two models imply radically different conditions in the large-scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the large-scale environment. A large part of the X-ray origin debate has centered on the well-studied source 3C 273. Here we present new observations from Fermi which put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that violates at a confidence greater that 99.9% the flux expected from the IC/CMB X-ray model found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source when combined with previous work. Further, this upper limit from Fermi puts a limit on the Doppler beaming factor of at least δ < 9, assuming equipartition fields, and possibly as low as δ < 5, assuming no major deceleration of the jet from knots A through D1.

  18. Toward steering a jet of particles into an x-ray beam with optically induced forces

    NASA Astrophysics Data System (ADS)

    Eckerskorn, Niko; Bowman, Richard; Kirian, Richard A.; Awel, Salah; Wiedorn, Max; Küpper, Jochen; Padgett, Miles J.; Chapman, Henry N.; Rode, Andrei V.

    2015-08-01

    Optical trapping of light-absorbing particles in a gaseous environment is governed by a laser-induced photophoretic force, which can be orders of magnitude stronger than the force of radiation pressure induced by the same light intensity. In spite of many experimental studies, the exact theoretical background underlying the photophoretic force and the prediction of its influence on the particle motion is still in its infancy. Here, we report the results of a quantitative analysis of the photophoretic force and the stiffness of trapping achieved by levitating graphite and carbon-coated glass shells of calibrated sizes in an upright diverging hollow-core vortex beam, which we refer to as an `optical funnel'. The measurements of forces were conducted in air at various gas pressures in the range from 5 mbar to 2 bar. The results of these measurements lay the foundation for developing a touch-free optical system for precisely positioning sub-micrometer bioparticles at the focal spot of an x-ray free electron laser, which would significantly enhance the efficiency of studying nanoscale morphology of proteins and biomolecules in femtosecond coherent diffractive imaging experiments.

  19. X-ray studies of quasars with the Einstein Observatory. II

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.

    1981-01-01

    X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.

  20. VLA observations of a complete sample of extragalactic X-ray sources. II

    NASA Technical Reports Server (NTRS)

    Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.

    1983-01-01

    A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.

  1. X-ray and UV radiation from accreting nonmagnetic degenerate dwarfs. II

    NASA Technical Reports Server (NTRS)

    Kylafis, N. D.; Lamb, D. Q.

    1982-01-01

    Numerical calculations of X-ray and UV emission from accreting nonmagnetic degenerate dwarfs are reported, which span the entire range of accretion rates and stellar masses. Calculations include the effects of bremsstrahlung, Compton cooling, radiation pressure, albedo of the stellar surface, Compton degradation and free-free abscription of the X-ray spectrum by the accreting matter. Maximum X-ray luminosity for degenerate dwarfs undergoing spherical accretion is found to be 2.2 x 10 to the 36th ergs/s, which is little changed if accretion occurs radially over only a fraction of the stellar surface, so that the emitted radiation escapes without significant scattering. The temperature characterizing the X-ray spectra produced by degenerate dwarfs strongly depends on the stellar mass and the accretion rate, and it is suggested that the correlation between spectral temperature and luminosity is an important signature of degenerate X-ray sources.

  2. ATP Dependent Rotational Motion of Group II Chaperonin Observed by X-ray Single Molecule Tracking

    PubMed Central

    Sekiguchi, Hiroshi; Nakagawa, Ayumi; Moriya, Kazuki; Makabe, Koki; Ichiyanagi, Kouhei; Nozawa, Shunsuke; Sato, Tokushi; Adachi, Shin-ichi; Kuwajima, Kunihiro; Yohda, Masafumi; Sasaki, Yuji C.

    2013-01-01

    Group II chaperonins play important roles in protein homeostasis in the eukaryotic cytosol and in Archaea. These proteins assist in the folding of nascent polypeptides and also refold unfolded proteins in an ATP-dependent manner. Chaperonin-mediated protein folding is dependent on the closure and opening of a built-in lid, which is controlled by the ATP hydrolysis cycle. Recent structural studies suggest that the ring structure of the chaperonin twists to seal off the central cavity. In this study, we demonstrate ATP-dependent dynamics of a group II chaperonin at the single-molecule level with highly accurate rotational axes views by diffracted X-ray tracking (DXT). A UV light-triggered DXT study with caged-ATP and stopped-flow fluorometry revealed that the lid partially closed within 1 s of ATP binding, the closed ring subsequently twisted counterclockwise within 2–6 s, as viewed from the top to bottom of the chaperonin, and the twisted ring reverted to the original open-state with a clockwise motion. Our analyses clearly demonstrate that the biphasic lid-closure process occurs with unsynchronized closure and a synchronized counterclockwise twisting motion. PMID:23734192

  3. Characterising the local void with the X-ray cluster survey REFLEX II

    NASA Astrophysics Data System (ADS)

    Collins, Chris A.; Böhringer, Hans; Bristow, Martyn; Chon, Gayoung

    2016-10-01

    Claims of a significant underdensity or void in the density distribution on scales out to ~= 300 Mpc have recently been made using samples of galaxies. We present the results of an alternative test of the matter distribution on these scales using clusters of galaxies, which provide an independent and powerful probe of large-scale structure. We study the density distribution of X-ray clusters from the ROSAT-based REFLEX II catalogue, which covers a contiguous area of 4.24 steradians in the southern hempsphere (34% of the entire sky). Using the normalised comoving number density of clusters we find evidence for an underdensity (30-40%), out to z~ 0.04, equivalent to ~=170 Mpc and with a significance of 3.4σ. On scales between 300 Mpc and 1 Gpc the distribution of REFLEX II clusters is consistent with being uniform. We also confirm recent results that the underdensity has a large contribution from the direction of the South Galactic Cap region, but is not significant in the direction of the Northern Galactic Cap as viewed from the southern sky. Both the limited size of the detected underdensity and its lack of isotropy, argue against the idea that the Type Ia supernovae data can be explained without the need for dark energy.

  4. UV and X-ray Evolution of AR12230 as Observed with IRIS and FOXSI-II

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Christe, Steven; Glesener, Lindsay; Vievering, Julie; Krucker, Sam; Ishikawa, Shin-Nosuke

    2017-08-01

    We present a multi-spectral and spatio-temporal analysis of AR12230 using both UV and X-ray spectroscopic imaging obtained as part of a coordinated observing campaign on 11 December 2014. The campaign involved IRIS (Interface Region Imaging Spectrometer) -- which provides both UV imaging and slit spectrograph observations of optically thick chromospheric and transition region emission -- and FOXSI-II (Focusing Optics X-ray Solar Imager) -- the second in a series of sounding rocket flights which combines grazing incidence direct focusing optics to produce solar X-ray spectroscopic imaging in the range 4-15keV. The active region exhibits a prolonged compact brightening in the IRIS 1330 A and 1400 A slit-jaw channels near the center of the active region throughout the duration of the observations. In the early phase of the observations FOXSI-II shows an X-ray source approximately 20x20 arcsec centered at the same location. The X-ray spectra show the presence of hot (~8 MK) thermal plasma and is suggestive of the presence of non-thermal electrons.. Later, two additional transient, spatially extended, simultaneous brightenings are observed, one of which was captured by the IRIS slit spectrograph. We combine these observations to explore the evolution and topology of the active region. Hydrodynamic modeling of the chromosphere is used to place a limit on the amount of non-thermal electrons required to produce the observed UV emission. This result is then compared to the limit inferred from the FOXSI-II X-ray spectra. Thus, we explore the role of non-thermal electrons and hydrodynamics in the energization and evolution of plasma in active regions.

  5. Discovery of the correlation between peak episodic jet power and X-ray peak luminosity of the soft state in black hole transients

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yu, W.

    2015-08-01

    Episodic jets are usually observed in the intermediate state of black hole transients during their X-ray outbursts. Here we report the discovery of a strong positive correlation between the peak radio power of the episodic jet Pjet and the corresponding peak X-ray luminosity Lx of the soft state (in Eddington units) in a complete sample of the outbursts of black hole transients observed during the RXTE era of which data are available, which follows the relation log Pjet = (2.2 ± 0.3) + (1.6 ± 0.2) × log Lx. The transient ultraluminous X-ray source in M31 and HLX-1 in EXO 243-49 fall on the relation if they contain stellar-mass black hole and either stellar-mass black hole or intermediate-mass black hole, respectively. Besides, a significant correlation between the peak power of the episodic jet and the rate of increase of the X-ray luminosity dLx/dt during the rising phase of those outbursts is also found, following log Pjet = (2.0 ± 0.4) + (0.7 ± 0.2) × log dLx/dt. In GX 339-4 and H 1743-322 in which data for two outbursts are available, measurements of the peak radio power of the episodic jet and the X-ray peak luminosity (and its rate of change) shows similar positive correlations between outbursts, which demonstrate the dominant role of accretion over black hole spin in generating episodic jet power. On the other hand, no significant difference is seen among the systems with different measured black hole spin in current sample. This implies that the power of the episodic jet is strongly affected by non-stationary accretion instead of black hole spin characterized primarily by the rate of change of the mass accretion rate.

  6. A new generation of x-ray spectrometry UHV instruments at the SR facilities BESSY II, ELETTRA and SOLEIL

    SciTech Connect

    Lubeck, J. Fliegauf, R.; Holfelder, I.; Hönicke, P.; Müller, M.; Pollakowski, B.; Ulm, G.; Weser, J.; Beckhoff, B.; Bogovac, M.; Kaiser, R. B.; Karydas, A. G.; Leani, J. J.; Migliori, A.; Sghaier, H.; Boyer, B.; Lépy, M. C.; Ménesguen, Y.; Detlefs, B.; Eichert, D.; and others

    2016-07-27

    A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors such as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.

  7. Segal crystallinity index revisited by the simulation of x-ray diffraction patterns of cotton cellulose IB and cellulose II

    USDA-ARS?s Scientific Manuscript database

    The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...

  8. X-Ray diffraction and Fourier transformation infrared spectroscopy studies of copper (II) thiourea chloro and sulphate complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika; Malviya, Pramod

    2014-09-01

    Copper (II) thiourea complexes were synthesized by chemical route method. To analyze the samples, X-Ray diffraction and Fourier transformation infrared spectroscopy method have been used. XRD analysis shows that sample is crystalline in nature and having particle size in the range of nanometres. FTIR spectroscopy shows the organic and inorganic compounds present in the sample. The X-ray diffraction pattern (XRD) using Bruker D-8 advance instrument and Infrared spectra of the complexes were obtained by KBr disc technique by using VERTEX 70 (Bruker).

  9. Soft-x-ray-induced spin-state switching of an adsorbed Fe(II) spin-crossover complex

    NASA Astrophysics Data System (ADS)

    Kipgen, Lalminthang; Bernien, Matthias; Nickel, Fabian; Naggert, Holger; Britton, Andrew J.; Arruda, Lucas M.; Schierle, Enrico; Weschke, Eugen; Tuczek, Felix; Kuch, Wolfgang

    2017-10-01

    For probing the nature of spin-state switching in spin-crossover molecules adsorbed on surfaces, x-ray absorption spectroscopy has emerged as a powerful tool due to its high sensitivity and element selectivity in tracing even subtle electronic, magnetic, or chemical changes. However, the x-rays itself can induce a spin transition and might have unwanted influence while investigating the effect of other stimuli such as temperature or light, or of the surface, on the spin switching behaviour. Herein, we present the spin switching of an Fe(II) complex adsorbed on a highly oriented pyrolytic graphite surface with particular emphasis on the x-ray-induced switching. For a submonolayer coverage, the complex undergoes a complete and reversible temperature- and light-induced spin transition. The spin states are switched both ways by x-rays at 5 K, i.e. from the high-spin state to the low-spin state or vice versa, depending on the relative amount of each species. Furthermore, we quantify the fraction of molecules undergoing soft x-ray-induced photochemistry, a process which results in an irreversible low-spin state component, for a particular exposure time. This can be greatly suppressed by reducing the beam intensity.

  10. Soft-x-ray-induced spin-state switching of an adsorbed Fe(II) spin-crossover complex.

    PubMed

    Kipgen, Lalminthang; Bernien, Matthias; Nickel, Fabian; Naggert, Holger; Britton, Andrew J; Arruda, Lucas M; Schierle, Enrico; Weschke, Eugen; Tuczek, Felix; Kuch, Wolfgang

    2017-10-04

    For probing the nature of spin-state switching in spin-crossover molecules adsorbed on surfaces, x-ray absorption spectroscopy has emerged as a powerful tool due to its high sensitivity and element selectivity in tracing even subtle electronic, magnetic, or chemical changes. However, the x-rays itself can induce a spin transition and might have unwanted influence while investigating the effect of other stimuli such as temperature or light, or of the surface, on the spin switching behaviour. Herein, we present the spin switching of an Fe(II) complex adsorbed on a highly oriented pyrolytic graphite surface with particular emphasis on the x-ray-induced switching. For a submonolayer coverage, the complex undergoes a complete and reversible temperature- and light-induced spin transition. The spin states are switched both ways by x-rays at 5 K, i.e. from the high-spin state to the low-spin state or vice versa, depending on the relative amount of each species. Furthermore, we quantify the fraction of molecules undergoing soft x-ray-induced photochemistry, a process which results in an irreversible low-spin state component, for a particular exposure time. This can be greatly suppressed by reducing the beam intensity.

  11. Chemical Processes in Protoplanetary Disks. II. On the Importance of Photochemistry and X-Ray Ionization

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Nomura, Hideko; Millar, T. J.; Aikawa, Yuri

    2012-03-01

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO+, N2H+, H2O, CO2, and CH3OH. The only molecule significantly affected by the X-ray ionization is N2H+, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H2 and C+/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable "dead zone" where accretion is suppressed, present in a layer, Z/R <~ 0.1-0.2, in the disk midplane, within R ≈ 200 AU.

  12. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko; Aikawa, Yuri

    2012-03-10

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO{sup +}, N{sub 2}H{sup +}, H{sub 2}O, CO{sub 2}, and CH{sub 3}OH. The only molecule significantly affected by the X-ray ionization is N{sub 2}H{sup +}, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H{sub 2} and C{sup +}/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable 'dead zone' where accretion is suppressed, present in a layer, Z/R {approx}< 0.1-0.2, in the disk midplane, within R Almost-Equal-To 200 AU.

  13. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  14. Chandra X-ray Observations of Young Clusters. Volume II; Orion Flanking Fields Data

    NASA Technical Reports Server (NTRS)

    Ramirez, Solange V.; Rebull, Luisa; Stauffer, John; Strom, Stephen; Hillenbrand, Lynne; Hearty, Thomas; Kopan, Eugene L.; Pravdo, Steven; Makidon, Russell; Jones, Burton

    2004-01-01

    We present results of Chandra observations of two flanking fields (FFs) in Orion, outside the Orion Nebula Cluster (ONC). The observations were taken with the ACIS-I camera with an exposure time of about 48 ks each field. We present a catalog of 417 sources, which includes X-ray luminosity, optical and infrared photometry, and X-ray variability information. We have found 91 variable sources, 33 of which have a flarelike light curve and 11 of which have a pattern of a steady increase or decrease over a 10 hr period. The optical and infrared photometry for the stars identified as X-ray sources are consistent with most of these objects being pre-main-sequence stars with ages younger than 10 Myr. We present evidence for an age difference among the X-ray-selected samples of NGC 2264, Orion FFs, and ONC, with NGC 2264 being the oldest and ONC being the youngest.

  15. Chandra X-ray Observations of Young Clusters. Volume II; Orion Flanking Fields Data

    NASA Technical Reports Server (NTRS)

    Ramirez, Solange V.; Rebull, Luisa; Stauffer, John; Strom, Stephen; Hillenbrand, Lynne; Hearty, Thomas; Kopan, Eugene L.; Pravdo, Steven; Makidon, Russell; Jones, Burton

    2004-01-01

    We present results of Chandra observations of two flanking fields (FFs) in Orion, outside the Orion Nebula Cluster (ONC). The observations were taken with the ACIS-I camera with an exposure time of about 48 ks each field. We present a catalog of 417 sources, which includes X-ray luminosity, optical and infrared photometry, and X-ray variability information. We have found 91 variable sources, 33 of which have a flarelike light curve and 11 of which have a pattern of a steady increase or decrease over a 10 hr period. The optical and infrared photometry for the stars identified as X-ray sources are consistent with most of these objects being pre-main-sequence stars with ages younger than 10 Myr. We present evidence for an age difference among the X-ray-selected samples of NGC 2264, Orion FFs, and ONC, with NGC 2264 being the oldest and ONC being the youngest.

  16. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Sasaki, Manami; Drake, Jeremy J.; Plucinsky, Paul P.; Laycock, Silas

    2017-09-01

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg2 region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity (L X ) of the pulsars ranges from 1034 to 1037 erg s‑1 at 60 kpc. All of the Chandra sources with L X ≳ 4 × 1035 erg s‑1 exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  17. Palladium(II) complex with thiazole containing tridentate ONN donor ligand: Synthesis, X-ray structure and DFT computation

    NASA Astrophysics Data System (ADS)

    Biswas, Sujan; Pramanik, Ajoy Kumar; Mondal, Tapan Kumar

    2015-05-01

    New palladium(II) complex with 2-(2-thiazolyl)-4-methylphenol (TAC) having general formula [Pd(TAC)Cl) (1) has been synthesized and characterized. The complex has been characterized by various spectroscopic techniques. Single crystal X-ray structure shows distorted square planar geometry around palladium(II). Cyclic voltammetric studies shows ligand based irreversible oxidation and reduction peaks. The electronic structure, redox properties and electronic excitations in the complex are interpreted by DFT and TDDFT calculations.

  18. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  19. Ultra-luminous X-Ray Sources in HARO II and the Role of X-Ray Binaries in Feedback in Lyα Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Prestwich, A. H.; Jackson, F.; Kaaret, P.; Brorby, M.; Roberts, T. P.; Saar, S. H.; Yukita, M.

    2015-10-01

    Lyman Break Analogs (LBAs) are local proxies of high-redshift Lyman Break Galaxies. Spatially resolved studies of nearby starbursts have shown that Lyman continuum and line emission are absorbed by dust and that the Lyα is resonantly scattered by neutral hydrogen. In order to observe Lyα emission from star-forming regions, some source of feedback is required to blow the neutral gas away from the starburst to prevent scattering and allow the Lyα emission to escape. We show that there are two X-ray point sources embedded in the diffuse emission of the LBA galaxy Haro 11. CXOU J003652.4-333316 (abbreviated to Haro 11 X-1) is an extremely luminous (L{}{{X}}˜ {10}41 erg s-1), spatially compact source with a hard-X-ray spectrum. We suggest that the X-ray emission from Haro 11 X-1 is dominated by a single accretion source. This might be an active galactic nucleus or a source similar to the extreme black hole binary (BHB) M82 X-1. The hard X-ray spectrum indicates that Haro 11 X-1 may be a BHB in a low accretion state. In this case, the very high X-ray luminosity suggests an intermediate mass black hole that could be the seed for formation of a supermassive black hole. Source CXOU J003652.7-33331619.5 (abbreviated Haro 11 X-2) has an X-ray luminosity of {L}{{X}}˜ 5× {10}40 erg s-1 and a soft X-ray spectrum (power-law photon index Γ ˜ 2.2). This strongly suggests that Haro 11 X-2 is an X-ray binary in the ultra luminous state (i.e., an Ultra Luminous X-ray source, ULX). Haro 11 X-2 is coincident with the star-forming knot that is the source of the Lyα emission. The association of a ULX with Lyα emission raises the possibility that strong winds from X-ray binaries play an important role in injecting mechanical power into the interstellar medium, thus blowing away neutral material from the starburst region and allowing the Lyα to escape. We suggest that feedback from X-ray binaries may play a significant role in allowing Lyα emission to escape from galaxies in the

  20. BAT AGN spectroscopic survey-II. X-ray emission and high-ionization optical emission lines

    NASA Astrophysics Data System (ADS)

    Berney, Simon; Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Baloković, Mislav; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-12-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby (z ≃ 0.04) AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (L_[O III]^{int} ∝ L_{14-195}) with a large scatter (RPear = 0.64, σ = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear = 0.63, σ = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low-ionization lines (H α, [S II]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (σ = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical differences in the scattering of the ionized gas or long-term AGN variability are important.

  1. THE NATURE OF THE UV/OPTICAL EMISSION OF THE ULTRALUMINOUS X-RAY SOURCE IN HOLMBERG II

    SciTech Connect

    Tao Lian; Feng Hua; Kaaret, Philip; Grise, Fabien

    2012-05-10

    We report on UV and X-ray spectroscopy and broadband optical observations of the ultraluminous X-ray source in Holmberg II. Fitting various stellar spectral models to the combined, non-simultaneous data set, we find that normal metallicity stellar spectra are ruled out by the data, while low-metallicity, Z = 0.1 Z{sub Sun }, late O-star spectra provide marginally acceptable fits, if we allow for the fact that X-ray ionization from the compact object may reduce or eliminate UV absorption/emission lines from the stellar wind. By contrast, an irradiated disk model fits both UV and optical data with {chi}{sup 2}/dof = 175.9/178, and matches the nebular extinction with a reddening of E(B - V) = 0.05{sup +0.05}{sub -0.04}. These results suggest that the UV/optical flux of Holmberg II X-1 may be dominated by X-ray irradiated disk emission.

  2. High K-alpha X-ray Conversion Efficiency From Extended Source Gas Jet Targets Irradiated by Ultra Short Laser Pulses

    SciTech Connect

    Kugland, N L; Constantin, C; Collette, A; Dewald, E; Froula, D; Glenzer, S H; Kritcher, A; Neumayer, P; Ross, J S; Niemann, C

    2007-11-01

    The absolute laser conversion efficiency to K{sub {alpha}}-like inner shell x-rays (integrated from K{sub {alpha}} to K{sub {beta}}) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultra short pulse laser irradiation. Excluding the higher ionization stages, the conversion efficiency to near-cold K{sub {alpha}} is the same in gas jets as in solid targets. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter.

  3. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    SciTech Connect

    Freeman, M.; Kastner, J. H.; Montez, R. Jr.; Balick, B.; Frew, D. J.; De Marco, O.; Parker, Q. A.; Jones, D.; Miszalski, B.; Sahai, R.; Blackman, E.; Frank, A.; Chu, Y.-H.; Guerrero, M. A.; Zijlstra, A.; Bujarrabal, V.; Corradi, R. L. M.; Nordhaus, J.; and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  4. Application of CO2 Snow Jet Cleaning in Conjunction with Laboratory Based Total Reflection X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Schmeling, M.; Burnett, D. S.; Allton, J. H.; Rodriquez, M.; Tripa, C. E.; Veryovkin, I. V.

    2013-01-01

    The Genesis mission was the first mission returning solar material to Earth since the Apollo program [1,2]. Unfortunately the return of the space craft on September 8, 2004 resulted in a crash landing, which shattered the samples into small fragments and exposed them to desert soil and other debris. Thus only small fragments of the original collectors are available, each having different degrees of surface contamination. Thorough surface cleaning is required to allow for subsequent analysis of solar wind material embedded within. An initial cleaning procedure was developed in coordination with Johnson Space Center which focused on removing larger sized particulates and a thin film organic contamination acquired during collection in space [3]. However, many of the samples have additional residues and more rigorous and/or innovative cleaning steps might be necessary. These cleaning steps must affect only the surface to avoid leaching and re-distribution of solar wind material from the bulk of the collectors. To aid in development and identification of the most appropriate cleaning procedures each sample has to be thoroughly inspected before and after each cleaning step. Laboratory based total reflection X-ray fluorescence (TXRF) spectrometry lends itself to this task as it is a non-destructive and surface sensitive analytical method permitting analysis of elements from aluminum onward present at and near the surface of a flat substrate [4]. The suitability of TXRF has been demonstrated for several Genesis solar wind samples before and after various cleaning methods including acid treatment, gas cluster ion beam, and CO2 snow jet [5 - 7]. The latter one is non-invasive and did show some promise on one sample [5]. To investigate the feasibility of CO2 snow jet cleaning further, several flown Genesis samples were selected to be characterized before and after CO2 snow application with sample 61052 being discussed below.

  5. Feedback from winds and supernovae in massive stellar clusters - II. X-ray emission

    NASA Astrophysics Data System (ADS)

    Rogers, H.; Pittard, J. M.

    2014-06-01

    The X-ray emission from a simulated massive stellar cluster is investigated. The emission is calculated from a 3D hydrodynamical model which incorporates the mechanical feedback from the stellar winds of three O stars embedded in a giant molecular cloud (GMC) clump containing 3240 M⊙ of molecular material within a 4 pc radius. A simple prescription for the evolution of the stars is used, with the first supernova (SN) explosion at t = 4.4 Myr. We find that the presence of the GMC clump causes short-lived attenuation effects on the X-ray emission of the cluster. However, once most of the material has been ablated away by the winds, the remaining dense clumps do not have a noticeable effect on the attenuation compared with the assumed interstellar medium (ISM) column. We determine the evolution of the cluster X-ray luminosity, LX, and spectra, and generate synthetic images. The intrinsic X-ray luminosity drops from nearly 1034 erg s-1 while the winds are `bottled up', to a near-constant value of 1.7 × 1032 erg s-1 between t = 1 and 4 Myr. LX reduces slightly during each star's red supergiant stage due to the depressurization of the hot gas. However, LX increases to ≈1034 erg s-1 during each star's Wolf-Rayet stage. The X-ray luminosity is enhanced by two to three orders of magnitude to ˜1037 erg s-1 for at least 4600 yr after each SN explosion, at which time the blast wave leaves the grid and the X-ray luminosity drops. The X-ray luminosity of our simulation is generally considerably fainter than predicted from spherically symmetric bubble models, due to the leakage of hot gas material through gaps in the outer shell. This process reduces the pressure within our simulation and thus the X-ray emission. However, the X-ray luminosities and temperatures which we obtain are comparable to similarly powerful massive young clusters.

  6. High Resolution Triple Axis X-Ray Diffraction Analysis of II-VI Semiconductor Crystals

    NASA Technical Reports Server (NTRS)

    Volz, H. M.; Matyi, R. J.

    1999-01-01

    The objective of this research program is to develop methods of structural analysis based on high resolution triple axis X-ray diffractometry (HRTXD) and to carry out detailed studies of defect distributions in crystals grown in both microgravity and ground-based environments. HRTXD represents a modification of the widely used double axis X-ray rocking curve method for the characterization of grown-in defects in nearly perfect crystals. In a double axis rocking curve experiment, the sample is illuminated by a monochromatic X-ray beam and the diffracted intensity is recorded by a fixed, wide-open detector. The intensity diffracted by the sample is then monitored as the sample is rotated through the Bragg reflection condition. The breadth of the peak, which is often reported as the full angular width at half the maximum intensity (FWHM), is used as an indicator of the amount of defects in the sample. This work has shown that high resolution triple axis X-ray diffraction is an effective tool for characterizing the defect structure in semiconductor crystals, particularly at high defect densities. Additionally, the technique is complimentary to X-ray topography for defect characterization in crystals.

  7. A soft x-ray split-and-delay unit for FLASH II

    NASA Astrophysics Data System (ADS)

    Roling, Sebastian; Rollnik, Matthias; Kuhlmann, Marion; Plönjes, Elke; Wahlert, Frank; Zacharias, Helmut

    2017-06-01

    For the soft x-ray free-electron laser FLASH II at DESY in Hamburg a new split-and-delay unit (SDU) is built for photon energies in the range of 30 eV < hν < 1500 eV with an option to expand this range to hν = 2500 eV. The SDU is based on wavefront beam splitting at grazing incidence angles. A three dimensional set-up allows for the use of two different beam paths. With grazing angles of θ = 1.3° in the fixed beam paths and θ = 1.8° in the variable beam path a good compromise between a sufficient reflectance (shallow angles) and a large possible maximum delay (steeper angles) has been chosen. The maximum possible delay is -6 ps < Δt < 18 ps. For photon energies in the range of 30 eV < hν < 800 eV the mirrors are coated with Ni providing a total transmission between T = 57 % at hν = 30 eV and still T > 30 % at hν = 800 eV. For photon energies up to hν = 1800 eV a different beam path with platinum coated mirrors is used enabling a total transmission in the fixed beam path of T > 29 % at hν = 800 eV and T = 24 % at hν = 1800 eV, respectively. In the variable beam path the total transmission in this photon energy range is considerably lower but still sufficient with T = 13 % at hν = 800 eV and T > 6 % at hν = 1800 eV.

  8. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Kruehler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele; Zafar, Tayyaba; Gorosabel, Javier

    2013-05-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N{sub H{sub X}}) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A{sub V} ). This correlation explains the connection between dark bursts and bursts with high N{sub H{sub X}} values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N{sub H{sub X}}/A{sub V} is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well

  9. Modeling Contamination Migration on the Chandra X-ray Observatory II

    NASA Technical Reports Server (NTRS)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  10. High Energy Emission from Quasar Jets: HST polarimetry, X-ray and Gamma-ray Emission and the IC/CMB hypothesis

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Georganopoulos, Markos; Meyer, Eileen T.; Cara, Mihai

    2015-01-01

    One of the unique legacies of the Chandra X-ray Observatory is the discovery of X-ray emission from a large number of extragalactic jets (over 100 are now known). In less powerful, FR I radio jets this emission is generally understood to be synchrotron emission from the highest energy electrons, requiring in situ particle acceleration, but the nature of the high-energy emission from the more powerful quasar jets is less well constrained. In quasar jets, the emission extends for tens to hundreds of kiloparsecs, and the observed X-rays are harder and at a higher flux than expected from an extrapolation of the radio to optical spectrum. Over the last 15 years, a persistent debate has arisen as to the nature of this emission, with the leading model being inverse-Comptonization of the Cosmic Microwave Background radiation. This explanation requires the jet to be relativistic out to hundreds of kiloparsecs from the nucleus, and requires an electron spectrum that extends to very low Lorentz factors. The combination of these two results in a very high kinetic power, very close to or over the Eddington limit if the electron spectrum continues to gamma ~ 1. We discuss recent work with HST polarimetry and the X-ray to gamma-ray spectrum that we believe makes it necessary to re-examine the IC/CMB hypothesis. In many quasar jets, the optical and X-ray emission is joined by a single spectral component, and HST polarimetry in that high-energy component is detecting high polarizations, making it difficult to explain the high-energy emission via the IC/CMB hypothesis. So far, this has been found in 2 jets (PKS 1136-135, Cara et al. 2013, and 1150+497), with observations of a third (3C 273) scheduled for January. In addition, IC/CMB of the highest energy synchrotron photons predicts that we should be detecting GeV gamma-ray emission from the extended jets (Georganopoulos et al. 2006, Meyer & Georganopoulos 2014). These lines of evidence have made the IC/CMB hypothesis very unlikely

  11. Wind, jet, hybrid corona and hard X-ray flares: multiwavelength evolution of GRO J1655-40 during the 2005 outburst rise

    NASA Astrophysics Data System (ADS)

    Kalemci, E.; Begelman, M. C.; Maccarone, T. J.; Dinçer, T.; Russell, T. D.; Bailyn, C.; Tomsick, J. A.

    2016-11-01

    We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also investigated the radio to optical spectral energy distribution, tracking the radio spectral evolution through the quenching of the compact jet and rise of the optically thin flare, and interpreted all data using state transition models.

  12. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    SciTech Connect

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-11

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  13. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  14. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  15. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. II. Optically Elusive X-Ray AGNs

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-06-01

    In the Chandra-COSMOS (C-COSMOS) survey, we have looked for X-ray-selected active galactic nuclei (AGNs), which are not detected as such in the optical, the so-called elusive AGNs. A previous study based on XMM-Newton and Sloan Digital Sky Survey observations has found a sample of 31 X-ray AGNs optically misclassified as star-forming (SF) galaxies at z\\lt 0.4, including 17 elusive Sy2s. Using Chandra observations provides a sample of fainter X-ray sources and so, for a given X-ray luminosity, extends to higher redshifts. To study the elusive Sy2s in the C-COSMOS field, we have removed the NLS1s that contaminate the narrow-line sample. Surprisingly, the contribution of NLS1s is much lower in the C-COSMOS sample (less than 10% of the optically misclassified X-ray AGNs) than in Pons & Watson. The optical misclassification of the X-ray AGNs ({L}{{X}}\\gt {10}42 {erg} {{{s}}}-1) can be explained by the intrinsic weakness of these AGNs, in addition to, in some cases, optical dilution by the host galaxies. Interestingly, we found the fraction of elusive Sy2s (narrow emission-line objects) optically misclassified as SF galaxies up to z˜ 1.4 to be 10% ± 3% to 17% ± 4%, compared to the 6% ± 1.5% of the Pons & Watson work (up to z˜ 0.4). This result seems to indicate an evolution with redshift of the number of elusive Sy2s.

  16. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  17. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Hamaguchi, K.; Gull, T.

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  18. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  19. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster

  20. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster

  1. High performance X-ray and neutron microfocusing optics. Phase II final report.

    SciTech Connect

    Gregory Hirsch

    2000-01-14

    The use of extremely small diameter x-ray beams at synchrotron radiation facilities has become an important experimental technique for investigators in many other scientific disciplines. While there have been several different optical elements developed for producing such microbeams, this SBIR project was concerned with one particular device: the tapered-monocapillary optic.

  2. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.

    2014-03-01

    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ < Mvir < 2 × 1015 h-1 M⊙, complete in mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  3. Time-resolved x-ray excited optical luminescence studies of II-VI semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. A.; Lee, S.-T.; Kim, P.-S. G.

    2005-03-01

    Due to quantum confinement effects nanostructures often exhibit unique and intriguing fluorescence behavior. X-ray excited optical luminescence (XEOL) provides the capability to chemically map the sites responsible for producing low energy (1-6 eV) fluorescence. By taking advantage of the time structure of the x-ray pulses at the Advanced Photon Source, it also possible to determine the dynamic behavior of the states involved in the luminescence. In this presentation we show how this technique can be utilized to understand the XEOL from ZnS, ZnTe, and ZnO nanowires. Time-gated optical spectra show that the high-energy, band-edge states have a short lifetime while the lower-energy, deep-levels have a relatively long lifetime. X-ray excitation curves are obtained using the relevant optical photons as signals and compared to the corresponding x-ray absorption spectra. We will show how these results enable us to determine the local structure of the luminescent site(s).

  4. X-ray micro-laminography for the ex situ analysis of W-CFC samples retrieved from JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Tiseanu, I.; Craciunescu, T.; Lungu, M.; Dobrea, C.; Contributors, JET

    2016-02-01

    x-ray micro-laminography was qualified and implemented as a complementary solution for the 3D microstructural analysis of tungsten coated carbon-fibre reinforced carbon (W/CFC) samples retrieved from JET ITER-like wall. As expected, the W layers spatially correlate with the morphology of the CFC substrate. Three main cases were distinguished; (i) tungsten layers coated parallel to PAN fibre bundles tend to have a quasi-continuous, weakly waved surface (waves amplitude <100 μm) (ii) tungsten layers coated onto the relatively porous felt region appear to smoothly follow even the surface of the largest pores of around 250 μm and (iii) samples coated perpendicular to the PAN fibre bundles display frequently and strong crater-like discontinuities of the metal layer. The characteristics dimensions of these gaps range in the order of 300-400 μm both in the coating plane and perpendicular to it. On some craters the bottom W layer is broken and the generated debris can be found even deeper than one mm into the CFC substrate. These W particles, sized of 20-40 μm, are always found in the large gaps located between the fibre bundles perpendicular to the coated surface.

  5. Quasi-periodic variations in x-ray emission and long-term radio observations: Evidence for a two-component jet in Sw J1644+57

    SciTech Connect

    Wang, Jiu-Zhou; Lei, Wei-Hua; Wang, Ding-Xiong; Zou, Yuan-Chuan; Huang, Chang-Yin; Zhang, Bing; Gao, He E-mail: dxwang@hust.edu.cn E-mail: zhang@physics.unlv.edu

    2014-06-10

    The continued observations of Sw J1644+57 in X-ray and radio bands accumulated a rich data set to study the relativistic jet launched in this tidal disruption event. The X-ray light curve of Sw J1644+57 from 5-30 days presents two kinds of quasi-periodic variations: a 200 s quasi-periodic oscillation (QPO) and a 2.7 day quasi-periodic variation. The latter has been interpreted by a precessing jet launched near the Bardeen-Petterson radius of a warped disk. Here we suggest that the ∼200 s QPO could be associated with a second, narrower jet sweeping the observer line-of-sight periodically, which is launched from a spinning black hole in the misaligned direction with respect to the black hole's angular momentum. In addition, we show that this two-component jet model can interpret the radio light curve of the event, especially the re-brightening feature starting ∼100 days after the trigger. From the data we infer that inner jet may have a Lorentz factor of Γ{sub j} ∼ 5.5 and a kinetic energy of E {sub k,} {sub iso} ∼ 3.0 × 10{sup 52} erg, while the outer jet may have a Lorentz factor of Γ{sub j} ∼ 2.5 and a kinetic energy of E{sub k,} {sub iso} ∼ 3.0 × 10{sup 53} erg.

  6. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  7. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  8. External Shock Model for the Large-Scale, Relativistic X-Ray Jets from the Microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dai, Z. G.; Lu, T.

    2003-07-01

    Large-scale, decelerating, relativistic X-ray jets due to material ejected from the black-hole candidate X-ray transient and microquasar XTE J1550-564 have been recently discovered with Chandra by Corbel and coworkers. We find that the dynamical evolution of the eastern jet at the late time is consistent with the well-known Sedov evolutionary phase. A transrelativistic external shock dynamic model by analogy with the evolution of gamma-ray burst remnants is shown to be able to fit the observation data reasonably well. The inferred interstellar medium density around the source is well below the canonical value nISM~1cm-3. We find that the emission from the continuously shocked interstellar medium (forward shock region) decays too slowly to be a viable mechanism for the eastern X-ray jet. However, the rapidly fading X-ray emission can be interpreted as synchrotron radiation from the nonthermal electrons in the adiabatically expanding ejecta. These electrons were accelerated by the reverse shock (moving back into the ejecta), which becomes important when the inertia of the swept external matter leads to an appreciable slowing down of the original ejecta. To ensure the dominance of the emission from the shocked ejecta over that from the forward shock region during the period of the observations, the magnetic field and electron energy fractions in the forward shock region must be far below equipartition. Future continuous, follow-up multiwavelength observations of new ejection events from microquasars up to the significant deceleration phase should provide more valuable insight into the nature of the interaction between the jets and external medium.

  9. Subpicosecond 41.8-nm X-ray laser in the plasma produced by femtosecond laser irradiation of a xenon cluster jet

    SciTech Connect

    Ivanova, E P

    2012-12-31

    Model calculations are performed of the radiation gain for the 4d5d (J = 0) - 4d5p (J = 1) transition with a wavelength of 41.8 nm in Pd-like xenon ions in the plasma produced by femtosecond laser irradiation of a xenon cluster jet. Conditions for the excitation of an ultrashort-pulse ({approx}1 ps) X-ray laser are discussed. (lasers)

  10. X-ray absorption edge spectroscopy of Co(II)-binding sites of copper- and zinc-containing proteins.

    PubMed

    Desideri, A; Comin, F; Morpurgo, L; Cocco, D; Calabrese, L; Mondovi, B; Maret, W; Rotilio, G

    1981-10-28

    X-ray absorption near-edge spectroscopy (XANES) of Co(II) in three derivatives of superoxide dismutase, namely [Cu(II)-Co(II)], [Cu(I)-Co(II)] and [...-Co(II)], suggests a tetrahedral coordination of the metal for all compounds. Significant differences, detected in the spectrum of the [Cu(II)-Co(II)] derivative as compared to the other species, indicate that a conformational change and/or a different charge of the imidazole bridging the two metal sites in superoxide dismutase occur in coincidence with the change of copper valence. The XANES spectra of the cobalt derivatives of alcohol dehydrogenase, carbonic anhydrase and stellacyanin show features that can be accounted for by an increasing degree of covalency in the metal first sphere of coordination, in the following order: alcohol dehydrogenase greater than stellacyanin greater than superoxide dismutase greater than or equal to carbonic anhydrase.

  11. Far-ultraviolet and X-ray irradiated protoplanetary disks: a grid of models. II. Gas diagnostic line emission

    NASA Astrophysics Data System (ADS)

    Aresu, G.; Meijerink, R.; Kamp, I.; Spaans, M.; Thi, W.-F.; Woitke, P.

    2012-11-01

    Context. Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. Both radiation from the central star (from optical to X-ray wavelengths) and viscous accretion are the main sources of energy, dominating disk physics and chemistry in its early stages. This is the environment in which the first phases of planet formation will proceed. Aims: We investigate how stellar and disk parameters impact the fine-structure cooling lines [Ne ii], [Ar ii], [O i], [C ii], and H2O rotational lines in the disk. These lines are potentially powerful diagnostics of the disk structure, and their modeling permits a thorough interpretation of the observations carried out with instrumental facilities such as Spitzer and Herschel. Methods: Following our earlier paper, we computed a grid of 240 disk models, in which the X-ray luminosity, UV-excess luminosity, minimum dust grain size, dust size distribution power law, and surface density distribution power law are systematically varied. We solve self-consistently for the disk vertical hydrostatic structure in every model and apply detailed line radiative transfer to calculate line fluxes and profiles for a series of well-known mid- and far-infrared cooling lines. Results: The [O i] 63 μm line flux increases with increasing LFUV when LX < 1030 erg s-1 and with increasing X-ray luminosity when LX > 1030 erg s-1. While [C ii] 157 μm is mainly driven by LFUV via C+ production, X-rays affect the line flux to a lesser extent. In addition, [Ne ii] 12.8 μm correlates with X-rays; the line profile emitted from the disk atmosphere shows a double-peaked component caused by emission in the static disk atmosphere, next to a high-velocity double-peaked component caused by emission in the very inner rim. Water transitions, depending on the disk region they arise from, show different

  12. Absorption of copper(II) by creosote bush (Larrea tridentata): use of atomic and x-ray absorption spectroscopy.

    PubMed

    Gardea-Torresdey, J L; Arteaga, S; Tiemann, K J; Chianelli, R; Pingitore, N; Mackay, W

    2001-11-01

    Larrea tridentata (creosote bush), a common North American native desert shrub, exhibits the ability to take up copper(II) ions rapidly from solution. Following hydroponic studies, U.S. Environmental Protection Agency method 200.3 was used to digest the plant samples, and flame atomic absorption spectroscopy (FAAS) was used to determine the amount of copper taken up in different parts of the plant. The amount of copper(II) found within the roots, stems, and leaves was 13.8, 1.1, and 0.6 mg/g, respectively, after the creosote bush was exposed to a 63.5-ppm copper(II) solution for 48 h. When the plant was exposed to a 635-ppm copper(II) solution, the roots, stems, and leaves contained 35.0, 10.5, and 3.8 mg/g, respectively. In addition to FAAS analysis, x-ray microfluorescence (XRMF) analysis of the plant samples provided further confirmation of copper absorption by the various plant parts. X-ray absorption spectroscopy (XAS) elucidated the oxidation state of the copper absorbed by the plants. The copper(II) absorbed from solution remained as copper(II) bound to oxygen-containing ligands within the plant samples. The results of this study indicate that creosote bush may provide a useful and novel method of removing copper(II) from contaminated soils in an environmentally friendly manner.

  13. Multitone harmonic-balance simulations of an x-ray transition-edge sensor characterized at BESSY II

    SciTech Connect

    Rostem, K.; Goldie, D. J.; Withington, S.; Hoevers, H. F. C.; Gottardi, L.; Kuur, J. van der

    2010-07-15

    We present multitone harmonic-balance (MTHB) simulations of a Ti-Au x-ray transition-edge sensor (TES) microcalorimeter in a 5x5 pixel spectrometer array. The dynamic response of the TES microcalorimeter under simulation has been extremely well characterized at the BESSY II Synchrotron Radiation Facility in Berlin. We compare our simulated results directly with these measurements, and show that the MTHB algorithm is able to simulate to great accuracy the dynamic behavior of the TES, even when saturated by 6 keV photons. In this paper, we provide a detailed account of the MTHB simulations, and discuss the impact of this work on future missions such as the International X-ray Observatory.

  14. Synthesis, spectral, X-ray diffraction and thermal studies of new ZnII-pyrazine coordination polymers

    NASA Astrophysics Data System (ADS)

    Marandi, Farzin

    2014-02-01

    Two new zinc(II) coordination polymers with a β-diketone and N-donor ancillary ligands, [Zn(pyz)(ttfa)2]n (1) and [Zn(pyz)(btfa)2]n (2), (Httfa = 2-thenoyltrifluoroacetone, Hbtfa = benzoyltrifluoroacetone and pyz = pyrazine), have been prepared and characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy, and studied by thermal gravimetric analysis as well as single crystal X-ray diffraction. The crystal and molecular structures of 1 and 2 have been solved by X-ray diffraction and they turned out to be one-dimensional polymers with linear dispositions of the metal atoms. These one-dimensional polymers are further connected to form a 3D supramolecular network by CH⋯π (only in 1), CH⋯F, π-π and interesting H⋯H (only in 2) interactions.

  15. Ensemble X-ray variability of active galactic nuclei. II. Excess variance and updated structure function

    NASA Astrophysics Data System (ADS)

    Vagnetti, F.; Middei, R.; Antonucci, M.; Paolillo, M.; Serafinelli, R.

    2016-09-01

    Context. Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. Aims: We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between ~0.1 and ~5, and X-ray luminosities in the 0.5-4.5 keV band between ~1042 erg/s and ~1047 erg/s. Methods: We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. Results: We find an ensemble increase of the X-ray variability with the rest-frame time lag τ, given by SF ∝ τ0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as SF ∝ LX-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as SF ∝ ν-0.15, corresponding to a so-called softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate (≲15%) shift upwards (V-correction). Conclusions: Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent

  16. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    PubMed Central

    Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian

    2016-01-01

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent

  17. Applications of RIGAKU Dmax Rapid II micro-X-ray diffractometer in the analysis of archaeological metal objects

    NASA Astrophysics Data System (ADS)

    Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária

    2017-04-01

    During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results

  18. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dimitry G.; Harding, Alice; Zavlin, Vyacheslav E.; Elsner, Ronald F.; Becker, Werner

    2012-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (5.28+\\-0.28) x 10(exp -4) (4.9 x 10(exp -4) is solar abundance). \\rVe also measure for the first time the impact of scattering of flux out of the image by interstellar grains. \\rYe find T(sub scat) = 0.147+/-0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum - albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We compare these spectral variations to those observed in Gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data were also used to set new. and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere.

  19. An XMM-Newton Observation of 4U1755-33 in Quiescence: Evidence for a Fossil X-Ray Jet

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; White, Nicholas E.

    2003-01-01

    We report an XMM-Newton observation of the Low mass X-ray Binary (LMXB) and black hole candidate 4U1755-33. This source had been a bright persistent source for at least 25 yrs, but in 1995 entered an extended quiescent phase. 4U1755-33 was not detected with an upper limit to the 2-10 keV luminosity of 5 x 10(exp 31) d(sup 2) (sub 4kpc) ergs per second (where d(sub 4kpc) is the distance in units of 4 kpc) - consistent with the luminosity of other black hole candidates in a quiescent state. An unexpected result is the discovery of a narrow 7 arc min long X-ray jet centered on the position of 4Ul755-33. The spectrum of the jet is similar to that of jets observed from other galactic and extragalactic sources, and may have been ejected from 4Ul755-33 when it was bright. Jets are a feature of accreting black holes, and the detection of a fossil jet provides additional evidence supporting the black hole candidacy of 4U1755-33. The spectral properties of three bright serendipitous sources in the field are reported and it is suggested these are background active galactic nuclei sources.

  20. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. II.

    PubMed

    Kohn, V G

    2017-01-01

    This paper reports computer simulations of X-ray six-beam (000, 220, 242, 044, -224, -202) diffraction in a perfect silicon crystal of large thickness where the super-transmission effect prevails, i.e. about 2 cm or more for an X-ray photon energy of 8 keV. Both the plane-wave angular dependence and the six-beam section topographs, which are obtained in experiments with a two-dimensional slit, are calculated. The angular dependence is computed by means of an eigenvalue problem in accordance with Ewald's theory. The section topographs are calculated by means of a fast Fourier transformation procedure from the angular to real space. It is shown that under the effect of X-ray super-transmission the quadrupole part of the photoelectric absorption as well as the Compton scattering give apparent contributions to the minimum absorption coefficient. Comparison of experimental and theoretical results by means of measuring the effective absorption coefficient is proposed. The section topographs for a thick crystal are asymmetric and polarization sensitive. These properties are explained through the angular dependence and the stationary phase method.

  1. Toward Large-Area Sub-Arcsecond X-Ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Allured, Ryan; Ames, Andrew O.; Biskach, Michael P.; Broadway David M.; Bruni, Ricardo J.; Burrows, David; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Chung, Yip-Wah; Cotroneo, Vincenzo; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Heilmann, Ralf K.; Hertz, Edward; Jackson, Thomas N.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; McClelland, Ryan S.; Ramsey, Brian D.; Reid, Paul B.; Riveros, Raul E.; Roche, Jacqueline M.; Romaine, Suzanne E.; Saha, Timo T.; Schattenburg, Mark L.; Schwartz, Daniel A.; Schwartz, Eric D.; Solly, Peter M.; Trolier-McKinstry, Susan E.; Ulmer, Mellville P.; Vikhlilin, Alexey; Wallace, Margeaux L.; Zhang, William W.

    2016-01-01

    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates.

  2. Structure of the Mn complex in photosystem II: Insights from x-ray spectroscopy

    SciTech Connect

    Yachandra, Vittal K.

    2002-04-02

    We have used Mn K-edge absorption and Kb emission spectroscopies to determine the oxidation states of the Mn complex in the various S-states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy (RIXS); this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, {approx}6550 eV) to obtain L-edge-like spectra (2p to 3d, {approx}650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained EXAFS data from the S0 and S3 states and observed heterogeneity in the Mn-Mn distances, leading us to conclude that there may be three rather than two di-(mu)-oxo bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca/Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn/Ca cluster. The possibility of three di-(mu)-oxo-bridged Mn Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results.

  3. Mechanism of the formation of x-ray-induced phosphenes. II. Photochemical investigations

    SciTech Connect

    Doly, M.; Isabelle, D.B.; Vincent, P.; Gaillard, G.; Meyniel, G.

    1980-06-01

    Like visible light, x rays can stimulate the isolated retina and induce an action potential (ERG). To explain the modalities of interaction of incident radiation with the photoreceptor cells, we studied the modifications of the rhodopsin absorption spectrum after x irradiation. For exposures smaller than 5 x 10/sup 5/ R, a large increase in absorption in the uv part of the spectrum is observed. For exposure of 1.25 x 10/sup 6/ R, a 20% decrease is measured in the characteristic peak of rhodopsin (500 nm). In comparison to what is known for visible light, the significant bleaching of rhodopsin by x rays can account for the initiation of an ERG in the isolated retina. By analogy with the enzymatic inactivation after x irradiation, we believe that the x-ray rhodopsin bleaching could be due to an energy transfer from the opsin to the attachment site of the chromophoric group (11-cis retinal). The disorganization of this critical site of the molecule could be at the origin of the rod excitation, then of the ERG.

  4. Toward large-area sub-arcsecond x-ray telescopes II

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Allured, Ryan; Ames, Andrew O.; Biskach, Michael P.; Broadway, David M.; Bruni, Ricardo J.; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Chung, Yip-Wah; Cotroneo, Vincenzo; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Heilmann, Ralf K.; Hertz, Edward; Jackson, Thomas N.; Kilaru, Kiranmayee; Kolodziejczak, Jeffrey J.; McClelland, Ryan S.; Ramsey, Brian D.; Reid, Paul B.; Riveros, Raul E.; Roche, Jacqueline M.; Romaine, Suzanne E.; Saha, Timo T.; Schattenburg, Mark L.; Schwartz, Daniel A.; Schwartz, Eric D.; Solly, Peter M.; Trolier-McKinstry, Susan; Ulmer, Melville P.; Vikhlinin, Alexey; Wallace, Margeaux L.; Wang, Xiaoli; Windt, David L.; Yao, Youwei; Ye, Shi; Zhang, William W.; Zuo, Heng

    2016-09-01

    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (≍ 3 m2) and fine angular resolution (≍ 12). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (≍ 600 m2) of lightweight (≍ 2 kg/m2 areal density) high-quality mirrors, at an acceptable cost (≍ 1 M$/m2 of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates.

  5. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop Hα macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Å snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T ~ 104 - 105 K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  6. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  7. The complementary nature of x-ray photoelectron spectroscopy and angle-resolved x-ray diffraction part II: Analysis of oxides on dental alloys

    NASA Astrophysics Data System (ADS)

    Kerber, S. J.; Barr, T. L.; Mann, G. P.; Brantley, W. A.; Papazoglou, E.; Mitchell, J. C.

    1998-06-01

    X-ray photoelectron spectroscopy (XPS) and angle-resolved x-ray diffraction (ARXRD) were used to analyze the oxide layer on three palladium-gallium-based dental casting alloys. The oxide layers were approximately 10 Μm thick. The use of the techniques helped to determine which mechanism was responsible for oxide formation—either (a) oxide layer growth via diffusion of oxygen through the scale to the metal, causing the scale to grow at the metal-oxide interface, or (b) an oxide layer formed by metal ions diffusing through the scale to the surface and reacting with oxygen, causing the scale to grow at the oxide-air interface. The oxide growth mechanisms were correlated to previous layer adhesion results determined with biaxial flexure testing.

  8. X-ray pre-ionization powered by accretion on the first black holes - II. Cosmological simulations and observational signatures

    NASA Astrophysics Data System (ADS)

    Ricotti, Massimo; Ostriker, Jeremiah P.; Gnedin, Nickolay Y.

    2005-02-01

    We use numerical simulations of a cosmological volume to study the X-ray ionization and heating of the intergalactic medium (IGM) by an early population of accreting black holes (BHs). By considering theoretical limits on the accretion rate and observational constraints from the X-ray background and faint X-ray source counts, we find that the maximum value of the optical depth to Thompson scattering which can be produced using these models is τe~= 0.17, in agreement with previous semi-analytic results. The redshifted soft X-ray background produced by these early sources is important in producing a fully ionized atomic hydrogen in the low-density intergalactic medium before stellar reionization at redshift z~ 6-7. As a result, stellar re-ionization is characterized by an almost instantaneous `overlap phase' of HII regions. The background also produces a second HeII re-ionization at about redshift 3 and maintains the temperature of the IGM at about 10000K even at low redshifts. If the spectral energy distribution of these sources has a non-negligible high-energy power-law component, the luminosity in the soft X-ray band of the `typical' galaxies hosting intermediate-mass accreting BHs is maximum at z~ 15 and is about one or two orders of magnitude below the sensitivity limit of the Chandra Deep Field. We find that about a thousand of these sources may be present per square arcmin of the sky, producing potentially detectable fluctuations. We also estimate that a few rare objects, not present in our small simulated volume, could be luminous enough to be visible in the Chandra Deep Field. The XEUS and Constellation-X satellites will be able to detect more of these sources that, if radio loud, could be used to study the 21-cm forest in absorption. A signature of an early X-ray pre-ionization is the production of secondary cosmic microwave background (CMB) anisotropies on small angular scales (<1arcmin). We find that in these models the power spectrum of temperature

  9. A DEEP CHANDRA OBSERVATION OF THE GIANT H II REGION N11. I. X-RAY SOURCES IN THE FIELD

    SciTech Connect

    Nazé, Yaël; Wang, Q. Daniel; Chu, You-Hua; Gruendl, Robert; Oskinova, Lida

    2014-08-01

    A very sensitive X-ray investigation of the giant H II region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10{sup 32} erg s{sup –1}, increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log (L {sub X}/L {sub BOL}) ∼–6.5 to –7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log (L {sub X}/L {sub BOL}) ∼–7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.

  10. Development of X-ray computed tomography inspection facility for the H-II solid rocket boosters

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Fujita, T.; Fukushima, Y.; Shimizu, M.; Itoh, S.; Satoh, A.; Miyamoto, H.

    The National Space Development Agency of Japan (NASDA) initiated the development of an X-ray computed tomography (CT) equipment for the H-II solid rocket boosters (SRBs) in 1987 for the purpose of minimizing inspection time and achieving high cost-effectiveness. The CT facility has been completed in Jan. 1991 in Tanegashima Space Center for the inspection of the SRBs transported from the manufacturer's factory to the launch site. It was first applied to the qualification model SRB from Feb. to Apr. in 1991. Through the CT inspection of the SRB, it has been confirmed that inspection time decreased significantly compared with the X-ray radiography method and that even an unskilled inspector could find various defects. As a result, the establishment of a new reliable inspection method for the SRB has been verified. In this paper, the following are discussed: (1) the defect detectability of the CT equipment using a dummy SRB with various artificial defects, (2) the performance comparison between the CT method and the X-ray radiography method, (3) the reliability of the CT equipment, and (4) the radiation shield design of the nondestructive test building.

  11. Ligand-field symmetry effects in Fe(ii) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    SciTech Connect

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Gullikson, Eric M.; Kim, Tae Kyu; de Groot, Frank M. F.; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-01-01

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  12. A JET BREAK IN THE X-RAY LIGHT CURVE OF SHORT GRB 111020A: IMPLICATIONS FOR ENERGETICS AND RATES

    SciTech Connect

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Czekala, I.; Chornock, R.; Troja, E.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; Podsiadlowski, P.

    2012-09-10

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning {approx}100 s to 10 days after the burst, reveals a significant break at {delta}t Almost-Equal-To 2 days with pre- and post-break decline rates of {alpha}{sub X,1} Almost-Equal-To -0.78 and {alpha}{sub X,2} {approx}< -1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of {theta}{sub j} Almost-Equal-To 3 Degree-Sign -8 Degree-Sign . The resulting beaming-corrected {gamma}-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) Multiplication-Sign 10{sup 48} erg and (0.3-2) Multiplication-Sign 10{sup 49} erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 {mu}Jy (3{sigma}) from Expanded Very Large Array observations that, along with our finding that {nu}{sub c} < {nu}{sub X}, constrains the circumburst density to n{sub 0} {approx} 0.01-0.1 cm{sup -3}. Optical observations provide an afterglow limit of i {approx}> 24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i Almost-Equal-To 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0.''80 {+-} 0.''11 (1{sigma}) from this galaxy corresponding to an offset of 5-7 kpc for z 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5 {+-} 2.0) Multiplication-Sign 10{sup 21} cm{sup -2} (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of {approx}> 100-1000 Gpc{sup -3} yr{sup -1}, in good agreement with the NS-NS merger rate of Almost-Equal-To 200-3000 Gpc{sup -3} yr{sup -1}. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  13. A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates

    NASA Technical Reports Server (NTRS)

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; hide

    2012-01-01

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 < or approx. 1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 micro-Jy (3(sigma)) from Expanded Very Large Array observations that, along with our finding that v(sub c) < v(sub X), constrains the circumburst density to n(sub 0) approx.0.01 0.1/cu cm. Optical observations provide an afterglow limit of i > or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  14. RELATIONSHIP BETWEEN THE KINETIC POWER AND BOLOMETRIC LUMINOSITY OF JETS: LIMITATION FROM BLACK HOLE X-RAY BINARIES, ACTIVE GALACTIC NUCLEI, AND GAMMA-RAY BURSTS

    SciTech Connect

    Ma, Renyi; Hou, Shujin; Xie, Fu-Guo E-mail: fgxie@shao.ac.cn

    2014-01-01

    The correlation between the kinetic power P {sub jet} and intrinsic bolometric luminosity L {sub jet} of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P {sub jet} and L {sub jet} being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ∼10{sup 31} erg s{sup –1} to ∼10{sup 52} erg s{sup –1}, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P {sub jet}-L {sub jet} correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  15. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Abbey, A. F.; Hutchinson, I. B.; Willingale, R.; Wells, A.; Short, A. D. T.; Campana, S.; Citterio, O.; Tagliaferri, G.; Burkert, W.; Brauninger, H.

    2002-08-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16arcsec at 1.5keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift XRT. Tolerances in the mirror focal length, the on-axis and off-axis point spread functions were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1arcsec and provided a calibration of the centroiding process as a function of source flux and off-axis angle. The presence of background events in the image frame introduced errors in the centroiding process and this was accounted for by reducing the sampling area used for the centroiding algorithm.

  16. Highly efficient tabletop x-ray laser at {lambda}=41.8 nm in Pd-like xenon pumped by optical-field ionization in a cluster jet

    SciTech Connect

    Ivanova, E. P.

    2011-10-15

    The atomic-kinetic calculations of gain at 41.8 nm in Pd-like xenon are performed. The interpretation of known experiments has proved that x-ray laser in Pd-like xenon is feasible in the extremely wide range of atomic densities: 10{sup 17}{<=}[Xe{sup 8+}]{<=} 3 x 10{sup 19} cm{sup -3}. This result is due to the large cross sections (and rates) of level excitations in Pd-like xenon by electron impact. We propose a highly efficient tabletop x-ray laser pumped by optical-field ionization in a xenon cluster jet. The efficiency of {approx}0.5% is possible with a pump laser pulse energy of {>=}0.001 J and an intensity of {approx}10{sup 16} W/cm{sup 2}.

  17. A Multi-Frequency Study of an X-ray Selected Sample of AGN II: Line Emission Studies and the X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Grossan, B.; Remillard, R.; Bradt, H.

    1992-12-01

    We carried out a multi-frequency study of a flux-limited (0.95 mu Jy @ 5 keV) sample of 96 emission-line AGN taken from the HEAO-1 LASS/MC survey. Preliminary results of this study were presented at the Jan. 1992 meeting. Here we present new results from line emission and continuum studies and more details regarding the AGN X-ray luminosity functions (XLFs). We find that narrow [OIII] flux correlates well with X-ray flux. This result is consistent with a simple picture where the photoionizing continuum is distributed over a large solid angle in the narrow line region, and is closely related to the X-ray continuum. Broad Balmer lines do not demonstrate a strong correlation with X-ray flux. The UV continuum ( ~ 1400 Angstroms) does not correlate with any optical line emission we measured, but UV variability could have affected this result. In contrast, we find very strong correlations of high-ionization UV broad line fluxes and the simultaneously measured UV continuum. The geometry and/or obscuration effects in the broad line region may therefore be different than those in the narrow line region. A very large spread in the value of broad line Balmer decrements (Hβ /Hα = 0.13 - 0.40) was observed among objects determined to be un-reddened by the lack of an absorption feature at 2175 Angstroms. If there were an intrinsic Balmer decrement for the broad line regions in AGN, the smallest Hβ /Hα values would correspond to extreme values of reddening (E(B-V) > 1 mag). Therefore, we conclude that the broad line Balmer decrement cannot be used in determining continuum reddening in most AGN. We find that the AGN 2-10 keV XLF is roughly a power law, but steepens with increasing luminosity, and turns over below 10(42) erg s(-1) . The XLF of Seyfert 2's resembles a power law from 10(42) - 10(43.5) erg s(-1) , but at higher luminosity, the XLF steepens. In this sample, the cumulative fraction of Seyfert 2's falls rapidly with luminosity, and the overall fraction of Seyfert 2's

  18. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  19. High-resolution x-ray diffraction investigations of highly mismatched II-VI quantum wells

    NASA Astrophysics Data System (ADS)

    Passow, T.; Leonardi, K.; Stockmann, A.; Selke, H.; Heinke, H.; Hommel, D.

    1999-05-01

    High-resolution x-ray diffraction (HRXRD) was used to systematically investigate CdSe and ZnTe quantum wells one to three monolayers thick sandwiched between a ZnSe buffer and cap layer grown at different substrate temperatures. For comparison high-resolution transmission electron microscopy (HRTEM) measurements were performed which were evaluated by digital analysis of lattice images. The x-ray diffraction profiles show typically two main layer peaks. Their intensity ratio depends critically on the quantum well thickness and varies only weakly with the thickness of the ZnSe layers. The total Cd or Te content determined from comparisons of experimental and simulated (004) icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/>-2icons/Journals/Common/theta" ALT="theta" ALIGN="TOP"/> scans is well confirmed by the results from digital analysis of HRTEM lattice images. For quantum well thicknesses larger than 1.5 (ZnTe) or 2.0 (CdSe) monolayers, no simulation parameters could be found to achieve good agreement between theoretical and measured diffraction profiles. This transition is more clearly visible in diffraction profiles of asymmetrical reflections. By HRTEM measurements, this could be correlated to the occurrence of stacking faults at these thicknesses. The formation of quantum islands detected by HRTEM was not reflected in the HRXRD icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/>-2icons/Journals/Common/theta" ALT="theta" ALIGN="TOP"/> scans.

  20. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.

    PubMed

    Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio; Ueno, Go; Murakami, Hironori; Nakajima, Yoshiki; Shimizu, Tetsuya; Yamashita, Keitaro; Yamamoto, Masaki; Ago, Hideo; Shen, Jian-Ren

    2015-01-01

    Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 ångström resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 ångströms using femtosecond X-ray pulses of the SPring-8 ångström compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 ångströms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation.

  1. High-redshift Fanaroff-Riley type II radio sources: large-scale X-ray environment

    NASA Astrophysics Data System (ADS)

    Belsole, E.; Worrall, D. M.; Hardcastle, M. J.; Croston, J. H.

    2007-11-01

    We investigate the properties of the environment around 20 powerful radio galaxies and quasars at redshifts between 0.45 and 1. Using XMM-Newton and Chandra observations we probe the spatial distribution and the temperature of the cluster gas. We find that more than 60 per cent of powerful radio sources in the redshift range of our sample lie in a cluster of X-ray luminosity greater than 1044 ergs-1, and all but one of the narrow-line radio galaxies, for which the emission from the nucleus is obscured by a torus, lie in a cluster environment. For broad-line quasars the X-ray emission from the core dominates and it is more difficult to measure the cluster environment. However, within the statistical uncertainties we find no significant difference in the properties of the environment as a function of the orientation to the line of sight of the radio jet. This is in agreement with unification schemes. Our results have important implications for cluster surveys, as clusters around powerful radio sources tend to be excluded from X-ray and Sunyaev-Zeldovich surveys of galaxy clusters, and thus can introduce an important bias in the cluster luminosity function. Most of the radio sources are found close to pressure balance with the environment in which they lie, but the two low-excitation radio galaxies of the sample are observed to be underpressured. This may be the first observational indication for the presence of non-radiative particles in the lobes of some powerful radio galaxies. We find that the clusters around radio sources in the redshift range of our sample have a steeper entropy-temperature relation than local clusters, and the slope is in agreement with the predictions of self-similar gravitational heating models for cluster gas infall. This suggests that selection by active galactic nucleus (AGN) finds systems less affected by AGN feedback than the local average. We speculate that this is because the AGN in our sample are sufficiently luminous and rare that

  2. NUMERICAL SIMULATIONS OF RADIATIVE MAGNETIZED HERBIG-HARO JETS: THE INFLUENCE OF PRE-IONIZATION FROM X-RAYS ON EMISSION LINES

    SciTech Connect

    Tesileanu, O.; Mignone, A.; Massaglia, S.; Bacciotti, F. E-mail: mignone@ph.unito.it E-mail: fran@arcetri.astro.it

    2012-02-10

    We investigate supersonic, axisymmetric magnetohydrodynamic jets with a time-dependent injection velocity by numerical simulations with the PLUTO code. Using a comprehensive set of parameters, we explore different jet configurations in the attempt to construct models that can be directly compared to observational data of microjets. In particular, we focus our attention on the emitting properties of traveling knots and construct, at the same time, accurate line intensity ratios and surface brightness maps. Direct comparison of the resulting brightness and line intensity ratios distributions with observational data of microjets shows that a closer match can be obtained only when the jet material is pre-ionized to some degree. A very likely source for a pre-ionized medium is photoionization by X-ray flux coming from the central object.

  3. Numerical Simulations of Radiative Magnetized Herbig-Haro Jets: The Influence of Pre-ionization from X-Rays on Emission Lines

    NASA Astrophysics Data System (ADS)

    Teşileanu, O.; Mignone, A.; Massaglia, S.; Bacciotti, F.

    2012-02-01

    We investigate supersonic, axisymmetric magnetohydrodynamic jets with a time-dependent injection velocity by numerical simulations with the PLUTO code. Using a comprehensive set of parameters, we explore different jet configurations in the attempt to construct models that can be directly compared to observational data of microjets. In particular, we focus our attention on the emitting properties of traveling knots and construct, at the same time, accurate line intensity ratios and surface brightness maps. Direct comparison of the resulting brightness and line intensity ratios distributions with observational data of microjets shows that a closer match can be obtained only when the jet material is pre-ionized to some degree. A very likely source for a pre-ionized medium is photoionization by X-ray flux coming from the central object.

  4. X-Ray Crystallographic Analysis, EPR Studies, and Computational Calculations of a Cu(II) Tetramic Acid Complex

    PubMed Central

    Matiadis, Dimitrios; Tsironis, Dimitrios; Stefanou, Valentina; Igglessi–Markopoulou, Olga; McKee, Vickie; Sanakis, Yiannis; Lazarou, Katerina N.

    2017-01-01

    In this work we present a structural and spectroscopic analysis of a copper(II) N-acetyl-5-arylidene tetramic acid by using both experimental and computational techniques. The crystal structure of the Cu(II) complex was determined by single crystal X-ray diffraction and shows that the copper ion lies on a centre of symmetry, with each ligand ion coordinated to two copper ions, forming a 2D sheet. Moreover, the EPR spectroscopic properties of the Cu(II) tetramic acid complex were also explored and discussed. Finally, a computational approach was performed in order to obtain a detailed and precise insight of product structures and properties. It is hoped that this study can enrich the field of functional supramolecular systems, giving place to the formation of coordination-driven self-assembly architectures. PMID:28316540

  5. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  6. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  7. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  8. General laws of X-ray reflection from rough surfaces: II. Conformal roughness

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, I. V.

    2012-07-01

    Is shown that, if the expansions of the Debye-Waller formulas for the reflection and total scattering coefficients in the roughness height σ are limited to terms of order σ2, these expressions are valid for any layered inhomogeneous medium with conformal (depth-periodic) roughness and for any distribution function of the roughness heights if the roughness correlation length along the surface is sufficiently large. The advantages of measuring the total reflection coefficient, which characterizes the total intensity of radiation (both specularly reflected and diffusively scattered) directed by a rough surface back into vacuum, for solving the inverse problem of X-ray reflectometry (i.e., the reconstruction of the permittivity profile from a measured reflection curve) are discussed.

  9. X-ray diffraction and X-ray K-absorption near edge studies of Copper (II) Micro cyclic Carbamide complexes.

    NASA Astrophysics Data System (ADS)

    Malviya, P. K.; Sharma, P.; Mishra, A.; Bhalse, D.

    2016-10-01

    Synthesis of metal complexes [Cu (Carbamide)] (X = Br, Cl, NO3, SO4,CH3COO) by the chemical root method. The XRD data have been recorded at DAE, IUC Indore.XANES spectra have been recorded at the K-edge of Cu using the dispersive beam line at 2.5GeV Indus-2 synchrotron radiation source RRCAT (Raja Ramanna Center for Advance Technology), Indore, India. XRD and XANES data have been analysed using the computer software Origin 8.0 professional and Athena. X-ray diffraction studies of all the complexes are indicative of their crystalline nature. The crystalline size of the samples is estimated using the Scherer's formula. The values of the chemical shifts suggest that copper is in oxidation state +2 in all of the complexes.

  10. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  11. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  12. The extended ROSAT-ESO flux limited X-ray galaxy cluster survey (REFLEX II) II. Construction and properties of the survey

    NASA Astrophysics Data System (ADS)

    Böhringer, H.; Chon, G.; Collins, C. A.; Guzzo, L.; Nowak, N.; Bobrovskyi, S.

    2013-07-01

    Context. Galaxy clusters provide unique laboratories to study astrophysical processes on large scales and are important probes for cosmology. X-ray observations are currently the best means of detecting and characterizing galaxy clusters. Therefore X-ray surveys for galaxy clusters are one of the best ways to obtain a statistical census of the galaxy cluster population. Aims: In this paper we describe the construction of the REFLEX II galaxy cluster survey based on the southern part of the ROSAT All-Sky Survey. REFLEX II extends the REFLEX I survey by a factor of about two down to a flux limit of 1.8 × 10-12 erg s cm (0.1-2.4 keV). Methods: We describe the determination of the X-ray parameters, the process of X-ray source identification, and the construction of the survey selection function. Results: The REFLEX II cluster sample comprises currently 915 objects. A standard selection function is derived for a lower source count limit of 20 photons in addition to the flux limit. The median redshift of the sample is z = 0.102. Internal consistency checks and the comparison to several other galaxy cluster surveys imply that REFLEX II is better than 90% complete with a contamination less than 10%. Conclusions: With this publication we give a comprehensive statistical description of the REFLEX II survey and provide all the complementary information necessary for a proper modeling of the survey for astrophysical and cosmological applications. Based on observations at the European Southern Observatory La Silla, ChileFull Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A30

  13. Fluoride substitution in the Mn cluster from Photosystem II: EPR and X-ray absorption spectroscopy studies

    NASA Astrophysics Data System (ADS)

    DeRose, Victoria J.; Latimer, Matthew J.; Zimmermann, Jean-Luc; Mukerji, Ishita; Yachandra, Vittal K.; Sauer, Kenneth; Klein, Melvin P.

    1995-05-01

    X-band electron paramagnetic resonance (EPR) and Mn K-edge X-ray fluorescence absorption were used to study the effects of fluoride inhibition on the Mn complex in Photosystem II. The tetrameric Mn complex, responsible for the light-induced oxidation of H 2O to form molecular oxygen, is influenced by treatments in which the naturally occurring chloride salts are removed or replaced. Inhibition of the complex by fluoride is examined by parallel enzyme activity and EPR studies. It is found that, as a function of increasing fluoride concentration, the declining enzymatic activity is paralleled initially by an exchange of the S = 1/2 'multiline' EPR signal for the S > 1/2, 'g = 4' EPR signal in illuminated samples. High concentrations of fluoride induce a broad (≈ 200 G), featureless radical signal in samples which have not been illuminated; subsequent illumination of these samples also generates the g = 4 EPR signal. X-ray absorption studies (XAS) of fluoride-inhibited samples show subtle alterations of the conformation of the Mn complex that are consistent with the presence of two dissimilar pairs of Mn atoms. The halide studies are discussed in terms of structural models for the Mn complex.

  14. Advances in liquid phase soft-x-ray photoemission spectroscopy: A new experimental setup at BESSY II

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Pohl, Marvin N.; Ali, Hebatallah; Winter, Bernd; Aziz, Emad F.

    2017-07-01

    A state-of-the-art experimental setup for soft X-ray photo- and Auger-electron spectroscopy from liquid phase has been built for operation at the synchrotron-light facility BESSY II, Berlin. The experimental station is named SOL3, which is derived from solid, solution, and solar, and refers to the aim of studying solid-liquid interfaces, optionally irradiated by photons in the solar spectrum. SOL3 is equipped with a high-transmission hemispherical electron analyzer for detecting electrons emitted from small molecular aggregates, nanoparticles, or biochemical molecules and their components in (aqueous) solutions, either in vacuum or in an ambient pressure environment. In addition to conventional energy-resolved electron detection, SOL3 enables detection of electron angular distributions by the combination of a ±11° acceptance angle of the electron analyzer and a rotation of the analyzer in the polarization plane of the incoming synchrotron-light beam. The present manuscript describes the technical features of SOL3, and we also report the very first measurements of soft-X-ray photoemission spectra from a liquid microjet of neat liquid water and of TiO2-nanoparticle aqueous solution obtained with this new setup, highlighting the necessity for state-of-the-art electron detection.

  15. Elliptically polarised soft x-rays produced using a local bump in MAX II - Characterisation of the degree of polarisation

    SciTech Connect

    Dunn, J. Hunter; LeBlanc, G.; Andersson, A.; Lindgren, L.-J.; Hahlin, A.; Karis, O.; Arvanitis, D.

    2004-05-12

    MAX-lab has introduced a local perturbation to the electron orbit of the MAX II storage ring, providing users at the SX700 monochromator beam line, D1011, with elliptically polarised soft x-rays. This is achieved by using corrector magnets to send the electron orbit on an ascending or descending trajectory through the dipole magnet source. This simple 'bump' approach has many advantages over and above insertion device based solutions. To illustrate the potential of the approach, the degree of circular polarisation, Pc, has both been calculated and measured. The calculation was made by applying the Stokes formalism to the intensities given by the standard dipole emission formula. Experimentally Pc was characterised using x-ray magnetic circular dichroism measurements. In such experiments magnetic contrast scales directly proportional to Pc. Using a 25 atomic layer bcc Fe film deposited on the Cu(100) surface as a calibration standard the spin moment, ms, was determined. By comparing the values of ms obtained here with those reported earlier, the degree of circular polarisation could be estimated. At {approx} 715 eV the calculated and measured values of Pc are 0.93 and 0.85, respectively.

  16. An Expanding Plasma Model for the X-ray/radio knots in KPC-scale Jets of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sahayanathan, S.; Misra, R.; Kembhavi, A. K.; Kaul, C. L.

    2003-03-01

    We model the observed X-ray/radio knots in Active Galactic Nuclei (AGN) as isotropically expanding spherical plasma clouds fed continously by non-thermal electrons. The time-dependent electron distribution and the emitted photon spectrum are computed using the standard kinetic equation considering synchrotron, adiabatic and inverse Compton cooling processes. We use this model to study the knots of 1136 - 135 and 1150 + 497, recenly observed by Chandra. 29

  17. A systematic search for near-infrared counterparts of nearby ultraluminous X-ray sources (II)

    NASA Astrophysics Data System (ADS)

    López, K. M.; Heida, M.; Jonker, P. G.; Torres, M. A. P.; Roberts, T. P.; Walton, D. J.; Moon, D.-S.; Harrison, F. A.

    2017-07-01

    We present the results of our continued systematic search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within 10 Mpc. We observed 42 ULXs in 24 nearby galaxies and detected NIR candidate counterparts to 15 ULXs. Fourteen of these ULXs appear to have a single candidate counterpart in our images and the remaining ULX has two candidate counterparts. Seven ULXs have candidate counterparts with absolute magnitudes in the range between -9.26 and -11.18 mag, consistent with them being red supergiants (RSGs). The other eight ULXs have candidate counterparts with absolute magnitudes too bright to be a single stellar source. Some of these NIR sources show extended morphology or colours expected for active galactic nuclei (AGNs), strongly suggesting that they are likely stellar clusters or background galaxies. The RSG candidate counterparts form a valuable sample for follow-up spectroscopic observations to confirm their nature, with the ultimate goal of directly measuring the mass of the compact accretor that powers the ULX using binary Doppler shifts.

  18. Statistical inversion for medical x-ray tomography with few radiographs: II. Application to dental radiology

    NASA Astrophysics Data System (ADS)

    Kolehmainen, V.; Siltanen, S.; Järvenpää, S.; Kaipio, J. P.; Koistinen, P.; Lassas, M.; Pirttilä, J.; Somersalo, E.

    2003-05-01

    Diagnostic and operational tasks in dental radiology often require three-dimensional information that is difficult or impossible to see in a projection image. A CT-scan provides the dentist with comprehensive three-dimensional data. However, often CT-scan is impractical and, instead, only a few projection radiographs with sparsely distributed projection directions are available. Statistical (Bayesian) inversion is well-suited approach for reconstruction from such incomplete data. In statistical inversion, a priori information is used to compensate for the incomplete information of the data. The inverse problem is recast in the form of statistical inference from the posterior probability distribution that is based on statistical models of the projection data and the a priori information of the tissue. In this paper, a statistical model for three-dimensional imaging of dentomaxillofacial structures is proposed. Optimization and MCMC algorithms are implemented for the computation of posterior statistics. Results are given with in vitro projection data that were taken with a commercial intraoral x-ray sensor. Examples include limited-angle tomography and full-angle tomography with sparse projection data. Reconstructions with traditional tomographic reconstruction methods are given as reference for the assessment of the estimates that are based on the statistical model.

  19. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.

    PubMed

    Nam, Sunghyun; French, Alfred D; Condon, Brian D; Concha, Monica

    2016-01-01

    The Segal method estimates the amorphous fraction of cellulose Iβ materials simply based on intensity at 18° 2θ in an X-ray diffraction pattern and was extended to cellulose II using 16° 2θ intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and the degree of polymorphic conversion, we simulated the diffraction patterns of cotton celluloses (Iβ and II) and compared the simulated amorphous fractions with the Segal values. The diffraction patterns of control and mercerized cottons, respectively, were simulated with perfect crystals of cellulose Iβ (1.54° FWHM) and cellulose II (2.30° FWHM) as well as 10% and 35% amorphous celluloses. Their Segal amorphous fractions were 15% and 31%, respectively. The higher Segal amorphous fraction for control cotton was attributed to the peak overlap. Although the amorphous fraction was set in the simulation, the peak overlap induced by the increase of FWHM further enhanced the Segal amorphous intensity of cellulose Iβ. For cellulose II, the effect of peak overlap was smaller; however the lower reflection of the amorphous cellulose scattering in its Segal amorphous location resulted in smaller Segal amorphous fractions. Despite this underestimation, the relatively good agreement of the Segal method with the simulation for mercerized cotton was attributed to the incomplete conversion to cellulose II. The (1-10) and (110) peaks of cellulose Iβ remained near the Segal amorphous location of cellulose II for blends of control and mercerized cotton fibers.

  20. Accretion disk spectra of the ultra-luminous compact X-ray sources in nearby spiral galaxies and the super-luminal jet sources

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Kubota, Aya; Mizuno, Tsunefumi; Zycki, Piotr

    2001-09-01

    The Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and the Galactic super-luminal jet sources share the common spectral characteristic that they have extremely high disk temperatures which cannot be explained in the framework of the standard accretion disk model in the Schwarzschild metric. We examine several possibilities to solve this "too-hot" disk problem. In particular, we have calculated an extreme Kerr disk model to fit the observed spectra. We found that the Kerr disk will become significantly harder compared to the Schwarzschild disk only when the disk is highly inclined. For super-luminal jet sources, which are known to be inclined systems, the Kerr disk model may work if we choose proper values for the black hole angular momentum. For the ULXs, however, the Kerr disk interpretation will be problematic, as it is highly unlikely that their accretion disks are preferentially inclined.

  1. Chloride ligation in inorganic manganese model compounds relevant to Photosystem II studied using X-ray absorption spectroscopy

    PubMed Central

    Pizarro, Shelly A.; Visser, Hendrik; Cinco, Roehl M.; Robblee, John H.; Pal, Samudranil; Mukhopadhyay, Sumitra; Mok, Henry J.; Sauer, Kenneth; Wieghardt, Karl; Armstrong, William H.

    2014-01-01

    Chloride ions are essential for proper function of the photosynthetic oxygen-evolving complex (OEC) of Photosystem II (PS II). Although proposed to be directly ligated to the Mn cluster of the OEC, the specific structural and mechanistic roles of chloride remain unresolved. This study utilizes X-ray absorption spectroscopy (XAS) to characterize the Mn–Cl interaction in inorganic compounds that contain structural motifs similar to those proposed for the OEC. Three sets of model compounds are examined; they possess core structures MnIV3O4X (X = Cl, F, or OH) that contain a di-μ-oxo and two mono-μ-oxo bridges or MnIV2O2X (X = Cl, F, OH, OAc) that contain a di-μ-oxo bridge. Each set of compounds is examined for changes in the XAS spectra that are attributable to the replacement of a terminal OH or F ligand, or bridging OAc ligand, by a terminal Cl ligand. The X-ray absorption near edge structure (XANES) shows changes in the spectra on replacement of OH, OAc, or F by Cl ligands that are indicative of the overall charge of the metal atom and are consistent with the electronegativity of the ligand atom. Fourier transforms (FTs) of the extended X-ray absorption fine structure (EXAFS) spectra reveal a feature that is present only in compounds where chloride is directly ligated to Mn. These FT features were simulated using various calculated Mn–X interactions (X = O, N, Cl, F), and the best fits were found when a Mn–Cl interaction at a 2.2–2.3 Å bond distance was included. There are very few high-valent Mn halide complexes that have been synthesized, and it is important to make such a comparative study of the XANES and EXAFS spectra because they have the potential for providing information about the possible presence or absence of halide ligation to the Mn cluster in PS II. PMID:14758524

  2. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. II. ABUNDANCE RATIO IN THE HOT INTERSTELLAR MATTER

    SciTech Connect

    Kim, Dong-Woo; Fabbiano, Giuseppina; Pipino, Antonio

    2012-05-20

    Using Chandra X-ray observations of young, post-merger elliptical galaxies, we present X-ray characteristics of age-related observational results by comparing them with typical old elliptical galaxies in terms of metal abundances in the hot interstellar matter (ISM). While the absolute element abundances may be uncertain because of unknown systematic errors and partly because of the smaller amount of hot gas in young ellipticals, the relative abundance ratios (e.g., the {alpha}-element to Fe ratio, and most importantly the Si/Fe ratio) can be relatively well constrained. In two young elliptical galaxies (NGC 720 and NGC 3923) we find that the Si to Fe abundance ratio is super-solar (at a 99% significance level), in contrast to typical old elliptical galaxies where the Si to Fe abundance ratio is close to solar. Also, the O/Mg ratio is close to solar in the two young elliptical galaxies, as opposed to the sub-solar O/Mg ratio reported in old elliptical galaxies. Both features appear to be less significant outside the effective radius (roughly 30'' for the galaxies under study), consistent with the observations that confine to the centermost regions the signatures of recent star formation in elliptical galaxies. Observed differences between young and old elliptical galaxies can be explained by the additional contribution from SNe II ejecta in the former. In young elliptical galaxies, the later star formation associated with recent mergers would have a dual effect, resulting both in galaxy scale winds-and therefore smaller observed amounts of hot ISM-because of the additional SN II heating, and in different metal abundances, because of the additional SN II yields.

  3. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  4. SRX - a X-ray spectroscopy beamline with sub-100nm spatial resolution at NSLS-II

    NASA Astrophysics Data System (ADS)

    Thieme, J.

    2011-12-01

    J. Thieme, V. deAndrade, Y. Yao, J. Prietzel* (NSLS-II, Brookhaven National Laboratory, USA; *TU Munich, Germany) The new electron storage ring NSLS-II will be a source of synchrotron radiation with an unmatched low emittance. Such a facility is very well suited for hosting experiments in need of coherent radiation. One of first six beamlines to be constructed at NSLS-II will be a high resolution spectroscopy station, dedicated especially for environmental and geo-sciences. A canted setup of two undulators will serve as independent light sources for two branches of this beamline. One branch line is planned to address the energy range from 4.65 keV to 24 keV focusing the beam down to a small spot size with Kirkpatrick-Baez mirrors. The expected photon flux in the spot is in the range of above 10^13 phot/sec. A horizontally deflecting double crystal monochromator with maximum stability will ensure the possibility of spectroscopy with very high spectral resolution. The second branch is planned for reaching lower X-ray energies, addressing the range of 2 keV up to 15 keV, but with a higher spatial resolution. Using a Fresnel zoneplate, the spatial resolution aimed for is in the range of 30 nm. It can be expected that this branch would be attractive for more biological applications from environmental science due to the many elements of interest within that energy range. The experimental station will be designed to not only host X-ray fluorescence experiments but diffraction imaging experiments as well. The commissioning of this beamline will start in 2014, therefore a detailed design description will be presented here. As an example of what is achievable at this NSLS-II beamline we will present a spatially resolved study on the co-localization of iron and sulfur in a forest soil. The scientific topic to be addressed was to identify unambiguously the relationship between the speciation of iron and sulfur as a function of the chemical state of the surrounding soil when

  5. trans-Platinum(II) complex of 3-aminoflavone - synthesis, X-ray crystal structure and biological activities in vitro.

    PubMed

    Fabijańska, Małgorzata; Studzian, Kazimierz; Szmigiero, Leszek; Rybarczyk-Pirek, Agnieszka J; Pfitzner, Arno; Cebula-Obrzut, Barbara; Smolewski, Piotr; Zyner, Elżbieta; Ochocki, Justyn

    2015-01-21

    This paper describes the synthesis of trans-bis-(3-aminoflavone)dichloridoplatinum(ii) (trans-Pt(3-af)2Cl2; TCAP) for use as a potential anticancer compound, and the evaluation of its structure by elemental and spectral analyses, and X-ray crystallography. The complex demonstrated a significant cytotoxic effect against human and murine cancer cell lines, as well as weaker toxicity towards healthy cells (human peripheral blood lymphocytes) in comparison with cisplatin. Various biochemical and morphological methods confirm that the proapoptotic activity of trans-Pt(3-af)2Cl2 is markedly higher than the reference cisplatin. Our results suggest that trans-Pt(3-af)2Cl2 may have a different antitumour specificity from that of cisplatin.

  6. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  7. Interaction of ultraviolet and X-ray radiation with gamma rays produced by a jet in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zbyszewska, Magda

    1994-01-01

    Recent observations by the Compton Gamma-Ray Observatory give evidence for the existence of a type of blazar with strong gamma-ray emission. Data obtained by EGRET for the quasar 3C 279 show a spectrum between 100 MeV and 10 GeV. Photons of such energies should interact with the X-rays and produce positron/electron pairs. If the optical depth against pair production for the gamma rays is large (tau(gamma gamma) greater than 1), the gamma-ray spectrum should be affected. The importance of this process has been pointed out by, e.g., Maraschi, Ghisellini, & Celotti (1992). Several works (e.g., Dermer 1993; Zbyszewska 1993; Sikora, Begelman, & Rees 1993) concerning gamma-ray radiation from quasar 3C 279 have proposed a model in which the gamma rays are produced via interaction between a moving cloud of relativistic electrons and external soft photons. The presence of gamma rays in active galactic nuclei spectra gives constraints on the localization and the luminosity of the medium which produces ultraviolet/X-ray photons. We investigate what conditions should be fulfilled in the above model to avoid the absorption of the gamma rays due to pair production.

  8. Short GRB 130603B: Discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-ray excess

    SciTech Connect

    Fong, W.; Berger, E.; Margutti, R.; Chornock, R.; Migliori, G.; Zauderer, B. A.; Lunnan, R.; Laskar, T.; Metzger, B. D.; Foley, R. J.; Desch, S. J.; Meech, K. J.; Sonnett, S.; Dickey, C.; Hedlund, A.; Harding, P.

    2014-01-10

    We present radio, optical/NIR, and X-ray observations of the afterglow of the short-duration Swift and Konus-Wind GRB 130603B, and uncover a break in the radio and optical bands at ≈0.5 day after the burst, best explained as a jet break with an inferred jet opening angle of ≈4°-8°. GRB 130603B is only the third short GRB with a radio afterglow detection to date, and represents the first time that a jet break has been evident in the radio band. We model the temporal evolution of the spectral energy distribution to determine the burst explosion properties and find an isotropic-equivalent kinetic energy of ≈(0.6-1.7) × 10{sup 51} erg and a circumburst density of ≈5 × 10{sup –3}-30 cm{sup –3}. From the inferred opening angle of GRB 130603B, we calculate beaming-corrected energies of E {sub γ} ≈ (0.5-2) × 10{sup 49} erg and E {sub K} ≈ (0.1-1.6) × 10{sup 49} erg. Along with previous measurements and lower limits we find a median opening angle of ≈10°. Using the all-sky observed rate of 10 Gpc{sup –3} yr{sup –1}, this implies a true short GRB rate of ≈20 yr{sup –1} within 200 Mpc, the Advanced LIGO/VIRGO sensitivity range for neutron star binary mergers. Finally, we uncover evidence for significant excess emission in the X-ray afterglow of GRB 130603B at ≳ 1 day and conclude that the additional energy component could be due to fall-back accretion or spin-down energy from a magnetar formed following the merger.

  9. Ni(II) and Pd(II) complexes with new N,O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Pramanik, Ajoy Kumar; Mondal, Apurba Sau; Mondal, Tapan Kumar

    2016-07-01

    The thiophene appended Schiff's base ligand, 1-(2-(thiophen-2-yl)ethylimino)methyl)naphthalene-2-ol (HL) with N,O donor sites has been synthesized by the condensation between 2-hydroxy-1-naphthaldehyde and thiophene-2-ethylamine. The square planar 1:2 complexes of HL having general formula [M(L)2] (M = Ni(1) and Pd(2)) with nickel(II) and palladium(II) have been synthesized and characterized by several spectroscopic techniques. The geometry has been confirmed by single crystal X-ray study for complex 1. The electronic structure and spectral properties of the complexes are interpreted by DFT and TDDFT studies.

  10. Purification, crystallization and preliminary X-ray diffraction analysis of the glyoxalase II from Leishmania infantum

    PubMed Central

    Trincão, José; Sousa Silva, Marta; Barata, Lídia; Bonifácio, Cecília; Carvalho, Sandra; Tomás, Ana Maria; Ferreira, António E. N.; Cordeiro, Carlos; Ponces Freire, Ana; Romão, Maria João

    2006-01-01

    In trypanosomatids, trypanothione replaces glutathione in all glutathione-dependent processes. Of the two enzymes involved in the glyoxalase pathway, glyoxalase I and glyoxalase II, the latter shows absolute specificity towards trypanothione thioester, making this enzyme an excellent model to understand the molecular basis of trypanothione binding. Cloned glyoxalase II from Leishmania infantum was overexpressed in Escherichia coli, purified and crystallized. Crystals belong to space group C2221 (unit-cell parameters a = 65.6, b = 88.3, c = 85.2 Å) and diffract beyond 2.15 Å using synchrotron radiation. The structure was solved by molecular replacement using the human glyoxalase II structure as a search model. These results, together with future detailed kinetic characterization using lactoyltrypanothione, should shed light on the evolutionary selection of trypanothione instead of glutathione by trypano­somatids. PMID:16880563

  11. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  12. Chest X Ray?

    MedlinePlus

    ... this page from the NHLBI on Twitter. Chest X Ray A chest x ray is a fast and painless imaging test that ... tissue scarring, called fibrosis. Doctors may use chest x rays to see how well certain treatments are working ...

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  15. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  16. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  17. NEAR-INFRARED COUNTERPARTS TO CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER. II. DISCOVERY OF WOLF-RAYET STARS AND O SUPERGIANTS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Muno, M. P.; Morris, M. R.; Cotera, A.

    2010-02-10

    We present new identifications of infrared counterparts to the population of hard X-ray sources near the Galactic center detected by the Chandra X-ray Observatory. We have spectroscopically confirmed 16 new massive stellar counterparts to the X-ray population, including nitrogen-type (WN) and carbon-type (WC) Wolf-Rayet stars, and O supergiants. These discoveries increase the total sample of massive stellar X-ray sources in the Galactic center region to 30 (possibly 31). For the majority of these sources, the X-ray photometry is consistent with thermal emission from plasma having temperatures in the range of kT = 1-8 keV or non-thermal emission having power-law indices in the range of -1 {approx}< GAMMA {approx}< 3, and X-ray luminosities in the range of L{sub X} {approx} 10{sup 32}-10{sup 34} erg s{sup -1} (0.5-8.0 keV). Several sources have exhibited X-ray variability of several factors between observations. These X-ray properties are not a ubiquitous feature of single massive stars but are typical of massive binaries, in which the high-energy emission is generated by the collision of supersonic winds, or by accretion onto a compact companion. However, without direct evidence for companions, the possibility of intrinsic hard X-ray generation from single stars cannot be completely ruled out. The spectral energy distributions of these sources exhibit significant infrared excess, attributable to free-free emission from ionized stellar winds, supplemented by hot dust emission in the case of the WC stars. With the exception of one object located near the outer regions of the Quintuplet cluster, most of the new stars appear isolated or in loose associations. Seven hydrogen-rich WN and O stars are concentrated near the Sagittarius B H II region, while other similar stars and more highly evolved hydrogen-poor WN and WC stars lie scattered within {approx}50 pc, in projection, of Sagitarrius A West. We discuss various mechanisms capable of generating the observed X-rays

  18. INTEGRAL SPI Observations of Cygnus X-1 in the Soft State: What about the Jet Contribution in Hard X-Rays?

    NASA Astrophysics Data System (ADS)

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ~5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic and Poland with the participation of Russia and USA.

  19. INTEGRAL SPI observations of Cygnus X-1 in the soft state: What about the jet contribution in hard X-rays?

    SciTech Connect

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ∼5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics.

  20. X-ray studies and time-resolved photoluminescence on optically pumped antimonide-based midinfrared type-II lasers.

    PubMed

    Schwender, Carsten; Drumm, Jan Oliver; Hoffmann, Goetz; Vogelgesang, Birgit; Fouckhardt, Henning

    2004-12-01

    We report on high-resolution X-ray diffraction and time-resolved photoluminescence (TR-PL) studies of antimonide-based midinfrared (MIR) type-II laser samples. A structural characterization taking into account asymmetrical strain, layer tilting, and relaxation enables an accurate determination of the average lattice constant of the active region and the composition of the cladding layers. By designing the antimonide-to-arsenide interfaces, we achieve exact lattice matching of the active region to the substrate. Non-radiative recombination processes are investigated with time-resolved photoluminescence. The samples are also characterized under optically pumped laser operation. By an examination of the time-integrated and time-resolved amplified spontaneous emission (TR-ASE), we investigate the modal gain and gain dynamics. The variable stripe length method is combined with the TR-PL approach. Compared to the time-integrated gain spectra the spectral dependence of the maximum and minimum time-resolved gain shows a broad plateau. The full width half maximum (FWHM) of the TR-ASE pulse is 5.5 +/- 0.5 ps. Thus, short pulses in this range should be achievable upon laser operation. The active regions of the laser structures investigated here are promising subunits of type-II quantum cascade lasers.

  1. The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-Ray Emission from Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Freeman, M.; Montez, R., Jr.; Kastner, J. H.; Balick, B.; Frew, D. J.; Jones, D.; Miszalski, B.; Sahai, R.; Blackman, E.; Chu, Y.-H.; De Marco, O.; Frank, A.; Guerrero, M. A.; Lopez, J. A.; Zijlstra, A.; Bujarrabal, V.; Corradi, R. L. M.; Nordhaus, J.; Parker, Q. A.; Sandin, C.; Schönberner, D.; Soker, N.; Sokoloski, J. L.; Steffen, M.; Toalá, J. A.; Ueta, T.; Villaver, E.

    2014-10-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall ChanPlaNS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (lsim 5 × 103 yr), and likewise compact (R neb <~ 0.15 pc), PNe with closed structures and high central electron densities (ne >~ 1000 cm-3), and is rarely associated with PNe that show H2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  2. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    SciTech Connect

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  3. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  4. Characterization of pure and mixed Ar, Kr and Xe gas jets generated by different nozzles and a study of X-ray radiation yields after interaction with a sub-ps laser pulse

    NASA Astrophysics Data System (ADS)

    Schultz, K. A.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Wiewior, P.; Shlyaptseva, V. V.; Weller, M. E.; Petkov, E. E.; Shrestha, I. K.; Stafford, A.; Cooper, M. C.

    2016-10-01

    Gas jets accelerated through a linear supersonic and a conical nozzle, comprising a monomer/cluster mix, were characterized at UNR using a Mach-Zehnder type interferometer and Rayleigh scattering. A comparison of the two nozzle types is presented, showing that the linear nozzle produces gas jets of an order of magnitude denser than the conical nozzle. The linear gas jets of Ar, Kr, and Xe as well as triple mixtures with different percentages of each of the aforementioned gases were characterized. The densest gas jets used Ar as the target gas, while the least dense jets came from Kr. Cluster radii of the pure gases were measured, and Xe gas jets were found to produce the largest gas clusters. A study of X-ray generation by gas jet-laser plasma was performed at the UNR Leopard laser (1.057 μm, 350 fs, ˜1019 W/cm2) on the linear nozzle. The gas jets were irradiated with a high-intensity sub-ps laser pulse. An absolute X-ray output of the laser-gas jet interactions measured by the calibrated PCDs is presented and show that triple mixtures of Xe, Kr, and Ar each exhibited a higher X-ray yield compared to the pure gases. A strong anisotropy of X-ray radiation with respect to laser beam polarization direction is observed in all the gas jets. In fact, this anisotropy is different in three spectral regions (>1.4, 3.5 and 9 keV).

  5. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.

    PubMed

    van Velzen, S; Anderson, G E; Stone, N C; Fraser, M; Wevers, T; Metzger, B D; Jonker, P G; van der Horst, A J; Staley, T D; Mendez, A J; Miller-Jones, J C A; Hodgkin, S T; Campbell, H C; Fender, R P

    2016-01-01

    The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection. Copyright © 2016, American Association for the Advancement of Science.

  6. Optical diagnostics on ETA-II for x-ray spot size

    SciTech Connect

    Richardson, R A

    1999-03-22

    Improvements have been made in the performance of the ETA-II accelerator that allow a nominal 2 kA, 6 MeV beam to be focused to a spot size less that 1 mm in diameter. The improvements include reducing the energy sweep to less than +/- 0.5 & over 40 ns of the pulse using a real time energy diagnostic and improving the magnetic tune of the accelerator to reduce the emittance to 8 cm-mrad. Finally, an automated tuning system (MAESTRO) was run to minimize the time dependent centroid motion (corkscrew) by adjusting the steering dipoles over the focusing solenoids. The corkscrew motion was reduced to less than +/- 0.5 mm at the output of the accelerator.

  7. Type II Turn of Receptor-bound Salmon Calcitonin Revealed by X-ray Crystallography.

    PubMed

    Johansson, Eva; Hansen, Jakob Lerche; Hansen, Ann Maria Kruse; Shaw, Allan Christian; Becker, Peter; Schäffer, Lauge; Reedtz-Runge, Steffen

    2016-06-24

    Calcitonin is a peptide hormone consisting of 32 amino acid residues and the calcitonin receptor is a Class B G protein-coupled receptor (GPCR). The crystal structure of the human calcitonin receptor ectodomain (CTR ECD) in complex with a truncated analogue of salmon calcitonin ([BrPhe(22)]sCT(8-32)) has been determined to 2.1-Å resolution. Parallel analysis of a series of peptide ligands showed that the rank order of binding of the CTR ECD is identical to the rank order of binding of the full-length CTR, confirming the structural integrity and relevance of the isolated CTR ECD. The structure of the CTR ECD is similar to other Class B GPCRs and the ligand binding site is similar to the binding site of the homologous receptors for the calcitonin gene-related peptide (CGRP) and adrenomedulin (AM) recently published (Booe, J. M., Walker, C. S., Barwell, J., Kuteyi, G., Simms, J., Jamaluddin, M. A., Warner, M. L., Bill, R. M., Harris, P. W., Brimble, M. A., Poyner, D. R., Hay, D. L., and Pioszak, A. A. (2015) Mol. Cell 58, 1040-1052). Interestingly the receptor-bound structure of the ligand [BrPhe(22)]sCT(8-32) differs from the receptor-bound structure of the homologous ligands CGRP and AM. They all adopt an extended conformation followed by a C-terminal β turn, however, [BrPhe(22)]sCT(8-32) adopts a type II turn (Gly(28)-Thr(31)), whereas CGRP and AM adopt type I turns. Our results suggest that a type II turn is the preferred conformation of calcitonin, whereas a type I turn is the preferred conformation of peptides that require RAMPs; CGRP, AM, and amylin. In addition the structure provides a detailed molecular explanation and hypothesis regarding ligand binding properties of CTR and the amylin receptors.

  8. S3 State of the O2-Evolving Complex of Photosystem II: Insights from QM/MM, EXAFS, and Femtosecond X-ray Diffraction.

    PubMed

    Askerka, Mikhail; Wang, Jimin; Vinyard, David J; Brudvig, Gary W; Batista, Victor S

    2016-02-23

    The oxygen-evolving complex (OEC) of photosystem II has been studied in the S3 state by electron paramagnetic resonance, extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray diffraction (XRD). However, the actual structure of the OEC in the S3 state has yet to be established. Here, we apply hybrid quantum mechanics/molecular mechanics methods and propose a structural model that is consistent with EXAFS and XRD. The model supports binding of water ligands to the cluster in the S2 → S3 transition through a carousel rearrangement around Mn4, inspired by studies of ammonia binding.

  9. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    NASA Technical Reports Server (NTRS)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  10. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    NASA Technical Reports Server (NTRS)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  11. Winds in collision. II - An analysis of the X-ray emission from the eruptive symbiotic HM Sge

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Wallerstein, G.; Brugel, E. W.; Stencel, R. E.

    1984-01-01

    X-ray emissions from HM Sge obtained in 1981 from the HEAO-2 satellite are analyzed and compared quantitatively with observations of HM Sge made in 1980 and of HM Sge, V 1016 Cyg, and RR Tel made in 1979. The change in the X-ray emission from HM Sge between 1979 and 1981 is found to be consistent with the X-ray luminosity and/or temperature of the emitting region declining with an e-folding timescale of the order of one to several decades. Comparison with X-ray data from V 1016 Cyg and RR Tel gives a composite X-ray light curve that is also consistent with such a decline. A comparison of the X-ray observation with spectroscopic information makes it possible to constrain the properties of the X-ray emitting region: the result is consistent with emission from an optically thin region between the two stars in the system where their winds collide head on. It is also shown that the observations are inconsistent with a stellar (blackbody) source, with emission from an accretion disk around a white dwarf or a neutron star, and with emission from a single star wind from either a white dwarf or a neutron star.

  12. X-ray studies of coeval star samples. II - The Pleiades cluster as observed with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.

  13. Winds in collision. II - An analysis of the X-ray emission from the eruptive symbiotic HM Sge

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Wallerstein, G.; Brugel, E. W.; Stencel, R. E.

    1984-01-01

    X-ray emissions from HM Sge obtained in 1981 from the HEAO-2 satellite are analyzed and compared quantitatively with observations of HM Sge made in 1980 and of HM Sge, V 1016 Cyg, and RR Tel made in 1979. The change in the X-ray emission from HM Sge between 1979 and 1981 is found to be consistent with the X-ray luminosity and/or temperature of the emitting region declining with an e-folding timescale of the order of one to several decades. Comparison with X-ray data from V 1016 Cyg and RR Tel gives a composite X-ray light curve that is also consistent with such a decline. A comparison of the X-ray observation with spectroscopic information makes it possible to constrain the properties of the X-ray emitting region: the result is consistent with emission from an optically thin region between the two stars in the system where their winds collide head on. It is also shown that the observations are inconsistent with a stellar (blackbody) source, with emission from an accretion disk around a white dwarf or a neutron star, and with emission from a single star wind from either a white dwarf or a neutron star.

  14. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  15. Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods

    SciTech Connect

    Klusak, Vojtech; Barinka, Cyril; Plechanovova, Anna; Mlcochova, Petra; Konvalinka, Jan; Rulisek, Lubomir; Lubkowski, Jacek

    2009-05-29

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc-dependent exopeptidase and an important therapeutic target for neurodegeneration and prostate cancer. The hydrolysis of N-acetyl-l-aspartyl-l-glutamate (N-Ac-Asp-Glu), the natural dipeptidic substrate of the GCPII, is intimately involved in cellular signaling within the mammalian nervous system, but the exact mechanism of this reaction has not yet been determined. To investigate peptide hydrolysis by GCPII in detail, we constructed a mutant of human GCPII [GCPII(E424A)], in which Glu424, a putative proton shuttle residue, is substituted with alanine. Kinetic analysis of GCPII(E424A) using N-Ac-Asp-Glu as substrate revealed a complete loss of catalytic activity, suggesting the direct involvement of Glu424 in peptide hydrolysis. Additionally, we determined the crystal structure of GCPII(E424A) in complex with N-Ac-Asp-Glu at 1.70 {angstrom} resolution. The presence of the intact substrate in the GCPII(E424A) binding cavity substantiates our kinetic data and allows a detailed analysis of GCPII/N-Ac-Asp-Glu interactions. The experimental data are complemented by the combined quantum mechanics/molecular mechanics calculations (QM/MM) which enabled us to characterize the transition states, including the associated reaction barriers, and provided detailed information concerning the GCPII reaction mechanism. The best estimate of the reaction barrier was calculated to be {Delta}G {approx} 22({+-}5) kcal{center_dot}mol{sup -1}, which is in a good agreement with the experimentally observed reaction rate constant (k{sub cat} {approx} 1 s{sup -1}). Combined together, our results provide a detailed and consistent picture of the reaction mechanism of this highly interesting enzyme at the atomic level.

  16. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser.

    PubMed

    Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A; Rendek, Kimberly N; Hunter, Mark S; Shoeman, Robert L; White, Thomas A; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E; Reeder, Brenda; Sierra, Raymond G; Liu, Haiguang; Barty, Anton; Aquila, Andrew L; Deponte, Daniel; Kirian, Richard A; Bari, Sadia; Bergkamp, Jesse J; Beyerlein, Kenneth R; Bogan, Michael J; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E; Davis, Katherine M; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A; Moore, Ana L; Pushkar, Yulia; Williams, Garth J; Boutet, Sébastien; Doak, R Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N; Spence, John C H; Fromme, Petra

    2014-09-11

    Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

  17. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser

    PubMed Central

    Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra

    2015-01-01

    Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005

  18. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data.

    PubMed

    Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-01-17

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn4O5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S1 state. However, the atom positions in this crystal

  19. Development and characterization of a time-, position- and energy-resolved x-ray diagnostic for PBFA II target experiments

    SciTech Connect

    Derzon, M.S.; Filuk, A.B.; Pantuso, J.; Dukart, R.J.; Olsen, R.; Barber, T.; Bernard, M.

    1992-12-31

    A time-, position- and energy-resolved soft x-ray (100--500 eV) diagnostic is being developed for PBFA II target experiments. The diagnostic provides measurements of hydrodynamic motion and thermal gradients in light-ion fusion targets. A slit-image of the source is imprinted onto thin sheets (20{mu}m) of organic scintillator to create a one-dimensional image. The scintillator light is then proximity-coupled to a linear array of fiber-optics that transports the light to a streak camera that is operated without an intensifier. The streak camera output is recorded on a charge-coupled-device (CCD) camera. We are characterizing the spatial and temporal resolutions of the systems. This is done by collecting data from as many as 90 individual fibers and correcting for variations in throughput and the effects of spatial resolution to roughly 5% standard deviation in their relative throughput. Spatial resolution of these systems at the source is approximately 0.4 mm. Timing resolution is nominally 2 ns and it is limited primarily by the scintillator response and dispersion in the 50-m-long fiber array. We describe the measurement techniques and the results of the characterization.

  20. Structural Properties of Human CaMKII Ca2+ /Calmodulin-Dependent Protein Kinase II using X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Cao, Yumeng Melody; McSpadden, Ethan; Kuriyan, John; Department of Molecular; Cell Biology; Department of Chemistry Team

    To this day, human memory storage remains a mystery as we can at most describe the process vaguely on a cellular level. Switch-like properties of Calcium/Calmodulin-Dependent Protein Kinase II make it a leading candidate in understanding the molecular basis of human memory. The protein crystal was placed in the beam of a synchrotron source and the x-ray crystallography data was collected as reflections on a diffraction pattern that undergo Fourier transform to obtain the electron density. We observed two drastic differences from our solved structure at 2.75Å to a similar construct of the mouse CaMKII association domain. Firstly, our structure is a 6-fold symmetric dodecamer, whereas the previously published construct was a 7-fold symmetric tetradecamer. This suggests the association domain of human CaMKII is a dynamic structure that is triggered subunit exchange process. Secondly, in our structure the N-terminal tag is docked as an additional beta-strand on an uncapped beta-sheet present in each association domain protomer. This is concrete evidence of the involvement of the polypeptide docking site in the molecular mechanism underlining subunit exchange. In the future, we would like to selectively inhibit the exchange process while not disrupting the other functionalities of CaMKII.

  1. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  2. ALS-II, a Potential Soft X-ray, Diffraction Limited Upgrade of the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Tarawneh, H.; Steier, C.; Falcone, R.; Robin, D.; Nishimura, H.; Sun, C.; Wan, W.

    2014-03-01

    The Advanced Light Source (ALS) at Berkeley Lab has seen many upgrades over the years, keeping it one of the brightest sources for soft x-rays worldwide. Recent developments in magnet technology and lattice design appear to open the door for very large further increases in brightness [1], particularly by reducing the horizontal emittance, even within the space constraints of the existing tunnel. Initial studies for possible lattices will be presented that could approach the soft x-ray diffraction limit around 2 keV in both planes within the ALS footprint. Emerging scientific applications and experimental methods that would greatly benefit from ring based sources having much higher brightness and transverse coherence than present or near future storage ring facilities include nanometer imaging applications, X-ray correlation spectroscopy, diffraction microscopy, holography, ptychography, and resonant inelastic soft X-ray scattering at high resolution.

  3. NEAR-SIMULTANEOUS OBSERVATIONS OF X-RAY PLASMA EJECTION, CORONAL MASS EJECTION, AND TYPE II RADIO BURST

    SciTech Connect

    Kim, Yeon-Han; Bong, Su-Chan; Park, Y.-D.; Cho, K.-S.; Moon, Y.-J.

    2009-11-10

    We report the first simultaneous observation of X-ray plasma ejection (XPE), coronal mass ejection (CME), and type II solar radio burst on 1999 October 26. First, an XPE was observed from 21:12 UT to 21:24 UT in the Yohkoh SXT field of view (1.1 to 1.4 R{sub sun}). The XPE was accelerated with a speed range from 190 to 410 km s{sup -1} and its average speed is about 290 km s{sup -1}. Second, the associated CME was observed by the Mauna Loa Mk4 coronameter (1.1-2.8 R{sub sun}) from 21:16 UT. The CME front was clearly identified at 21:26 UT and propagated with a deceleration of about -110 m s{sup -2}. Its average speed is about 360 km s{sup -1}. At the type II burst start time (21:25 UT), the height of the CME front is around 1.7 R{sub sun} and its speed is about 470 km s{sup -1}. Third, a type II solar radio burst was observed from 21:25 UT to 21:43 UT by the Culgoora solar radio spectrograph. The burst shows three emission patches during this observing period and the emission heights of the burst are estimated to be about 1.3 R{sub sun} (21:25 UT), 1.4 R{sub sun} (21:30 UT), and 1.8 R{sub sun} (21:40 UT). By comparing these three phenomena, we find that: (1) kinematically, while the XPE shows acceleration, the associated CME front shows deceleration; (2) there is an obvious height difference (0.3 R {sub sun}) between the CME front and the XPE front around 21:24 UT and the formation height of the type II burst is close to the trajectory extrapolated from the XPE front; (3) both speeds of the XPE and the CME are comparable with each other around the starting time of the type II burst. Considering the formation height and the speed of the type II burst, we suggest that its first emission is due to the coronal shock generated by the XPE and the other two emissions are driven by the CME flank interacting with the high-density streamer.

  4. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  5. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  6. Comparison of propagation- and grating-based x-ray phase-contrast imaging techniques with a liquid-metal-jet source

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Lundström, U.; Thüring, Thomas; Rutishauser, S.; Larsson, D. H.; Stampanoni, M.; David, C.; Hertz, H. M.; Burvall, A.

    2014-03-01

    X-ray phase-contrast imaging has been developed as an alternative to conventional absorption imaging, partly for its dose advantage over absorption imaging at high resolution. Grating-based imaging (GBI) and propagation-based imaging (PBI) are two phase-contrast techniques used with polychromatic laboratory sources. We compare the two methods by experiments and simulations with respect to required dose. A simulation method based on the projection approximation is designed and verified with experiments. A comparison based on simulations of the doses required for detection of an object with respect to its diameter is presented, showing that for monochromatic radiation, there is a dose advantage for PBI for small features but an advantage for GBI at larger features. However, GBI suffers more from the introduction of polychromatic radiation, in this case so much that PBI gives lower dose for all investigated feature sizes. Furthermore, we present and compare experimental images of biomedical samples. While those support the dose advantage of PBI, they also highlight the GBI advantage of quantitative reconstruction of multimaterial samples. For all experiments a liquid-metal-jet source was used. Liquid-metal-jet sources are a promising option for laboratory-based phase-contrast imaging due to the relatively high brightness and small spot size.

  7. Synthesis, X-ray crystal structure and spectroscopy of a Werner-type host Co(II) complex, trans-bisisothiocyanatotetrakis( trans-4-styrylpyridine)cobalt(II)

    NASA Astrophysics Data System (ADS)

    Karunakaran, C.; Thomas, K. R. J.; Shunmugasundaram, A.; Murugesan, R.

    2000-05-01

    Single crystals of the title Co(II) complex, [Co(stpy)4(NCS)2] [stpy=trans-4-styrylpyridine] are prepared and characterized by elemental analysis, IR, and UV-visible spectroscopy and X-ray crystal structure determination. The complex crystallizes in the orthorhombic space group Pna21 with unit-cell parameters, a=32.058(3), b=15.362(5), c=9.818(5) Å, and Z=4. The structure consists of discrete monomeric units of [Co(stpy)4(NCS)2]. The equatorial positions of the Co(II) polyhedron are occupied by nitrogen atoms of the four stpy ligands and the axial positions are occupied by the nitrogen atoms of the two thiocyanate ions. The unit cell packing reveals interpenetration of styryl groups owing to conformational flexibility of phenyl and pyridyl rings in stpy ligands. Thus, it leads to efficient packing of the crystal lattice leaving no space available for guest inclusion. IR spectra reveal nitrogen coordination from stpy and terminal -NCS coordination of the thiocyanate group. The optical reflectance bands 475, 540 (shoulder) and 1022 nm suggest octahedral geometry in accordance with the X-ray data. However, the optical spectrum of acetonitrile solution shows an intense band at 615 nm and a weak shoulder at 570 nm suggesting participation of the solvent molecules in the coordination sphere. These bands indicate the presence of both tetrahedral and octahedral species in solution.

  8. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. II. Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.

  9. THE FIRST DETECTION OF [O IV] FROM AN ULTRALUMINOUS X-RAY SOURCE WITH SPITZER. II. EVIDENCE FOR HIGH LUMINOSITY IN HOLMBERG II ULX

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R. E-mail: ciprian.berghea.ctr@usno.navy.mi

    2010-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here, we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 mum emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line-of-sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10{sup 40} erg s{sup -1} would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-ionization line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.

  10. Synthesis, X-ray powder structure, and magnetic properties of the new, weak ferromagnet iron(II) phenylphosphonate.

    PubMed

    Bellitto, C; Federici, F; Altomare, A; Rizzi, R; Ibrahim, S A

    2000-04-17

    A new molecule-based weak ferromagnet of formula Fe[C6H5PO3].H2O was synthesized. It was characterized by thermogravimetric analysis and UV-visible and infrared spectroscopy, and the magnetic properties were studied using a superconducting quantum interference device magnetometer. The crystal structure of the compound was determined "ab initio" from X-ray powder diffraction data and refined by the Rietveld method. The crystals of Fe[C6H5PO3].H2O are orthorhombic, space group Pmn2(1), with a = 5.668(8) A, b = 14.453(2) A, c = 4.893(7) A, and Z = 2. The title compound is isostructural with the previously reported lamellar M[C6H5PO3].H2O, M = Mn(II), Zn(II), and Cd(II). The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. These layers are then separated by bilayers of the phenyl groups, and van der Waals contacts are established between them. The refinement has shown that the phenyl rings are disordered in the lattice. The oxidation state of the metal ion is +2, and the electronic configuration is d6 (S = 2) high-spin, as determined from dc magnetic susceptibility measurements from 150 K to room temperature. Below 100 K, the magnetic moment of Fe[C6H5PO3].H2O rises rapidly to a maximum at TN = 21.5 K, and then it decreases again. The peak at TN is associated with the 3D antiferromagnetic long-range ordering. Below the critical temperature, the title compound behaves as a "weak" ferromagnet, which represents the third type of magnetic materials characterized by having a finite zero-field magnetization, ferromagnets and ferrimagnets being the other two types. The large coercive field (i.e., 6400 G) observed in the hysteresis loop at T = 10 K is rare in molecule-based materials; it can be ascribed to a pronounced spin-orbit coupling for the 5T2g ground state of the Fe(II) ion in the octahedral environment.

  11. Synthesis, characterization and X-ray structural studies of four copper (II) complexes containing dinuclear paddle wheel structures

    PubMed Central

    2013-01-01

    Background Various dinuclear copper (II) complexes with octahedral geometry have been reported. The majority of these complexes contain N containing aromatic rings as axial ligands. There are also a few cases where the solvent used in the reaction occupies the axial position of the dinuclear copper (II) complex. This may occur by planned synthesis or some times by serendipity. Here we report some four copper (II) complexes containing solvent and or N containing heterocyclic ring as the axial ligand. Results Four compounds, each containing dinuclear Copper (II) units (with the most robust, frequently occurring paddle wheel structures) were synthesized and characterised by single crystal X-ray diffraction and by IR spectroscopy. The compounds 1 & 2 have the general formula Cu2(RCOO) 4(L)2 [(for (1) RCOO= 4-Chloro Benzoate, L= Isopropanol; for 2 RCOO= Benzoate, L= 2-Amino-4,6-dimethyl pyrimidine )] while 3 & 4 have the general formula, Cu2(RCOO) 4(S)2 Cu2(RCOO) 4(L)2 [RCOO=5-Chloro-thiophene-2-carboxylate L= 2-Amino-4,6-dimethyl pyrimidine, for 3 S= ethanol; for 4 S= methanol ]. A wide range of hydrogen bonds (of the O-H…O, N-H…O and N-H…N type) and π-π stacking interactions are present in the crystal structures. Conclusions All compounds contain the dinuclear units, in which two Cu (II) ions are bridged by four syn, syn-η1:η1:μ carboxylates, showing a paddle-wheel cage type with a distorted octahedral geometry. The compounds 1 &2 contain a single dimeric unit while 3 &4 contain two dimeric units. The structures 3 and 4 are very interesting co-crystals of two paddle wheel molecules. Also it is interesting to note that the compounds 3 &4 are isostructural with similar cell parameters. Both the compounds 3 &4 differ in the solvent molecule coordinated to copper in one of the dimeric units. In all the four compounds, each of the copper dimers has an inversion centre. Every copper has a distorted octahedral centre, formed by four oxygen atoms (from different

  12. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds—synthesis, X-Ray studies and magnetic properties

    NASA Astrophysics Data System (ADS)

    Machura, B.; Świtlicka, A.; Zwoliński, P.; Mroziński, J.; Kalińska, B.; Kruszynski, R.

    2013-01-01

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH)4Hg(SCN)4]n (1) [Cu(indH)4Hg(SCN)4]n (2) and [Cu(ampy)2Hg(SCN)4]n (3), have one-dimensional coordination structure. Two compounds [Cu(pzH)2Hg(SCN)4]n (4) and [Cu(abzimH)Hg(SCN)4]n (5) form two-dimensional nets, whereas the complexes [Cu(pyCN)2Hg(SCN)4]n (6) and [Cu(pyCH(OH)(OMe))2Hg(SCN)4]n (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H•••N hydrogen bonds to the three dimensional net. In 2 the N-H•••S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H•••N and N-H•••S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H•••N hydrogen bonds to the three dimensional net.

  13. X-rays from stars.

    PubMed

    Güdel, Manuel

    2002-09-15

    More than two years of observation with Chandra and XMM-Newton has provided a rich harvest of new results on the physics of stellar coronae and winds. High-resolution X-ray spectroscopy in particular has opened new windows to the structure, the dynamics and the composition of stellar atmospheres. The present paper presents selected results from the areas of hot and cool stars and star formation, summarizing new views of the thermal structure and energy release in stellar coronae, observations of magnetically active brown dwarfs, the structure of winds in hot stars, the physics in colliding-wind binary systems, and X-rays from protostars and stellar jets.

  14. Suzaku View of X-Ray Spectral Variability of the Radio Galaxy Centaurus A: Partial Covering Absorber, Reflector, and Possible Jet Component

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yasushi; Hiragi, Kazuyoshi; Yamazaki, Syoko; Mizuno, Motohiro; Hayashi, Kazuma; Hayashi, Katsuhiro; Nishino, Sho; Takahashi, Hiromitsu; Ohno, Masanori

    2011-12-01

    We observed a nearby radio galaxy, Centaurus A (Cen A), three times with Suzaku in 2009 and measured the wide-band X-ray spectral variability more accurately than previous measurements. The Cen A was in an active phase in 2009, and the flux became higher by a factor of 1.5-2.0 and the spectrum became harder than that in 2005. The Fe-K line intensity increased by 20%-30% from 2005 to 2009. The correlation of the count rate between the XIS 3-8 keV and PIN 15-40 keV band showed a complex behavior with a deviation from a linear relation. The wide-band X-ray continuum in 2-200 keV can be fitted with an absorbed power-law model plus a reflection component, or a power law with a partial covering Compton-thick absorption. The difference spectra between high and low flux periods in each observation were reproduced by a power law with a partial covering Compton-thick absorption. Such a Compton-thick partial covering absorber was observed for the first time in Cen A. The power-law photon index of the difference spectra in 2009 is almost the same as that of the time-averaged spectra in 2005, but steeper by ~0.2 than that of the time-averaged spectra in 2009. This suggests an additional hard power-law component with a photon index of <1.6 in 2009. This hard component could be a lower part of the inverse-Compton-scattered component from the jet, whose gamma-ray emission has recently been detected with the Fermi Large Area Telescope.

  15. Jet physics at CDF Run II

    SciTech Connect

    Safonov, A.; /UC, Davis

    2004-12-01

    The latest results on jet physics at CDF are presented and discussed. Particular attention is paid to studies of the inclusive jet cross section using 177 pb{sup -1} of Run II data. Also discussed is a study of gluon and quark jet fragmentation.

  16. Characteristics of a tapered undulator for the X-ray absorption fine-structure technique at PLS-II.

    PubMed

    Sung, Nark-Eon; Lee, Ik-Jae; Jeong, Sung-hoon; Kang, Seen-Woong

    2014-11-01

    An in-vacuum undulator (IVU) with a tapered configuration was installed in the 8C nanoprobe/XAFS beamlime (BL8C) of the Pohang Light Source in Korea for hard X-ray nanoprobe and X-ray absorption fine-structure (XAFS) experiments. It has been operated in planar mode for the nanoprobe experiments, while gap-scan and tapered modes have been used alternatively for XAFS experiments. To examine the features of the BL8C IVU for XAFS experiments, spectral distributions were obtained theoretically and experimentally as functions of the gap and gap taper. Beam profiles at a cross section of the X-ray beam were acquired using a slit to visualize the intensity distributions which depend on the gap, degree of tapering and harmonic energies. To demonstrate the effect of tapering around the lower limit of the third-harmonic energy, V K-edge XAFS spectra were obtained in each mode. Owing to the large X-ray intensity variation around this energy, XAFS spectra of the planar and gap-scan modes show considerable spectral distortions in comparison with the tapered mode. This indicates that the tapered mode, owing to the smooth X-ray intensity profile at the expense of the highest and most stable intensity, can be an alternative for XAFS experiments where the gap-scan mode gives a considerable intensity variation; it is also suitable for quick-XAFS scanning.

  17. High resolution synchrotron-based radiography and tomography using hard X-rays at the BAM line (BESSY II)

    NASA Astrophysics Data System (ADS)

    Rack, A.; Zabler, S.; Müller, B. R.; Riesemeier, H.; Weidemann, G.; Lange, A.; Goebbels, J.; Hentschel, M.; Görner, W.

    2008-02-01

    The use of high brilliance and partial coherent synchrotron light for radiography and computed tomography (CT) allows to image micro-structured, multi-component specimens with different contrast modes and resolutions up to submicrometer range. This is of high interest for materials research, life science and non-destructive evaluation applications. An imaging setup for microtomography and radiography installed at BESSY II (a third generation synchrotron light source located in Berlin, Germany) as part of its first hard X-ray beamline (BAM line) can now be used for absorption, refraction as well as phase contrast — dedicated to inhouse research and applications by external users. Monochromatic synchrotron light between 6 keV and 80 keV is attained via a fully automated double multilayer monochromator. For imaging applications the synchrotron beam transmitted by the sample is converted with a scintillator into visible light. By use of microscope optics this luminescence image is then projected onto, e.g., a CCD chip. Several scintillating materials are used in order to optimise the performance of the detector system. Different optical systems are available for imaging ranging from a larger field of view and moderate resolutions (macroscope — up to 14 mm×14 mm field of view) to high resolution (microscope — down to 0.35 μm pixel size), offering magnifications from 1.8× to 40×. Additionally asymmetric cut Bragg crystals in front of the scintillator can be used for a further magnification in one dimension by a factor of about 20. Slow and fast cameras are available, with up to 16 bit dynamic range. We show the suitability of the setup for numerous applications from materials research and life science.

  18. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  19. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    SciTech Connect

    Thieme, Juergen

    2014-02-06

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Lab’s National Synchrotron Light Source (NSLS), “beamtime” can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  20. Communication: Single crystal x-ray diffraction observation of hydrogen bonding between 1-propanol and water in a structure II clathrate hydrate.

    PubMed

    Udachin, Konstantin; Alavi, Saman; Ripmeester, John A

    2011-03-28

    Single crystal x-ray crystallography is used to detect guest-host hydrogen bonding in structure II (sII) binary clathrate hydrate of 1-propanol and methane. X-ray structural analysis shows that the 1-propanol oxygen atom is at a distance of 2.749 and 2.788 Å from the closest clathrate hydrate water oxygen atoms from a hexagonal face of the large sII cage. The 1-propanol hydroxyl hydrogen atom is disordered and at distances of 1.956 and 2.035 Å from the closest cage water oxygen atoms. These distances are compatible with guest-water hydrogen bonding. The C-C-C-O torsional angle in 1-propanol in the cage is 91.47° which corresponds to a staggered conformation for the guest. Molecular dynamics studies of this system demonstrated guest-water hydrogen bonding in this hydrate. The molecular dynamics simulations predict most probable distances for the 1-propanol-water oxygen atoms to be 2.725 Å, and the average C-C-C-O torsional angle to be ~59° consistent with a gauche conformation. The individual cage distortions resulting from guest-host hydrogen bonding from the simulations are rather large, but due to the random nature of the hydrogen bonding of the guest with the 24 water molecules making up the hexagonal faces of the large sII cages, these distortions are not observed in the x-ray structure.

  1. Insights into photosystem II from isomorphous difference Fourier maps of femtosecond X-ray diffraction data and quantum mechanics/molecular mechanics structural models

    DOE PAGES

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.; ...

    2017-01-12

    Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less

  2. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    PubMed

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  3. Time-dependent X-ray absorption spectroscopic (XAS) study on the transformation of zinc basic salt into bis(N-oxopyridine-2-thionato) zinc (II).

    PubMed

    Paek, Seung-Min; Jo, Won-Young; Park, Man; Choy, Jin-Ho

    2007-11-01

    Solid transchelation reaction was established for the synthesis of bis(N-oxopyridine-2-thionato) zinc (II), commonly known as zinc pyrithione (ZPT), to control particle size using zinc basic salt (ZBS) and aqueous sodium pyrithione solution. Distinguished from ZPT particles prepared by usual precipitation reaction, the obtained ZPT nanoparticles exhibited very narrow size distribution. X-ray absorption spectroscopy (XAS) at Zn K-edge was systematically examined to elucidate time-dependent local structural evolution during solid transchelation reaction. X-ray absorption near edge structure (XANES) analysis clearly revealed that local environment around zinc atoms transformed into pentahedron as reaction proceeded. Based on quantitative X-ray diffraction and XANES analysis, we made structural models. Theoretical XAS spectrum calculated with FEFF code could reproduce experimental one, suggesting that XAS analysis could be very powerful tool to probe phase transformation. Furthermore, according to extended X-ray absorption fine structure (EXAFS) fitting results, Zn-O distance in reaction products gradually increased from 1.96 to 2.07 angstroms, suggesting that zinc atoms bounded with oxygen ones in ZBS were transchelated with pyrithione ligands. This study could be a strong evidence for the usefulness of XAS to study time-dependent structural transformation of nanocrystalline materials.

  4. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models

    PubMed Central

    2017-01-01

    Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy. PMID:28217747

  5. Positions of galactic X-ray sources with l/II/ between -20 deg and +6 deg

    NASA Technical Reports Server (NTRS)

    Jernigan, J. G.; Bradt, H. V.; Doxsey, R. E.; Dower, R. G.; Mcclintock, J. E.; Apparao, K. M. V.

    1978-01-01

    The precise positions of nine X-ray sources in the vicinity of the galactic center are reported. The data were obtained as part of the comprehensive survey of the galactic plane performed with the rotating modulation collimator detectors on the SAS-3 X-ray observatory. The sources include the binary X-ray source 4U 1700-37 which has a well established optical counterpart that lies 7 sec from the reported position. The other sources GX 349+2, 4U 1702-42, 4U 1705-44, MX 1716-31, A 1742-294, 4U 1755-33, GX 5-1, and 2S 1803-245 lack established counterparts in other wavelengths. The obtained position for GX 5-1 adds confidence to the radio counterpart proposed by Braes et al. (1972). The reported position for 4U 1755-33 excludes the optical counterpart proposed by Jones et al. (1974).

  6. Central electron temperature estimations of TJ-II neutral beam injection heated plasmas based on the soft x ray multi-foil technique

    SciTech Connect

    Baiao, D.; Varandas, C.

    2012-05-15

    The core electron temperature (T{sub e0}) of neutral beam heated plasmas is determined in TJ-II stellarator by using soft x ray detectors with beryllium filters of different thickness, based on the method known as the foil absorption technique. T{sub e0} estimations are done with the impurity code IONEQ, making use of complementary information from the TJ-II soft x ray tomography and the VUV survey diagnostics. When considering the actual electron density and temperature profile shapes, an acceptable agreement is found with Thomson scattering measurements for 8 different magnetic configurations. The impact of the use of both neutral beam injectors on the T{sub e0} measurements is addressed. Also, the behaviour of T{sub e0} during spontaneous profile transitions is presented.

  7. Application of PILATUS II Detector Modules for High Resolution X-Ray Imaging Crystal Spectrometers on the Alcator C-Mod Tokamak

    SciTech Connect

    M.L. Bitter, Ch. Borennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Chushman, S.G. Lee, J.E. Rice, and S. Scott.

    2007-07-23

    A new type of X-ray imaging crystal spectrometer for Doppler measurements of the radial profiles of the ion temperature and plasma rotation velocity in tokamak plasmas is presently being developed in a collaboration between various laboratories. The spectrometer will consist of a spherically bent crystal and a two-dimensional position sensitive detector; and it will record temporally and spatially resolved X-ray line spectra from highly-charged ions. The detector must satisfy challenging requirements with respect to count rate and spatial resolution. The paper presents the results from a recent test of a PILATUS II detector module on Alcator C-Mod, which demonstrate that the PILATUS II detector modules will satisfy these requirements.

  8. The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II) - III. Construction of the first flux-limited supercluster sample

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung; Böhringer, Hans; Nowak, Nina

    2013-03-01

    We present the first supercluster catalogue constructed with the extended ROSAT-ESO Flux-Limited X-ray (REFLEX II) Galaxy Cluster survey data, which comprises 919 X-ray selected galaxy clusters with a flux limit of 1.8 × 10-12 erg s-1 cm-2. Based on this cluster catalogue we construct a supercluster catalogue using a friends-of-friends algorithm with a linking length depending on the (local) cluster density, which thus varies with redshift. The resulting catalogue comprises 164 superclusters at redshift z ≤ 0.4. The choice of the linking length in the friends-of-friends method modifies the properties of the superclusters. We study the properties of different catalogues such as the distributions of the redshift, extent and multiplicity by varying the choice of parameters. In addition to the supercluster catalogue for the entire REFLEX II sample, we compile a large volume-limited cluster sample from REFLEX II with the redshift and luminosity constraints of z ≤ 0.1 and LX ≥ 5 × 1043 erg s-1. With this catalogue we construct a volume-limited sample of superclusters. This sample is built with a homogeneous linking length, and hence selects effectively the same type of superclusters. By increasing the luminosity cut we can build a hierarchical tree structure of the volume-limited samples, where systems at the top of the tree are only formed via the most luminous clusters. This allows us to test if the same superclusters are found when only the most luminous clusters are visible, comparable to the situation at higher redshift in the REFLEX II sample. We find that the selection of superclusters is very robust, independent of the luminosity cut, and the contamination of spurious superclusters among cluster pairs is expected to be small. Numerical simulations and observations of the substructure of clusters suggest that regions of high cluster number density provide an astrophysically different environment for galaxy clusters, where the mass function and X-ray

  9. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  10. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  11. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  12. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  13. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  14. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  15. X-ray

    MedlinePlus

    ... image. For most x-rays, the risk of cancer or defects is very low. Most experts feel that the benefits of appropriate x-ray ... Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ...

  16. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  17. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. I. Observational Results for Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.

  18. THE FIRST DETECTION OF [O IV] FROM AN ULTRALUMINOUS X-RAY SOURCE WITH SPITZER. I. OBSERVATIONAL RESULTS FOR HOLMBERG II ULX

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R. E-mail: ciprian.berghea.ctr@usno.navy.mi

    2010-01-01

    We present the first Spitzer Infrared Spectrograph observations of the [O IV] 25.89 mum emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well-established signature of high excitation, usually associated with active galactic nucleus (AGN). Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high-resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower-ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the photoionization. The best XMM-Newton data are used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use previously published optical and radio data to construct the full spectral energy distribution (SED) for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M{sub sun} for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper, we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.

  19. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  20. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  1. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    NASA Astrophysics Data System (ADS)

    Pons, E.; Watson, M. G.

    2016-10-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.

  2. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  3. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  4. An X-Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Hardcastle, M. J.; Harris, D. E.; Belsole, E.; Birkinshaw, M.; Worrall, D. M.

    2005-06-01

    We present a Chandra and XMM-Newton study of X-ray emission from the lobes of 33 classical double radio galaxies and quasars. We report new detections of lobe-related X-ray emission in 11 sources. Together with previous detections, we find that X-ray emission is detected from at least one radio lobe in ~75% of the sample. For all of the lobe detections, we find that the measured X-ray flux can be attributed to inverse Compton scattering of the cosmic microwave background radiation, with magnetic field strengths in the lobes between 0.3Beq and 1.3Beq, where the value Beq corresponds to equipartition between the electrons and magnetic field, assuming a filling factor of unity. There is a strong peak in the magnetic field strength distribution at B~0.7Beq. We find that more than 70% of the radio lobes are either at equipartition or electron dominated by a small factor. The distribution of measured magnetic field strengths differs for narrow- and broad-line objects, in the sense that broad-line radio galaxies and quasars appear to be further from equipartition; however, this is likely to be due to a combination of projection effects and worse systematic uncertainty in the X-ray analysis for those objects. Our results suggest that the lobes of classical double radio sources do not contain an energetically dominant proton population, because this would require the magnetic field energy density to be similar to the electron energy density rather than the overall energy density in relativistic particles.

  5. Potential Characteristics and Applications of X-Ray Lasers,

    DTIC Science & Technology

    1982-01-01

    X - ray lasers derives from their potential uses. Both radiation physics and materials ...laboratory sources of X - rays , from radioactive materials and X - ray tubes, through storage rings, to plasmas and eventually X - ray lasers, have unique and... ray laser research; (ii) radiation physics; (iii) natrrial_ analysis ; and (iv) materials modification. These categories, whilst broad and

  6. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer: Evidence of High Unbeamed Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2008-01-01

    We present the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 micron emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation, usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the Holmberg II ULX. We find that the luminosity and the morphology of the line emission is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is radiation bounded both in the line of sight direction and to the west, and probably matter bounded to the east. Evidence for a massive black hole (BH) in this ULX is mounting. Detailed photoionization models favor an intermediate mass black hole of at least 85 Solar Mass as the ionization source for the [OIV] emission. We find that the spectral type of the companion star strongly affects the expected strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst galaxies containing black hole binaries.

  7. Local electronic structure of aqueous zinc acetate: oxygen K-edge X-ray absorption and emission spectroscopy on micro-jets.

    PubMed

    Golnak, Ronny; Atak, Kaan; Suljoti, Edlira; Hodeck, Kai F; Lange, Kathrin M; Soldatov, Mikhail A; Engel, Nicholas; Aziz, Emad F

    2013-06-07

    Oxygen K-edge X-ray absorption, emission, and resonant inelastic X-ray scattering spectra were measured to site selectively gain insights into the electronic structure of aqueous zinc acetate solution. The character of the acetate ion and the influence of zinc and water on its local electronic structure are discussed.

  8. Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, P.S.; Siddons, D. P.

    2009-05-25

    We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

  9. X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus.

    PubMed

    Breece, Robert M; Llarrull, Leticia I; Tioni, Mariana F; Vila, Alejandro J; Tierney, David L

    2012-06-01

    Cobalt and zinc binding by the subclass B1 metallo-β-lactamase BcII from Bacillus cereus is examined by X-ray absorption spectroscopy, at various levels of metal loading. The data show that a significant amount of the dinuclear enzyme is formed, even at substoichiometric levels of metal loading, whether the added metal is Zn(II) or Co(II). Increasing metal addition, from 0.5 to 1.0 to 2.0eq/mol of enzyme, are shown to result in a more ordered active site. While Zn(II) appears to show no preference for the Zn(1) (3H) or Zn(2) (DCH) sites, the extended X-ray absorption fine structure (EXAFS) suggests that Co(II) shows a slight preference for the DCH site at low levels of added Co(II). The results are discussed in the context of similar metal-binding studies of other B1 metallo-β-lactamases. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Metastable Innershell Molecular State (MIMS) II: K-shell X-ray satellites in heavy ion impact on solids

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    Metastable Innershell Molecular State (MIMS), an innershell-bound ultra-high-energy molecule, was previously proposed to explain a ∼40% efficiency of soft-X-ray generation in ∼0.05 keV/amu nanoparticle impact on solids. Here, the MIMS model has been extended and applied to interpreting the experimental K-shell X-ray satellite spectra for more than 40 years in keV-MeV/amu heavy-ion impact on solids. The binding energies of the K-shell MIMS of elements from Al to Ti were determined to be 80-200 eV. The successful extension of the model to the K-shell MIMS confirms that all elements in the periodic table and their combinations are subjected to the MIMS formation.

  11. Crystal and molecular structure of norspermine copper(II) sulphate trihydrate studied by X-ray and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Perkowska, A.; Małuszyńska, H.

    1999-09-01

    The title compound [Cu(C 9H 18N 4)]SO 4·3H 2O [A] was studied by X-ray and IR spectroscopy. It crystallises as monoclinic, in the space group P2 1/c with a=9.719(2), b=13.470(3), c=12.865(3) Å, β=95.36(3) and Z=4. The copper atom is five-coordinated with four nitrogen atoms and one oxygen atom from the sulphate group, forming a tricyclic chelated norspermine complex consisting of three six-membered rings, one of which is disordered. The amine groups from norspermine are hydrogen bonded to the sulphate anions. The water molecules of crystallisation form infinite (H 2O) n chains and through the sulphate anions link the norspermine complexes in the three-dimensional hydrogen bond network. The FT-IR spectra before and after dehydration of [A] confirm the X-ray results.

  12. X-ray sources in regions of star formation. II - The pre-main-sequence G star HDE 283572

    NASA Technical Reports Server (NTRS)

    Walter, F. M.; Brown, A.; Linsky, J. L.; Rydgren, A. E.; Vrba, F.

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a 'naked' T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars.

  13. X-ray emission from the Wolf-Rayet bubble NGC 6888 - II. XMM-Newton EPIC observations

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Arthur, S. J.; Tafoya, D.; Gruendl, R. A.

    2016-03-01

    We present deep XMM-Newton European Photon Imaging Camera observations of the Wolf-Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s-1 in the 0.3-1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm-3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.

  14. X-ray emission spectroscopy.

    PubMed

    Bergmann, Uwe; Glatzel, Pieter

    2009-01-01

    We describe the chemical information that can be obtained by means of hard X-ray emission spectroscopy (XES). XES is presented as a technique that is complementary to X-ray absorption spectroscopy (XAS) and that provides valuable information with respect to the electronic structure (local charge- and spin-density) as well as the ligand environment of a 3d transition metal. We address non-resonant and resonant XES and present results that were recorded on Mn model systems and the Mn(4)Ca-cluster in the oxygen evolving complex of photosystem II. A brief description of the instrumentation is given with an outlook toward future developments.

  15. Preliminary X-ray crystallographic studies of BthTX-II, a myotoxic Asp49-phospholipase A{sub 2} with low catalytic activity from Bothrops jararacussu venom

    SciTech Connect

    Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.; Soares, A. M.

    2006-08-01

    A myotoxic Asp49-PLA{sub 2} with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA{sub 2} PrTX-III and all bothropic Lys49-PLA{sub 2}s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A{sub 2} (Asp49-PLA{sub 2}) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA{sub 2} PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA{sub 2}s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA{sub 2} from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA{sub 2}s.

  16. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  17. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Sellberg, Jonas A.; McQueen, Trevor; Laksmono, Hartawan; Kennedy, Brian; Eckert, Sebastian; Schlesinger, Daniel; Nordlund, Dennis; Ogasawara, Hirohito; Sierra, Raymond G.; Segtnan, Vegard H.; Kubicek, Katharina; Schlotter, William F.; Dakovski, Georgi L.; Moeller, Stefan P.; Bergmann, Uwe; Techert, Simone; Pettersson, Lars G. M.; Wernet, Philippe; Bogan, Michael J.; Harada, Yoshihisa; Nilsson, Anders; Föhlisch, Alexander

    2014-10-01

    We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.

  18. Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences.

    PubMed

    Schreck, Simon; Beye, Martin; Sellberg, Jonas A; McQueen, Trevor; Laksmono, Hartawan; Kennedy, Brian; Eckert, Sebastian; Schlesinger, Daniel; Nordlund, Dennis; Ogasawara, Hirohito; Sierra, Raymond G; Segtnan, Vegard H; Kubicek, Katharina; Schlotter, William F; Dakovski, Georgi L; Moeller, Stefan P; Bergmann, Uwe; Techert, Simone; Pettersson, Lars G M; Wernet, Philippe; Bogan, Michael J; Harada, Yoshihisa; Nilsson, Anders; Föhlisch, Alexander

    2014-10-10

    We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.

  19. Orientation of the oxygen-evolving manganese complex in a photosystem II membrane preparation: an X-ray absorption spectroscopy study.

    PubMed

    Mukerji, I; Andrews, J C; DeRose, V J; Latimer, M J; Yachandra, V K; Sauer, K; Klein, M P

    1994-08-16

    X-ray absorption spectroscopy has been performed on oriented photosystem II membrane particles isolated from spinach. Structural features of the tetranuclear Mn cluster and the orientation of the cluster with respect to the lipid bilayer were determined in both the S1 and S2 states of the Kok cycle. Variation of the sample orientation with respect to the X-ray e-vector yields highly dichroic K-edge and extended X-ray absorption fine structure spectra (EXAFS), indicative of an asymmetric tetranuclear cluster. Mn-Mn vectors at 2.72 and 3.38 A can be resolved from these measurements using quantitative analysis. The 2.72-A vector, consisting of at least two component vectors, is oriented at an average angle of 60 degrees +/- 7 degrees to the membrane normal, with an average of 1.1 +/- 0.1 interactions per Mn atom. The 3.38-A vector, most probably an average of two vectors, makes an angle of 43 degrees +/- 10 degrees with respect to the membrane normal, with an average of 0.45 +/- 0.07 backscatterer per Mn atom. Upon advance to the S2 state, the orientation of these vectors and the average numbers of backscatterers are approximately invariant. Analysis of more subtle features of the EXAFS reveals changes accompanying this S-state advance that are consistent with the oxidation of Mn during this transition. However, the dominant structural features of the oxygen-evolving complex remain constant in the S1 and S2 states. The structure of the Mn complex and the orientation of the complex in the membrane within the context of dichroism of the X-ray absorption data are discussed.

  20. Polarized X-ray Absorption Spectroscopy of Single-Crystal Mn(V) Complexes Relevant to the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Robblee, John; Pushkar, Yulia; Marcus, Matthew A.; Bendix, Jesper; Workman, José M.; Collins, Terrence J.; Solomon, Edward I.; Yachandra, Vittal K.

    2014-01-01

    High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the Mn≡N axis that can be assigned to a strong 3dz2–4pz mixing mechanism. In the square pyramidal Mn-(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3dxz,yz transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed. PMID:17918832

  1. Polarized X-Ray Absorption Spectroscopy of Single-Crystal Mn(V) Complexes Relevant to the Oxygen-Evolving Complex of Photosystem II

    SciTech Connect

    Yano, J.K.; Robblee, J.; Pushkar, Y.; Marcus, M.A.; Bendix, J.; Workman, J.M.; Collins, T.J.; Solomon, E.I.; George, S.D.; Yachandra, V.K.; /LBL, Berkeley /Copenhagen U. /Stanford U., Chem. Dept. /SLAC, SSRL

    2007-10-16

    High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the MnN axis that can be assigned to a strong 3dz2-4pz mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3dxz,yz transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed.

  2. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  3. A Detailed X-Ray Investigation of ζ Puppis. II. The Variability on Short and Long Timescales

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Oskinova, Lidia M.; Gosset, Eric

    2013-02-01

    Stellar winds are a crucial component of massive stars, but their exact properties still remain uncertain. To shed some light on this subject, we have analyzed an exceptional set of X-ray observations of ζ Puppis, one of the closest and brightest massive stars. The sensitive light curves that were derived reveal two major results. On the one hand, a slow modulation of the X-ray flux (with a relative amplitude of up to 15% over 16 hr in the 0.3-4.0 keV band) is detected. Its characteristic timescale cannot be determined with precision, but amounts from one to several days. It could be related to corotating interaction regions, known to exist in ζ Puppis from UV observations. Hour-long changes, linked to flares or to the pulsation activity, are not observed in the last decade covered by the XMM observations; the 17 hr tentative period, previously reported in a ROSAT analysis, is not confirmed either and is thus transient, at best. On the other hand, short-term changes are surprisingly small (<1% relative amplitude for the total energy band). In fact, they are compatible solely with the presence of Poisson noise in the data. This surprisingly low level of short-term variability, in view of the embedded wind-shock origin, requires a very high fragmentation of the stellar wind, for both absorbing and emitting features (>105 parcels, comparing with a two-dimensional wind model). This is the first time that constraints have been placed on the number of clumps in an O-type star wind and from X-ray observations. Based on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  4. Synthesis of palladium(II) complex with NNS donor Schiff base ligand via Csbnd S bond cleavage: X-ray structure, electrochemistry and DFT computation

    NASA Astrophysics Data System (ADS)

    Biswas, Sujan; Roy, Puspendu; Mondal, Tapan Kumar

    2017-08-01

    Reaction of ligand, L-Ch2Ph with Na2PdCl4 in acetonitrile yielded palladium(II) complex, [Pd(L)Cl] via Csbnd S bond cleavage. It is characterized by several spectroscopic techniques and the structure is confirmed by single crystal X-ray study. The complex exhibits quasi-reversible oxidation couple at 0.86 V corresponds to ligand based thiophenolato to thiyl radical oxidation. Electronic structure, solution spectrum and redox properties are interpreted by DFT and TDDFT calculations.

  5. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  6. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  7. Numerical simulations of loops heated to solar flare temperatures. I - Gasdynamics. II - X-ray and UV spectroscopy

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Oran, E. S.; Doschek, G. A.; Boris, J. P.; Mariska, J. T.

    1983-01-01

    The NRL's Dynamic Flux Tube Model is used to numerically simulate the dynamic response of a coronal magnetic loop to an energy input of the order encountered in solar flares. The coronal plasma is heated by the deposition of flare energy at the top of the loop to more than 10 million K, yielding a conduction front that moves toward the chromosphere, where the plasma is heated by the large downward conductive flux and ablates upward to the coronal part of the loop at velocities of a few hundred km/sec. The conduction front simultaneously produces chromospheric ablation and compresses the material ahead of it. With the aid of compressional instabilities, the compressed plasma grows throughout the flare heating phase, presenting a possible source of the flare optical continuum emission which is correlated with soft X-ray radiation. The observational consequences of rapidly heated loop gas dynamic processes are discussed. In the second part of this presentation, the dynamical calculation results previously obtained are used to predict the spectral line intensities, profiles and wavelengths of several X-ray lines and the UV line of Fe XXI at 1354.1 A. Three different viewing orientations of the loop are considered.

  8. X-ray fluorescence analysis of Mexican varieties of dried chili peppers II: Commercial and home-grown specimens

    NASA Astrophysics Data System (ADS)

    Romero-Dávila, E.; Miranda, J.; Pineda, J. C.

    2015-07-01

    Elemental analyses of samples of Mexican varieties of dried chili peppers were carried out using X-ray Fluorescence (XRF). Several specimens of Capsicum annuum L., Capsicum chinense, and Capsicum pubescens were analyzed and the results compared to previous studies of elemental contents in other varieties of Capsicum annuum (ancho, morita, chilpotle, guajillo, pasilla, and árbol). The first set of samples was bought packaged in markets. In the present work, the study focuses on home-grown samples of the árbol and chilpotle varieties, commercial habanero (Capsicum chinense), as well as commercial and home-grown specimens of manzano (Capsicum pubescencs). Samples were freeze dried and pelletized. XRF analyses were carried out using a spectrometer based on an Rh X-ray tube, using a Si-PIN detector. The system detection calibration was performed through the analysis of the NIST certified reference materials 1547 (peach leaves) and 1574 (tomato leaves), while accuracy was checked with the reference material 1571 (orchard leaves). Elemental contents of all elements in the new set of samples were similar to those of the first group. Nevertheless, it was found that commercial samples contain high amounts of Br, while home-grown varieties do not.

  9. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray</